Constant mean curvature tori in \mathbb{S}^{3}

M. U. Schmidt
joint work with M. Kilian

Universität Mannheim

Durham, 12th August 2006

History

1958 Alexandrov: Alexandrov embedded compact cmc surfaces in $\mathbb{R}^{3}, \mathbb{S}^{3}$ and \mathbb{H}^{3} are round spheres.

History

1958 Alexandrov: Alexandrov embedded compact cmc surfaces in $\mathbb{R}^{3}, \mathbb{S}^{3}$ and \mathbb{H}^{3} are round spheres.
1971 Hsiang/Lawson: Minimal surfaces in \mathbb{S}^{3}.
Conjecture: unique emb. minimal torus.

History

1958 Alexandrov: Alexandrov embedded compact cmc surfaces in $\mathbb{R}^{3}, \mathbb{S}^{3}$ and \mathbb{H}^{3} are round spheres.
1971 Hsiang/Lawson: Minimal surfaces in \mathbb{S}^{3}.
Conjecture: unique emb. minimal torus.
1986 Wente: cmc tori in \mathbb{R}^{3}

History

1958 Alexandrov: Alexandrov embedded compact cmc surfaces in $\mathbb{R}^{3}, \mathbb{S}^{3}$ and \mathbb{H}^{3} are round spheres.
1971 Hsiang/Lawson: Minimal surfaces in \mathbb{S}^{3}.
Conjecture: unique emb. minimal torus.
1986 Wente: cmc tori in \mathbb{R}^{3}
1988 Meeks \& Korevaar/Kusner/Solomon: properly embedded cmc cylinders in \mathbb{R}^{3}.

History

1958 Alexandrov: Alexandrov embedded compact cmc surfaces in $\mathbb{R}^{3}, \mathbb{S}^{3}$ and \mathbb{H}^{3} are round spheres.
1971 Hsiang/Lawson: Minimal surfaces in \mathbb{S}^{3}.
Conjecture: unique emb. minimal torus.
1986 Wente: cmc tori in \mathbb{R}^{3}
1988 Meeks \& Korevaar/Kusner/Solomon: properly embedded cmc cylinders in \mathbb{R}^{3}.
1989 Pinkall/Sterling: cmc tori in \mathbb{R}^{3}.

History

1958 Alexandrov: Alexandrov embedded compact cmc surfaces in $\mathbb{R}^{3}, \mathbb{S}^{3}$ and \mathbb{H}^{3} are round spheres.
1971 Hsiang/Lawson: Minimal surfaces in \mathbb{S}^{3}.
Conjecture: unique emb. minimal torus.
1986 Wente: cmc tori in \mathbb{R}^{3}
1988 Meeks \& Korevaar/Kusner/Solomon: properly embedded cmc cylinders in \mathbb{R}^{3}.
1989 Pinkall/Sterling: cmc tori in \mathbb{R}^{3}.
1990 Hitchin: minimal tori in \mathbb{S}^{3}.

History

1958 Alexandrov: Alexandrov embedded compact cmc surfaces in $\mathbb{R}^{3}, \mathbb{S}^{3}$ and \mathbb{H}^{3} are round spheres.
1971 Hsiang/Lawson: Minimal surfaces in \mathbb{S}^{3}.
Conjecture: unique emb. minimal torus.
1986 Wente: cmc tori in \mathbb{R}^{3}
1988 Meeks \& Korevaar/Kusner/Solomon: properly embedded cmc cylinders in \mathbb{R}^{3}.
1989 Pinkall/Sterling: cmc tori in \mathbb{R}^{3}.
1990 Hitchin: minimal tori in \mathbb{S}^{3}.
1991 Bobenko: cmc tori in $\mathbb{R}^{3}, \mathbb{S}^{3}, \mathbb{H}^{3}$

Spectral curves of cmc tori in \mathbb{S}^{3}

- X compact hyperrelliptic Riemann surface with two marked points x^{+}and x^{-}.

Spectral curves of cmc tori in \mathbb{S}^{3}

- X compact hyperrelliptic Riemann surface with two marked points x^{+}and x^{-}.
- hyperelliptic involution σ and anti-holomorphic involution η without fixed points.

Spectral curves of cmc tori in \mathbb{S}^{3}

- X compact hyperrelliptic Riemann surface with two marked points x^{+}and x^{-}.
- hyperelliptic involution σ and anti-holomorphic involution η without fixed points.
- meromorphic function λ with second order pole at x^{+}and second order zero at x^{-}

$$
\sigma^{*} \lambda=\lambda \quad \eta^{*} \lambda=\bar{\lambda}^{-1}
$$

Spectral curves of cmc tori in \mathbb{S}^{3}

- X compact hyperrelliptic Riemann surface with two marked points x^{+}and x^{-}.
- hyperelliptic involution σ and anti-holomorphic involution η without fixed points.
- meromorphic function λ with second order pole at x^{+}and second order zero at x^{-}

$$
\sigma^{*} \lambda=\lambda \quad \eta^{*} \lambda=\bar{\lambda}^{-1}
$$

- non-zero holomorphic functions μ_{1} and μ_{2} on $X \backslash\left\{x^{+}, x^{-}\right\}$ with

$$
\sigma^{*} \mu_{i}=\mu_{i}^{-1} \quad \eta^{*} \mu_{i}=\bar{\mu}_{i}
$$

$d \ln \left(\mu_{i}\right)$ second order poles at $x^{ \pm}$(linearly independent).

Spectral curves of cmc tori in \mathbb{S}^{3}

- X compact hyperrelliptic Riemann surface with two marked points x^{+}and x^{-}.
- hyperelliptic involution σ and anti-holomorphic involution η without fixed points.
- meromorphic function λ with second order pole at x^{+}and second order zero at x^{-}

$$
\sigma^{*} \lambda=\lambda \quad \eta^{*} \lambda=\bar{\lambda}^{-1}
$$

- non-zero holomorphic functions μ_{1} and μ_{2} on $X \backslash\left\{x^{+}, x^{-}\right\}$ with

$$
\sigma^{*} \mu_{i}=\mu_{i}^{-1} \quad \eta^{*} \mu_{i}=\bar{\mu}_{i}
$$

$d \ln \left(\mu_{i}\right)$ second order poles at $x^{ \pm}$(linearly independent).

