Comments on Yang-Mills theory with Twistorial Overtones

V. P. NAIR

City College of the CUNY

LMS Meeting, Durham
August 23, 2007

Comments

- A way of looking at some nonperturbative features of YM theory, mostly in $2+1$ dimensions
- This talk is a set of comments on questions related to the mass gap
- Hamiltonian approach, vacuum wave function
- A gauge-invariant mass term
- General comments about configuration space for $3+1$ Yang-Mills

Matrix variables, volume element

- Choose $A_{0}=0$, this leaves $A_{i}, i=1,2$. Gauge transformations act as

$$
A_{i}^{g}=g A_{i} g^{-1}-\partial_{i} g g^{-1}
$$

Wave functions are gauge-invariant (This is equivalent to imposing Gauss law)

- Choose complex coordinates, $z=x_{1}-i x_{2}, \quad \bar{z}=x_{1}+i x_{2}$

$$
A \equiv A_{z}=\frac{1}{2}\left(A_{1}+i A_{2}\right), \quad \bar{A}=\frac{1}{2}\left(A_{1}-i A_{2}\right)
$$

- Parametrize A as

$$
A=-\partial M M^{-1} \quad \bar{A}=M^{\dagger-1} \bar{\partial} M^{\dagger}
$$

■ $G=S U(N) \Longrightarrow M \in S L(N, \mathbf{C})=S U(N)^{\mathbf{C}} \quad\left(\right.$ Generally $\left.G \rightarrow G^{\mathbf{C}}\right)$

Matrix variables, volume element (cont'd.)

- Under a gauge transformation

$$
A \rightarrow A_{i}^{g}=g A_{i} g^{-1}-\partial_{i} g g^{-1} \Longrightarrow M \rightarrow M^{g}=g M
$$

- $H=M^{\dagger} M$ is gauge-invariant
- Calculation of volume element of the configuration space

$$
\begin{aligned}
d s_{\mathcal{A}}^{2} & =\int d^{2} x \operatorname{Tr}(\delta A \delta \bar{A}) \\
& =\int \operatorname{Tr}\left[\left(M^{\dagger-1} \delta M^{\dagger}\right)(-\bar{D} D)\left(\delta M M^{-1}\right)\right] \\
d s_{S L(N, \mathbf{C})}^{2} & =\int \operatorname{Tr}\left(M^{\dagger-1} \delta M^{\dagger} \delta M M^{-1}\right) \\
d \mu_{\mathcal{A}} & =\operatorname{det}(-\bar{D} D) \underbrace{d \mu\left(M, M^{\dagger}\right)}_{\text {Haar measure for } S L(N, \mathbf{C})}
\end{aligned}
$$

Matrix variables, volume element (cont'd.)

- We can split the $S L(N, \mathbf{C})$ volume element as

$$
d \mu\left(M, M^{\dagger}\right)=\underbrace{d \mu(H)}
$$

Haar for $S L(N, C) / S U(N)$

Haar for $S U(N)$

- The volume element is now

$$
d \mu_{\mathcal{A}}=\operatorname{det}(-\bar{D} D) d \mu(H) d \mu(U)
$$

- For the gauge-invariant configuration space

$$
\begin{aligned}
d \mu(\mathcal{C}) & =\operatorname{det}(-\bar{D} D) d \mu(H) \\
& =d \mu(H) \exp \left[2 c_{A} S_{w z w}(H)\right]
\end{aligned}
$$

- $S_{w z w}(H)$ is the Wess-Zumino-Witten (WZW) action,

$$
S_{w z w}(H)=\frac{1}{2 \pi} \int \operatorname{Tr}\left(\partial H \bar{\partial} H^{-1}\right)-\frac{i}{12 \pi} \int \operatorname{Tr}\left(H^{-1} d H\right)^{3}
$$

The inner product and current

- The inner product is now given as

$$
\langle 1 \mid 2\rangle=\int d \mu(H) \exp \left[2 c_{A} S_{w z w}(H)\right] \Psi_{1}^{*} \Psi_{2}
$$

- The Wilson loop operator is given by

$$
\begin{aligned}
W(C) & =\operatorname{Tr} \mathcal{P} e^{-\oint A}=\operatorname{Tr} \mathcal{P} \exp \left(\frac{\pi}{c_{A}} \oint J\right) \\
J & =\frac{c_{A}}{\pi} \partial H H^{-1}
\end{aligned}
$$

All gauge-invariant quantities can be made from J.

