Geometry of equations of Painlevé type

Masa-Hiko SAITO (Kobe University)

Method of Integrabl Systems in Geometry,
LMS Durham Symposium, Durham, 18-August-2006 9:20-10:10

Today's talk are based on works listed below.

Papers

- K. Okamoto, Sur les feuilletages associés aux équations du second ordre à points critiques fixes de P. Painlevé, Espaces des conditions initiales, J apan. J. Math. 5, (1979), 1-79.
- M.-H. Saito, H. Umemura, Painlevé equations and deformations of rational surfaces with rational double points. Physics and combinatorics 1999 (Nagoya), 320-365, World Sci. Publishing, River Edge NJ, 2001.
- H. Sakai, Rational surfaces associated with affine root systems and geometry of the Painlevé equations, Comm Math. Phys. 220 (2001), 165-229.
- M-. H. Saito and T. Takebe, Classification of Okamoto-Painlevé Pairs, Kobe J . Math.19, No.1-2. (2002), 21-55.
- M.-H. Saito, T. Takebe and H. Terajima, Deformation of Okamoto-Painlevé pairs and Painlevé equations, J. Algebraic Geom 11 (2002), no. 2, 311-362.
- M-. H. Saito, H. Terajima, Nodal curves and Riccati solutions of Painlevé equations, J. Math. Kyoto Univ. 44, (2004), no. 3, 529-568.
- M.-H. Saito and H. Umemura, Painlevé equations and deformations of rational surfaces with rational double points,
- M. Inaba, K. Iwasaki and M.-H. Saito, Bäcklund transformations of the sixth Painlevé equation in terms of Riemann-Hilbert Correspondence, Intemat. Math. Res. Notices 2004:1 (2004), 1-30.
- M. Inaba, K. Iwasaki and M.-H. Saito, Moduli of stable parabolic connections, Riemann-Hilbert correspondence and geometry of Painlevé equation of type VI. Part I, to appear in Publ. of RIMS (2006). (math.AG/ 0309342).
- ___ Part II, to appear in Advanced Studies in Pure Mathematics 42, 2006.
- M. Inaba, K. Iwasaki and M.-H. Saito, Dynamics of the Sixth PainlevéEquation, to appear in Angers proceedings, math.AG/ 0501007
- M. Inaba, Moduli of parabolic connections on a curve and Riemann-Hilbert correspondence, (math.AG/ 0602004).
- K. Iwasaki, An Area-Preserving Action of the Modular Group on Cubic Surfaces and the Painlev́ e VI Equation, Commun. Math. Phys. 242, 185219 (2003).
- K. Iwasaki, T. Uehara, Periodic Solutions to Painlevé VI and Dynamical System on Cubic Surface, (math.AG/ 0512583)
- K. Iwasaki, T. Uehara, An ergodic study of Painlevé VI, (math.AG/ 0604582)

The Purpose of Our Researches

We would like to:

- understand (partial or ordinary) algebraic differential eqautions of Painlevé type by means of geometry of the phase spaces and their relative compactifications.
- find more (partial or ordinary) algebraic differential equations of Painleve type of higher orders and to classify all of them.

Two Main Strategy

- Strategy 1 :

Compactify the phase space by adding divisors on the boundary. Then analyse the order of poles of ODEs. Painlevé property of ODE imposes rather strong conditions on the order of poles. ($n-\log)$-conditions).

- Conjecture for ($1-\log$)-condition:

For each ODE \tilde{v} of Painlevé type, we can find a good model of family of compactifications of phase spaces, such that \tilde{v} satisfy the $(1-\log)$-conditions on each boundary divisors.

- Resolution of accessible singularities:

Under the $(1-\log)$-conditions, the accessible singularities can be considered as the zero of some vector bundles on the divisor. Then if there are no accessible singularities at all, divisor satisfies the Okamoto-Painlevé conditions. This fits into our notion of Okamoto-Painlevé pair.

- Related works: K.Okamoto, H.Sakai, S-Umeumura, S-Takebe-Terajima,
- Strategy 2:Moduli theoretic methods-Riemann-Hilbert correspondeces

Construct the family of the moduli spaces $\mathcal{M} \longrightarrow T \times \Lambda$ (resp. $\overline{\mathcal{M}} \longrightarrow$ $T \times \Lambda$) of stable parabolic connections and stable ϕ-parabolic connections. Moreover, we can construct the family of the moduli spaces $\mathcal{R e p} \longrightarrow T \times \mathcal{A}$ of representations. Then we have the following Riemann-Hilbert correspondences,

- Fact: Painlevé equations = Isomonodromic Flows:

Painlevé equations can be derived from the isomonodromic flows on \mathcal{M}.

- Main Theorem:

Riemann-Hilbert correspondences give proper surjective bimeromorphic analytic morphisms between fibers. This facts shows that the isomonodromic flows satisfies the Painlevé properties.

- Related works:

Fuchs, Miwa-Jimbo-Ueno (1980- ??), K. Iwasaki(1990-), M.Inaba-K.IwasakiS (2003-), M. Inaba (2006), K. Iwasaki-T. Uehara(2005-).

Plan of Talk

- 1 Painlevé Property
- 2 Classification of ODEs with Painlevé Property of order ≤ 2. (due to Poincaré, Fuchs, Painlevé, Gambier).
- 3 Geometry of Spaces of initial Conditions, Okamoto-Painlevé pairs and ($1-\log$)-conditions
- 4 Isomonodromic deformation of Linear ODEs or stable parabolic connections.
- 5 Riemann-Hilbert correspondences.
- 6 Compactification of the moduli space of stable parabolic connections by stable ϕ-connections.
- 7 Geometry of Riemann-Hilbert correspodences. (Bäcklund transformations and Riccati solutions)

1. Painlevé Property

Algebraic ODE:

$$
\begin{equation*}
F\left(t, x, \frac{d x}{d t}, \frac{d^{2} x}{d t^{2}}, \cdots, \frac{d^{m} x}{d t}\right)=0 \tag{2}
\end{equation*}
$$

where

$$
F\left(t, x_{0}, x_{1}, x_{2}, \cdots, x_{m}\right) \in \mathbf{C}(t)\left[x_{0}, x_{1}, \cdots, x_{m}\right]
$$

Cauchy Problem: Take

$$
\left(t_{0}, \mathbf{c}_{0}\right)=\left(t_{0}, c_{0}, c_{1}, \cdots, c_{m}\right) \in\left\{\left(t_{0}, \mathbf{c}_{0}\right) \in \mathbf{C}^{m+2} \mid F=0\right\} .
$$

Find a solution $x(t)=\varphi\left(t ;\left(t_{0}, \mathbf{c}_{0}\right)\right)$ such that

$$
\begin{equation*}
\frac{d^{i} \varphi}{d t^{i}}\left(t_{0}\right)=c_{i}, \quad(i=0, \ldots, m) \tag{3}
\end{equation*}
$$

If the equation (2) is linear, we see that the singularity of the solution $x(t)=\varphi\left(t,\left(t_{0}, \mathbf{c}_{0}\right)\right)$ can be detected from the equation itself and does not depend on the initial values.

Example 1.1. Non-movable singularities

Consider the linear ODEs and their solutions:

$$
\begin{gathered}
(t-a) \frac{d x}{d t}=1 . \Longrightarrow \quad x(t)=\log (t-a)+c_{1} \\
\frac{d x}{d t}=\frac{-x}{(t-a)^{2}}, \Longrightarrow \quad x(t)=c_{2} e^{\frac{1}{t-a}}
\end{gathered}
$$

Solutions have the singularities at $t=a$ which do not depend on the initial values ($=$ integral constants c_{1}, c_{2}). Such singularities are called non-movable singularities.

Example 1.2. Movable singularities
${ }^{\prime}=\frac{d}{d x}$.
(1) $m \geq 2, \quad m x^{m-1} x^{\prime}=1 \Longrightarrow x=\sqrt[m]{t-c}$.
movable algebraic branched point.
(2) $x^{\prime \prime}+\left(x^{\prime}\right)^{2}=0 \Longrightarrow x=\log \left(t-c_{1}\right)+c_{2}$. movable logarithmic branched point.
(3) $\left(x x^{\prime \prime}-\left(x^{\prime}\right)^{2}\right)^{2}+4 x\left(x^{\prime}\right)^{3}=0 \Longrightarrow x=c_{1} \exp \left(-1 /\left(t-c_{2}\right)\right)$. movable essential singular point.
(4) $x^{\prime}-x^{2}=0 \Longrightarrow x=\frac{-1}{t-c_{1}}$,.
movable pole.
1.1. Painlevé property.

Definition 1.1. An algebraic ODE (2) has Painlevé property if the generic solution of (2) has only poles as its movable singularities.

Example 1.3.: The ODE for Weierstrass \wp function

 has Painlevé property.Assume that $g_{2}, g_{3} \in \mathbf{C}, g_{2}^{3}-27 g_{3}^{2} \neq 0$.

$$
\left(x^{\prime}\right)^{2}=4 x^{3}-g_{2} x-g_{3}
$$

The solutions are given by

$$
x(t)=\wp(t-b)
$$

where $\wp(t)$ is the Weierstrass \wp-function. The constant b can be determined by the initial condition, so the solution $x(t)=\wp(t-b)$ has movable poles of order 2 at $t \equiv b \bmod \Lambda$, periods of the above elliptic curve, and no other singularity.

Example 2: Riccati equation

$$
\begin{equation*}
x^{\prime}=a(t) x^{2}+b(t) x+c(t) \tag{4}
\end{equation*}
$$

By the change of unknown $x \longrightarrow u$,

$$
\begin{equation*}
x=-\frac{1}{a(t)} \frac{d}{d t} \log (u)=-\frac{1}{a(t)} \frac{u^{\prime}}{u} \tag{5}
\end{equation*}
$$

the Riccati equation (4) is transformed into the linear equation

$$
\begin{equation*}
u^{\prime \prime}-\left[\frac{a^{\prime}(t)}{a(t)}+b(t)\right] u^{\prime}+a(t) c(t) u=0 \tag{6}
\end{equation*}
$$

Hence the solutions $u(t)$ of (6) has only nonmovable singularities and only movable singularities of $x(t)$ is the zero of $u(t)$. Since the zero of $u(t)$ has a finite order, then the movable singularities of $x(t)$ are only poles.

Classification of 1st order ODE with Painlevé property

Theorem 1.1. (L. Fuchs, H. Poincaré, J. Malmquist, M. Matsuda). For $m=1$, an algebraic ODE (2) has Painlevé property if and only if (2) can be transformed into one of the following equations:
(1) Riccati equation

$$
\begin{equation*}
x^{\prime}=a(t) x^{2}+b(t) x+c(t) . \tag{7}
\end{equation*}
$$

(2) The equation of the Weierstrass \wp function .

$$
\begin{equation*}
\left(x^{\prime}\right)^{2}=4 x^{3}-g_{2} x-g_{3} \tag{8}
\end{equation*}
$$

$$
\left(g_{2}, g_{3} \in \mathbf{C}, g_{2}^{3}-27 g_{3}^{2} \neq 0\right)
$$

(3) Or, one can integrate (2) algebraically.

I will give a very simple geometric proof for Theorem 1.1.

