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Spectral curves of cmc tori in S3

I X compact hyperrelliptic Riemann surface
with two marked points x+ and x−.

I hyperelliptic involution σ and anti–holomorphic involution η
without fixed points.

I meromorphic function λ with second order pole at x+ and
second order zero at x−

σ∗λ = λ η∗λ = λ̄−1

I non–zero holomorphic functions µ1 and µ2 on X \ {x+, x−}
with

σ∗µi = µ−1
i η∗µi = µ̄i

d ln(µi) second order poles at x± (linearly independent).

I 4 points with µ1(xj) = µ2(xj) = ±1
x1, x2 = σx1 = ηx1, x3, x4 = σx3 = ηx3.
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1–sided Alexandrov embedded tori

Alexandrov embedded:
Immersion f : T2 → S3 extends to
Immersion f : M3 → S3 with ∂M3 = T2.

1–sided Alexandrov embedded:
Mean curvature vector H does not vanish
and points outwards from M3.

Theorem
Let (ft)t∈(0,1) : T2 → S3 be a family of cmc–immersions such that

I ft depends contiuously on t ∈ (0, 1) (up to second derivatives)

I The mean curvature H(t) > 0 for all t ∈ (0, 1).
I ft0 for t0 ∈ (0, 1) is 1–sided Alexandrov emb.

Then ft 1–sided Alexandrov emb. for all t ∈ (0, 1).
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ODE of spectral data

Spectral curves: κ = ıλ+1
λ−1 , σ∗κ = κ, η∗κ = κ̄

ν2 =
a(κ)

κ2 + 1
, deg(a) = 2g and d lnµi =

bi(κ)
(κ2 + 1)2

dκ, deg(bi) = g+1

Families of spectral curves with parameter t, and
a, µ1, µ2, b1, b2 functions of (κ, t).

Ansatz: ∂t lnµi =
ci(κ)
κ2 + 1

, deg(ci) = g + 1.

Closing condition: ∂t lnµi(xj) = 0, κj = κ(xj).

∂t lnµ2 d lnµ1 − ∂t lnµ1 d lnµ2 = C
(κ− κ1)(κ− κ3)

(κ2 + 1)2
dκ.

c1b2 − c2b1 = C(κ− κ0)(κ− κ1)a

2aḃi − ȧbi = (κ2 + 1)(2ac′i − a′ci)− 2κaci

ODE: a, b1, b2, κ1, κ3 =⇒ c1, c2, ȧ, ḃ1, ḃ2, κ̇1, κ̇3.
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2aḃi − ȧbi = (κ2 + 1)(2ac′i − a′ci)− 2κaci

ODE: a, b1, b2, κ1, κ3 =⇒ c1, c2, ȧ, ḃ1, ḃ2, κ̇1, κ̇3.



Moduli space

Theorem
Spectral curve of cmc torus at t0.
Solution of ODE yields spectral curve of cmc tori for all t.

Moduli space of spectral data of cmc tori is a
1–dim manifold with bifurcation points.

Bifurcation points: spectral data with

double points: µi(x) = µi(σx) = ±1.
Discontinuities of the genus.

Problem: determine connected components
of spectral curves of 1–sided A.e. cmc tori in S3.
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Flat tori in S3

Flat tori are invariant under
a 2–dimensional subgroup of the isometries SO(4).

Spectral curve ' P1

Classification of embedded flat tori:
For every H ≥ 0 there exists one
embedded flat torus in S3 up to isometry.
For H = 0 this is the Clifford torus.
Conformal classes are rectangular.

Classification of flat tori: All flat tori in S3 are
isogenic to an embedded flat torus.
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1–sided Alexandrov embedded flat tori

Given 1–sided A.e. immersion f : M3 → S3

with f |∂M=T2 isogeny onto flat embedded torus.

Embedded flat tori are boundaries of two solid tori ' S1 × D.

H points outwards =⇒ unique solid torus.

Then f is finite–sheeted unbranched covering of solid torus S1 ×D.

uniquely determined by cofinite subgroup of π1(S1 × D) ' Z.

LZ with L ∈ N ←→ L–wrapped torus in S3

Classification of flat 1–sided A.e. tori:
For every L ∈ N there exists a family
of 1–sided A.e. flat tori parameterized by H > 0.
Condformal classes are rectangular.
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Bifurcation points of flat tori

The spectral curve X is the limit of spectral curves of higher genus.
m

X has double points, i.e. µi(x) = µi(σx) = ±1.