- 4 points with $\mu_{1}\left(x_{j}\right)=\mu_{2}\left(x_{j}\right)= \pm 1$

$$
x_{1}, x_{2}=\sigma x_{1}=\eta x_{1}, x_{3}, x_{4}=\sigma x_{3}=\eta x_{3} .
$$

1-sided Alexandrov embedded tori

Alexandrov embedded:

$$
\begin{aligned}
& \text { Immersion } f: \mathbb{T}^{2} \rightarrow \mathbb{S}^{3} \text { extends to } \\
& \text { Immersion } f: M^{3} \rightarrow \mathbb{S}^{3} \text { with } \partial M^{3}=\mathbb{T}^{2} .
\end{aligned}
$$

1-sided Alexandrov embedded tori

Alexandrov embedded:
Immersion $f: \mathbb{T}^{2} \rightarrow \mathbb{S}^{3}$ extends to Immersion $f: M^{3} \rightarrow \mathbb{S}^{3}$ with $\partial M^{3}=\mathbb{T}^{2}$.
1-sided Alexandrov embedded:
Mean curvature vector H does not vanish and points outwards from M^{3}.

1-sided Alexandrov embedded tori

Alexandrov embedded:
Immersion $f: \mathbb{T}^{2} \rightarrow \mathbb{S}^{3}$ extends to Immersion $f: M^{3} \rightarrow \mathbb{S}^{3}$ with $\partial M^{3}=\mathbb{T}^{2}$.
1-sided Alexandrov embedded:
Mean curvature vector H does not vanish and points outwards from M^{3}.

Theorem
Let $\left(f_{t}\right)_{t \in(0,1)}: \mathbb{T}^{2} \rightarrow \mathbb{S}^{3}$ be a family of cmc-immersions such that

1-sided Alexandrov embedded tori

Alexandrov embedded:
Immersion $f: \mathbb{T}^{2} \rightarrow \mathbb{S}^{3}$ extends to Immersion $f: M^{3} \rightarrow \mathbb{S}^{3}$ with $\partial M^{3}=\mathbb{T}^{2}$.
1-sided Alexandrov embedded:
Mean curvature vector H does not vanish and points outwards from M^{3}.

Theorem
Let $\left(f_{t}\right)_{t \in(0,1)}: \mathbb{T}^{2} \rightarrow \mathbb{S}^{3}$ be a family of cmc-immersions such that

- f_{t} depends contiuously on $t \in(0,1)$ (up to second derivatives)

1-sided Alexandrov embedded tori

Alexandrov embedded:
Immersion $f: \mathbb{T}^{2} \rightarrow \mathbb{S}^{3}$ extends to Immersion $f: M^{3} \rightarrow \mathbb{S}^{3}$ with $\partial M^{3}=\mathbb{T}^{2}$.
1-sided Alexandrov embedded:
Mean curvature vector H does not vanish and points outwards from M^{3}.

Theorem
Let $\left(f_{t}\right)_{t \in(0,1)}: \mathbb{T}^{2} \rightarrow \mathbb{S}^{3}$ be a family of cmc-immersions such that

- f_{t} depends contiuously on $t \in(0,1)$ (up to second derivatives)
- The mean curvature $H(t)>0$ for all $t \in(0,1)$.

1-sided Alexandrov embedded tori

Alexandrov embedded:
Immersion $f: \mathbb{T}^{2} \rightarrow \mathbb{S}^{3}$ extends to Immersion $f: M^{3} \rightarrow \mathbb{S}^{3}$ with $\partial M^{3}=\mathbb{T}^{2}$.
1-sided Alexandrov embedded:
Mean curvature vector H does not vanish and points outwards from M^{3}.

Theorem
Let $\left(f_{t}\right)_{t \in(0,1)}: \mathbb{T}^{2} \rightarrow \mathbb{S}^{3}$ be a family of cmc-immersions such that

- f_{t} depends contiuously on $t \in(0,1)$ (up to second derivatives)
- The mean curvature $H(t)>0$ for all $t \in(0,1)$.
- $f_{t_{0}}$ for $t_{0} \in(0,1)$ is 1 -sided Alexandrov emb.

1-sided Alexandrov embedded tori

Alexandrov embedded:
Immersion $f: \mathbb{T}^{2} \rightarrow \mathbb{S}^{3}$ extends to
Immersion $f: M^{3} \rightarrow \mathbb{S}^{3}$ with $\partial M^{3}=\mathbb{T}^{2}$.
1-sided Alexandrov embedded:
Mean curvature vector H does not vanish and points outwards from M^{3}.

Theorem
Let $\left(f_{t}\right)_{t \in(0,1)}: \mathbb{T}^{2} \rightarrow \mathbb{S}^{3}$ be a family of cmc-immersions such that

- f_{t} depends contiuously on $t \in(0,1)$ (up to second derivatives)
- The mean curvature $H(t)>0$ for all $t \in(0,1)$.
- $f_{t_{0}}$ for $t_{0} \in(0,1)$ is 1 -sided Alexandrov emb.

Then $f_{t} 1$-sided Alexandrov emb. for all $t \in(0,1)$.

ODE of spectral data

Spectral curves: $\kappa=\imath \frac{\lambda+1}{\lambda-1}, \sigma^{*} \kappa=\kappa, \eta^{*} \kappa=\bar{\kappa}$

ODE of spectral data

Spectral curves: $\kappa=\imath \frac{\lambda+1}{\lambda-1}, \sigma^{*} \kappa=\kappa, \eta^{*} \kappa=\bar{\kappa}$

$$
\nu^{2}=\frac{a(\kappa)}{\kappa^{2}+1}, \operatorname{deg}(a)=2 g
$$

ODE of spectral data

Spectral curves: $\kappa=\imath \frac{\lambda+1}{\lambda-1}, \sigma^{*} \kappa=\kappa, \eta^{*} \kappa=\bar{\kappa}$

$$
\nu^{2}=\frac{a(\kappa)}{\kappa^{2}+1}, \operatorname{deg}(a)=2 g \text { and } d \ln \mu_{i}=\frac{b_{i}(\kappa)}{\left(\kappa^{2}+1\right)^{2}} d \kappa, \operatorname{deg}\left(b_{i}\right)=g+1
$$

ODE of spectral data

Spectral curves: $\kappa=\imath \frac{\lambda+1}{\lambda-1}, \sigma^{*} \kappa=\kappa, \eta^{*} \kappa=\bar{\kappa}$
$\nu^{2}=\frac{a(\kappa)}{\kappa^{2}+1}, \operatorname{deg}(a)=2 g$ and $d \ln \mu_{i}=\frac{b_{i}(\kappa)}{\left(\kappa^{2}+1\right)^{2}} d \kappa, \operatorname{deg}\left(b_{i}\right)=g+1$
Families of spectral curves with parameter t, and $a, \mu_{1}, \mu_{2}, b_{1}, b_{2}$ functions of (κ, t).