Construction of \mathcal{H}

- The Hamiltonian is given by

$$
\begin{aligned}
\mathcal{H} & =\underbrace{\frac{e^{2}}{2} \int E^{a} E^{a}}_{T}+\underbrace{\frac{1}{2 e^{2}} \int B^{a} B^{a}}_{V} \\
& \equiv
\end{aligned}
$$

- The kinetic term is simplified via the chain rule

$$
\begin{aligned}
T \Psi & =-\frac{e^{2}}{2} \int_{x} \frac{\delta^{2}}{\delta A(x) \delta \bar{A}(x)} \Psi \\
& =-\frac{e^{2}}{2}[\int \underbrace{\frac{\delta J(u)}{\delta A(x)} \frac{\delta J(v)}{\delta \bar{A}(x)}}_{\Omega} \frac{\delta^{2} \Psi}{\delta J(u) \delta J(v)}+\int \underbrace{\frac{\delta^{2} J(u)}{\delta A(x) \delta \bar{A}(x)}}_{\omega} \frac{\delta \Psi}{\delta J(u)}] \\
& =\int \Omega_{a b}(u, v) \frac{\delta^{2} \Psi}{\delta J^{a}(u) \delta J^{b}(v)}+\int \omega^{a}(u) \frac{\delta \Psi}{\delta J^{a}(u)}
\end{aligned}
$$

Construction of \mathcal{H} (cont'd.)

- $\omega^{a}(u)$ needs regularization

$$
\begin{aligned}
\omega^{a} & =-\frac{e^{2}}{2} \int_{x} \frac{\delta^{2} J^{a}(u)}{\delta A^{b}(x) \delta \bar{A}^{b}(x)} \\
& =\left(e^{2} c_{A} / 2 \pi\right) M_{a m}^{\dagger}(x) \operatorname{Tr}\left[t^{m} \bar{D}_{r e g}^{-1}(y, x)\right]_{y \rightarrow x} \\
& =m J^{a}
\end{aligned}
$$

$m=e^{2} c_{A} / 2 \pi$ (This is the basic mass scale of the theory.)

- The kinetic energy is thus given by

$$
\begin{aligned}
T & =m\left[\int J^{a} \frac{\delta}{\delta J^{a}}+\int \Omega_{a b}(u, v) \frac{\delta^{2}}{\delta J^{a}(u) \delta J^{b}(v)}\right] \\
\Omega_{a b}(u, v) & =\frac{c_{A}}{\pi^{2}} \frac{\delta_{a b}}{(u-v)^{2}}-i \frac{f_{a b c} J^{c}(v)}{u-v}+\mathcal{O}(\epsilon)
\end{aligned}
$$

Can be rechecked, particularly the term $\int J \frac{\delta}{\delta J}$, by self-adjointness of T.

Back to the Hamiltonian \mathcal{H} and vacuum wave function

- The potential energy is easy to simplify

$$
V=\frac{1}{2 e^{2}} \int B^{a} B^{a}=\frac{\pi}{m c_{A}} \int: \bar{\partial} J \bar{\partial} J:
$$

- The regularization for T and for V have to agree (in the choice of the parameter λ) so that \mathcal{H} transforms correctly under Lorentz boosts.
- The summed-up result is

$$
\begin{gathered}
P=-\frac{2}{e^{2}}\left[\frac{\pi^{2}}{c_{A}^{2}} \int \bar{\partial} J^{a}(x) K(x, y) \bar{\partial} J^{a}(y)\right. \\
\left.+f_{a b c} \int J^{a}(x) J^{b}(y) J^{c}(z) f(x, y, z)+\ldots\right] \\
K(x, y)=\left[\frac{1}{m+\sqrt{m^{2}-\nabla^{2}}}\right]_{x, y}
\end{gathered}
$$

Vacuum wave function (cont'd.)

