

Twistors, Strings and Scattering Amplitudes
London Mathematical Society Durham Symposium 2007

Bernard de Wit
Utrecht University

Maximal supergravities:

are very nontrivial classical field theories

- 32 supersymmetries
- combine gravity, gauge fields with non-abelian extensions, scalar fields and a variety of antisymmetric tensor fields
- non-trivial duality symmetries
- improved short distance behaviour
ar they could be well defined and consistent
or are they (necessarily) part of a bigger theory?

Definition of M-Theory

? II-dimensional supergravity
? toroidal compactifications thereof with $E_{n(n)}(\mathbb{Z})$
? + Kaluza-Klein states (I/2-BPS)
? + branes + etcetera
? what about IIB theory
? Matrix theory
? Membrane theory

We start from the (effective) field theory perspective with 32 supersymmetries

Supergravity / supermembrane perspective ?

11D - SUPERMEMBRANE PERSPECTIVE

KKA 11D momentum KK states

DICHOTOMIC FIELD THEORY

9D SUGRA coupled to KK states of both
11D SUGRA and IIB SUGRA
indication of higher-dimensional origin (without full decompactification)

$D=11$

$\hat{G}_{\mu \nu}$
$\hat{A}_{\mu 910}$
$\hat{G}_{\mu 9} \hat{G}_{\mu 10}$
$\hat{A}_{\mu \nu 9}, \hat{A}_{\mu \nu 10}$
$\hat{A}_{\mu \nu \rho}$
$\hat{G}_{910}, \hat{G}_{99}, \hat{G}_{1010}$

$$
G_{\mu \nu}
$$

$$
C_{\mu 9}
$$

$$
G_{\mu 9}, C_{\mu}
$$

$$
C_{\mu \nu 9}, C_{\mu \nu}
$$

$$
C_{\mu \nu \rho}
$$

$$
\phi, G_{99}, C_{9}
$$

$$
\left.\begin{array}{c|c}
D=9 & \| / B \\
\hline g_{\mu \nu} & G_{\mu \nu} \\
B_{\mu} & G_{\mu 9} \\
A_{\mu}^{\alpha} & A_{\mu 9}^{\alpha}
\end{array}\right] \begin{array}{ll}
A_{\mu \nu}^{\alpha} & A_{\mu \nu}^{\alpha}
\end{array}, \begin{aligned}
& A_{\mu \nu \rho}
\end{aligned} A_{\mu \nu \rho \sigma} .
$$

$M_{\mathrm{BPS}}\left(q_{1}, q_{2}, p\right)=m_{\text {ККА }} \mathrm{e}^{3 \sigma / 7}\left|q_{\alpha} \phi^{\alpha}\right|+m_{\text {ККв }} \mathrm{e}^{-4 \sigma / 7}|p|$

$$
m_{\mathrm{KKA}}^{2} m_{\mathrm{KKB}} \propto T_{\mathrm{m}}
$$

more generally:

SUPERSYMMETRY ANTI-COMMUTATOR

$\left\{Q_{\alpha}, \bar{Q}_{\beta}\right\}=\Gamma_{\alpha \beta}^{M} P_{M}+\frac{1}{2} \Gamma_{\alpha \beta}^{M N} Z_{M N}+\frac{1}{5!} \Gamma_{\alpha \beta}^{M N P Q R} Z_{M N P Q R}$
CENTRAL CHARGES (pointlike)

9	$\mathrm{SL}(2) \times \mathrm{SO}(1,1)$	$\mathrm{SO}(2)$	$(\mathbf{2}, \mathbf{1}) \oplus(\mathbf{1}, \mathbf{1})$
8	$\mathrm{SL}(3) \times \mathrm{SL}(2)$	$\mathrm{U}(2)$	$(\mathbf{3}, \mathbf{2})$
7	$\mathrm{E}_{4(4)} \equiv \mathrm{SL}(5)$	$\mathrm{USp}(4)$	$\mathbf{1 0}$
6	$\mathrm{E}_{5(5)} \equiv \mathrm{SO}(5,5)$	$\mathrm{USp}(4) \times \mathrm{USp}(4)$	$\mathbf{1 6 \rightarrow (\mathbf { 4 } , \mathbf { 4 })}$
5	$\mathrm{E}_{6(6)}$	$\mathrm{USp}(8)$	$\mathbf{2 7} \oplus \mathbf{1}$
4	$\mathrm{E}_{7(7)}$	$\mathrm{SU}(8)$	$\mathbf{5 6 \rightarrow \mathbf { 2 8 } \oplus \overline { \mathbf { 2 8 } }}$
3	$\mathrm{E}_{8(8)}$	$\mathrm{SO}(16)$	$\mathbf{1 2 0}$
2	$\mathrm{E}_{9(9)}$	$\mathrm{SO}(16)$	$\mathbf{1} \oplus \mathbf{1 2 0} \oplus \mathbf{1 3 5}$