ODE of spectral data

Spectral curves: $\kappa=\imath \frac{\lambda+1}{\lambda-1}, \sigma^{*} \kappa=\kappa, \eta^{*} \kappa=\bar{\kappa}$
$\nu^{2}=\frac{a(\kappa)}{\kappa^{2}+1}, \operatorname{deg}(a)=2 g$ and $d \ln \mu_{i}=\frac{b_{i}(\kappa)}{\left(\kappa^{2}+1\right)^{2}} d \kappa, \operatorname{deg}\left(b_{i}\right)=g+1$
Families of spectral curves with parameter t, and $a, \mu_{1}, \mu_{2}, b_{1}, b_{2}$ functions of (κ, t).
Ansatz: $\quad \partial_{t} \ln \mu_{i}=\frac{c_{i}(\kappa)}{\kappa^{2}+1}, \quad \operatorname{deg}\left(c_{i}\right)=g+1$.

ODE of spectral data

Spectral curves: $\kappa=\imath \frac{\lambda+1}{\lambda-1}, \sigma^{*} \kappa=\kappa, \eta^{*} \kappa=\bar{\kappa}$
$\nu^{2}=\frac{a(\kappa)}{\kappa^{2}+1}, \operatorname{deg}(a)=2 g$ and $d \ln \mu_{i}=\frac{b_{i}(\kappa)}{\left(\kappa^{2}+1\right)^{2}} d \kappa, \operatorname{deg}\left(b_{i}\right)=g+1$
Families of spectral curves with parameter t, and $a, \mu_{1}, \mu_{2}, b_{1}, b_{2}$ functions of (κ, t).
Ansatz: $\quad \partial_{t} \ln \mu_{i}=\frac{c_{i}(\kappa)}{\kappa^{2}+1}, \quad \operatorname{deg}\left(c_{i}\right)=g+1$.
Closing condition: $\partial_{t} \ln \mu_{i}\left(x_{j}\right)=0, \kappa_{j}=\kappa\left(x_{j}\right)$.

ODE of spectral data

Spectral curves: $\kappa=\imath \frac{\lambda+1}{\lambda-1}, \sigma^{*} \kappa=\kappa, \eta^{*} \kappa=\bar{\kappa}$
$\nu^{2}=\frac{a(\kappa)}{\kappa^{2}+1}, \operatorname{deg}(a)=2 g$ and $d \ln \mu_{i}=\frac{b_{i}(\kappa)}{\left(\kappa^{2}+1\right)^{2}} d \kappa, \operatorname{deg}\left(b_{i}\right)=g+1$
Families of spectral curves with parameter t, and $a, \mu_{1}, \mu_{2}, b_{1}, b_{2}$ functions of (κ, t).
Ansatz: $\quad \partial_{t} \ln \mu_{i}=\frac{c_{i}(\kappa)}{\kappa^{2}+1}, \quad \operatorname{deg}\left(c_{i}\right)=g+1$.
Closing condition: $\partial_{t} \ln \mu_{i}\left(x_{j}\right)=0, \kappa_{j}=\kappa\left(x_{j}\right)$.

$$
\partial_{t} \ln \mu_{2} d \ln \mu_{1}-\partial_{t} \ln \mu_{1} d \ln \mu_{2}=C \frac{\left(\kappa-\kappa_{1}\right)\left(\kappa-\kappa_{3}\right)}{\left(\kappa^{2}+1\right)^{2}} d \kappa
$$

ODE of spectral data

Spectral curves: $\kappa=\imath \frac{\lambda+1}{\lambda-1}, \sigma^{*} \kappa=\kappa, \eta^{*} \kappa=\bar{\kappa}$
$\nu^{2}=\frac{a(\kappa)}{\kappa^{2}+1}, \operatorname{deg}(a)=2 g$ and $d \ln \mu_{i}=\frac{b_{i}(\kappa)}{\left(\kappa^{2}+1\right)^{2}} d \kappa, \operatorname{deg}\left(b_{i}\right)=g+1$
Families of spectral curves with parameter t, and $a, \mu_{1}, \mu_{2}, b_{1}, b_{2}$ functions of (κ, t).
Ansatz: $\quad \partial_{t} \ln \mu_{i}=\frac{c_{i}(\kappa)}{\kappa^{2}+1}, \quad \operatorname{deg}\left(c_{i}\right)=g+1$.
Closing condition: $\partial_{t} \ln \mu_{i}\left(x_{j}\right)=0, \kappa_{j}=\kappa\left(x_{j}\right)$.

$$
\begin{gathered}
\partial_{t} \ln \mu_{2} d \ln \mu_{1}-\partial_{t} \ln \mu_{1} d \ln \mu_{2}=C \frac{\left(\kappa-\kappa_{1}\right)\left(\kappa-\kappa_{3}\right)}{\left(\kappa^{2}+1\right)^{2}} d \kappa . \\
c_{1} b_{2}-c_{2} b_{1}=C\left(\kappa-\kappa_{0}\right)\left(\kappa-\kappa_{1}\right) a \\
2 a \dot{b}_{i}-\dot{a} b_{i}=\left(\kappa^{2}+1\right)\left(2 a c_{i}^{\prime}-a^{\prime} c_{i}\right)-2 \kappa a c_{i}
\end{gathered}
$$