- The vacuum wave function leads to a value for string tension which agrees well with lattice simulations.
- The high k limit agrees with perturbation theory.
- There are a couple of independent checks of this wave function.
- One is based on Lorentz invariance, another is as follows.

Vacuum wave function: A different argument

- Absorb $\exp \left(2 c_{A} S_{w z w}\right)$ from the inner product into the wave function by $\Psi=e^{-c_{A} S_{w z w}(H)} \Phi$. The Hamiltonian acting on Φ is

$$
\mathcal{H} \rightarrow e^{-c_{A} S_{w z w}(H)} \mathcal{H} e^{-c_{A} S_{w z w}(H)}
$$

- Consider $H=e^{t^{a} \varphi^{a}} \approx 1+t^{a} \varphi^{a}+\cdots$, a small φ limit appropriate for a (resummed) perturbation theory. The new Hamiltonian is

$$
\mathcal{H}=\frac{1}{2} \int\left[-\frac{\delta^{2}}{\delta \phi^{2}}+\phi\left(-\nabla^{2}+m^{2}\right) \phi+\cdots\right]
$$

where $\phi_{a}(\vec{k})=\sqrt{c_{A} k \bar{k} /(2 \pi m)} \varphi_{a}(\vec{k})$.

- The vacuum wave function is

$$
\Phi_{0} \approx \exp \left[-\frac{1}{2} \int \phi^{a} \sqrt{m^{2}-\nabla^{2}} \phi^{a}\right]
$$

Vacuum wave function: A different argument (cont'd.)

- Transforming back to Ψ,

$$
\Psi_{0} \approx \exp \left[-\frac{c_{A}}{\pi m} \int\left(\bar{\partial} \partial \varphi^{a}\right)\left[\frac{1}{m+\sqrt{m^{2}-\nabla^{2}}}\right]\left(\bar{\partial} \partial \varphi^{a}\right)+\cdots\right]
$$

- The full wave function must be a functional of J. The only form consistent with the above is

$$
\Psi_{0}=\exp \left[-\frac{2 \pi^{2}}{e^{2} c_{A}^{2}} \int \bar{\partial} J^{a}(x)\left[\frac{1}{m+\sqrt{m^{2}-\nabla^{2}}}\right]_{x, y} \bar{\partial} J^{a}(y)+\cdots\right]
$$

$$
\text { since } J \approx\left(c_{A} / \pi\right) \partial \varphi+\mathcal{O}\left(\varphi^{2}\right)
$$

- This indicates the robustness of the Gaussian term in Ψ_{0}, since this argument only presumes

1. Existence of a regulator, so that the transformation $\Psi \Leftrightarrow \Phi$ can be carried out
2. The two-dimensional anomaly calculation

Mass term in resummed perturbation theory

- Since $T=m\left[\int J \frac{\delta}{\delta J}+\int \Omega \frac{\delta}{\delta J} \frac{\delta}{\delta J}\right]$,

$$
T J^{a}=m J^{a}
$$

- Including the potential energy,

$$
(T+V) J^{a} \Psi_{0}=\sqrt{k^{2}+m^{2}} J^{a} \Psi_{0}+\cdots
$$

J^{a} is a "gauge-invariant" definition of a gluon.

- This is brought out more clearly by $\Psi=e^{-c_{A} S_{w z w}(H)} \Phi$

$$
\mathcal{H}=\frac{1}{2} \int\left[-\frac{\delta^{2}}{\delta \phi^{2}}+\phi\left(-\nabla^{2}+m^{2}\right) \phi+\cdots\right]
$$

- At the propagator level, we must get

$$
\frac{1}{k^{2}-m^{2}}
$$

Mass term (cont'd.)