CENTRAL CHARGES (stringlike)

9	$\mathrm{SL}(2) \times \mathrm{SO}(1,1)$	$\mathbf{2}$
8	$\mathrm{SL}(3) \times \mathrm{SL}(2)$	$(\mathbf{3}, \mathbf{1})$
7	$\mathrm{SL}(5)$	$\mathbf{5}$
6	$\mathrm{SO}(5,5)$	$\mathbf{1 0} \oplus \mathbf{1} \rightarrow(\mathbf{5}, \mathbf{1}) \oplus(\mathbf{1}, \mathbf{5}) \oplus(\mathbf{1}, \mathbf{1})$
5	$\mathrm{E}_{6(6)}$	$\overline{\mathbf{2 7}}$
4	$\mathrm{E}_{7(7)}$	$\mathbf{6 3}$
3	$\mathrm{E}_{8(8)}$	$\mathbf{1 3 5}$
2	$\mathrm{E}_{9(9)}$	$\mathbf{1 3 5}$

compare to tensor fields!
another perspective

GAUGINGS

class of deformations of maximal supergravities
gauging versus scalar-vector-tensor duality
first: 3 space-time dimensions
I28 scalars and 128 spinors, but no vectors !
obtained by dualizing vectors in order to realize the symmetry $E_{8(8)}(\mathbb{R})$
solution:
introduce 248 vector gauge fields with Chern-Simons terms
$\mathcal{L}_{\mathrm{CS}} \propto g \varepsilon^{\mu \nu \rho} A_{\mu}{ }^{M} \underset{\uparrow}{\Theta_{M N}}\left[\partial_{\nu} A_{\rho}{ }^{N}-\frac{1}{3} g f_{P Q}{ }^{N} A_{\nu}{ }^{P} A_{\rho}{ }^{Q}\right]$
'invisible' at the level of the toroidal truncation

another example: 5 space-time dimensions

42 scalars and 27 vectors, and no tensors !
in order to realize the symmetry $E_{6(6)}^{\text {rigid }} \times \operatorname{USp}(8)^{\text {local }}$.
introduce a local subgroup such as $E_{6(6)} \rightarrow \mathrm{SO}(6)^{\text {local }} \times \mathrm{SL}(2)$
inconsistent! Günaydin, Romans, Warner, 1986
vectors decompose according to: $\overline{\mathbf{2 7}} \rightarrow(\mathbf{1 5}, \mathbf{1})+(\overline{\mathbf{6}}, \mathbf{2})$
charged vector fields

must be (re)converted to tensor fields !
gauge group encoded into the EMBEDDING TENSOR $\Theta_{M}{ }^{\alpha}$
gauge group generators $\longleftrightarrow X_{M}=\Theta_{M}^{\alpha} t_{\alpha}$

The embedding tensor is subject to constraints !

- closure: $\left[X_{M}, X_{N}\right]=f_{M N}{ }^{P} X_{P}$

$$
\begin{aligned}
& \Theta_{M}{ }^{\beta} \Theta_{N}{ }^{\gamma} f_{\beta \gamma}{ }^{\alpha}=f_{M N}{ }^{P} \Theta_{P}{ }^{\alpha}=-\Theta_{M}{ }^{\beta} t_{\beta N}{ }^{P} \Theta_{P}{ }^{\alpha} \\
& {\left[X_{M}, X_{N}\right]=-X_{M N}{ }^{P} X_{P} \quad \begin{array}{l}
\text { (ontains the gauge group structure constants, but is }
\end{array}} \\
& X_{M N}{ }^{P} \begin{array}{l}
\text { not symmetric in lower indices, unless contracted } \\
\text { with the embedding tensor !!!! }
\end{array}
\end{aligned}
$$