ODE of spectral data

Spectral curves: $\kappa=\imath \frac{\lambda+1}{\lambda-1}, \sigma^{*} \kappa=\kappa, \eta^{*} \kappa=\bar{\kappa}$
$\nu^{2}=\frac{a(\kappa)}{\kappa^{2}+1}, \operatorname{deg}(a)=2 g$ and $d \ln \mu_{i}=\frac{b_{i}(\kappa)}{\left(\kappa^{2}+1\right)^{2}} d \kappa, \operatorname{deg}\left(b_{i}\right)=g+1$
Families of spectral curves with parameter t, and $a, \mu_{1}, \mu_{2}, b_{1}, b_{2}$ functions of ($\left.\kappa, t\right)$.
Ansatz: $\quad \partial_{t} \ln \mu_{i}=\frac{c_{i}(\kappa)}{\kappa^{2}+1}, \quad \operatorname{deg}\left(c_{i}\right)=g+1$.
Closing condition: $\partial_{t} \ln \mu_{i}\left(x_{j}\right)=0, \kappa_{j}=\kappa\left(x_{j}\right)$.

$$
\begin{aligned}
& \partial_{t} \ln \mu_{2} d \ln \mu_{1}-\partial_{t} \ln \mu_{1} d \ln \mu_{2}=C \frac{\left(\kappa-\kappa_{1}\right)\left(\kappa-\kappa_{3}\right)}{\left(\kappa^{2}+1\right)^{2}} d \kappa . \\
& c_{1} b_{2}-c_{2} b_{1}=C\left(\kappa-\kappa_{0}\right)\left(\kappa-\kappa_{1}\right) a \\
& 2 a \dot{b}_{i}-\dot{a} b_{i}=\left(\kappa^{2}+1\right)\left(2 a c_{i}^{\prime}-a^{\prime} c_{i}\right)-2 \kappa a c_{i}
\end{aligned}
$$

ODE: $a, b_{1}, b_{2}, \kappa_{1}, \kappa_{3} \Longrightarrow c_{1}, c_{2}, \dot{a}, \dot{b}_{1}, \dot{b}_{2}, \dot{\kappa}_{1}, \dot{\kappa}_{3}$.

Moduli space

Theorem
Spectral curve of cmc torus at t_{0}. Solution of ODE yields spectral curve of cmc tori for all t.

Moduli space

Theorem
Spectral curve of cmc torus at t_{0}.
Solution of ODE yields spectral curve of cmc tori for all t.
Moduli space of spectral data of cmc tori is a 1-dim manifold with bifurcation points.

Moduli space

Theorem
Spectral curve of cmc torus at t_{0}.
Solution of ODE yields spectral curve of cmc tori for all t.
Moduli space of spectral data of cmc tori is a 1-dim manifold with bifurcation points.

Bifurcation points: spectral data with double points: $\mu_{i}(x)=\mu_{i}(\sigma x)= \pm 1$.

Discontinuities of the genus.

Moduli space

Theorem
Spectral curve of cmc torus at t_{0}.
Solution of ODE yields spectral curve of cmc tori for all t.
Moduli space of spectral data of cmc tori is a 1-dim manifold with bifurcation points.

Bifurcation points: spectral data with double points: $\mu_{i}(x)=\mu_{i}(\sigma x)= \pm 1$.

Discontinuities of the genus.
Problem: determine connected components of spectral curves of 1 -sided A.e. cmc tori in \mathbb{S}^{3}.

Flat tori in \mathbb{S}^{3}

Flat tori are invariant under
a 2-dimensional subgroup of the isometries $S O(4)$.

Flat tori in \mathbb{S}^{3}

Flat tori are invariant under
a 2-dimensional subgroup of the isometries $S O(4)$.
Spectral curve $\simeq \mathbb{P}^{1}$

Flat tori in \mathbb{S}^{3}

Flat tori are invariant under
a 2-dimensional subgroup of the isometries $S O(4)$.
Spectral curve $\simeq \mathbb{P}^{1}$

Classification of embedded flat tori:
For every $H \geq 0$ there exists one embedded flat torus in \mathbb{S}^{3} up to isometry.

Flat tori in \mathbb{S}^{3}

Flat tori are invariant under
a 2-dimensional subgroup of the isometries $S O(4)$.
Spectral curve $\simeq \mathbb{P}^{1}$
Classification of embedded flat tori:
For every $H \geq 0$ there exists one embedded flat torus in \mathbb{S}^{3} up to isometry. For $H=0$ this is the Clifford torus.

Flat tori in \mathbb{S}^{3}

Flat tori are invariant under
a 2-dimensional subgroup of the isometries $S O(4)$.
Spectral curve $\simeq \mathbb{P}^{1}$
Classification of embedded flat tori:
For every $H \geq 0$ there exists one embedded flat torus in \mathbb{S}^{3} up to isometry. For $H=0$ this is the Clifford torus. Conformal classes are rectangular.

Flat tori in \mathbb{S}^{3}

Flat tori are invariant under
a 2-dimensional subgroup of the isometries $S O(4)$.
Spectral curve $\simeq \mathbb{P}^{1}$
Classification of embedded flat tori:
For every $H \geq 0$ there exists one embedded flat torus in \mathbb{S}^{3} up to isometry. For $H=0$ this is the Clifford torus. Conformal classes are rectangular.

Classification of flat tori: All flat tori in \mathbb{S}^{3} are isogenic to an embedded flat torus.

1-sided Alexandrov embedded flat tori

Given 1 -sided A.e. immersion $f: M^{3} \rightarrow \mathbb{S}^{3}$ with $\left.f\right|_{\partial M=\mathbb{T}^{2}}$ isogeny onto flat embedded torus.

1-sided Alexandrov embedded flat tori

Given 1 -sided A.e. immersion $f: M^{3} \rightarrow \mathbb{S}^{3}$ with $\left.f\right|_{\partial M=\mathbb{T}^{2}}$ isogeny onto flat embedded torus.

Embedded flat tori are boundaries of two solid tori $\simeq \mathbb{S}^{1} \times \mathbb{D}$.

1-sided Alexandrov embedded flat tori

Given 1 -sided A.e. immersion $f: M^{3} \rightarrow \mathbb{S}^{3}$ with $\left.f\right|_{\partial M=\mathbb{T}^{2}}$ isogeny onto flat embedded torus.

Embedded flat tori are boundaries of two solid tori $\simeq \mathbb{S}^{1} \times \mathbb{D}$.
H points outwards \Longrightarrow unique solid torus.

1-sided Alexandrov embedded flat tori

Given 1 -sided A.e. immersion $f: M^{3} \rightarrow \mathbb{S}^{3}$ with $\left.f\right|_{\partial M=\mathbb{T}^{2}}$ isogeny onto flat embedded torus.