- This must appear in resummed perturbation theory, because $m=e^{2} c_{A} / 2 \pi$.

$$
\frac{1}{k_{0}^{2}-\vec{k}^{2}-m^{2}}=\frac{1}{k^{2}}+\frac{1}{k^{2}} m^{2} \frac{1}{k^{2}}+\frac{1}{k^{2}} m^{2} \frac{1}{k^{2}} m^{2} \frac{1}{k^{2}}+\cdots
$$

- A strategy for seeing this explicitly.
- Write the action as

$$
S_{Y M}=\underbrace{S_{Y M}+\mu^{2} S_{\text {mass }}}-l \mu^{2} S_{\text {mass }}
$$

- $S_{\text {mass }}$ is a gauge-invariant mass term for the YM field. $l=1$ eventually.
- Use the first two terms to calculate Γ to, say, one-loop order. It has the form

$$
\Gamma=S_{Y M}+\mu^{2} S_{m a s s}+\underbrace{\Gamma^{(1)}-l \mu^{2} S_{m a s s}}_{=0}+\cdots
$$

This gives an equation determining μ.

Mass term (cont'd.)

- Different choices of $S_{\text {mass }}$ correspond to resummations of different sets of diagrams.
- What do we choose for $S_{\text {mass }}$?
- For many choices, for example,

$$
S_{\text {mass }}=\int \operatorname{Tr}\left[F \frac{1}{\left(-D^{2}\right)} F\right]
$$

the calculated $\Gamma^{(1)}$ has threshold singularities at $k^{2}=0$. Zero mass particles must reappear in external lines by unitarity.

- There is one mass term for which this is avoided. It is like $S_{w z w}(H)$ we can write in 3 dimensions. Define complex null vectors n_{i}, \bar{n}_{i} in 3 dimensions with

$$
n \cdot n=\bar{n} \cdot \bar{n}=0, \quad n \cdot \bar{n}=2
$$

Mass term (cont'd.)

- Now define

$$
\frac{1}{2} n \cdot \nabla=\partial, \quad \frac{1}{2} \bar{n} \cdot \nabla=\bar{\partial}, \quad \frac{1}{2} n \cdot A=A, \quad \frac{1}{2} \bar{n} \cdot A=\bar{A}
$$

- We can now construct

$$
S_{m a s s}(A)=\int d \Omega d x^{T} S_{w z w}\left(R^{\dagger} R\right)
$$

where R is defined by $A=-\partial R R^{-1}, \quad \bar{A}=R^{\dagger-1} \bar{\partial} R^{\dagger}$.
x^{T} is the direction orthogonal to n, \bar{n}.

- This has many of the properties of the WZW action.
- It becomes the usual $S_{w z w}$ in two dimensions
- It has full $3 d$ Euclidean invariance
- Allows for a certain holomorphic splitting, PW property

Mass term (cont'd.)

- The calculation leads to a long expression for $\Gamma^{(1)}$ with no threshold singularities and a value for $\mu \approx 1.2 \mathrm{~m}$.
- The mass term can be written as

$$
S_{\text {mass }}=\int d \mu \Delta(u, v) \frac{\operatorname{Tr} \log (-\bar{D} D)}{(u \cdot v)(\bar{u} \cdot \bar{v})}
$$

where $D=\frac{1}{2} u^{A} D_{A A^{\prime}} \bar{v}^{A^{\prime}}, \bar{D}=\frac{1}{2} v^{A} \bar{D}_{A A^{\prime}} \bar{u}^{A^{\prime}}$ and

$$
\begin{aligned}
d \mu & =\frac{u \cdot d u \bar{u} \cdot d \bar{u} v \cdot d v \bar{v} \cdot d \bar{v}}{(u \cdot v)^{2}(\bar{u} \cdot \bar{v})^{2}} \\
\Delta(u, v) & =(u \cdot v)(\bar{u} \cdot \bar{v}) \delta(v(\eta \cdot e) \bar{u}) \delta(u(\eta \cdot e) \bar{v}) \\
\eta=(1,0,0,0), e_{\mu} & =\left(1, \sigma_{i}\right) .
\end{aligned}
$$

