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Comments

A way of looking at some nonperturbative features of YM theory, mostly in

2+1 dimensions

This talk is a set of comments on questions related to the massgap

Hamiltonian approach, vacuum wave function

A gauge-invariant mass term

General comments about configuration space for3 + 1 Yang-Mills

LMS-Durham – p. 2/22



Matrix variables, volume element

ChooseA0 = 0, this leavesAi, i = 1, 2. Gauge transformations act as

Ag
i = g Ai g−1 − ∂ig g−1

Wave functions aregauge-invariant(This is equivalent to imposing

Gauss law)

Choose complex coordinates,z = x1 − ix2, z̄ = x1 + ix2

A ≡ Az = 1
2 (A1 + iA2), Ā = 1

2 (A1 − iA2)

ParametrizeA as

A = −∂M M−1 Ā = M †−1∂̄M †

G = SU(N) =⇒ M ∈ SL(N,C) = SU(N)C (GenerallyG → GC)
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Matrix variables, volume element (cont’d.)

Under a gauge transformation

A → Ag
i = g Ai g−1 − ∂ig g−1 =⇒ M → Mg = g M

H = M †M is gauge-invariant

Calculation of volume element of the configuration space

ds2
A =

∫

d2x Tr(δAδĀ)

=

∫

Tr
[
(M †−1δM †)(−D̄D)(δMM−1)

]

ds2
SL(N,C) =

∫

Tr(M †−1δM † δMM−1)

dµA = det(−D̄D) dµ(M, M †)
︸ ︷︷ ︸

Haar measure for SL(N, C)
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Matrix variables, volume element (cont’d.)

We can split theSL(N,C) volume element as

dµ(M, M †) = dµ(H)
︸ ︷︷ ︸

dµ(U)
︸ ︷︷ ︸

Haar for SL(N,C)/ SU(N) Haar for SU(N)

The volume element is now

dµA = det(−D̄D) dµ(H) dµ(U)

For the gauge-invariant configuration space

dµ(C) = det(−D̄D) dµ(H)

= dµ(H) exp [2 cA Swzw(H)]

Swzw(H) is the Wess-Zumino-Witten (WZW) action,

Swzw(H) =
1

2π

∫

Tr(∂H∂̄H−1) − i

12π

∫

Tr(H−1dH)3

cA δab = famnfbmn = N δab for SU(N).
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The inner product and current

The inner product is now given as

〈1|2〉 =

∫

dµ(H) exp [2 cA Swzw(H)] Ψ∗
1 Ψ2

The Wilson loop operator is given by

W (C) = Tr Pe−
H

A = Tr P exp

(
π

cA

∮

J

)

J =
cA

π
∂H H−1

All gauge-invariant quantities can be made fromJ .
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Construction of H

The Hamiltonian is given by

H =
e2

2

∫

EaEa

︸ ︷︷ ︸

+
1

2e2

∫

BaBa

︸ ︷︷ ︸

≡ T + V

The kinetic term is simplified via the chain rule

T Ψ = −e2

2

∫

x

δ2

δA(x)δĀ(x)
Ψ

= −e2

2

[
∫

δJ(u)

δA(x)

δJ(v)

δĀ(x)
︸ ︷︷ ︸

δ2Ψ

δJ(u)δJ(v)
+

∫
δ2J(u)

δA(x)δĀ(x)
︸ ︷︷ ︸

δΨ

δJ(u)

]

Ω ω

=

∫

Ωab(u, v)
δ2Ψ

δJa(u)δJb(v)
+

∫

ωa(u)
δΨ

δJa(u)
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Construction of H (cont’d.)

ωa(u) needs regularization

ωa = −e2

2

∫

x

δ2Ja(u)

δAb(x)δĀb(x)

=
(
e2cA/2π

)
M †

am(x) Tr
[
tmD̄−1

reg(y, x)
]

y→x

= m Ja

m = e2cA/2π (This is the basic mass scale of the theory.)

The kinetic energy is thus given by

T = m

[∫

Ja δ

δJa
+

∫

Ωab(u, v)
δ2

δJa(u)δJb(v)

]

Ωab(u, v) =
cA

π2

δab

(u − v)2
− i

fabcJ
c(v)

u − v
+ O(ǫ)

Can be rechecked, particularly the term
∫

J δ
δJ

, by self-adjointness ofT .
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Back to the Hamiltonian H and vacuum wave function

The potential energy is easy to simplify

V =
1

2e2

∫

BaBa =
π

mcA

∫

: ∂̄J ∂̄J :

The regularization forT and forV have to agree (in the choice of the

parameterλ) so thatH transforms correctly under Lorentz boosts.