X ' P1 =⇒ lnµ1 and lnµ2 rational.

x double point =⇒ lnµi(x) ∈
√
−1πZ =⇒ ρx = σηx = x.

No bifurcation to genus g ≥ 2.

A discrete infinite subset of every family of flat tori
are limits of spectral curves of genus one.

The family of embedded flat tori has
for every K ∈ N \ {1} one doublepoint.

The L–wrapped family of flat tori has
for every K > L one double point and others.



Bifurcation points of flat tori

The spectral curve X is the limit of spectral curves of higher genus.
m

X has double points, i.e. µi(x) = µi(σx) = ±1.

X ' P1 =⇒ lnµ1 and lnµ2 rational.

x double point =⇒ lnµi(x) ∈
√
−1πZ =⇒ ρx = σηx = x.

No bifurcation to genus g ≥ 2.

A discrete infinite subset of every family of flat tori
are limits of spectral curves of genus one.

The family of embedded flat tori has
for every K ∈ N \ {1} one doublepoint.

The L–wrapped family of flat tori has
for every K > L one double point and others.



Bifurcation points of flat tori

The spectral curve X is the limit of spectral curves of higher genus.
m

X has double points, i.e. µi(x) = µi(σx) = ±1.

X ' P1 =⇒ lnµ1 and lnµ2 rational.

x double point =⇒ lnµi(x) ∈
√
−1πZ =⇒ ρx = σηx = x.

No bifurcation to genus g ≥ 2.

A discrete infinite subset of every family of flat tori
are limits of spectral curves of genus one.

The family of embedded flat tori has
for every K ∈ N \ {1} one doublepoint.

The L–wrapped family of flat tori has
for every K > L one double point and others.



Bifurcation points of flat tori

The spectral curve X is the limit of spectral curves of higher genus.
m

X has double points, i.e. µi(x) = µi(σx) = ±1.

X ' P1 =⇒ lnµ1 and lnµ2 rational.

x double point =⇒ lnµi(x) ∈
√
−1πZ =⇒ ρx = σηx = x.

No bifurcation to genus g ≥ 2.

A discrete infinite subset of every family of flat tori
are limits of spectral curves of genus one.

The family of embedded flat tori has
for every K ∈ N \ {1} one doublepoint.

The L–wrapped family of flat tori has
for every K > L one double point and others.



Bifurcation points of flat tori

The spectral curve X is the limit of spectral curves of higher genus.
m

X has double points, i.e. µi(x) = µi(σx) = ±1.

X ' P1 =⇒ lnµ1 and lnµ2 rational.

x double point =⇒ lnµi(x) ∈
√
−1πZ =⇒ ρx = σηx = x.

No bifurcation to genus g ≥ 2.

A discrete infinite subset of every family of flat tori
are limits of spectral curves of genus one.

The family of embedded flat tori has
for every K ∈ N \ {1} one doublepoint.

The L–wrapped family of flat tori has
for every K > L one double point and others.



Bifurcation points of flat tori

The spectral curve X is the limit of spectral curves of higher genus.
m

X has double points, i.e. µi(x) = µi(σx) = ±1.

X ' P1 =⇒ lnµ1 and lnµ2 rational.

x double point =⇒ lnµi(x) ∈
√
−1πZ =⇒ ρx = σηx = x.

No bifurcation to genus g ≥ 2.

A discrete infinite subset of every family of flat tori
are limits of spectral curves of genus one.

The family of embedded flat tori has
for every K ∈ N \ {1} one doublepoint.

The L–wrapped family of flat tori has
for every K > L one double point and others.



Bifurcation points of flat tori

The spectral curve X is the limit of spectral curves of higher genus.
m

X has double points, i.e. µi(x) = µi(σx) = ±1.

X ' P1 =⇒ lnµ1 and lnµ2 rational.

x double point =⇒ lnµi(x) ∈
√
−1πZ =⇒ ρx = σηx = x.

No bifurcation to genus g ≥ 2.

A discrete infinite subset of every family of flat tori
are limits of spectral curves of genus one.

The family of embedded flat tori has
for every K ∈ N \ {1} one doublepoint.

The L–wrapped family of flat tori has
for every K > L one double point and others.



Bifurcation points of flat tori

The spectral curve X is the limit of spectral curves of higher genus.
m

X has double points, i.e. µi(x) = µi(σx) = ±1.

X ' P1 =⇒ lnµ1 and lnµ2 rational.

x double point =⇒ lnµi(x) ∈
√
−1πZ =⇒ ρx = σηx = x.