The case of order 2 -(original) Painlevé equations

Definition 1.2. Painlevé equation is a second order algebraic ODE of rational type, that is,

$$
\begin{equation*}
x^{\prime \prime}=R\left(x, x^{\prime}, t\right), \quad R(x, y, t) \in \mathbf{C}(x, y, t) \tag{9}
\end{equation*}
$$

satisfying Painlevé property.
Painlevé and his student B.O. Gambier showed that Painlevé equation reduces, by an approptiate transformation of the variables, to an equation which can be integrated by quadrature, or to a linear equation, or to $P_{J}, J=I, I I, I I I, I V, V, V I$. (See Table 1). Here α, β, γ and δ are complex constants.

Painlevé-Gambier Classification

$$
\begin{aligned}
& P_{I}: \frac{d^{2} x}{d t^{2}}=6 x^{2}+t, \\
& P_{I I}: \frac{d^{2} x}{d t^{2}}=2 x^{3}+t x+\alpha, \\
& P_{I I I}: \frac{d^{2} x}{d t^{2}}= \\
&=\frac{1}{x}\left(\frac{d x}{d t}\right)^{2}-\frac{1}{t} \frac{d x}{d t}+\frac{1}{t}\left(\alpha x^{2}+\beta\right)+\gamma x^{3}+\frac{\delta}{x}, \\
& P_{I V}: \frac{d^{2} x}{d t^{2}}= \frac{1}{2 x}\left(\frac{d x}{d t}\right)^{2}+\frac{3}{2} x^{3}+4 t x^{2}+2\left(t^{2}-\alpha\right) x+\frac{\beta}{x}, \\
& P_{V}: \frac{d^{2} x}{d t^{2}}=\left(\frac{1}{2 x}+\frac{1}{x-1}\right)\left(\frac{d x}{d t}\right)^{2}-\frac{1}{t} \frac{d x}{d t}+\frac{(x-1)^{2}}{t^{2}}\left(\alpha x+\frac{\beta}{x}\right) \\
& \quad+\gamma \frac{x}{t}+\delta \frac{x(x+1)}{x-1}, \\
& P_{V I}: \frac{d^{2} x}{d t^{2}}= \frac{1}{2}\left(\frac{1}{x}+\frac{1}{x-1}+\frac{1}{x-t}\right)\left(\frac{d x}{d t}\right)^{2}-\left(\frac{1}{t}+\frac{1}{t-1}+\frac{1}{x-t}\right)\left(\frac{d x}{d t}\right), \\
&+\frac{x(x-1)(x-t)}{t^{2}(t-1)^{2}}\left[\alpha-\beta \frac{t}{x^{2}}+\gamma \frac{t-1}{(x-1)^{2}}+\left(\frac{1}{2}-\delta\right) \frac{t(t-1)}{(x-t)^{2}}\right] .
\end{aligned}
$$

Table 1
2. Geometry of Spaces of initial Conditions, Okamoto-Painlevé pairs and $(1-\log)$-conditions
First, let us recall that each P_{J} is equivalent to a Hamiltonian system H_{J}

$$
\left(H_{J}\right):\left\{\begin{array}{l}
\frac{d x}{d t}=\frac{\partial H_{J}}{\partial y} \tag{10}\\
\frac{d y}{d t}=-\frac{\partial H_{J}}{\partial x}
\end{array}\right.
$$

$$
\begin{aligned}
H_{I}(x, y, t)= & \frac{1}{2} y^{2}-2 x^{3}-t x \\
H_{I I}(x, y, t)= & \frac{1}{2} y^{2}-\left(x^{2}+\frac{t}{2}\right) y-\left(\alpha+\frac{1}{2}\right) x \\
H_{I I I}(x, y, t)= & \frac{1}{t}\left[2 x^{2} y^{2}-\left\{2 \eta_{\infty} t x^{2}+\left(2 \kappa_{0}+1\right) x-2 \eta_{0} t\right\} y+\eta_{\infty}\left(\kappa_{0}+\kappa_{\infty}\right) t x\right] \\
H_{I V}(x, y, t)= & 2 x y^{2}-\left\{x^{2}+2 t x+2 \kappa_{0}\right\} y+\kappa_{\infty} x \\
H_{V}(x, y, t)= & \frac{1}{t}\left[x(x-1)^{2} y^{2}-\left\{\kappa_{0}(x-1)^{2}+\kappa_{t} x(x-1)-\eta t x\right\} y+\kappa_{\infty}(x-1)\right] \\
& \left(\kappa:=\frac{1}{4}\left\{\left(\kappa_{0}+\kappa_{t}\right)^{2}-\kappa_{\infty}^{2}\right\}\right) \\
H_{V I}(x, y, t)= & \frac{1}{t(t-1)}\left[x(x-1)(x-t) y^{2}-\left\{\kappa_{0}(x-1)(x-t)\right.\right. \\
& \left.\left.+\kappa_{1} x(x-t)+\left(\kappa_{t}-1\right) x(x-1)\right\} y+\kappa(x-t)\right] \\
& \left(\kappa:=\frac{1}{4}\left\{\left(\kappa_{0}+\kappa_{1}+\kappa_{t}-1\right)^{2}-\kappa_{\infty}^{2}\right\}\right) .
\end{aligned}
$$

Consider the Painlevé vector field

$$
\begin{equation*}
\left(H_{J}\right): \quad v=\frac{\partial}{\partial t}+\frac{\partial H_{J}}{\partial y} \frac{\partial}{\partial x}-\frac{\partial H_{J}}{\partial x} \frac{\partial}{\partial y} \tag{11}
\end{equation*}
$$

This Painlevé vector field $\left(H_{J}\right)$ is an algebraic regular vector field defined on the space $\mathbf{C}^{2} \times B_{J} \quad \ni(x, y, t)$. where $B_{J}=\mathbf{C}, \mathbf{C} \backslash\{0\}$ or $\mathbf{C} \backslash\{0,1\}$.

$$
\begin{array}{rlrl}
v \quad \mathbf{C}^{2} \times B_{J} \hookrightarrow & \mathbf{P}^{2} \times B_{J} & \tilde{v} \\
\pi \downarrow & & \downarrow & \\
B_{J} & = & B_{J} & \\
L=\mathbf{P}^{2} \backslash \mathbf{C}^{2} \simeq \mathbf{P}^{1} .
\end{array}
$$

A rational vector field

$$
\left(H_{J}\right): \quad \tilde{v}=\frac{\partial}{\partial t}+\frac{\partial H_{J}}{\partial y} \frac{\partial}{\partial x}-\frac{\partial H_{J}}{\partial x} \frac{\partial}{\partial y}
$$

has the pole along $L \times B_{J}$.

Resolutions of Accessible Singularites

Okamoto's space of initial conditions

$$
\begin{array}{cccc}
\tilde{v} \quad \mathbf{P}^{2} \times B_{J} \stackrel{\tau}{\leftarrow} \mathcal{S} \tilde{v} \\
& \downarrow & \swarrow \bar{\pi} & \\
& B_{J} & &
\end{array}
$$

Figure 1. Example: Painlevé $I V$ case

Work of K. Okamoto, H. Sakai, S-Takebe, S-Takebe-

 Terajima(Observations) After the resolutions of accessible singularities, we see that:

- $S=\mathcal{S}_{t}, t \in B_{J}$ is a rational surface which is 9 -points blowings ups of \mathbf{P}^{2}.
- $S=\mathcal{S}_{t}$ has a global rational two forms ω such that the pole divisor Y of ω ($=$ anti-canonical divisor $-K_{S}$) satisfies the following Okamoto-Painlevé conditions. $-K_{S}=Y=\sum_{i=1}^{r} m_{i} Y_{i}$. $D=Y_{\text {red }}=\sum Y_{i}$

$$
\begin{equation*}
\operatorname{deg}-\left(K_{S}\right)_{\mid Y_{i}}=-K_{S} \cdot Y_{i}=Y \cdot Y_{i}=0 \quad 1 \leq^{\forall} i \leq r . \tag{14}
\end{equation*}
$$

- Moreover the Painlevé vector field \tilde{v} satisfies the $(1-\log)$ condition

$$
\begin{equation*}
\tilde{v} \in H^{0}(\mathcal{S}, \Theta(-\log \mathcal{D})(\mathcal{D})) \tag{15}
\end{equation*}
$$

where $\mathcal{D}=\mathcal{Y}_{\text {red }}$.

Main Questions

- Can one recover the Painlevé equations from the geometry of spaces of initial conditions?
-What is the meaning of these two conditions?
- How are they essential for Painleve property?

2.1. Definition of Okamoto-Painlevé pairs.

Definition 2.1. Let (S, Y) be a pair of a complex projective smooth rational surface S and an anti-canonical divisor $Y \in\left|-K_{S}\right|$ of S. Let $Y=\sum_{i=1}^{r} m_{i} Y_{i}$ be the irreducible decomposition of Y. We call a pair

$$
(S, Y)
$$

a rational Okamoto-Painlevé Pair if for all $i, 1 \leq i \leq r$,

$$
\begin{equation*}
\operatorname{deg}\left(-K_{S}\right)_{\mid Y_{i}}=Y \cdot Y_{i}=\operatorname{deg} Y_{\mid Y_{i}}=0 \tag{16}
\end{equation*}
$$

(Okamoto-Painlevé condition).

Configuration of $-K_{S}=Y$
 for a rational Okamoto- Painlevé pair (S, Y)

For a rational Okamoto-Painlevé pair (S, Y), let us set

$$
-K_{S}=Y=\sum_{i=1}^{r} m_{i} Y_{i}
$$

One can show that
Config. of Y is one as Kodaira-Néron's singular elliptic curves

Okamoto-Painlevé conditions

$$
\operatorname{deg}-\left(K_{S}\right)_{\mid Y_{i}}=Y \cdot Y_{i}=0 \quad \text { for all } i, \quad 1 \leq i \leq m .
$$

Moreover $r \leq 9$.

Classification of rational Okamoto-Painlevé pairs

Theorem 2.1. (Sakai, Saito-Takebe-Terajima)
Let (S, Y) be a rational Okamoto-Painlevé pair such that $Y_{\text {red }}$ is a divisor with only normal crossings. Then the type of Y is same as one in the list of Table 3.

Y or $R(Y)$	\tilde{E}_{8}	\tilde{D}_{8}	\tilde{E}_{7}	\tilde{D}_{7}	\tilde{D}_{6}	\tilde{E}_{6}	\tilde{D}_{5}	\tilde{D}_{4}	\tilde{A}_{r-1} $1 \leq \mathrm{r} \leq 9$	\tilde{A}_{0}^{*} $r=1$
Kodaira's notation	$I I^{*}$	I_{4}^{*}	$I I I^{*}$	I_{3}^{*}	I_{2}^{*}	$I V^{*}$	I_{1}^{*}	I_{0}^{*}	I_{r}	I_{0}
Painlevé equation	P_{I}	$P_{I I I}^{\tilde{D}_{8}}$	$P_{I I}$	$P_{I I I}^{\tilde{D}_{7}}$	$P_{I I I}$	$P_{I V}$	P_{V}	$P_{V I}$	none	none
r	9	9	8	8	7	7	6	5	r	1

Table 3

Note that in Figure 2, the real line shows that a smooth rational curve $C \simeq \mathbf{P}^{1}$ with $C^{2}=-2$ and the number near the each rational curve denotes the multiplicity in $Y=-K_{S}$.

Figure 2

Figure 3
Geometric Picture of Painlevé Dynamics Family of Okamoto-Painlevé pairs

$$
\begin{gathered}
\quad \mathcal{S}^{\prime} \quad \hookrightarrow \\
\quad \downarrow \pi \\
B_{J} \times \Lambda_{J}
\end{gathered}
$$

Here $\bar{\pi}$ is a smooth projective family of surfaces and $B_{J} \subset \operatorname{Spec} \mathbf{C}[t]$, $\Lambda_{J} \simeq \mathbf{C}^{s}$ and \mathcal{D} is a flat family of normal crossing divisors.