The summed-up result is

P = − 2

e2

[

π2

c2
A

∫

∂̄Ja(x) K(x, y) ∂̄Ja(y)

+ fabc

∫

Ja(x)Jb(y)Jc(z)f(x, y, z) + ...

]

K(x, y) =

[
1

m +
√

m2 −∇2

]

x,y
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Vacuum wave function (cont’d.)

The vacuum wave function leads to a value for string tension which agrees

well with lattice simulations.

The highk limit agrees with perturbation theory.

There are a couple of independent checks of this wave function.

One is based on Lorentz invariance, another is as follows.

LMS-Durham – p. 10/22



Vacuum wave function: A different argument

Absorbexp(2cASwzw) from the inner product into the wave function by

Ψ = e−cASwzw(H)Φ. The Hamiltonian acting onΦ is

H → e−cASwzw(H) H e−cASwzw(H)

ConsiderH = etaϕa ≈ 1 + taϕa + · · · , a smallϕ limit appropriate for a

(resummed) perturbation theory. The new Hamiltonian is

H =
1

2

∫ [

− δ2

δφ2
+ φ(−∇2 + m2)φ + · · ·

]

whereφa(~k) =
√

cAkk̄/(2πm) ϕa(~k).

The vacuum wave function is

Φ0 ≈ exp

[

−1

2

∫

φa
√

m2 −∇2 φa

]
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Vacuum wave function: A different argument (cont’d.)

Transforming back toΨ,

Ψ0 ≈ exp

[

− cA

πm

∫

(∂̄∂ϕa)

[
1

m +
√

m2 −∇2

]

(∂̄∂ϕa) + · · ·
]

The full wave function must be a functional ofJ . The only form consistent

with the above is

Ψ0 = exp

[

− 2π2

e2c2
A

∫

∂̄Ja(x)

[
1

m +
√

m2 −∇2

]

x,y

∂̄Ja(y) + · · ·
]

sinceJ ≈ (cA/π)∂ϕ + O(ϕ2).

This indicates the robustness of the Gaussian term inΨ0, since this

argument only presumes

1. Existence of a regulator, so that the transformationΨ ⇔ Φ can be

carried out

2. The two-dimensional anomaly calculation
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Mass term in resummed perturbation theory

SinceT = m
[∫

J δ
δJ

+
∫

Ω δ
δJ

δ
δJ

]
,

T Ja = m Ja

Including the potential energy,

(T + V ) JaΨ0 =
√

k2 + m2 JaΨ0 + · · ·

Ja is a “gauge-invariant” definition of a gluon.

This is brought out more clearly byΨ = e−cASwzw(H)Φ

H =
1

2

∫ [

− δ2

δφ2
+ φ(−∇2 + m2)φ + · · ·

]

At the propagator level, we must get

1

k2 − m2
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Mass term (cont’d.)

This must appear inresummed perturbation theory, becausem = e2cA/2π.

1

k2
0 − ~k2 − m2

=
1

k2
+

1

k2
m2 1

k2
+

1

k2
m2 1

k2
m2 1

k2
+ · · ·

A strategy for seeing this explicitly.

Write the action as

SY M = SY M + µ2Smass
︸ ︷︷ ︸

− l µ2Smass

Smass is a gauge-invariant mass term for the YM field.l = 1 eventually.

Use the first two terms to calculateΓ to, say, one-loop order. It has the form

Γ = SY M + µ2Smass + Γ(1) − l µ2Smass
︸ ︷︷ ︸

+ · · ·

= 0

This gives an equation determiningµ.
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Mass term (cont’d.)

Different choices ofSmass correspond to resummations of different sets of

diagrams.

What do we choose forSmass?

For many choices, for example,

Smass =

∫

Tr

[

F
1

(−D2)
F

]

the calculatedΓ(1) has threshold singularities atk2 = 0. Zero mass

particles must reappear in external lines by unitarity.

There is one mass term for which this is avoided. It is likeSwzw(H) we can

write in 3 dimensions. Define complex null vectorsni, n̄i in 3

dimensions with

n · n = n̄ · n̄ = 0, n · n̄ = 2
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Mass term (cont’d.)