No bifurcation to genus g ≥ 2.

A discrete infinite subset of every family of flat tori
are limits of spectral curves of genus one.

The family of embedded flat tori has
for every K ∈ N \ {1} one doublepoint.

The L–wrapped family of flat tori has
for every K > L one double point and others.



Families of g = 1 spectral curves

Deformation equation =⇒ distance of branchpoints to |λ| = 1
has no minimum.

Distance has maximum for non–rectangular classes.

Theorem
Every g = 1 family has as a limit the spectral curve of a flat torus.

Families of rectangular classes have
one end with branchpoints at λ→∞ and λ→ 0.

Families of non–rectangular classes have
two limiting spectral curves of flat tori.
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1–sided A.e. cmc tori with g = 1

The L–wrapped family of 1–sided A.e. flat tori has
for every K ∈ N with 2L2 < K2

a bifurcation point to a 1–sided A.e. g = 1 family.

They have rectangular conformal classes.

Families with
√

2L < K < 2L ends in minimal g = 1 cmc–torus.

Families with K = 2L ends in minimal chains of spheres.

Families with 2L < K ends in non–minimal chains of spheres.

=(lnµ1)–=(lnµ2)
Diagram of
start and end curves
fixed pt. of ρ = ση.
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Components of spectral curves of 1–sided A.e. tori

g = 1 and x double point =⇒ ρx = σηx = x.

Theorem
g = 1 families of spectral curves of 1–sided A.e. cmc tori
have no double points.

Known connected components of spectral curves
of 1–sided A.e. cmc tori in S3:

I For every L ∈ N one connected component.

I Each contains one minimal flat cmc torus.

I Each contains for all
√

2L < K a g = 1 family.

I The g = 1 families with
√

2L < K < 2L end
in a g = 1 minimal torus

I They contain no spectral curves with g > 1.

I They contain all g ≤ 1 spectral curves
of A.e. embedded cmc tori in S3.



Components of spectral curves of 1–sided A.e. tori

g = 1 and x double point =⇒ ρx = σηx = x.

Theorem
g = 1 families of spectral curves of 1–sided A.e. cmc tori
have no double points.

Known connected components of spectral curves
of 1–sided A.e. cmc tori in S3:

I For every L ∈ N one connected component.

I Each contains one minimal flat cmc torus.

I Each contains for all
√

2L < K a g = 1 family.

I The g = 1 families with
√

2L < K < 2L end
in a g = 1 minimal torus

I They contain no spectral curves with g > 1.

I They contain all g ≤ 1 spectral curves
of A.e. embedded cmc tori in S3.



Components of spectral curves of 1–sided A.e. tori

g = 1 and x double point =⇒ ρx = σηx = x.

Theorem
g = 1 families of spectral curves of 1–sided A.e. cmc tori
have no double points.

Known connected components of spectral curves
of 1–sided A.e. cmc tori in S3:

I For every L ∈ N one connected component.

I Each contains one minimal flat cmc torus.

I Each contains for all
√

2L < K a g = 1 family.

I The g = 1 families with
√

2L < K < 2L end
in a g = 1 minimal torus

I They contain no spectral curves with g > 1.

I They contain all g ≤ 1 spectral curves
of A.e. embedded cmc tori in S3.



Components of spectral curves of 1–sided A.e. tori

g = 1 and x double point =⇒ ρx = σηx = x.

Theorem
g = 1 families of spectral curves of 1–sided A.e. cmc tori
have no double points.

Known connected components of spectral curves
of 1–sided A.e. cmc tori in S3:

I For every L ∈ N one connected component.

I Each contains one minimal flat cmc torus.

I Each contains for all
√

2L < K a g = 1 family.

I The g = 1 families with
√

2L < K < 2L end
in a g = 1 minimal torus

I They contain no spectral curves with g > 1.

I They contain all g ≤ 1 spectral curves
of A.e. embedded cmc tori in S3.



Components of spectral curves of 1–sided A.e. tori

g = 1 and x double point =⇒ ρx = σηx = x.

Theorem
g = 1 families of spectral curves of 1–sided A.e. cmc tori
have no double points.

Known connected components of spectral curves
of 1–sided A.e. cmc tori in S3:

I For every L ∈ N one connected component.

I Each contains one minimal flat cmc torus.

I Each contains for all
√

2L < K a g = 1 family.

I The g = 1 families with
√

2L < K < 2L end
in a g = 1 minimal torus

I They contain no spectral curves with g > 1.