Embedded flat tori are boundaries of two solid tori $\simeq \mathbb{S}^{1} \times \mathbb{D}$.
H points outwards \Longrightarrow unique solid torus.
Then f is finite-sheeted unbranched covering of solid torus $\mathbb{S}^{1} \times \mathbb{D}$.

1-sided Alexandrov embedded flat tori

Given 1 -sided A.e. immersion $f: M^{3} \rightarrow \mathbb{S}^{3}$ with $\left.f\right|_{\partial M=\mathbb{T}^{2}}$ isogeny onto flat embedded torus.

Embedded flat tori are boundaries of two solid tori $\simeq \mathbb{S}^{1} \times \mathbb{D}$.
H points outwards \Longrightarrow unique solid torus.
Then f is finite-sheeted unbranched covering of solid torus $\mathbb{S}^{1} \times \mathbb{D}$. uniquely determined by cofinite subgroup of $\pi_{1}\left(\mathbb{S}^{1} \times \mathbb{D}\right) \simeq \mathbb{Z}$.

1-sided Alexandrov embedded flat tori

Given 1 -sided A.e. immersion $f: M^{3} \rightarrow \mathbb{S}^{3}$ with $\left.f\right|_{\partial M=\mathbb{T}^{2}}$ isogeny onto flat embedded torus.

Embedded flat tori are boundaries of two solid tori $\simeq \mathbb{S}^{1} \times \mathbb{D}$.
H points outwards \Longrightarrow unique solid torus.
Then f is finite-sheeted unbranched covering of solid torus $\mathbb{S}^{1} \times \mathbb{D}$. uniquely determined by cofinite subgroup of $\pi_{1}\left(\mathbb{S}^{1} \times \mathbb{D}\right) \simeq \mathbb{Z}$.
$L \mathbb{Z}$ with $L \in \mathbb{N} \longleftrightarrow L$-wrapped torus in \mathbb{S}^{3}

1-sided Alexandrov embedded flat tori

Given 1 -sided A.e. immersion $f: M^{3} \rightarrow \mathbb{S}^{3}$ with $\left.f\right|_{\partial M=\mathbb{T}^{2}}$ isogeny onto flat embedded torus.

Embedded flat tori are boundaries of two solid tori $\simeq \mathbb{S}^{1} \times \mathbb{D}$.
H points outwards \Longrightarrow unique solid torus.
Then f is finite-sheeted unbranched covering of solid torus $\mathbb{S}^{1} \times \mathbb{D}$. uniquely determined by cofinite subgroup of $\pi_{1}\left(\mathbb{S}^{1} \times \mathbb{D}\right) \simeq \mathbb{Z}$.
$L \mathbb{Z}$ with $L \in \mathbb{N} \quad \longleftrightarrow \quad L$-wrapped torus in \mathbb{S}^{3}
Classification of flat 1-sided A.e. tori:
For every $L \in \mathbb{N}$ there exists a family of 1 -sided A.e. flat tori parameterized by $H>0$. Condformal classes are rectangular.

Bifurcation points of flat tori

The spectral curve X is the limit of spectral curves of higher genus.
\sqrt{v}

Bifurcation points of flat tori

The spectral curve X is the limit of spectral curves of higher genus.

§

X has double points, i.e. $\mu_{i}(x)=\mu_{i}(\sigma x)= \pm 1$.

Bifurcation points of flat tori

The spectral curve X is the limit of spectral curves of higher genus.

§

X has double points, i.e. $\mu_{i}(x)=\mu_{i}(\sigma x)= \pm 1$.
$X \simeq \mathbb{P}^{1} \quad \Longrightarrow \quad \ln \mu_{1}$ and $\ln \mu_{2}$ rational.

Bifurcation points of flat tori

The spectral curve X is the limit of spectral curves of higher genus.
X has double points, i.e. $\mu_{i}(x)=\mu_{i}(\sigma x)= \pm 1$.
$X \simeq \mathbb{P}^{1} \quad \Longrightarrow \quad \ln \mu_{1}$ and $\ln \mu_{2}$ rational.
x double point $\Longrightarrow \ln \mu_{i}(x) \in \sqrt{-1} \pi \mathbb{Z} \Longrightarrow \rho x=\sigma \eta x=x$.

Bifurcation points of flat tori

The spectral curve X is the limit of spectral curves of higher genus.
X has double points, i.e. $\mu_{i}(x)=\mu_{i}(\sigma x)= \pm 1$.
$X \simeq \mathbb{P}^{1} \quad \Longrightarrow \quad \ln \mu_{1}$ and $\ln \mu_{2}$ rational.
x double point $\Longrightarrow \ln \mu_{i}(x) \in \sqrt{-1} \pi \mathbb{Z} \Longrightarrow \rho x=\sigma \eta x=x$.
No bifurcation to genus $g \geq 2$.

Bifurcation points of flat tori

The spectral curve X is the limit of spectral curves of higher genus.
X has double points, i.e. $\mu_{i}(x)=\mu_{i}(\sigma x)= \pm 1$.
$X \simeq \mathbb{P}^{1} \quad \Longrightarrow \quad \ln \mu_{1}$ and $\ln \mu_{2}$ rational.
x double point $\Longrightarrow \ln \mu_{i}(x) \in \sqrt{-1} \pi \mathbb{Z} \Longrightarrow \rho x=\sigma \eta x=x$.
No bifurcation to genus $g \geq 2$.
A discrete infinite subset of every family of flat tori are limits of spectral curves of genus one.

Bifurcation points of flat tori

The spectral curve X is the limit of spectral curves of higher genus.
X has double points, i.e. $\mu_{i}(x)=\mu_{i}(\sigma x)= \pm 1$.
$X \simeq \mathbb{P}^{1} \quad \Longrightarrow \quad \ln \mu_{1}$ and $\ln \mu_{2}$ rational.
x double point $\Longrightarrow \ln \mu_{i}(x) \in \sqrt{-1} \pi \mathbb{Z} \Longrightarrow \rho x=\sigma \eta x=x$.
No bifurcation to genus $g \geq 2$.
A discrete infinite subset of every family of flat tori are limits of spectral curves of genus one.

The family of embedded flat tori has for every $K \in \mathbb{N} \backslash\{1\}$ one doublepoint.