- We can see that

$$
\tilde{v} \in H^{0}\left(\mathcal{S}, \Theta_{\mathcal{S}}(-\log \mathcal{D})(\mathcal{D})\right)
$$

and

$$
\bar{\pi}_{*}(\tilde{v})=\frac{\partial}{\partial t}
$$

- There exists rational relative two forms Ω on \mathcal{S} such that supp of divisor $(\Omega)=\mathcal{D}$ and

$$
\iota_{\tilde{v}}(\Omega)=0 \Longrightarrow \tilde{v}: \text { non-autnomous Hamitonian system }
$$

- For each $\left(t_{0}, \lambda_{0}\right) \in B_{J} \times \Lambda_{J}$, the image of the Kodaira-Spencer map

$$
\rho: T_{\left(t_{0}, \lambda_{0}\right)}\left(B_{J}\right) \longrightarrow H^{1}\left(\mathcal{S}_{\left(t_{0}, \lambda_{0}\right)}, \Theta_{\mathcal{S}_{\left(t_{0}, \lambda_{0}\right)}}\left(-\log \mathcal{D}_{\left(t_{0}, \lambda_{0}\right)}\right)\right)
$$

lies in the local cohomology group

$$
\rho\left(\frac{\partial}{\partial t}\right) \in H_{\left.\mathcal{D}_{\left(t_{0}, \lambda_{0}\right)}\right)}^{1}\left(\mathcal{S}_{\left(t_{0}, \lambda_{0}\right)}, \Theta_{\mathcal{S}_{\left(t_{0}, \lambda_{0}\right)}}\left(-\log \mathcal{D}_{\left(t_{0}, \lambda_{0}\right)}\right)\right) \simeq \mathbf{C}
$$

Figure 4. Okamoto-Painlevé pair of type $D_{4}^{(1)}$

3. $(n-\log)$-condit ions

Consider an system of ODE on $\mathbf{C} \times \mathbf{C}^{m}$

$$
\begin{gather*}
\frac{d x_{i}}{d t}=a_{i}\left(t, x_{i}, \cdots, x_{m}\right), \quad 1 \leq i \leq m \tag{17}\\
B \times \mathbf{C}^{m} \hookrightarrow B \times S \leftarrow B \times D^{\prime}=\mathcal{D} \tag{18}\\
\downarrow \\
B=D
\end{gather*}
$$

Figure 5. Coordinates on Boundary Divisors

$$
\begin{gather*}
\tilde{v}=\frac{\partial}{\partial t}+\frac{A_{1}}{X_{1}^{n_{1}}} \frac{\partial}{\partial X_{1}}+\sum_{i=2}^{m} \frac{A_{i}}{X_{1}^{n_{i}}} \frac{\partial}{\partial X_{i}} \tag{19}\\
\Theta_{S}(-\log D)=\left\{\theta \in \Theta_{S}, \theta \cdot I_{D} \subset I_{D}\right\} \tag{20}\\
\Theta_{B \times S}(-\log \mathcal{D})=\left\{\theta \in \Theta_{B \times S}, \theta \cdot I_{\mathcal{D}} \subset I_{\mathcal{D}}\right\} \tag{21}
\end{gather*}
$$

Proposition 3.1. If

$$
\begin{equation*}
n_{1}=\max _{1 \leq i \leq m}\left(n_{i}\right)=n \geq 1 \tag{22}
\end{equation*}
$$

there exists a solution curve of \tilde{v} such that $p=(t, 0, \cdots, 0)$ is an movable branched point. So if \tilde{v} satisfies the Painlevé property, we have

$$
\begin{equation*}
n_{1}<\max _{1 \leq i \leq m}\left(n_{i}\right)=n \tag{23}
\end{equation*}
$$

or

$$
\begin{equation*}
\max _{1 \leq i \leq m}\left(n_{i}\right)=n=0 \tag{24}
\end{equation*}
$$

that is, \tilde{v} is regular along D_{1}.

Figure 6

If \tilde{v} does have poles of order n along $\mathcal{D}=B \times D_{1}$, but it does not have the algebraic branched points along $\mathcal{D}=B \times D_{1}$, then locally at the boudnary divisor, one can write \tilde{v} as

$$
\begin{equation*}
\tilde{v}=\frac{\partial}{\partial t}+\frac{B_{1}}{X_{1}^{n-1}} \frac{\partial}{\partial X_{1}}+\sum_{i=2}^{m} \frac{B_{i}}{X_{1}^{n}} \frac{\partial}{\partial X_{i}} \tag{25}
\end{equation*}
$$

Globally, this implies that:

$$
\begin{equation*}
\tilde{v} \in H^{0}\left(B \times S, \Theta_{B \times S}(-\log \mathcal{D})(n \mathcal{D})\right) \tag{26}
\end{equation*}
$$

Definition 3.1. \tilde{v} satifies $(n-\log)$-conditions if it satisfies the condition (26).
If $m=1$ and \tilde{v} satisfies the Painlevé property, \tilde{v} must be regular everywhere.

Conjecture 3.1. If \tilde{v} satisfies the Painlevé property, then after taking a suitable good model of the compactifications of the phase spaces, \tilde{v} satisfies the $(1-\log)$-conditions along any divisor D.

$$
\begin{equation*}
\tilde{v}=\frac{\partial}{\partial t}+B_{1} \frac{\partial}{\partial X_{1}}+\frac{B_{2}}{X_{1}} \frac{\partial}{\partial X_{2}} \tag{27}
\end{equation*}
$$

Under the assumption that $(1-\log)$-conditions holds for along any irreducible components Y_{i} of Okamoto-Painlevé pair (S, Y), the conditions

$$
\begin{gathered}
-K_{S} \cdot Y_{i}=0 \quad \Longleftrightarrow \quad \text { no accessible singular point on } Y_{i} \\
-K_{S} \cdot Y_{i}=\operatorname{deg} \Theta_{Y_{i}} \otimes N_{Y_{i} / S}
\end{gathered}
$$

Proof of Theorem 1.1 (First order ODE with P.P.)

Let

$$
\mathcal{C}=\cup_{t \in T} C_{t}=\cup_{t \in T}\left\{(x, y) \in \mathbf{C}^{2} \quad \mid \quad F(t, x, y)=0\right\}
$$

be the family $\pi: \mathcal{C} \longrightarrow T=\operatorname{Spec} \mathbf{C}[t]$ of affine curves parametrized by $t \in T=\mathbf{C}$. Assume that C_{t} is smooth and irreducible for general $t \in T$. We can take the smooth relative compactification

D : the set of critical values of $\bar{\pi}$. The genus $g\left(\bar{C}_{t}\right)$ of curve \bar{C}_{t} is constant. Algebraic ODE (2) $F\left(t, x, x^{\prime}\right)=0$ defines a rational vector field on $\overline{\mathcal{C}}^{\prime}$

$$
\begin{equation*}
v=\frac{\partial}{\partial t}+y \frac{\partial}{\partial x} \tag{29}
\end{equation*}
$$

Delete the set $D^{\prime} \subset T \backslash D$ of non-movable singularities of v, one can obtain the rational vector field v on $\overline{\mathcal{C}}^{\prime \prime}$.

$$
\begin{gather*}
\overline{\mathcal{C}}^{\prime \prime} \\
f \downarrow \tag{30}\\
T^{\prime \prime}
\end{gather*}
$$

One can show that if the rational vector field v (29) satisfies the Painlevé property,

- v is a regular vector field on $\overline{\mathcal{C}}^{\prime \prime}$ (has no poles). (If v has a pole along a divisor, then v has a movable branced points along the divisor).
\bullet and the moduli of \bar{C}_{t} is constant. Consider the relative tangent sheaf

$$
0 \longrightarrow \Theta_{\overline{\mathcal{C}}^{\prime \prime} / T "} \longrightarrow \Theta_{\overline{\mathcal{C}}}, \longrightarrow f^{*} \Theta_{T^{\prime \prime}} \longrightarrow 0
$$

Note that Θ_{T} " is globally generated by $\frac{\partial}{\partial t}$.

Taking the direct images, we have

$$
f_{*}\left(\Theta_{\overline{\mathcal{C}}^{\prime \prime}}\right) \longrightarrow \Theta_{T^{\prime \prime}} \xrightarrow{\rho} R^{1} f_{*}\left(\Theta_{\overline{\mathcal{C}}^{\prime \prime} / T^{\prime \prime}}\right)
$$

where ρ is the Kodaira-Spencer map and the image $\rho\left(\frac{\partial}{\partial t}\right)$ is in $R^{1} f_{*}\left(\Theta_{\overline{\mathcal{C}}^{\prime \prime} / T^{\prime \prime}}\right)$. The regular vector field v is a global section of $\Theta_{\overline{\mathcal{C}}}$, such that $f_{*}(v)=\rho\left(\frac{\partial}{\partial t}\right)$. Hence such v exists if and only if Kodaira-Spencer map ρ is zero. Now the moduli of \bar{C}_{t} is constant.

	\bar{C}_{t}	$g\left(\bar{C}_{t}\right)$	ODE
Case (1)	\mathbf{P}^{1}	0	Riccati
Case (2)	E (elliptic curve)	1	ODE for \wp
Case (3)	a curve of genus ≥ 2	≥ 2	alg. integrable

Works in New, in Progress and in Future

(1) DS-hierarchy with similarity reduction \Longrightarrow Painlevé equations (Noumi-Yamada, S. Kakei, T. Suzuki, K. Fuji, … .)
(2) Coupled Painlevé system and Higher ordered Painlevé equations with affine Weyl group symmetries. (Sasano)
(3) Dynamical Systems associated to Painlevé VI via Riemann-Hilbert correspondences. (K. Iwasaki and T. Uehara (2005-))
4. Strategy 2: Moduli of stable parabolic connections and Riemann-Hilbert correspondences

- Translations of the terminology

Analysis	Geometry
C : a compact R. surface of genus g	C : a nonsing. proj. curve of genus g
$\mathbf{t}=\left(t_{1}, \cdots, t_{n}\right) ; n$-distinct pts on C	$\mathbf{t}=\left(t_{1}, \cdots, t_{n}\right) ; n$-distinct pts on C
$\frac{d \mathbf{x}}{d z}=\sum_{i=1}^{n} \frac{A_{i}(z)}{z-t_{i}} \mathbf{x}$ Linear D.E. on C with at most regular sing. at \mathbf{t}	$\nabla: E \longrightarrow E \otimes \Omega_{C}^{1}(D(\mathbf{t}))$ A connection on vect. bdl E of rank r on C with at most $1^{s t}$ order poles at \mathbf{t}.
$\lambda_{j}^{(i)}$: Eigenvalues of $A_{i}\left(t_{i}\right)$	$\lambda_{j}^{(i)}$: Eigenvalues of $\operatorname{res}_{t_{i}}(\nabla) \in \operatorname{End}\left(E_{\mid t_{i}}\right)$
$\begin{gathered} \text { Time varaiables } \\ \left(s_{1}, \ldots, s_{3 g-3}, t_{1}, \ldots, t_{n}\right) \end{gathered}$	$T=\mathcal{M}_{g, n}=\{(C, \mathbf{t})\}$ Moduli of n-pointed curves of genus g
Space of initial conditions $S_{(C, \mathbf{t}, \boldsymbol{\lambda})}$	Moduli space of stable parabolic connections $\mathcal{M}^{\alpha}(C, \mathbf{t})_{\boldsymbol{\lambda}}$
Phase space $\mathcal{S} \longrightarrow T \times \Lambda_{n}^{r}$	Family of moduli spaces $\mathcal{M} \longrightarrow T \times \Lambda_{n}^{r}$
Riemann-Hilbert correspondence	$\mathrm{RH}_{\boldsymbol{\lambda}}: \mathcal{M}_{\lambda}^{\alpha} \longrightarrow R_{\mathrm{a}}$
Isomonodromic deformations of L.D.E.	Pullback of local constant section
Schlessinger equation	Zero curvature equations on \mathcal{M}