I They contain all g ≤ 1 spectral curves
of A.e. embedded cmc tori in S3.



Components of spectral curves of 1–sided A.e. tori

g = 1 and x double point =⇒ ρx = σηx = x.

Theorem
g = 1 families of spectral curves of 1–sided A.e. cmc tori
have no double points.

Known connected components of spectral curves
of 1–sided A.e. cmc tori in S3:

I For every L ∈ N one connected component.

I Each contains one minimal flat cmc torus.

I Each contains for all
√

2L < K a g = 1 family.

I The g = 1 families with
√

2L < K < 2L end
in a g = 1 minimal torus

I They contain no spectral curves with g > 1.

I They contain all g ≤ 1 spectral curves
of A.e. embedded cmc tori in S3.



Components of spectral curves of 1–sided A.e. tori

g = 1 and x double point =⇒ ρx = σηx = x.

Theorem
g = 1 families of spectral curves of 1–sided A.e. cmc tori
have no double points.

Known connected components of spectral curves
of 1–sided A.e. cmc tori in S3:

I For every L ∈ N one connected component.

I Each contains one minimal flat cmc torus.

I Each contains for all
√

2L < K a g = 1 family.

I The g = 1 families with
√

2L < K < 2L end
in a g = 1 minimal torus

I They contain no spectral curves with g > 1.

I They contain all g ≤ 1 spectral curves
of A.e. embedded cmc tori in S3.



Components of spectral curves of 1–sided A.e. tori

g = 1 and x double point =⇒ ρx = σηx = x.

Theorem
g = 1 families of spectral curves of 1–sided A.e. cmc tori
have no double points.

Known connected components of spectral curves
of 1–sided A.e. cmc tori in S3:

I For every L ∈ N one connected component.

I Each contains one minimal flat cmc torus.

I Each contains for all
√

2L < K a g = 1 family.

I The g = 1 families with
√

2L < K < 2L end
in a g = 1 minimal torus

I They contain no spectral curves with g > 1.

I They contain all g ≤ 1 spectral curves
of A.e. embedded cmc tori in S3.



Chains of spheres

I Rectangular g = 1 families end in spectral curves
of chains of spheres

I Branch points with λ→ 0 and λ→∞.

I K isometric round spheres in S3

touching each other along a geodesic.

I For K = 2 minimal.

I Families continuous beyond the chains of spheres
with a g = 1 family of spectral curces of cmc tori.

I Beyond the chain of spheres A.e. but not 1–sided A.e.

I Connect different connected components of the moduli space.

I Conjecture: Connect all components of the moduli space.
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Spectral curves of cmc tori in R3

I X compact hyperelliptic Riemann surface with two marked
points x+ and x−.

I Hyperelliptic involution σ and anti–holomorphic involution η
without fixed points.

I Meromorphic function λ with second order pole at x+ and
second order zero at x−

σ∗λ = λ η∗λ = λ̄−1

I Non–zero holomorphic functions µ1 and µ2 on X \ {x+, x−}
with

σ∗µi = µ−1
i η∗µi = µ̄i

d ln(µi) second order poles at x±.

I 2 points x1, x2 = σx1 = ηx1 with
µ1(xj) = µ2(xj) = ±1 and dµi(xj) = 0.
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I Non–zero holomorphic functions µ1 and µ2 on X \ {x+, x−}
with

σ∗µi = µ−1
i η∗µi = µ̄i

d ln(µi) second order poles at x±.

I 2 points x1, x2 = σx1 = ηx1 with
µ1(xj) = µ2(xj) = ±1 and dµi(xj) = 0.
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Cmc tori in R3

Spectral curves are H →∞ limits of
spectral curves of cmc tori in S3.

cmc tori in S3 shrink to a point.

blow up yields cmc torus in R3.

all A.e. cmc tori in S3
+ are round spheres.

=⇒ Spectral curves are no limits of
families of spectral curves of 1–sided A.e. cmc tori.

g ≥ 2

Wente tori with g = 2 for all K ∈ N \ {1, 2}.
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Limits of spectral curves

(A) cmc cylinder in R3:
H →∞
Conformal class τ →∞.
branch points bounded.
limits of g ≤ 1 families.

(B) chains of spheres:
H bounded.
τ →∞.
branchpoints with λ→ 0 and λ→∞.
limits of g = 1 families.

(C) cmc tori in R3:
H →∞.
τ bounded.
branchpoints bounded.
limits of g ≥ 2 families.
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