Bifurcation points of flat tori

The spectral curve X is the limit of spectral curves of higher genus.
X has double points, i.e. $\mu_{i}(x)=\mu_{i}(\sigma x)= \pm 1$.
$X \simeq \mathbb{P}^{1} \quad \Longrightarrow \quad \ln \mu_{1}$ and $\ln \mu_{2}$ rational.
x double point $\Longrightarrow \ln \mu_{i}(x) \in \sqrt{-1} \pi \mathbb{Z} \Longrightarrow \rho x=\sigma \eta x=x$.
No bifurcation to genus $g \geq 2$.
A discrete infinite subset of every family of flat tori are limits of spectral curves of genus one.

The family of embedded flat tori has for every $K \in \mathbb{N} \backslash\{1\}$ one doublepoint.

The L-wrapped family of flat tori has for every $K>L$ one double point and others.

Families of $g=1$ spectral curves

Deformation equation \Longrightarrow distance of branchpoints to $|\lambda|=1$ has no minimum.

Families of $g=1$ spectral curves

Deformation equation \Longrightarrow distance of branchpoints to $|\lambda|=1$ has no minimum.

Distance has maximum for non-rectangular classes.

Families of $g=1$ spectral curves

Deformation equation \Longrightarrow distance of branchpoints to $|\lambda|=1$ has no minimum.

Distance has maximum for non-rectangular classes.
Theorem
Every $g=1$ family has as a limit the spectral curve of a flat torus.

Families of $g=1$ spectral curves

Deformation equation \Longrightarrow distance of branchpoints to $|\lambda|=1$ has no minimum.

Distance has maximum for non-rectangular classes.
Theorem
Every $g=1$ family has as a limit the spectral curve of a flat torus.
Families of rectangular classes have one end with branchpoints at $\lambda \rightarrow \infty$ and $\lambda \rightarrow 0$.

Families of $g=1$ spectral curves

Deformation equation \Longrightarrow distance of branchpoints to $|\lambda|=1$ has no minimum.

Distance has maximum for non-rectangular classes.
Theorem
Every $g=1$ family has as a limit the spectral curve of a flat torus.
Families of rectangular classes have one end with branchpoints at $\lambda \rightarrow \infty$ and $\lambda \rightarrow 0$.

Families of non-rectangular classes have two limiting spectral curves of flat tori.

1-sided A.e. cmc tori with $g=1$
The L-wrapped family of 1 -sided A.e. flat tori has for every $K \in \mathbb{N}$ with $2 L^{2}<K^{2}$
a bifurcation point to a 1 -sided A.e. $g=1$ family.

1-sided A.e. cmc tori with $g=1$

The L-wrapped family of 1 -sided A.e. flat tori has for every $K \in \mathbb{N}$ with $2 L^{2}<K^{2}$
a bifurcation point to a 1 -sided A.e. $g=1$ family.
They have rectangular conformal classes.

1-sided A.e. cmc tori with $g=1$

The L-wrapped family of 1 -sided A.e. flat tori has for every $K \in \mathbb{N}$ with $2 L^{2}<K^{2}$
a bifurcation point to a 1 -sided A.e. $g=1$ family.
They have rectangular conformal classes.
Families with $\sqrt{2} L<K<2 L$ ends in minimal $g=1 \mathrm{cmc}$-torus.

1-sided A.e. cmc tori with $g=1$

The L-wrapped family of 1 -sided A.e. flat tori has for every $K \in \mathbb{N}$ with $2 L^{2}<K^{2}$
a bifurcation point to a 1 -sided A.e. $g=1$ family.
They have rectangular conformal classes.
Families with $\sqrt{2} L<K<2 L$ ends in minimal $g=1 \mathrm{cmc}$-torus.
Families with $K=2 L$ ends in minimal chains of spheres.

1-sided A.e. cmc tori with $g=1$

The L-wrapped family of 1 -sided A.e. flat tori has for every $K \in \mathbb{N}$ with $2 L^{2}<K^{2}$
a bifurcation point to a 1 -sided A.e. $g=1$ family.
They have rectangular conformal classes.
Families with $\sqrt{2} L<K<2 L$ ends in minimal $g=1 \mathrm{cmc}$-torus.
Families with $K=2 L$ ends in minimal chains of spheres.
Families with $2 L<K$ ends in non-minimal chains of spheres.

1-sided A.e. cmc tori with $g=1$

The L-wrapped family of 1 -sided A.e. flat tori has for every $K \in \mathbb{N}$ with $2 L^{2}<K^{2}$
a bifurcation point to a 1 -sided A.e. $g=1$ family.
They have rectangular conformal classes.
Families with $\sqrt{2} L<K<2 L$ ends in minimal $g=1 \mathrm{cmc}$-torus.
Families with $K=2 L$ ends in minimal chains of spheres.
Families with $2 L<K$ ends in non-minimal chains of spheres.
$\Im\left(\ln \mu_{1}\right)-\Im\left(\ln \mu_{2}\right)$
Diagram of start and end curves fixed pt. of $\rho=\sigma \eta$.

Components of spectral curves of 1 -sided A.e. tori
$g=1$ and x double point $\Longrightarrow \rho x=\sigma \eta x=x$.

Components of spectral curves of 1-sided A.e. tori
$g=1$ and x double point $\Longrightarrow \rho x=\sigma \eta x=x$.
Theorem
$g=1$ families of spectral curves of 1 -sided A.e. cmc tori have no double points.

Components of spectral curves of 1 -sided A.e. tori

$g=1$ and x double point $\Longrightarrow \rho x=\sigma \eta x=x$.
Theorem
$g=1$ families of spectral curves of 1 -sided A.e. cmc tori have no double points.

Known connected components of spectral curves of 1 -sided A.e. cmc tori in \mathbb{S}^{3} :

- For every $L \in \mathbb{N}$ one connected component.

Components of spectral curves of 1 -sided A.e. tori

$g=1$ and x double point $\Longrightarrow \rho x=\sigma \eta x=x$.
Theorem
$g=1$ families of spectral curves of 1 -sided A.e. cmc tori have no double points.

Known connected components of spectral curves of 1 -sided A.e. cmc tori in \mathbb{S}^{3} :

- For every $L \in \mathbb{N}$ one connected component.
- Each contains one minimal flat cmc torus.