- Translations of Properties

Analysis	Geometry
Painlevé property	Properness + Surjectivity of $\mathrm{RH}_{\boldsymbol{\lambda}}: \mathcal{M}_{\lambda}^{\alpha} \longrightarrow R_{\mathrm{a}}$
Symmetry (Bäklund transformation)	Elementary transformations of s.p. conn.
Simple reflections in Bäcklund transf.	Special Birational map (Flop) $\tilde{s}: \mathcal{M} \cdots \longrightarrow \mathcal{M}$ appeared in the resol. of simult. sing. of R_{a}
Hamitonian Structures	Symplectic str. on $\mathcal{M}^{\alpha}(C, \mathbf{t})_{\lambda}$ on $R_{\mathbf{a}}^{\text {smooth }}$ and $\mathbf{R H}_{\boldsymbol{\lambda}}$ is a symmplectic map
Spacial solutions like Riccati solution	Singylarities of R_{a}
Poincaré return map or non-linear monodromy of equations of Painlevé type	Natural actions of $\pi_{1}\left(\mathcal{M}_{g, n}^{\circ}, *\right)$ on isomonodromic flows, $\mathbf{R}_{\left(C_{0}, \mathrm{t}_{0}\right), \text { a }}$ and on $\mathcal{M}^{\alpha}\left(\left(C_{0}, \mathbf{t}_{0}\right)\right)_{\boldsymbol{\lambda}}$
τ-functions	Sections of the determinant line bundle on \mathcal{M} which are flat on isomonod. flows

Stable Parabolic connections

Setting

Fix the following data

$$
\begin{equation*}
\left(C, \mathbf{t},\left(L, \nabla_{L}\right),\left(\lambda_{j}^{(i)}\right)\right) \tag{31}
\end{equation*}
$$

which consists of

- C : a complex smooth projective curve of genus g,
- $\mathbf{t}=\left(t_{1}, \cdots, t_{n}\right)$: a set of n-ditinct points on C.
(Put $\left.D(\mathbf{t})=t_{1}+\cdots+t_{n}\right)$.
- $\left(L, \nabla_{L}\right)$: a line bundle on C with a logarithmic connection

$$
\nabla_{L}: L \longrightarrow L \otimes \Omega_{C}^{1}(D(\mathbf{t}))
$$

- $\boldsymbol{\lambda}=\left(\lambda_{j}^{(i)}\right)_{1 \leq i \leq n, 0 \leq j \leq r-1} \in \mathbf{C}^{n r}$ such that $\sum_{j=0}^{r-1} \lambda_{j}^{(i)}=\operatorname{res}_{t_{i}}\left(\nabla_{L}\right)$.

Moduli space of stable parabolic connections

We can consider the moduli space of stable parabolic connection on C with logarithmic singularities at $D(\mathbf{t})$:

$$
\begin{equation*}
\mathcal{M}^{\boldsymbol{\alpha}}(C, \mathbf{t}, L)_{\boldsymbol{\lambda}}=\left\{\left(E, \nabla_{E},\left\{l_{j}^{(i)}\right\}_{1 \leq i \leq n, 0 \leq j \leq r-1}, \Psi\right)\right\} / \simeq \tag{32}
\end{equation*}
$$

- E : a vector bundle of rank r on C
$\bullet \nabla: E \longrightarrow E \otimes \Omega_{C}(D(\mathbf{t}))$:a logarithmic connection
$\bullet \Psi: \wedge^{r} E \xrightarrow{\simeq} L:$ a horizontal isomorphism (Fixing the determinant)
- $E_{\mid t_{i}}=l_{0}^{(i)} \supset l_{1}^{(i)} \supset \cdots \supset l_{r-1}^{(i)} \supset l_{r}=0$: a filtration of the fiber at t_{i} such that $\operatorname{dim}\left(l_{j}^{(i)} / l_{j+1}^{(i)}\right)=1$ such that

$$
\left(\operatorname{res}_{t_{i}}(\nabla)-\lambda_{j}^{(i)} I d\right)\left(l_{j}^{(i)}\right) \subset l_{j+1}^{(i)}
$$

α-stability

Take a sequence of rational numbers $\boldsymbol{\alpha}=\left(\alpha_{j}^{(i)}\right)_{1 \leq j \leq r}^{1 \leq i \leq n}$ such that

$$
\begin{equation*}
0<\alpha_{1}^{(i)}<\alpha_{2}^{(i)}<\cdots<\alpha_{r}^{(i)}<1 \tag{33}
\end{equation*}
$$

for $i=1, \ldots, n$ and $\alpha_{j}^{(i)} \neq \alpha_{j^{\prime}}^{\left(i^{\prime}\right)}$ for $(i, j) \neq\left(i^{\prime}, j^{\prime}\right)$. We choose $\boldsymbol{\alpha}=\left(\alpha_{j}^{(i)}\right)$ sufficiently generic. Let $\left(E, \nabla,\left\{l_{*}^{(i)}\right\}_{1 \leq i \leq n}\right)$ be a $(\mathbf{t}, \boldsymbol{\lambda})$ parabolic connection, and $F \subset E$ a nonzero subbundle satisfying $\nabla(F) \subset F \otimes \Omega_{C}^{1}(D(\mathbf{t}))$. We define integers $\operatorname{len}(F)_{j}^{(i)}$ by

$$
\begin{equation*}
\operatorname{len}(F)_{j}^{(i)}=\operatorname{dim}\left(\left.F\right|_{t_{i}} \cap l_{j-1}^{(i)}\right) /\left(\left.F\right|_{t_{i}} \cap l_{j}^{(i)}\right) \tag{34}
\end{equation*}
$$

Note that $\operatorname{len}(E)_{j}^{(i)}=\operatorname{dim}\left(l_{j-1}^{(i)} / l_{j}^{(i)}\right)=1$ for $1 \leq j \leq r$.
Definition 4.1. A parabolic connection $\left(E, \nabla,\left\{l_{*}^{(i)}\right\}_{1 \leq i \leq n}\right)$ is $\boldsymbol{\alpha}$-stable if for any proper nonzero subbundle $F \$ E$ satisfying
$\nabla(F) \subset F \otimes \Omega_{C}^{1}(D(\mathbf{t}))$, the inequality
$\frac{\operatorname{deg} F+\sum_{i=1}^{m} \sum_{j=1}^{r} \alpha_{j}^{(i)} \operatorname{len}(F)_{j}^{(i)}}{\operatorname{rank} F}<\frac{\operatorname{deg} E+\sum_{i=1}^{n} \sum_{j=1}^{r} \alpha_{j}^{(i)} \operatorname{len}(E)_{j}^{(i)}}{\operatorname{rank} E}$
(35)
holds.

Moduli space of $S L_{r}$-rep. of the fundamental group

Take the categorical quotient of affine variety

$$
\begin{equation*}
\operatorname{Rep}(C, \mathbf{t}, r)=\left\{\rho: \pi_{1}\left(C \backslash D_{\mathbf{t}}\right) \longrightarrow S L_{r}(\mathbf{C})\right\} / / \operatorname{Ad}\left(S L_{r}(\mathbf{C})\right) \tag{36}
\end{equation*}
$$

$\left(\rho_{1}, \rho_{2} \in \operatorname{Hom}\left(\pi_{1}(C \backslash D(\mathbf{t})), S L_{r}(\mathbf{C})\right)\right.$ are Jordan equivalent iff $\left.\operatorname{sem}\left(\rho_{1}\right) \simeq \operatorname{sem}\left(\rho_{2}\right)\right)$.
Fix:

$$
\mathbf{a}=\left(a_{j}^{(i)}\right)_{1 \leq i \leq n, 1 \leq j \leq r-1} \in \mathcal{A}_{r, n}=\mathbf{C}^{n(r-1)}
$$

Then we define another moduli space of $S L_{r}$-representations with fixed characteristic polynomial of monodromies around t_{i} :
$\boldsymbol{\operatorname { R e p }}(C, \mathbf{t}, r)_{\mathbf{a}}=\left\{[\rho] \in \boldsymbol{\operatorname { R e p }}(C, \mathbf{t}, r), \operatorname{det}\left(s I_{r}-\rho\left(\gamma_{i}\right)\right)=\chi_{\mathbf{a}^{(i)}}(s)\right\}$
where

$$
\chi_{\mathbf{a}^{(i)}}(s)=s^{r}+a_{r-1}^{(i)} s^{r-1}+\cdots+a_{1}^{(i)} s+(-1)^{r} .
$$

Riemann-Hilbert correspondence

Assume that $r \geq 2, n \geq 1$ and $n r-2 r-2>0$ when $g=0$, $n \geq 2$. (Moreover the weight $\boldsymbol{\alpha}$ is generic). Then the RiemannHilbert correspondence

$$
\begin{equation*}
\mathbf{R H}_{(C, \mathbf{t}, \boldsymbol{\lambda})}: \mathcal{M}^{\boldsymbol{\alpha}}(C, \mathbf{t}, L)_{\boldsymbol{\lambda}} \longrightarrow \boldsymbol{\operatorname { R e p }}(C, \mathbf{t}, r)_{\mathbf{a}} \tag{37}
\end{equation*}
$$

can be defined by

$$
\left(E, \nabla_{E},\left\{l_{j}^{(i)}\right\}, \Psi\right) \mapsto \operatorname{ker}\left(\nabla_{\mid C \backslash D_{\mathbf{t}}}^{a n}\right)
$$

where

$$
\chi_{\mathbf{a}^{(i)}}(s)=\prod_{j=0}^{r-1}\left(s-\exp \left(-2 \pi \sqrt{-1} \lambda_{j}^{(i)}\right)\right)
$$

Note that

$$
\operatorname{dim} \mathcal{M}^{\boldsymbol{\alpha}}(C, \mathbf{t}, L)_{\boldsymbol{\lambda}}=(r-1)(2(r+1)(g-1)+r n)
$$

Fundamental Results

Theorem 4.1. (Inaba-Iwasaki-Saito $(r=2, g=0, n \geq 4)$, Inaba (general case)) Under the notation as above, we have the following. (1) The modulis space $\mathcal{M}^{\boldsymbol{\alpha}}(C, \mathbf{t}, L)_{\boldsymbol{\lambda}}$ is a nonsingular algebraic manifold with a natural symplectic structure.
(2) The modulis space $\mathcal{M}^{\boldsymbol{\alpha}}(C, \mathbf{t}, L)_{\boldsymbol{\lambda}}$ has a natural compactification $\overline{\mathcal{M}^{\boldsymbol{\alpha}}(C, \mathbf{t}, L)_{\boldsymbol{\lambda}}}$ which is the moduli space of the ϕ-stable parabolic connections.

