Integrable systems for real time simulation of fluid flow

Ulrich Pinkall

Technische Universität Berlin

Durham, August 2006

Joint work with S. Weissmann

Vortex rings in fluids

A polygon η_1, \ldots, η_n in \mathbb{R}^3 is called a Darboux transform of a polygon $\gamma_1, \ldots, \gamma_n$ if

- corresponding edges of γ and η have the same length.
- the distance d between corresponding points of γ and η is constant.
- the twist angle α of the quadrilaterals
 γ_j, γ_{j+1}, η_{j+1}, η_j is constant.

Evolution of closed polygons

- For generic distance d and twist angle α every closed polygon has exactly two closed Darboux transforms
- Iterate Darboux transforms to obtain a (discrete time) flow on polygons → integrable system.
- For $\alpha = \pi$ this flow is a discrete version of the mKdV-flow for smooth curves:

$$\dot{\gamma} = \gamma''' - \frac{|\gamma''|^2}{2}\gamma'$$

 A suitable combination of two Darboux transforms (same d, opposite twist) gives a discrete version of the smoke ring flow:

$$\dot{\gamma} = \gamma' \times \gamma''$$

Let M be a compact Riemannian 3-manifold with boundary.

- SDiff(M) ={volume-preserving diffeomorphisms $g : M \to M$ }
- sDiff(M) =
 {divergence-free vector fields on M tangent to ∂M}
- L²-norm of vector fields defines a right invariant Riemannian metric on *SDiff*(*M*).
- geodesic on SDiff(M) ↔
 motion of ideal incompressible fluid in M

Similar statements if $M = \mathbb{R}^3$ for fluids at rest near infinity.

Fluid motion: velocity in terms of vorticity

 \bullet for every vector field ω on \mathbb{R}^3 with compact support and

 $\operatorname{div}\omega=0$

there is a unique L^2 -vector field v on \mathbb{R}^3 with

div v = 0

curl $v = \omega$

• v is given by the Biot-Savart formula:

$$v(x) = \int_{\mathbb{R}^3} \frac{\omega(y) \times (x-y)}{|x-y|^3} dy$$

• a single equations governs the evolution of ω :

$\dot{\omega} = [\omega, \mathbf{v}]$

- vorticity "flows with the fluid"
- topology of $\operatorname{supp}\omega$ is invariant

Suppose ω is supported in a tubular neighborhood of an oriented link $\gamma_1, \ldots, \gamma_n$.

 \rightsquigarrow total vorticities K_1, \ldots, K_n

$$K_j = \int_{\eta} v$$

 η a small loop around γ_j

 K_j is the flux of ω through the tube around γ_j

Limit of thin tubes

Look at a single vortex tube. Suppose within the tube ω looks like

$$\omega(s,r,\phi) = K/R^2 f(r/R) \gamma'(s)$$

- f = a fixed function ("vorticity profile")
- s =arclength along γ
- $r = \text{distance to } \gamma$
- R = tube radius

Then in the limit $R \rightarrow 0$ the velocity field v generated by γ becomes

$$v(x) = rac{\kappa}{4\pi} \oint rac{\gamma' \times (x-\gamma)}{|x-\gamma|^3}$$

• Evolution of $\gamma:$ Evaluate velocity v on $\gamma \leadsto$

$$\dot{\gamma} \approx C_f \ K \ \log(R) \ \gamma' \times \gamma''$$

• Scale down K as $R \rightarrow 0 \rightsquigarrow$ smoke ring flow

$$\dot{\gamma} = \gamma' \times \gamma''$$

(da Rios and Levi-Civita 1906)

• Integrable system equivalent to the non-linear Schroedinger equation (Hashimoto 1972)

Hamiltonian formulation

• Symplectic form on the space of (weighted) links:

$$\sigma(\dot{\gamma}, \overset{\circ}{\gamma}) = \sum_{j} \textit{K}_{j} \oint_{\gamma_{j}} \det(\gamma', \dot{\gamma}, \overset{\circ}{\gamma})$$

• Hamiltonian:

$$H = \sum_{j} K_{j} \operatorname{Length}(\gamma_{j})$$

Renormalized version of

$$H = \sum_{i,j} \frac{K_i K_j}{8\pi} \iint \frac{\langle \gamma'_i(s), \gamma'_j(t) \rangle}{|\gamma_i(s) - \gamma_j(t)|} ds dt$$

Problem: In the smoke ring limit

- Fluid is at rest, vortex filaments just cut through
- No interaction between different components of a link

Solution:

- Keep symplectic form
- Replace Hamiltonian by a smoothed version

$$H = \sum_{i,j} \frac{K_i K_j}{8\pi} \iint \frac{\langle \gamma'_i(s), \gamma'_j(t) \rangle}{\sqrt{R^2 + |\gamma_i(s) - \gamma_j(t)|^2}} ds dt$$

Resulting evolution equation

$$\dot{\gamma_k}(s) = \sum_j rac{\kappa_j}{4\pi} \int rac{\gamma_j'(t) imes (\gamma_k(s) - \gamma_j(t))}{\sqrt{R^2 + |\gamma_k(s) - \gamma_j(t)|^2}} dt$$

- Still Hamiltonian but not anymore integrable
- Conserved quantitity: Sum of (weighted) areas of orthogonal projection to planes, encoded by the area vector

$$A = \sum_{j} K_{j} \oint \gamma_{j} \times \gamma_{j}'$$

Flow generated by $\gamma_1, \ldots, \gamma_n$ on \mathbb{R}^3

 γ₁,..., γ_n flow according to some divergence-free vector field
 v on ℝ³:

$$\mathbf{v}(x) = \sum_{j} rac{\mathcal{K}_{j}}{4\pi} \int rac{\gamma_{j}' imes (x - \gamma_{j})}{\sqrt{R^{2} + |x - \gamma_{j}|^{2}}}^{3}$$

- Vorticity $\omega = \operatorname{curl} v$ concentrated within distance R of $\gamma_1, \dots, \gamma_n$
- δ -function like vorticity ω_0 smoothed by a convolution kernel:

$$\omega(x) = \frac{1}{4\pi} \int_{\mathbb{R}^3} \frac{3R^2}{\sqrt{R^2 + |x - y|^2}} \, \omega_0(y) dy$$

Perturbed integrable system

- Approximation to the Euler equations that ignores distortions of the cross section of the vortex tubes.
- View above evolution of γ₁,..., γ_n as a perturbation of the smoke ring flow → KAM picture.

- Perturb the discrete smoke ring dynamics of a polygon by the long range interactions via Biot-Savart.
- Biot-Savart alone would ignore the influence of the adjacent edges on the motion of a vertex.
- Biot-Savart alone would always model vortex filaments of thickness ≈ edgelengths → too thick, too slow.
- Discrete smoke ring dynamics is therefore needed.