Components of spectral curves of 1 -sided A.e. tori

$g=1$ and x double point $\Longrightarrow \rho x=\sigma \eta x=x$.
Theorem
$g=1$ families of spectral curves of 1 -sided A.e. cmc tori have no double points.

Known connected components of spectral curves of 1 -sided A.e. cmc tori in \mathbb{S}^{3} :

- For every $L \in \mathbb{N}$ one connected component.
- Each contains one minimal flat cmc torus.
- Each contains for all $\sqrt{2} L<K$ a $g=1$ family.

Components of spectral curves of 1 -sided A.e. tori

$g=1$ and x double point $\Longrightarrow \rho x=\sigma \eta x=x$.
Theorem
$g=1$ families of spectral curves of 1 -sided A.e. cmc tori have no double points.

Known connected components of spectral curves of 1 -sided A.e. cmc tori in \mathbb{S}^{3} :

- For every $L \in \mathbb{N}$ one connected component.
- Each contains one minimal flat cmc torus.
- Each contains for all $\sqrt{2} L<K$ a $g=1$ family.
- The $g=1$ families with $\sqrt{2} L<K<2 L$ end in a $g=1$ minimal torus

Components of spectral curves of 1 -sided A.e. tori

$g=1$ and x double point $\Longrightarrow \rho x=\sigma \eta x=x$.
Theorem
$g=1$ families of spectral curves of 1 -sided A.e. cmc tori have no double points.

Known connected components of spectral curves of 1 -sided A.e. cmc tori in \mathbb{S}^{3} :

- For every $L \in \mathbb{N}$ one connected component.
- Each contains one minimal flat cmc torus.
- Each contains for all $\sqrt{2} L<K$ a $g=1$ family.
- The $g=1$ families with $\sqrt{2} L<K<2 L$ end in a $g=1$ minimal torus
- They contain no spectral curves with $g>1$.

Components of spectral curves of 1 -sided A.e. tori

$g=1$ and x double point $\Longrightarrow \rho x=\sigma \eta x=x$.
Theorem
$g=1$ families of spectral curves of 1 -sided A.e. cmc tori have no double points.

Known connected components of spectral curves of 1 -sided A.e. cmc tori in \mathbb{S}^{3} :

- For every $L \in \mathbb{N}$ one connected component.
- Each contains one minimal flat cmc torus.
- Each contains for all $\sqrt{2} L<K$ a $g=1$ family.
- The $g=1$ families with $\sqrt{2} L<K<2 L$ end in a $g=1$ minimal torus
- They contain no spectral curves with $g>1$.
- They contain all $g \leq 1$ spectral curves of A.e. embedded cmc tori in \mathbb{S}^{3}.

Chains of spheres

- Rectangular $g=1$ families end in spectral curves of chains of spheres

Chains of spheres

- Rectangular $g=1$ families end in spectral curves of chains of spheres
- Branch points with $\lambda \rightarrow 0$ and $\lambda \rightarrow \infty$.

Chains of spheres

- Rectangular $g=1$ families end in spectral curves of chains of spheres
- Branch points with $\lambda \rightarrow 0$ and $\lambda \rightarrow \infty$.
- K isometric round spheres in \mathbb{S}^{3} touching each other along a geodesic.

Chains of spheres

- Rectangular $g=1$ families end in spectral curves of chains of spheres
- Branch points with $\lambda \rightarrow 0$ and $\lambda \rightarrow \infty$.
- K isometric round spheres in \mathbb{S}^{3} touching each other along a geodesic.
- For $K=2$ minimal.

Chains of spheres

- Rectangular $g=1$ families end in spectral curves of chains of spheres
- Branch points with $\lambda \rightarrow 0$ and $\lambda \rightarrow \infty$.
- K isometric round spheres in \mathbb{S}^{3} touching each other along a geodesic.
- For $K=2$ minimal.
- Families continuous beyond the chains of spheres with a $g=1$ family of spectral curces of cmc tori.

Chains of spheres

- Rectangular $g=1$ families end in spectral curves of chains of spheres
- Branch points with $\lambda \rightarrow 0$ and $\lambda \rightarrow \infty$.
- K isometric round spheres in \mathbb{S}^{3} touching each other along a geodesic.
- For $K=2$ minimal.
- Families continuous beyond the chains of spheres with a $g=1$ family of spectral curces of cmc tori.
- Beyond the chain of spheres A.e. but not 1-sided A.e.

Chains of spheres

- Rectangular $g=1$ families end in spectral curves of chains of spheres
- Branch points with $\lambda \rightarrow 0$ and $\lambda \rightarrow \infty$.
- K isometric round spheres in \mathbb{S}^{3} touching each other along a geodesic.
- For $K=2$ minimal.
- Families continuous beyond the chains of spheres with a $g=1$ family of spectral curces of cmc tori.
- Beyond the chain of spheres A.e. but not 1-sided A.e.
- Connect different connected components of the moduli space.

Chains of spheres

- Rectangular $g=1$ families end in spectral curves of chains of spheres
- Branch points with $\lambda \rightarrow 0$ and $\lambda \rightarrow \infty$.
- K isometric round spheres in \mathbb{S}^{3} touching each other along a geodesic.
- For $K=2$ minimal.
- Families continuous beyond the chains of spheres with a $g=1$ family of spectral curces of cmc tori.
- Beyond the chain of spheres A.e. but not 1-sided A.e.
- Connect different connected components of the moduli space.
- Conjecture: Connect all components of the moduli space.

Spectral curves of cmc tori in \mathbb{R}^{3}

- X compact hyperelliptic Riemann surface with two marked points x^{+}and x^{-}.

Spectral curves of cmc tori in \mathbb{R}^{3}

- X compact hyperelliptic Riemann surface with two marked points x^{+}and x^{-}.
- Hyperelliptic involution σ and anti-holomorphic involution η without fixed points.