Theorem 4.2. (Inaba-Iwasaki-Saito ($r=2, g=0, n \geq 4$), Inaba (general case)): Under the conditions above, the Riemann-Hilbert correspondense

$$
\begin{equation*}
\mathbf{R H}_{C, t, \boldsymbol{\lambda}}: \mathcal{M}^{\boldsymbol{\alpha}}(C, \mathbf{t}, L)_{\boldsymbol{\lambda}} \longrightarrow \boldsymbol{\operatorname { R e p }}(C, \mathbf{t}, r)_{\mathbf{a}} \tag{38}
\end{equation*}
$$

is a proper surjective bimeromorphic map. Hence the Riemann-Hilbert correspondence gives an (analytic) resolution of singularities. Moreover $\mathbf{R H}_{C, t, \boldsymbol{\lambda}}$ preserves the symplectic structures on $\operatorname{Rep}(C, \mathbf{t}, r)_{\mathbf{a}} \mathcal{M}^{\boldsymbol{\alpha}}(C, \mathbf{t}, L)_{\boldsymbol{\lambda}}$.

Remark 4.1. - $\begin{aligned} & \operatorname{Rep}(C, \mathbf{t}, r)_{\mathbf{a}} \text { is an affine scheme } \\ & \text { which may have singularities for special } \mathbf{a} \text {. }\end{aligned}$

- In the case of $g=0$, we can show that $d \omega=0$.

Moreover, we expect that $d \omega=0$ in general.

Varying time (C, \mathbf{t}) and parameter $\boldsymbol{\lambda}$, a

Consider the open set of the moduli space of n-pointed curves of genus g

$$
M_{g, n}^{o}=\left\{(C, \mathbf{t})=\left(C, t_{1}, \cdots, t_{n}\right), t_{i} \neq t_{j}, i \neq j\right\}
$$

and the universal curve $\pi: \mathcal{C} \longrightarrow M_{g, n}^{o}$. Fixing a relative line bundle L for π with logarithmic connection ∇_{L} we can obtain the family of moduli spaces over $M_{g, n}^{o} \times \Lambda(L)$

$$
\begin{gather*}
\mathcal{M}_{g, n}^{\alpha}(L) \\
\downarrow \pi_{n} \tag{39}\\
M_{g, n}^{o} \times \Lambda(L)
\end{gather*}
$$

such that

$$
\pi_{n}^{-1}((C, \mathbf{t}, L, \boldsymbol{\lambda}))=\mathcal{M}^{\boldsymbol{\alpha}}(C, \mathbf{t}, L)_{\boldsymbol{\lambda}}
$$

We can also construct the fiber space

$$
\mathcal{R e} \mathbf{p}_{g}^{r, n}
$$

$$
\begin{gather*}
\downarrow \phi_{g}^{r, n} \tag{40}\\
M_{g, n}^{o} \times \mathcal{A}_{r, n}
\end{gather*}
$$

such that

$$
\left(\phi_{g}^{r, n}\right)^{-1}((C, \mathbf{t}, \mathbf{a}))=\boldsymbol{\operatorname { R e p }}\left(C, \mathbf{t}, S L_{r}\right) \mathbf{a} .
$$

Riemann-Hilbert corr. in family

We can obtain the following commutative diagram:

$$
\begin{array}{ccc}
\mathcal{M}^{\boldsymbol{\alpha}}(L) & \xrightarrow{\mathbf{R H}_{n}} & \begin{array}{c}
\mathcal{R} \mathbf{e p}_{g}^{r, n} \\
\pi_{n} \\
\downarrow
\end{array} \\
M_{g, n}^{o} \times \Lambda(L) & \xrightarrow{\left(1 \times \mu_{r, n}\right)} \phi_{g, n}^{r, n} \tag{41}
\end{array} M_{g, n}^{o} \times \mathcal{A}_{r, n} .
$$

where $\mu_{r, n}$ can be given by the relations

$$
\chi_{\mathbf{a}}(s)=\prod_{j=0}^{r-1}\left(s-\exp \left(-2 \pi \sqrt{-1} \lambda_{j}^{(i)}\right)\right)
$$

that is, $a_{k}^{(i)}$ are $(\pm 1) \times k^{t h}$ fundamental symmetric functions of $\exp \left(-2 \pi \sqrt{-1} \lambda_{j}^{(i)}\right)$.

Geometric Isomonodromic Deform. of L.D.E. The case of generic exponents $\boldsymbol{\lambda}$
Fix a generic $\boldsymbol{\lambda} \in \Lambda(L)$ and set $\mathbf{a}=\mu_{r, n}(\boldsymbol{\lambda})$ so that

$$
\mathbf{R H}_{C, t, \boldsymbol{\lambda}}: \mathcal{M}^{\boldsymbol{\alpha}}(C, \mathbf{t}, L)_{\boldsymbol{\lambda}} \xrightarrow{\simeq} \boldsymbol{\operatorname { R e p }}(C, \mathbf{t}, r)_{\mathbf{a}}
$$

is an analytic isomorphism for any $(C, \mathbf{t}) \in M_{g, n}^{o}$.
Algebraic structure of $\operatorname{Rep}(C, \mathbf{t}, r)_{\mathbf{a}}$ does not change under variation of (C, \mathbf{t}), that is, $\overline{\operatorname{Rep}}(C, \mathbf{t}, r) \mathbf{a} \simeq \operatorname{Rep}\left(C_{0}, \mathbf{t}_{0}, r\right)_{\mathbf{a}}$.

Algebraic structure of $\mathcal{M}^{\boldsymbol{\alpha}}(C, \mathbf{t}, L)_{\boldsymbol{\lambda}}$ change under variation of (C, \mathbf{t}).

Taking the universal covering map $\prod_{g, n}^{o} \longrightarrow M_{g, n}^{o}$, and pulling back we obtain the diagram:

$$
\begin{aligned}
& \mathcal{M}_{g, n}^{\hat{\boldsymbol{\alpha}}}(L)_{\boldsymbol{\lambda}} \xrightarrow[\simeq]{\simeq}\left(\hat{\mathcal{R}} p_{g}^{r, n}\right)_{\mathbf{a}} \simeq \operatorname{Rep}\left(C_{0}, \mathbf{t}_{0}, r\right)_{\mathbf{a}} \times \mathbf{M}_{g, n}^{o} \\
& \left(\tilde{\pi}_{n}\right)_{\boldsymbol{\lambda}} \downarrow \quad \downarrow \tilde{\phi}_{g, \mathbf{a}}^{r, n} \\
& M_{g, n}^{o} \times\{\boldsymbol{\lambda}\} \xrightarrow{\left(1 \times \mu_{r, n}\right)} _{g, n}^{o} \times \mathbf{a} .
\end{aligned}
$$

Since $\tilde{\phi}_{g, \mathbf{a}}^{r, n}$ is isomorphic to product family, it has a unique constant section $s_{\mathbf{X}}$ passing through a point $\mathbf{x} \in \boldsymbol{\operatorname { R e p }}\left(C_{0}, \mathbf{t}_{0}, r\right)_{\mathbf{a}} \times\left\{\mathbf{t}_{0}\right\}$.
Pulling back the section $\left\{s_{\mathbf{X}}\right\}_{\mathbf{x} \in \operatorname{Rep}\left(C_{0}, \mathbf{t}_{0}, r\right)_{\mathbf{a}} \times\left\{\mathbf{t}_{0}\right\}}$ via $\mathbf{R H}_{\boldsymbol{\lambda}}$, we obtain the set of analytic sections of $\left(\tilde{\pi}_{n}\right)_{\boldsymbol{\lambda}}: \mathcal{M}_{g, n}(L)_{\boldsymbol{\lambda}} \rightarrow \mathbb{M}_{g, n}^{o} \times$ $\{\boldsymbol{\lambda}\}$

$$
\left\{\tilde{s_{\mathbf{X}}}\right\}_{\mathbf{x} \in \boldsymbol{R e p}\left(C_{0}, \mathbf{t}_{0}, r\right)} \times\left\{\mathbf{t}_{0}\right\}
$$

The family of sections $\left\{\tilde{s}_{\mathbf{x}}\right\}_{\mathbf{X}}$ gives the splitting homomorphism

$$
\tilde{v}_{\boldsymbol{\lambda}}:\left(\tilde{\pi}_{n}\right)_{\boldsymbol{\lambda}}^{*}\left(T_{\boldsymbol{M}_{g, n}^{o} \times\{\boldsymbol{\lambda}\}}\right) \longrightarrow T_{\mathcal{M}_{g, n}(L)_{\boldsymbol{\lambda}}}
$$

for the natural homomorphism $T_{\mathcal{M}_{g, n}(L)_{\boldsymbol{\lambda}}} \longrightarrow\left(\tilde{\pi}_{n}\right)_{\boldsymbol{\lambda}}^{*}\left(T_{\boldsymbol{M}_{g, n}^{o}} \times\right.$ $\{\boldsymbol{\lambda}\})$. Then the subbundle

$$
\begin{equation*}
\mathcal{I} \mathcal{F}_{g, n, \boldsymbol{\lambda}}=\tilde{v}_{\boldsymbol{\lambda}}\left(\left(\tilde{\pi}_{n}\right)_{\boldsymbol{\lambda}}^{*}\left(T_{\mathbb{M}_{g, n}^{o} \times\{\boldsymbol{\lambda}\}}\right)\right) \subset T_{\mathcal{M}_{g, n}^{\hat{\boldsymbol{\alpha}}}(L)_{\boldsymbol{\lambda}}} \tag{42}
\end{equation*}
$$

Take any local generators of the tangent sheaf of $T_{\boldsymbol{M}_{g, n}^{o}}$

$$
\left\langle\frac{\partial}{\partial q_{1}}, \ldots, \frac{\partial}{\partial q_{N}}\right\rangle
$$

where $N=3 g-3+n=\operatorname{dim} M_{g, n}^{o}$. Then setting $v_{i}(\boldsymbol{\lambda}):=v_{\boldsymbol{\lambda}}\left(\frac{\partial}{\partial q_{i}}\right)$, we obtain the integrable differential system on $\mathcal{M}_{g, n}^{\widehat{\boldsymbol{\alpha}}}(L)_{\boldsymbol{\lambda}}$

$$
\mathcal{I F} \mathcal{F}_{g, n, \boldsymbol{\lambda}} \simeq\left\langle v_{1}(\boldsymbol{\lambda}), \ldots, v_{N}(\boldsymbol{\lambda})\right\rangle
$$

(locally).

Case of special exponents $\boldsymbol{\lambda}$

- When the exponents $\boldsymbol{\lambda}$ is special, the R.H. corr.

$$
\mathbf{R H}_{n, \boldsymbol{\lambda}}: \mathcal{M}_{g, n}^{\hat{\boldsymbol{\alpha}}}(L)_{\boldsymbol{\lambda}} \longrightarrow\left(\hat{\mathcal{R} e} p_{g}^{r, n}\right)_{\mathbf{a}}
$$

contracts some subvatieties to the singular locus on $\left(\hat{\mathcal{R}} e p_{g}^{r, n}\right)_{\mathbf{a}}$

- However, by Hartogs' theorem, we can extend the isomonodromic foliation $\mathcal{I} \mathcal{F}_{g, n, \boldsymbol{\lambda}}$ to the total space $\mathcal{M}_{g, n}^{\widehat{\boldsymbol{\alpha}}}(L)_{\boldsymbol{\lambda}}$.