- supersymmetry: $\Theta_{M}{ }^{\alpha} \in 351$
$\longrightarrow 27 \times 78=3 \times 351+\frac{12}{12} 8$
$(351 \times 351)_{\mathrm{s}}=7 \times 1 \times 28+351^{\prime}+7722+17550+34398$

EMBEDDING TENSORS FOR $D=3,4,5,6,7$

7	$\mathrm{SL}(5)$	$\mathbf{1 0 \times 2 4}=\mathbf{1 0}+\mathbf{1 5}+\mathbf{4 0}+\mathbf{1 7 5}$
6	$\mathrm{SO}(5,5)$	$\mathbf{1 6} \times \mathbf{4 5}=\mathbf{1 6}+\mathbf{1 4 4}+\mathbf{5 6 0}$
5	$\mathrm{E}_{6(6)}$	$\mathbf{2 7} \times \mathbf{7 8}=\mathbf{2 7}+\mathbf{3 5 1}+\mathbf{1 7 2 8}$
4	$\mathrm{E}_{7(7)}$	$\mathbf{5 6} \times \mathbf{1 3 3}=\mathbf{5 6}+\mathbf{9 1 2}+\mathbf{6 4 8 0}$
3	$\mathrm{E}_{8(8)}$	$\mathbf{2 4 8 \times \mathbf { 2 4 8 } = \mathbf { 1 } + \mathbf { 2 4 8 } + \mathbf { 3 8 7 5 } + \mathbf { 2 7 0 0 0 } + \mathbf { 3 0 3 8 0 }}$

dW, Samtleben, Trigiante, 2002

- characterize all possible gaugings
- group-theoretical classification
- universal Lagrangians
applications in $D=2,3,4,5,7$ space-time dimensions
in $D=4$, for $N=2,4,8$ supergravities
in $D=3$, for $N=1, \ldots, 6,8,9,10,12,16$ supergravities
de Vroome, dW, Herger, Nicolai, Samtleben, Schön, Trigiante, Weidner

digression:

consider the representations appearing in $(\mathbf{2 7} \times \mathbf{2 7})_{\mathrm{s}}=\left(\overline{\mathbf{2 7}}+\mathbf{3 5 1}{ }^{\prime}\right)$
$X_{(M N)}{ }^{P}=d_{I, M N} Z^{P, I} \quad d_{M N I}: E_{6(6)}$ invariant tensor(s)
two possible representations can be associated with the new index $\left\{\begin{array}{l}\overline{27} \\ 3 \times{ }^{\prime}{ }^{\prime}\end{array}\right.$
$\overline{27} \times(27 \times 27)_{s}=351+27+27+\overline{351}^{\prime}+\overline{1728}+\overline{7722}$
indeed: $(\overline{\mathbf{2 7}} \times \overline{\mathbf{2 7}})_{\mathrm{a}}=\mathbf{3 5 1} \longrightarrow X_{(M N)}{ }^{P}=d_{M N Q} Z^{P Q}$
from the closure constraint:

$$
\begin{aligned}
& Z^{M N} \Theta_{N}{ }^{\alpha}=0 \quad \rightarrow \quad Z^{M N} X_{N}=0 \quad \text { orthogonality } \\
& X_{M N}{ }^{[P} Z^{Q] N}=0 \quad \text { gauge invariant tensor }
\end{aligned}
$$

this structure is generic (at least, for the groups of interest) and we will exploit it later!
rather than converting and tensors into vectors and reconverting some of them them when a gauging is switched on, we introduce both vectors and tensors from the start, transforming into the representations $\overline{27}$ and 27 , respectively

$$
\begin{aligned}
& \delta A_{\mu}^{M}=\partial_{\mu} \Lambda^{M}-g X_{[P Q]}{ }^{M} \Lambda^{P} A_{\mu}^{Q}-g Z^{M N} \stackrel{\ulcorner }{\Xi}_{\mu N}^{\text {extra gauge invariance }} \\
& \mathcal{F}_{\mu \nu}{ }^{M}=\partial_{\mu} A_{\nu}{ }^{M}-\partial_{\nu} A_{\mu}{ }^{M}+g X_{[N P]}{ }^{M} A_{\mu}{ }^{N} A_{\nu}{ }^{P} \quad \text { not fully covariant } \\
& \text { introduce fully covariant field strength } \mathcal{H}_{\mu \nu}{ }^{M}=\mathcal{F}_{\mu \nu}{ }^{M}+g Z^{M N} B_{\mu \nu N}
\end{aligned}
$$