Now define
1
2n · ∇ = ∂, 1

2 n̄ · ∇ = ∂̄, 1
2n · A = A, 1

2 n̄ · A = Ā

We can now construct

Smass(A) =

∫

dΩ dxT Swzw(R†R)

whereR is defined by A = −∂RR−1, Ā = R†−1∂̄R†.

xT is the direction orthogonal ton, n̄.

This has many of the properties of the WZW action.

It becomes the usualSwzw in two dimensions

It has full3d Euclidean invariance

Allows for a certain holomorphic splitting, PW property
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Mass term (cont’d.)

The calculation leads to a long expression forΓ(1) with no threshold

singularities and a value forµ ≈ 1.2m.

The mass term can be written as

Smass =

∫

dµ ∆(u, v)
Tr log(−D̄D)

(u · v)(ū · v̄)

whereD = 1
2uADAA′ v̄A′

, D̄ = 1
2vAD̄AA′ ūA′

and

dµ =
u · du ū · dū v · dv v̄ · dv̄

(u · v)2(ū · v̄)2

∆(u, v) = (u · v)(ū · v̄) δ(v(η · e)ū) δ(u(η · e)v̄)

η = (1, 0, 0, 0), eµ = (1, σi).
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YM(3+1) configuration space

The configuration spaceC = A/G∗ (gauge orbit space) in two spatial

dimensions has the volume element

dµ(C) = dµ(H) exp [2 cA Swzw(H)]

Swzw(H) =
1

2π

∫

Tr(∂H∂̄H−1) − i

12π

∫

Tr(H−1dH)3

This leads to a “finite” volume forC,
∫

dµ(C) < ∞

(Some regularization needed; the point is the contrast withAbelian

theory for whichcA = 0.)

There are configurations which are separated by an infinite distance

(spikes). This result shows that they have zero transverse measure.
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YM(3+1) configuration space (cont’d.)

This property is crucial for mass gap becauseSwzw(H) provides a cut-off

for low momentum modes.

Can one have a similar result for3d gauge fields, relevant forY M3+1?

We focus on the volume measure, defining it as

dµ(C)3d =
[dA]

vol(G∗)
exp

[

−
∫

F 2

4M

] ]

M→∞

whereM is a parameter with the dimensions of mass.

The right hand side≈ Euclidean functional integral of a(2 + 1) → 3

dimensional Yang-Mills theory.

We can evaluate the rhs by Hamiltonian techniques in2 + 1 dimensions,

using〈0|e−βH|0〉.
We use Euclidean evolution operator, and furtherβ → ∞ since the third

direction has infinite extent.
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YM(3+1) configuration space (cont’d.)

This gives

∫

dµ(C)3d =

∫
[dA]

vol(G∗)
exp

[

−
∫

F 2

4M

] ]

M→∞

= 〈0| e−βH |0〉
]

β,M→∞

=

∫

dµ(C)2d Ψ∗
0 Ψ0

We know the largeM (= e2
3d) limit of the 2d wave function, so

∫

dµ(C)3d =
{
2 − dim. YM partition function for e2

2d = M2cA/2π
}

= {WZW partition function as M → ∞}
< ∞
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YM(3+1) configuration space (cont’d.)

The volume of the configuration space for 3d YM is “finite”. Howis it

possible?

Define the distance and energy functionals as

L2(A, B) = Infg

∫

d3x Tr(Ag−B)2, E(A) =

∫

d3x F 2/4µ

Consider orbits ofAi(x) andA
(s)
i = sAi(sx). Then

L2(A(s)) =
1

s
L2(A), E(A(s)) = s E(A)

As s → 0, we scale up distances inC, yet there is no cut-off imposed byE
since it goes to zero (Orland).

How do we square this with
∫

dµ(C) < ∞ ?
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YM(3+1) configuration space (cont’d.)

The solution has to do with dynamical generation of mass in 3 dimensions.

In strong coupling, this is related to the generation of massin the

Hamiltonian analysis.

Also seen by resummation in a 3d-covariant approach; or integrate out

modes of high momenta to get an RG change

∫

F 2/4M =⇒
∫

F 2/4M + µ2 Smass, µ ≈ (1.2 cA/2π) M

Smass(A
(s)) = (1/s) Sm(A); this explains why smalls values are cut-off

and we get
∫

dµ < ∞.

Eventually, we expect 1
Mnew

= 1
M

+ 1
Λ

Can one understand better how suchSmass can arise from twistor space?
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