Painlevé Property of Isomonodromic Flows

Theorem 4.3. (Inaba-Iwasaki-S, Part I (2003) and II(2006), Inaba(2006)).
The isomonodromic flows $\mathcal{I F}_{\boldsymbol{\lambda}}$ satisfies the Painlevé property for all exponents $\boldsymbol{\lambda}$.

Hamiltonian strucure of Isomonodromic Flows

Theorem 4.4. (Inaba-Iwasaki-S, Part I (2003) and II(2006), Inaba(2006)).
The isomonodromic flows $\mathcal{I F}_{\boldsymbol{\lambda}}$ can be written in a Hamiltonian system locally

- In the case of generic $\boldsymbol{\lambda}$, the differential system on $\mathcal{M} \hat{g}, n^{\hat{\alpha}}(L)_{\boldsymbol{\lambda}}$

$$
\mathcal{I} \mathcal{F}_{g, n, r}:=\left\langle v_{1}(\boldsymbol{\lambda}), \ldots, v_{N}(\boldsymbol{\lambda})\right\rangle .
$$

has cleary solution manifolds or integrable manifolds $=$ the images of $\mathbb{M}_{g, n}^{o}$ by $\left\{\tilde{s}_{\mathbf{x}}\right\}_{\mathbf{x}}$. By construction,

These integrable submanifolds are isomonodromic flow of connections.

- Even in the case of special $\boldsymbol{\lambda}$, the properness of $\mathbf{R H}_{\boldsymbol{\lambda}, n}$ implies the theorem.
- $\mathcal{I F}_{(0,4,2)}$ is equivalent to a Painlevé VI equation.
- $\mathcal{I F} \mathcal{F}_{(0, n, 2)}$ with $n \geq 5$ are Garnier systems.

Parabolic connections of rank 2 on \mathbf{P}^{1}.
Let $n \geq 3$ and set

$$
\begin{gather*}
T_{n}=\left\{\left(t_{1}, \ldots, t_{n}\right) \in\left(\mathbf{P}^{1}\right)^{n} \quad \mid \quad t_{i} \neq t_{j},(i \neq j)\right\}, \tag{43}\\
\Lambda_{n}=\left\{\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbf{C}^{n}\right\} . \tag{44}
\end{gather*}
$$

Fixing a data $(\mathbf{t}, \boldsymbol{\lambda})=\left(t_{1}, \ldots, t_{n}, \lambda_{1}, \ldots, \lambda_{n}\right) \in T_{n} \times \Lambda_{n}$, we define a reduced divisor on \mathbf{P}^{1} as

$$
\begin{equation*}
D(\mathbf{t})=t_{1}+\cdots+t_{n} . \tag{45}
\end{equation*}
$$

Moreover we fix a line bundle L on \mathbf{P}^{1} with a logarithmic connection $\nabla_{L}: L \longrightarrow L \otimes \Omega_{\mathbf{P}^{1}}^{1}(D(\mathbf{t}))$.

Definition 4.2. A (rank 2) ($\mathbf{t}, \boldsymbol{\lambda}$)-parabolic connection on \mathbf{P}^{1} with the determinant $\left(L, \nabla_{L}\right)$ is a quadruplet $\left(E, \nabla, \varphi,\left\{l_{i}\right\}_{1 \leq i \leq n}\right)$ which consists of
(1) a rank 2 vector bundle E on \mathbf{P}^{1},
(2) a logarithmic connection $\nabla: E \longrightarrow E \otimes \Omega_{\mathbf{P}^{1}}^{1}(D(\mathbf{t}))$
(3) a bundle isomorphism $\varphi: \wedge^{2} E \xrightarrow{\simeq} L$
(4) one dimensional subspace l_{i} of the fiber $E_{t_{i}}$ of E at $t_{i}, l_{i} \subset E_{t_{i}}$, $i=1, \ldots, n$, such that
(a) for any local sections s_{1}, s_{2} of E,

$$
\varphi \otimes i d\left(\nabla s_{1} \wedge s_{2}+s_{1} \wedge \nabla s_{2}\right)=\nabla_{L}\left(\varphi\left(s_{1} \wedge s_{2}\right)\right)
$$

(b) $l_{i} \subset \operatorname{Ker}\left(\operatorname{res}_{t_{i}}(\nabla)-\lambda_{i}\right)$, that is, λ_{i} is an eigenvalue of the residue $\operatorname{res}_{t_{i}}(\nabla)$ of ∇ at t_{i} and l_{i} is a one-dimensional eigensubspace of res $_{t_{i}}(\nabla)$.

The set of local exponents $\boldsymbol{\lambda} \in \Lambda_{n}$

Note that a data $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \Lambda_{n} \simeq \mathbf{C}^{n}$ specifies the set of eigenvalues of the residue matrix of a connection ∇ at $\mathbf{t}=$ $\left(t_{1}, \ldots, t_{n}\right)$, which will be called a set of local exponents of ∇.

Definition 4.3. A set of local exponents $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \Lambda_{n}$ is called special if
(1) $\boldsymbol{\lambda}$ is resonant, that is, for some $1 \leq i \leq n$,

$$
\begin{equation*}
2 \lambda_{i} \in \mathbf{Z}, \tag{46}
\end{equation*}
$$

(2) or $\boldsymbol{\lambda}$ is reducible, that is, for some $\left(\epsilon_{1}, \ldots, \epsilon_{n}\right) \in\{ \pm 1\}^{n}$

$$
\begin{equation*}
\sum_{i=1}^{n} \epsilon_{i} \lambda_{i} \in \mathbf{Z} \tag{47}
\end{equation*}
$$

If $\boldsymbol{\lambda} \in \Lambda_{n}$ is not special, $\boldsymbol{\lambda}$ is said to be generic.

Parabolic degrees and α-stability

Let us fix a series of positive rational numbers $\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{2 n}\right)$, which is called a weight, such that

$$
\begin{equation*}
0 \leq \alpha_{1}<\alpha_{2}<\cdots<\alpha_{i}<\cdots<\alpha_{2 n}<\alpha_{2 n+1}=1 \tag{48}
\end{equation*}
$$

For a $(\mathbf{t}, \boldsymbol{\lambda})$-parabolic connection on \mathbf{P}^{1} with the determinant $\left(L, \nabla_{L}\right)$, we can define the parabolic degree of $E=(E, \nabla, \varphi, l)$ with respect to the weight $\boldsymbol{\alpha}$ by

$$
\begin{aligned}
\operatorname{pardeg}_{\boldsymbol{\alpha}} E & =\operatorname{deg} E+\sum_{i=1}^{n}\left(\alpha_{2 i-1} \operatorname{dim} E_{t_{i}} / l_{i}+\alpha_{2 i} \operatorname{dim} l_{i}\right)(49) \\
& =\operatorname{deg} L+\sum_{i=1}^{n}\left(\alpha_{2 i-1}+\alpha_{2 i}\right)
\end{aligned}
$$

Let $F \subset E$ be a rank 1 subbundle of E such that $\nabla F \subset F \otimes$ $\Omega_{\mathbf{P}^{1}}^{1}(D(\mathbf{t}))$. We define the parabolic degree of $\left(F, \nabla_{\mid F}\right)$ by
$\operatorname{pardeg}_{\boldsymbol{\alpha}} F=\operatorname{deg} F+\sum_{i=1}^{n}\left(\alpha_{2 i-1} \operatorname{dim} F_{t_{i}} / l_{i} \cap F_{t_{i}}+\alpha_{2 i} \operatorname{dim} l_{i} \cap F_{t_{i}}\right)$

Definition 4.4. Fix a weight $\boldsymbol{\alpha}$. A $(\mathbf{t}, \boldsymbol{\lambda})$-parabolic connection (E, ∇, φ, l) on \mathbf{P}^{1} with the determinant $\left(L, \nabla_{L}\right)$ is said to be $\boldsymbol{\alpha}$ stable (resp. $\boldsymbol{\alpha}$-semistable) if for every rank-1 subbundle F with $\nabla(F) \subset F \otimes \Omega_{\mathbf{P}^{1}}^{1}(D(\mathbf{t}))$

$$
\begin{equation*}
\operatorname{pardeg}_{\boldsymbol{\alpha}} F<\frac{\operatorname{pardeg}_{\boldsymbol{\alpha}} E}{2}, \quad\left(\operatorname{resp} \cdot \operatorname{pardeg}_{\boldsymbol{\alpha}} F \leq \frac{\operatorname{pardeg}_{\boldsymbol{\alpha}} E}{2}\right) \tag{51}
\end{equation*}
$$

(For simplicity, " $\boldsymbol{\alpha}$-stable" will be abbreviated to "stable").

We define the coarse moduli space by

$$
M_{n}^{\boldsymbol{\alpha}}(\mathbf{t}, \boldsymbol{\lambda}, L)=\left\{(E, \nabla, \varphi, l) ; \begin{array}{l}
\text { an } \boldsymbol{\alpha} \text {-stable }(\mathbf{t}, \boldsymbol{\lambda}) \text {-parabolic } \\
\text { the determinant }\left(L, \nabla_{L}\right)
\end{array}\right\} / \text { isom. }
$$

(52)

Stable parabolic ϕ-connections

If $n \geq 4$, the moduli space $M_{n}^{\boldsymbol{\alpha}}(\mathbf{t}, \boldsymbol{\lambda}, L)$ never becomes projective nor complete. In order to obtain a compactification of the moduli space $M_{n}^{\boldsymbol{\alpha}}(\mathbf{t}, \boldsymbol{\lambda}, L)$, we will introduce the notion of a stable parabolic ϕ-connection, or equivalently, a stable parabolic Λ-triple. Again, let us fix $(\mathbf{t}, \boldsymbol{\lambda}) \in T_{n} \times \Lambda_{n}$ and a line bundle L on \mathbf{P}^{1} with a connection $\nabla_{L}: L \rightarrow L \otimes \Omega_{\mathbf{P}^{1}}^{1}(D(\mathbf{t}))$.

Definition 4.5. The data ($E_{1}, E_{2}, \phi, \nabla, \varphi,\left\{l_{i}\right\}_{i=1}^{n}$) is said to be a $(\mathbf{t}, \boldsymbol{\lambda})$-parabolic ϕ-connection of rank 2 with the determinant $\left(L, \nabla_{L}\right)$ if E_{1}, E_{2} are rank 2 vector bundles on \mathbf{P}^{1} with $\operatorname{deg} E_{1}=$ $\operatorname{deg} L, \phi: E_{1} \rightarrow E_{2}, \nabla: E_{1} \rightarrow E_{2} \otimes \Omega_{\mathbf{P}^{1}}^{1}(D(\mathbf{t}))$ are morphisms of sheaves, $\varphi: \bigwedge^{2} E_{2} \xrightarrow{\sim} L$ is an isomorphism and $l_{i} \subset\left(E_{1}\right)_{t_{i}}$ are one dimensional subspaces for $i=1, \ldots, n$ such that
(1) $\phi(f a)=f \phi(a)$ and $\nabla(f a)=\phi(a) \otimes d f+f \nabla(a)$ for $f \in \mathcal{O}_{\mathbf{P}^{1}}$, $a \in E_{1}$,
(2) $(\varphi \otimes \mathrm{id})\left(\nabla\left(s_{1}\right) \wedge \phi\left(s_{2}\right)+\phi\left(s_{1}\right) \wedge \nabla\left(s_{2}\right)\right)=\nabla_{L}\left(\varphi\left(\phi\left(s_{1}\right) \wedge \phi\left(s_{2}\right)\right)\right)$ for $s_{1}, s_{2} \in E_{1}$ and
(3) $\left.\left(\operatorname{res}_{t_{i}}(\nabla)-\lambda_{i} \phi_{t_{i}}\right)\right|_{l_{i}}=0$ for $i=1, \ldots, n$.