to compensate for lack of closure:

$$
\begin{aligned}
\delta B_{\mu \nu M}= & 2 \partial_{[\mu} \Xi_{\nu] N}-g X_{P N}{ }^{Q} A_{[\mu}{ }^{P} \Xi_{\nu] Q}+g Z^{M N} \Lambda^{P} X_{P N}{ }^{Q} B_{\mu \nu Q} \\
& -g\left(2 d_{M P Q} \partial_{[\mu} A_{\nu]}^{P}-g X_{R M}^{P} d_{P Q S} A_{[\mu}^{R} A_{\nu]}^{S}\right) \Lambda^{Q}
\end{aligned}
$$

because of the extra gauge invariance, the degrees of freedom remain unchanged
upon switching on the gauging there will be a balanced decomposition of vector and tensor fields

Universal invariant Lagrangian containing
kinetic terms for the tensor fields combined with a
Chern-Simons term for the vector fields

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{VT}}=\frac{1}{2} i \varepsilon^{\mu \nu \rho \sigma \tau}\left\{g Z^{M N} B_{\mu \nu M}\left[D_{\rho} B_{\sigma \tau N}+4 d_{N P Q} A_{\rho}{ }^{P}\left(\partial_{\sigma} A_{\tau}{ }^{Q}+\frac{1}{3} g X_{[R S]}{ }^{Q} A_{\sigma}{ }^{R} A_{\tau}{ }^{S}\right)\right]\right. \\
& -\frac{8}{3} d_{M N P}\left[A_{\mu}{ }^{M} \partial_{\nu} A_{\rho}{ }^{N} \partial_{\sigma} A_{\tau}{ }^{P}\right. \\
& \left.\left.+\frac{3}{4} g X_{[Q R]}{ }^{M} A_{\mu}{ }^{N} A_{\nu}{ }^{Q} A_{\rho}{ }^{R}\left(\partial_{\sigma} A_{\tau}{ }^{P}+\frac{1}{5} g X_{[S T]}{ }^{P} A_{\sigma}{ }^{S} A_{\tau}{ }^{T}\right)\right]\right\}
\end{aligned}
$$

this term is present for ALL gaugings there is no other restriction than the constraints on the embedding tensor
dW, Samtleben, Trigiante, 2005

Can this be generalized?

Non-abelian vector-tensor hierarchies

Generalize the combined gauge algebra
ar algebra closes on $\Theta_{M}{ }^{\alpha} A_{\mu}{ }^{M}$

$$
\begin{aligned}
& \delta A_{\mu}{ }^{M}=\partial_{\mu} \Lambda^{M}-g X_{[P Q]}{ }^{M} \Lambda^{P} A_{\mu}{ }^{Q}-g \overbrace{Z^{M, I} \Xi_{\mu I}} \\
& \delta B_{\mu \nu I}=2 D_{[\mu} \Xi_{\nu] I}+\cdots
\end{aligned}
$$

ar algebra closes on $Z^{M, I} B_{\mu \nu I} \quad \underbrace{\longrightarrow \text { non-closure }}$ $\delta B_{\mu \nu I}=2 D_{[\mu} \Xi_{\nu] I}+\cdots-g \overbrace{Y_{I M}^{J} \Phi_{\mu \nu J^{M}}}$ with $\quad Z^{M, I} Y_{I N}{ }^{J}=0 \quad \longrightarrow \quad Y_{I M}{ }^{J} \equiv X_{M I}{ }^{J}+2 d_{I, M N} Z^{N, J}$ $\delta S_{\mu \nu \rho I}{ }^{M}=3 D_{[\mu} \Phi_{\nu \rho] I}{ }^{M}+\cdots$
algebra closes on $Y_{I M}{ }^{J} S_{\mu \nu \rho J}$
explicit results are complicated:

$$
\begin{aligned}
\mathcal{H}_{\mu \nu \rho I} \equiv & 3\left[D_{[\mu} B_{\nu \rho] I}+2 d_{I, M N} A_{[\mu}^{M}\left(\partial_{\nu} A_{\rho]}{ }^{N}+\frac{1}{3} g X_{[P Q]}^{N} A_{\nu}{ }^{P} A_{\rho]}{ }^{Q}\right)\right] \\
& +g Y_{I M}{ }^{J} S_{\mu \nu \rho I}{ }^{M} \\
\delta S_{\mu \nu \rho I}{ }^{M}= & g \Lambda^{N} X_{N I}{ }^{J} S_{\mu \nu \rho J}{ }^{M}-g \Lambda^{N} X_{N P}{ }^{M} S_{\mu \nu \rho I}{ }^{P} \\
& +3 D_{[\mu} \Phi_{\nu \rho] I I}{ }^{M}+3 A_{[\mu}^{M} D_{\nu} \Xi_{\rho] I}+3 \partial_{[\mu} A_{\nu}{ }^{M} \Xi_{\rho] I} \\
& -2 g d_{I, N P} Z^{P, J} A_{[\mu}^{M} A_{\nu}{ }^{N} \Xi_{\rho] J} \\
& +4 d_{I, N P} \Lambda^{[M} A_{[\mu}^{N]} \partial_{\nu} A_{\rho]}{ }^{P}+2 g X_{N I}{ }^{J} d_{J, P Q} \Lambda^{Q} A_{[\mu}{ }^{M} A_{\nu}{ }^{N} A_{\rho]}{ }^{P}
\end{aligned}
$$

Plumbing strategy: repair the lack of closure iteratively by introducing tensor gauge fields of increasing rank
$A_{\mu}{ }^{M} \longrightarrow B_{\mu \nu}{ }^{I} \longrightarrow S_{\mu \nu \rho I}{ }^{M} \longrightarrow$ etc
Λ^{M}

$$
\Xi_{\mu I} \quad \Phi_{\mu \nu I}{ }^{M}
$$

encoded by the embedding tensor !

Leads to :

	rank \Rightarrow	1	2	3	4	5	6
7	$\mathrm{SL}(5)$	10	5	$\overline{5}$	10	$\boxed{24}$	$15+40$
6	$\mathrm{SO}(5,5)$	$\mathbf{1 6}$	10	$\overline{16}$	45	144	
5	$\mathrm{E}_{6(+6)}$	$\overline{27}$	27	$\boxed{78}$	351	$27+1728$	
4	$\mathrm{E}_{7(+7)}$	56	$\mathbf{1 3 3}$	$\mathbf{9 1 2}$	$133+8165$		
3	$\mathrm{E}_{8(+8)}$	$\mathbf{2 4 8}$	3875	$3875+147250$			

Striking feature:
rank $D-2$: adjoint representation of the duality group

	rank \Rightarrow	1	2	3	4	5	6
7	$\mathrm{SL}(5)$	10	5	$\overline{5}$	10	24	$15+40$
6	$\mathrm{SO}(5,5)$	$\mathbf{1 6}$	$\mathbf{1 0}$	$\overline{\mathbf{1 6}}$	45	144	
5	$\mathrm{E}_{6(+6)}$	$\overline{27}$	27	78	$\mathbf{3 5 1}$	$27+1728$	
4	$\mathrm{E}_{7(+7)}$	56	$\mathbf{1 3 3}$	$\boxed{912}$	$133+8165$		
3	$\mathrm{E}_{8(+8)}$	$\mathbf{2 4 8}$	$\mathbf{3 8 7 5}$	$\mathbf{3 8 7 5 + 1 4 7 2 5 0}$			

Striking feature:
rank D-1 : embedding tensor

	rank \Rightarrow	1	2	3	4	5	6
7	$\mathrm{SL}(5)$	10	5	$\overline{5}$	10	24	$15+40$
6	$\mathrm{SO}(5,5)$	16	10	$\overline{16}$	45	144	
5	$\mathrm{E}_{6(+6)}$	$\overline{27}$	27	78	351	$27+1728$	
4	$\mathrm{E}_{7(+7)}$	56	133	912	$133+8165$		
3	$\mathrm{E}_{8(+8)}$	248	3875	$\boxed{3875+147250}$			