Spectral curves of cmc tori in \mathbb{R}^{3}

- X compact hyperelliptic Riemann surface with two marked points x^{+}and x^{-}.
- Hyperelliptic involution σ and anti-holomorphic involution η without fixed points.
- Meromorphic function λ with second order pole at x^{+}and second order zero at x^{-}

Spectral curves of cmc tori in \mathbb{R}^{3}

- X compact hyperelliptic Riemann surface with two marked points x^{+}and x^{-}.
- Hyperelliptic involution σ and anti-holomorphic involution η without fixed points.
- Meromorphic function λ with second order pole at x^{+}and second order zero at x^{-}

$$
\sigma^{*} \lambda=\lambda \quad \eta^{*} \lambda=\bar{\lambda}^{-1}
$$

Spectral curves of cmc tori in \mathbb{R}^{3}

- X compact hyperelliptic Riemann surface with two marked points x^{+}and x^{-}.
- Hyperelliptic involution σ and anti-holomorphic involution η without fixed points.
- Meromorphic function λ with second order pole at x^{+}and second order zero at x^{-}

$$
\sigma^{*} \lambda=\lambda \quad \eta^{*} \lambda=\bar{\lambda}^{-1}
$$

- Non-zero holomorphic functions μ_{1} and μ_{2} on $X \backslash\left\{x^{+}, x^{-}\right\}$ with

$$
\sigma^{*} \mu_{i}=\mu_{i}^{-1} \quad \eta^{*} \mu_{i}=\bar{\mu}_{i}
$$

Spectral curves of cmc tori in \mathbb{R}^{3}

- X compact hyperelliptic Riemann surface with two marked points x^{+}and x^{-}.
- Hyperelliptic involution σ and anti-holomorphic involution η without fixed points.
- Meromorphic function λ with second order pole at x^{+}and second order zero at x^{-}

$$
\sigma^{*} \lambda=\lambda \quad \eta^{*} \lambda=\bar{\lambda}^{-1}
$$

- Non-zero holomorphic functions μ_{1} and μ_{2} on $X \backslash\left\{x^{+}, x^{-}\right\}$ with

$$
\sigma^{*} \mu_{i}=\mu_{i}^{-1} \quad \eta^{*} \mu_{i}=\bar{\mu}_{i}
$$

$d \ln \left(\mu_{i}\right)$ second order poles at $x^{ \pm}$.

Spectral curves of cmc tori in \mathbb{R}^{3}

- X compact hyperelliptic Riemann surface with two marked points x^{+}and x^{-}.
- Hyperelliptic involution σ and anti-holomorphic involution η without fixed points.
- Meromorphic function λ with second order pole at x^{+}and second order zero at x^{-}

$$
\sigma^{*} \lambda=\lambda \quad \eta^{*} \lambda=\bar{\lambda}^{-1}
$$

- Non-zero holomorphic functions μ_{1} and μ_{2} on $X \backslash\left\{x^{+}, x^{-}\right\}$ with

$$
\sigma^{*} \mu_{i}=\mu_{i}^{-1} \quad \eta^{*} \mu_{i}=\bar{\mu}_{i}
$$

$d \ln \left(\mu_{i}\right)$ second order poles at $x^{ \pm}$.

- 2 points $x_{1}, x_{2}=\sigma x_{1}=\eta x_{1}$ with

$$
\mu_{1}\left(x_{j}\right)=\mu_{2}\left(x_{j}\right)= \pm 1 \text { and } d \mu_{i}\left(x_{j}\right)=0
$$

Cmc tori in \mathbb{R}^{3}

Spectral curves are $H \rightarrow \infty$ limits of spectral curves of cmc tori in \mathbb{S}^{3}.

Cmc tori in \mathbb{R}^{3}

Spectral curves are $H \rightarrow \infty$ limits of spectral curves of cmc tori in \mathbb{S}^{3}.
cmc tori in \mathbb{S}^{3} shrink to a point.

Cmc tori in \mathbb{R}^{3}

Spectral curves are $H \rightarrow \infty$ limits of spectral curves of cmc tori in \mathbb{S}^{3}.
cmc tori in \mathbb{S}^{3} shrink to a point.
blow up yields cmc torus in \mathbb{R}^{3}.

Cmc tori in \mathbb{R}^{3}

Spectral curves are $H \rightarrow \infty$ limits of spectral curves of cmc tori in \mathbb{S}^{3}.
cmc tori in \mathbb{S}^{3} shrink to a point.
blow up yields cmc torus in \mathbb{R}^{3}.
all A.e. cmc tori in \mathbb{S}_{+}^{3} are round spheres.
$\Longrightarrow \quad$ Spectral curves are no limits of families of spectral curves of 1 -sided A.e. cmc tori.

Cmc tori in \mathbb{R}^{3}

Spectral curves are $H \rightarrow \infty$ limits of spectral curves of cmc tori in \mathbb{S}^{3}.
cmc tori in \mathbb{S}^{3} shrink to a point.
blow up yields cmc torus in \mathbb{R}^{3}.
all A.e. cmc tori in \mathbb{S}_{+}^{3} are round spheres.
\Longrightarrow Spectral curves are no limits of
families of spectral curves of 1 -sided A.e. cmc tori.
$g \geq 2$
Wente tori with $g=2$ for all $K \in \mathbb{N} \backslash\{1,2\}$.

Limits of spectral curves

(A) cmc cylinder in \mathbb{R}^{3} :

$$
H \rightarrow \infty
$$

Conformal class $\tau \rightarrow \infty$. branch points bounded. limits of $g \leq 1$ families.

Limits of spectral curves

(A) cmc cylinder in \mathbb{R}^{3} :

$$
H \rightarrow \infty
$$

Conformal class $\tau \rightarrow \infty$. branch points bounded. limits of $g \leq 1$ families.
(B) chains of spheres:
H bounded.
$\tau \rightarrow \infty$.
branchpoints with $\lambda \rightarrow 0$ and $\lambda \rightarrow \infty$.
limits of $g=1$ families.

Limits of spectral curves

(A) cmc cylinder in \mathbb{R}^{3} :

$$
H \rightarrow \infty
$$

Conformal class $\tau \rightarrow \infty$.
branch points bounded.
limits of $g \leq 1$ families.
(B) chains of spheres:
H bounded.
$\tau \rightarrow \infty$.
branchpoints with $\lambda \rightarrow 0$ and $\lambda \rightarrow \infty$.
limits of $g=1$ families.
(C) cmc tori in \mathbb{R}^{3} :
$H \rightarrow \infty$.
τ bounded.
branchpoints bounded.
limits of $g \geq 2$ families.

Moduli space

Moduli space
K=5

Moduli space

Moduli space

Moduli space

$$
K=5
$$

Moduli space

$$
K=5
$$