Remark 4.2. Assume that two vector bundles E_{1}, E_{2} and morphisms $\phi: E_{1} \rightarrow E_{2}, \nabla: E_{1} \rightarrow E_{2} \otimes \Omega_{\mathbf{P}^{1}}^{1}(D(\mathbf{t}))$ satisfying $\phi(f a)=f \phi(a), \nabla(f a)=\phi(a) \otimes d f+f \nabla(a)$ for $f \in \mathcal{O}_{\mathbf{P}^{1}}$, $a \in E_{1}$ are given. If ϕ is an isomorphism, then $(\phi \otimes \mathrm{id})^{-1} \circ \nabla$: $E_{1} \rightarrow E_{1} \otimes \Omega_{\mathbf{P}^{1}}^{1}(D(\mathbf{t}))$ becomes a connection on E_{1}.

Fix rational numbers $\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{2 n}^{\prime}, \alpha_{2 n+1}^{\prime}$ satisfying

$$
0 \leq \alpha_{1}^{\prime}<\alpha_{2}^{\prime}<\cdots<\alpha_{2 n}^{\prime}<\alpha_{2 n+1}^{\prime}=1
$$

and positive integers β_{1}, β_{2}. Setting $\boldsymbol{\alpha}^{\prime}=\left(\alpha_{1}^{\prime}, \ldots, \alpha_{2 n}^{\prime}\right), \boldsymbol{\beta}=$ $\left(\beta_{1}, \beta_{2}\right)$, we obtain a weight $\left(\boldsymbol{\alpha}^{\prime}, \boldsymbol{\beta}\right)$ for parabolic ϕ-connections.

Definition 4.6. Fix a sufficiently large integer γ. Let

$$
\left(E_{1}, E_{2}, \phi, \nabla, \varphi,\left\{l_{i}\right\}_{i=1}^{n}\right)
$$

be a parabolic ϕ-connection. For any subbundles $F_{1} \subset E_{1}, F_{2} \subset E_{2}$ satisfying $\phi\left(F_{1}\right) \subset F_{2}, \nabla\left(F_{1}\right) \subset F_{2} \otimes \Omega_{\mathbf{P}^{1}}^{1}(D(\mathbf{t}))$, we define

$$
\begin{aligned}
& \mu\left(\left(F_{1}, F_{2}\right)\right)_{\boldsymbol{\alpha}^{\prime} \boldsymbol{\beta}}=\frac{1}{\beta_{1} \operatorname{rank}\left(F_{1}\right)+\beta_{2} \operatorname{rank}\left(F_{2}\right)}\left(\beta_{1}\left(\operatorname{deg} F_{1}(-D(\mathbf{t}))\right)\right. \\
& +\beta_{2}\left(\operatorname{deg} F_{2}-\gamma \operatorname{rank}\left(F_{2}\right)\right)+\sum_{i=1}^{n} \beta_{1}\left(\alpha_{2 i-1}^{\prime} d_{2 i-1}\left(F_{1}\right)+\alpha_{2 i}^{\prime} d_{2 i}\left(F_{1}\right)\right)
\end{aligned}
$$

where $d_{2 i-1}(F)=\operatorname{dim}\left(\left(F_{1}\right)_{t_{i}} / l_{i} \cap\left(F_{1}\right)_{t_{i}}\right), d_{2 i}\left(F_{1}\right)=\operatorname{dim}\left(\left(F_{1}\right)_{t_{i}} \cap\right.$ $\left.l_{i}\right)$.
A parabolic ϕ-connection $\left(E_{1}, E_{2}, \phi, \nabla, \varphi,\left\{l_{i}\right\}_{i=1}^{n}\right)$ is said to be $\left(\boldsymbol{\alpha}^{\prime}, \boldsymbol{\beta}\right)$-stable (resp. $\left(\boldsymbol{\alpha}^{\prime}, \boldsymbol{\beta}\right)$-semistable) if for any subbundles $F_{1} \subset$ $E_{1}, F_{2} \subset E_{2}$ satisfying $\phi\left(F_{1}\right) \subset F_{2}, \nabla\left(F_{1}\right) \subset F_{2} \otimes \Omega_{\mathbf{P}^{1}}^{1}(D(\mathbf{t}))$ and $\left(F_{1}, F_{2}\right) \neq\left(E_{1}, E_{2}\right),(0,0)$, the inequality

$$
\begin{equation*}
\mu\left(\left(F_{1}, F_{2}\right)\right)_{\alpha \beta}<\mu\left(\left(E_{1}, E_{2}\right)\right)_{\alpha \beta} \alpha_{\beta}, \quad\left(\text { resp. } \quad \mu\left(\left(F_{1}, F_{2}\right)\right)_{\alpha \beta} \leq \mu\left(\left(E_{1}, E_{2}\right)\right)_{\alpha \beta} \alpha_{\beta} .\right) \tag{53}
\end{equation*}
$$

We define the coarse moduli space of $\left(\boldsymbol{\alpha}^{\prime}, \boldsymbol{\beta}\right)$-stable $(\mathbf{t}, \boldsymbol{\lambda})$-parabolic ϕ-connections with the determinant $\left(L, \nabla_{L}\right)$ by

$$
\begin{equation*}
\overline{M_{n}^{\boldsymbol{\alpha}^{\prime} \boldsymbol{\beta}}}(\mathbf{t}, \boldsymbol{\lambda}, L):=\left\{\left(E_{1}, E_{2}, \phi, \nabla, \varphi,\left\{l_{i}\right\}\right)\right\} / \text { isom. } \tag{54}
\end{equation*}
$$

For a given weight $\left(\boldsymbol{\alpha}^{\prime}, \boldsymbol{\beta}\right)$ and $1 \leq i \leq 2 n$, define a rational number α_{i} by

$$
\begin{equation*}
\alpha_{i}=\frac{\beta_{1}}{\beta_{1}+\beta_{2}} \alpha_{i}^{\prime} . \tag{55}
\end{equation*}
$$

Then $\boldsymbol{\alpha}=\left(\alpha_{i}\right)$ satisfies the condition

$$
\begin{equation*}
0 \leq \alpha_{1}<\alpha_{2}<\cdots<\alpha_{2 n}<\frac{\beta_{1}}{\left(\beta_{1}+\beta_{2}\right)}<1 \tag{56}
\end{equation*}
$$

hence $\boldsymbol{\alpha}$ defines a weight for parabolic connections. It is easy to see that if we take γ sufficiently large $\left(E, \nabla, \varphi,\left\{l_{i}\right\}\right)$ is $\boldsymbol{\alpha}$-stable if and only if the associated parabolic ϕ-connection $\left(E, E, \mathrm{id}_{E}, \nabla, \varphi,\left\{l_{i}\right\}\right)$ is stable with respect to $\left(\boldsymbol{\alpha}^{\prime}, \boldsymbol{\beta}\right)$. Therefore we see that the natural map

$$
\begin{equation*}
\left(E, \nabla, \varphi,\left\{l_{i}\right\}\right) \mapsto\left(E, E, \operatorname{id}_{E}, \nabla, \varphi,\left\{l_{i}\right\}\right) \tag{57}
\end{equation*}
$$

induces an injection

$$
\begin{equation*}
M_{n}^{\boldsymbol{\alpha}}(\mathbf{t}, \boldsymbol{\lambda}, L) \hookrightarrow \overline{M_{n}^{\boldsymbol{\alpha}^{\prime} \boldsymbol{\beta}}}(\mathbf{t}, \boldsymbol{\lambda}, L) \tag{58}
\end{equation*}
$$

Conversely, assuming that $\boldsymbol{\beta}=\left(\beta_{1}, \beta_{2}\right)$ are given, for a weight $\boldsymbol{\alpha}=\left(\alpha_{i}\right)$ satisfying the condition (56), we can define $\alpha_{i}^{\prime}=\alpha_{i} \frac{\beta_{1}+\beta_{2}}{\beta_{1}}$
for $1 \leq i \leq 2 n$. Since $0 \leq \alpha_{1}^{\prime}<\alpha_{2}^{\prime}<\cdots<\alpha_{2 n}^{\prime}=\alpha_{2 n} \frac{\beta_{1}+\beta_{2}}{\beta_{1}}<1$, ($\left.\boldsymbol{\alpha}^{\prime}, \boldsymbol{\beta}\right)$ give a weight for parabolic ϕ-connections.
Moreover, considering the relative setting over $T_{n} \times \Lambda_{n}$, we can define two families of the moduli spaces

$$
\begin{equation*}
\bar{\pi}_{n}: \overline{M_{n}^{\boldsymbol{\alpha}^{\prime} \boldsymbol{\beta}}}(L) \longrightarrow T_{n} \times \Lambda_{n}, \quad \pi_{n}: M_{n}^{\boldsymbol{\alpha}}(L) \longrightarrow T_{n} \times \Lambda_{n} \tag{59}
\end{equation*}
$$

such that the following diagram commutes;

$$
T_{n} \times \Lambda_{n}=T_{n} \times \Lambda_{n} .
$$

Here the fibers of π_{n} and $\bar{\pi}_{n}$ over $(\mathbf{t}, \boldsymbol{\lambda}) \in T_{n} \times \Lambda_{n}$ are

$$
\begin{equation*}
\pi_{n}^{-1}(\mathbf{t}, \boldsymbol{\lambda})=M^{\boldsymbol{\alpha}}(\mathbf{t}, \boldsymbol{\lambda}, L), \quad \bar{\pi}_{n}^{-1}(\mathbf{t}, \boldsymbol{\lambda})=\overline{M^{\boldsymbol{\alpha}^{\prime} \boldsymbol{\beta}}}(\mathbf{t}, \boldsymbol{\lambda}, L) \tag{61}
\end{equation*}
$$

Riemann-Hilbert correspondence

$$
\begin{array}{ccc}
M_{n}^{\boldsymbol{\alpha}}(L) & \xrightarrow{\mathbf{R H}_{n}} & \mathcal{R}_{n} \\
\pi_{n} \mid & & \downarrow \phi_{n} \tag{62}\\
& & \\
T_{n}^{\prime} \times \Lambda_{n} \xrightarrow{\left(1 \times \mu_{n}\right)} & T_{n}^{\prime} \times \mathcal{A}_{n} .
\end{array}
$$

Here, we have $1 \times \mu_{n}\left(1 \times \mu_{n}\right)(\mathbf{t}, \boldsymbol{\lambda})=(\mathbf{t}, \mathbf{a})$

$$
\begin{equation*}
a_{i}=2 \cos 2 \pi \lambda_{i} \quad \text { for } 1 \leq i \leq n . \tag{63}
\end{equation*}
$$

The case of $n=4$ (The Painlevé VI case).