Striking feature:
rank D : closure constraint on the embedding tensor

	rank \Rightarrow	1	2	3	4	5	6
7	$\mathrm{SL}(5)$	$\mathbf{1 0}$	$\mathbf{5}$	$\overline{5}$	$\mathbf{1 0}$	$\mathbf{2 4}$	$\mathbf{1 5}+\mathbf{4 0}$
6	$\mathrm{SO}(5,5)$	$\mathbf{1 6}$	$\mathbf{1 0}$	$\overline{\mathbf{1 6}}$	45	$\mathbf{1 4 4}$	
5	$\mathrm{E}_{6(+6)}$	$\overline{\mathbf{2 7}}$	$\mathbf{2 7}$	$\mathbf{7 8}$	$\mathbf{3 5 1}$	$\mathbf{2 7}+\mathbf{1 7 2 8}$	
4	$\mathrm{E}_{7(+7)}$	56	$\mathbf{1 3 3}$	$\mathbf{9 1 2}$	$\mathbf{1 3 3 + 8 1 6 5}$		
3	$\mathrm{E}_{8(+8)}$	$\mathbf{2 4 8}$	$\mathbf{3 8 7 5}$	$\mathbf{3 8 7 5}+\mathbf{1 4 7 2 5 0}$			

Perhaps most striking:
implicit connection between space-time Hodge duality and the U-duality group

Probes new states in M-Theory!

Implications:

		1	2	3	4	5	6
7	$\mathrm{SL}(5)$	10	5	$\overline{5}$	10	24	$15+40$
6	$\mathrm{SO}(5,5)$	16	10	$\overline{16}$	45	144	
5	$\mathrm{E}_{6(+6)}$	$\overline{27}$	27	78	351	$27+1728$	
4	$\mathrm{E}_{7(+7)}$	56	133	912	$133+8165$		
3	$\mathrm{E}_{8(+8)}$	248	3875	$3875+147250$			

The table coincides substantially with results based on several rather different conceptual starting points:

- M(atrix)-Theory compactified on a torus: duality representations of states
- Correspondence between toroidal compactifications of M-Theory and del Pezzo surfaces
- E11 decompositions
- Algebraic Aspects of Matrix Theory on T^{d}

Based on the correspondence between super-Yang-Mills on \tilde{T}^{d} and M-Theory on T^{d}, a rectangular torus with radii $R_{1}, R_{2}, \ldots, R_{d}$ in the infinite-momentum frame. Invariance group consist of permutations of the R_{i} combined with the T-duality relations $(i \neq j \neq k)$:

$$
R_{i} \rightarrow \frac{l_{\mathrm{p}}^{3}}{R_{j} R_{k}} \quad R_{j} \rightarrow \frac{l_{\mathrm{p}}^{3}}{R_{k} R_{i}} \quad R_{k} \rightarrow \frac{l_{\mathrm{p}}^{3}}{R_{i} R_{j}} \quad l_{\mathrm{p}}^{3} \rightarrow \frac{l_{\mathrm{p}}^{6}}{R_{i} R_{j} R_{k}}
$$

generate a group isomorphic with the Weyl group of $\mathrm{E}_{d(d)}$

The explicit duality multiplets arise as representations of this group.

Example $d=3$:

3 KK states on T^{d}

$$
M \sim \frac{1}{R_{i}}
$$

3 2-brane states wrapped on T^{d}

$$
M \sim \frac{R_{j} R_{k}}{l_{\mathrm{p}}^{3}} \quad j \neq k
$$

3 2-brane states wrapped on $T^{d} \times x^{11} \quad M \sim \frac{R_{11} R_{i}}{l_{\mathrm{p}}^{3}}$
the dimensions of these two multiplets coincide with the multiplets presented previously for the scalar and vector central charges.
for higher d the multiplets are sometimes incomplete, because they are not generated as a single orbit by the Weyl group.

- A Mysterious Duality

This cannot be a coincidence!
It is important to uncover the physical interpretation of these duality relations. One possibility is that the del Pezzo surface is the moduli space of some probe in M-Theory. It must be a U-duality invariant probe

Such probe is the gauging encoded in the embedding tensor!

- E11 decomposition

Based on the conjecture that E11 is the underlying symmetry of M-Theory. Decomposing the relevant E11 representation to dimensions $D<11$ yields representations that substantially overlap with those generated for the gaugings.

Conclusions

\checkmark Gaugings probe new degrees of freedom of M-Theory

- Maximal supergravity theories contain subtle information about M-Theory. This may be interpreted as an indication that supergravity needs to be extended towards string/M-theory.This is also indicated by comparing degrees of freedom originating from the maximal theories in various dimensions.
\checkmark There are unexpected connections with other results derived on the basis of rather different concepts
\checkmark More work needs to be done on clarifying these connections
\checkmark The group-theoretical properties of the tensor classification (in particular the global structure of the table) needs to be clarified