Theorem 4.5. Take $L=\mathcal{O}_{\mathbf{P}^{1}}(-1)$ with a natural connection.
(1) For a suitable choice of a weight $\boldsymbol{\alpha}^{\prime}$, the morphism

$$
\bar{\pi}_{4}: \overline{M_{4}^{\alpha^{\prime}}}(-1) \longrightarrow T_{4} \times \Lambda_{4}
$$

is projective and smooth . Moreover for any $(\mathbf{t}, \boldsymbol{\lambda}) \in T_{4} \times \Lambda_{4}$ the fiber $\bar{\pi}_{4}^{-1}(\mathbf{t}, \boldsymbol{\lambda}):=\overline{M_{4}^{\alpha^{\prime}}}(\mathbf{t}, \boldsymbol{\lambda},-1)$ is irreducible, hence a smooth projective surface.
(2) Let $\mathcal{D}=\overline{M_{4}^{\alpha^{\prime}}}(-1) \backslash M_{4}^{\alpha}(-1)$ be the complement of $M_{4}^{\alpha}(-1)$ in $\overline{M_{4}^{\alpha^{\prime}}}(-1)$. (Note that $\boldsymbol{\alpha}=\boldsymbol{\alpha}^{\prime} / 2$). Then \mathcal{D} is a flat reduced divisor over $T_{4} \times \Lambda_{4}$.
(3) For each ($\mathbf{t}, \boldsymbol{\lambda}$), set

$$
\bar{S}_{\mathbf{t}, \boldsymbol{\lambda}}:=\bar{\pi}_{4}^{-1}(\mathbf{t}, \boldsymbol{\lambda}):=\overline{M_{4}^{\alpha^{\prime}}}(\mathbf{t}, \boldsymbol{\lambda},-1) .
$$

Then $\bar{S}_{\mathbf{t}, \boldsymbol{\lambda}}$ is a smooth projective surface which can be obtained by blowingups at 8 points of the Hirzeburch surface $\mathbf{F}_{2}=\operatorname{Proj}\left(\mathcal{O}_{\mathbf{P}^{1}}(-2) \oplus \mathcal{O}_{\mathbf{P}^{1}}\right)$ of degree 2. The surface has a unique effective anti-canonical divisor $-K_{S_{\mathrm{t}, \lambda}}=$ $\mathcal{Y}_{\mathrm{t}, \boldsymbol{\lambda}}$ whose support is $\mathcal{D}_{\mathrm{t}, \boldsymbol{\lambda}}$. Then the pair

$$
\begin{equation*}
\left(\bar{S}_{\mathbf{t}, \boldsymbol{\lambda}}, \mathcal{Y}_{\mathbf{t}, \boldsymbol{\lambda}}\right) \tag{64}
\end{equation*}
$$

is an Okamoto-Painlevé pair of type $D_{4}^{(1)}$. That is, the anti-canonical divisor $\mathcal{Y}_{\mathbf{t}, \lambda}$ consists of 5 -nodal rational curves whose configuration is same as Kodaira-Néron degenerate elliptic curves of type $D_{4}^{(1)}$ (=Kodaira type $\left.I_{0}^{*}\right)$. Moreover we have $\left(M_{4}^{\alpha}(-1)\right)_{\mathbf{t}, \boldsymbol{\lambda}}=\left(\overline{M_{4}^{\alpha^{\prime}}}(-1)\right)_{\mathbf{t}, \boldsymbol{\lambda}} \backslash \mathcal{Y}_{\mathbf{t}, \boldsymbol{\lambda}}$.

Okamoto Painlevé pair of type $P_{V I}$

Figure 7. Okamoto-Painlevé pair of type $D_{4}^{(1)}$

Proposition 4.1. The invariant ring $\left(R_{3}\right)^{A d\left(S L_{2}(\mathbf{C})\right)}$ is generated by seven elements $x_{1}, x_{2}, x_{3}, a_{1}, a_{2}, a_{3}, a_{4}$ and there exist a relation

$$
\begin{equation*}
f(\mathbf{x}, \mathbf{a})=x_{1} x_{2} x_{3}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-\theta_{1}(\mathbf{a}) x_{1}-\theta_{2}(\mathbf{a}) x_{2}-\theta_{3}(\mathbf{a}) x_{3}+\theta_{4}(\mathbf{a}), \tag{65}
\end{equation*}
$$

where we set

$$
\begin{aligned}
\theta_{i}(\mathbf{a}) & =a_{i} a_{4}+a_{j} a_{k}, \quad(i, j, k)=\text { a cyclic permutation of }(1,2,3) \\
\theta_{4}(\mathbf{a}) & =a_{1} a_{2} a_{3} a_{4}+a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}-4 .
\end{aligned}
$$

Therefore we have an isomorphism

$$
\left(R_{3}\right)^{A d\left(S L_{2}(\mathbf{C})\right)} \simeq \mathbf{C}\left[x_{1}, x_{2}, x_{3}, a_{1}, a_{2}, a_{3}, a_{4}\right] /(f(\mathbf{z}, \mathbf{a}))
$$

Hence

$$
\operatorname{Rep}\left(\mathbf{P}^{1},\left(t_{1}, t_{2}, t_{3}, t_{4}\right), 2\right)=\operatorname{Spec}\left(R_{3}\right) A d\left(S L_{2}(\mathbf{C})\right)
$$

is isomorphic to an affine cubic.

The family of affine cubic surfaces

$$
\begin{array}{cc}
\tilde{M}_{4}^{\boldsymbol{\alpha}}(-1) & \xrightarrow{\mathbf{R H}_{4}} \quad \tilde{\mathcal{R}}_{4} \simeq \tilde{T}_{4} \times \mathbf{R e p}\left(\mathbf{P}^{1},\left(t_{1}, t_{2}, t_{3}, t_{4}\right), 2\right) \\
\tilde{\pi}_{4} \downarrow & \tilde{\phi}_{4} \\
\tilde{T}_{4} \times \Lambda_{4} \xrightarrow{\left(1 \times \mu_{n}\right)} & \tilde{T}_{4} \times \mathcal{A}_{4} \\
& \quad a_{i}=2 \cos 2 \pi \lambda_{i} \tag{67}
\end{array} \quad \text { for } 1 \leq i \leq 4 .
$$

Isomonodromic flows = Painlevé or Garnier flows

Figure 8. Riemann-Hilbert correspondence and isomonodromic flows for generic $\boldsymbol{\lambda}$

Figure 9. Riemann-Hilbert correspondence and isomonodromic flows for special $\boldsymbol{\lambda}$

Hamiltonian systems of Painlevé $P_{V I}$

$P_{V I}$ is equivalent to a Hamiltonian system $H_{V I}$.

$$
\left(H_{V I}\right):\left\{\begin{array}{l}
\frac{d x}{d t}=\frac{\partial H_{V I}}{\partial y} \\
\frac{d y}{d t}=-\frac{\partial H_{V I}}{\partial x}
\end{array}\right.
$$

Hamiltionian in suitable coordinates can be given

$$
\begin{gathered}
H_{V I}=H_{V I}\left(x, y, t, \lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right) \in \mathbf{C}(t)\left[x, y, \lambda_{i}\right] \\
H_{V I}(x, y, t)= \\
\frac{1}{t(t-1)}\left[x(x-1)(x-t) y^{2}-\left\{2 \lambda_{1}(x-1)(x-t)\right.\right. \\
\\
\left.\left.+2 \lambda_{2} x(x-t)+\left(2 \lambda_{3}-1\right) x(x-1)\right\} y+\lambda(x-t)\right] \\
\left(\lambda:=\left\{\left(\lambda_{1}+\lambda_{2}+\lambda_{3}-1 / 2\right)^{2}-\lambda_{4}^{2}\right\}\right)
\end{gathered}
$$

Bäcklund transformations for Painlevé VI.

- $P_{V I}(\boldsymbol{\lambda})$ have non-trivial birational automorphisms which are called Bäcklund transformations. The group of all Bäcklund transformations form the affine Weyl group W of type $D_{4}^{(1)}$.

Proposition 4.2. The group of Bäcklund transformations which can be obtained from elementary transformations of stable parabolic connections is a proper subgroup of $W\left(D_{4}^{(1)}\right)$ whose index is finite. The invloution s_{0} of $W\left(D_{4}^{(1)}\right)$ is not in the group.

The case of connection with irregular singular points

Pailevé equation	Order of pole at $t=0$	$t=1$	$t=\infty$
Painlevé V	≤ 1	≤ 1	2
$I V$	≤ 1	0	3
$I I I$	2	0	2
$I I$	0	0	4
I	0	0	4 (ramified)

Bäcklund tranformations for $P_{V I}$

- -Symmety of Affine Weyl group $W\left(D_{4}^{(1)}\right)$
- $W\left(D_{4}^{(1)}\right)=\left\langle s_{0}, s_{1}, \cdots, s_{4}\right\rangle$ acts on $\Lambda_{V I}=\mathbf{C}^{4}$ by

$$
\begin{gathered}
s_{i}\left(\lambda_{j}\right)=(-1)^{\delta_{i j}} \lambda_{j}, i=1, \cdot, 4 . \\
s_{0}\left(\lambda_{j}\right)=\lambda_{j}-\frac{1}{2} \sum_{j=1}^{4} \lambda_{j}+\frac{1}{2}
\end{gathered}
$$

- Fact:
- (Bäcklund transformation). The actions of $W\left(D_{4}^{(1)}\right)$ on Λ can be lifted to birational actions on $\overline{\mathcal{S}^{\prime}}$ which prserve \tilde{v}.

\[

\]

Problem

- What is a geometric origin of Bäcklund transformations ?

Answer

- $s_{i}, i=1, \cdots, 4$ are easy. Elementary transformations.
- Except s_{0}, we can almost explain the geometric origin.

Riccati solution for Painlevé equations and Raional curves

- Riccati equation :

$$
x^{\prime}=a(t) x^{2}+b(t) x+c(t) .
$$

- Example $\quad P_{I V}$)

$$
\left\{\begin{array}{l}
\frac{d x_{0}}{d t}=4 x_{0} y_{0}-x_{0}^{2}-2 t x_{0}-2 \kappa_{0} \tag{68}\\
\frac{d y_{0}}{d t}=-2 y_{0}^{2}+2\left(x_{0}+t\right) y_{0}-\kappa_{\infty}
\end{array} .\right.
$$

- When $\kappa_{0}=0, x_{0} \equiv 0$ satisfies first equation automatically. The second equation becomes Riccati equation:

$$
\frac{d y_{0}}{d t}=-2 y_{0}^{2}+2 t y_{0}-\kappa_{\infty}
$$

-When $\kappa_{\infty}=0, y_{0} \equiv 0$ satisfies the second equation automatically, then first equation becomes

$$
\frac{d x_{0}}{d t}=-x_{0}^{2}-2 t x_{0}-2 \kappa_{0}
$$

- Even when $\kappa_{0}=\kappa_{\infty}$, setting $x_{0} y_{0}-\kappa_{0}=0$, we have a Riccati equation .
- Phase space of Riccati equations

$$
\mathbf{P}^{1} \times T
$$

- Saito-Terajima, J. of Kyoto Math. (2004)

$$
\text { Riccati solutions } \Longleftrightarrow \quad C=\mathbf{P}^{1} \subset \mathcal{S}_{t, \lambda}^{\prime}, C^{2}=-2
$$

- N. A. Lukashevich and A. I. Yablonski, A.S. Fokas and M.J. Ablowitz, Watanabe.

For $\boldsymbol{\lambda} \in \Lambda_{4}, \mathcal{S}_{t, \boldsymbol{\lambda}}^{\prime}$ contains \mathbf{P}^{1} if and only if $\boldsymbol{\lambda}$ lies on a reflection hyperplane with respect to the affine Weyl group actions on Λ_{4}.

Figure 10. A Confluence of Nodal Curves in the case $\tilde{E}_{6}\left(P_{\mathrm{IV}}\right)$.