YM(3+1) configuration space

- The configuration space $\mathcal{C}=\mathcal{A} / \mathcal{G}_{*}$ (gauge orbit space) in two spatial dimensions has the volume element

$$
\begin{aligned}
d \mu(\mathcal{C}) & =d \mu(H) \exp \left[2 c_{A} S_{w z w}(H)\right] \\
S_{w z w}(H) & =\frac{1}{2 \pi} \int \operatorname{Tr}\left(\partial H \bar{\partial} H^{-1}\right)-\frac{i}{12 \pi} \int \operatorname{Tr}\left(H^{-1} d H\right)^{3}
\end{aligned}
$$

- This leads to a "finite" volume for \mathcal{C},

$$
\int d \mu(\mathcal{C})<\infty
$$

(Some regularization needed; the point is the contrast with Abelian theory for which $c_{A}=0$.)

- There are configurations which are separated by an infinite distance (spikes). This result shows that they have zero transverse measure.

YM(3+1) configuration space (cont'd.)

- This property is crucial for mass gap because $S_{w z w}(H)$ provides a cut-off for low momentum modes.
- Can one have a similar result for $3 d$ gauge fields, relevant for $Y M_{3+1}$?
- We focus on the volume measure, defining it as

$$
\left.d \mu(\mathcal{C})_{3 d}=\frac{[d A]}{\operatorname{vol}\left(\mathcal{G}_{*}\right)} \exp \left[-\int \frac{F^{2}}{4 M}\right]\right]_{M \rightarrow \infty}
$$

where M is a parameter with the dimensions of mass.

- The right hand side \approx Euclidean functional integral of a $(2+1) \rightarrow 3$ dimensional Yang-Mills theory.
- We can evaluate the rhs by Hamiltonian techniques in $2+1$ dimensions, using $\langle 0| e^{-\beta \mathcal{H}}|0\rangle$.
- We use Euclidean evolution operator, and further $\beta \rightarrow \infty$ since the third direction has infinite extent.

YM(3+1) configuration space (cont'd.)

- This gives

$$
\begin{aligned}
\int d \mu(\mathcal{C})_{3 d} & \left.=\int \frac{[d A]}{\operatorname{vol}\left(\mathcal{G}_{*}\right)} \exp \left[-\int \frac{F^{2}}{4 M}\right]\right]_{M \rightarrow \infty} \\
& \left.=\langle 0| e^{-\beta \mathcal{H}}|0\rangle\right]_{\beta, M \rightarrow \infty} \\
& =\int d \mu(\mathcal{C})_{2 d} \Psi_{0}^{*} \Psi_{0}
\end{aligned}
$$

- We know the large $M\left(=e_{3 d}^{2}\right)$ limit of the $2 d$ wave function, so

$$
\begin{aligned}
\int d \mu(\mathcal{C})_{3 d} & =\left\{2-\text { dim. YM partition function for } e_{2 d}^{2}=M^{2} c_{A} / 2 \pi\right\} \\
& =\{\text { WZW partition function as } M \rightarrow \infty\} \\
& <\infty
\end{aligned}
$$

YM(3+1) configuration space (cont'd.)

- The volume of the configuration space for 3d YM is "finite". How is it possible?
- Define the distance and energy functionals as

$$
L^{2}(A, B)=\operatorname{Inf}_{g} \int d^{3} x \operatorname{Tr}\left(A^{g}-B\right)^{2}, \quad \mathcal{E}(A)=\int d^{3} x F^{2} / 4 \mu
$$

- Consider orbits of $A_{i}(x)$ and $A_{i}^{(s)}=s A_{i}(s x)$. Then

$$
L^{2}\left(A^{(s)}\right)=\frac{1}{s} L^{2}(A), \quad \mathcal{E}\left(A^{(s)}\right)=s \mathcal{E}(A)
$$

- As $s \rightarrow 0$, we scale up distances in \mathcal{C}, yet there is no cut-off imposed by \mathcal{E} since it goes to zero (Orland).
- How do we square this with $\int d \mu(\mathcal{C})<\infty$?

YM(3+1) configuration space (cont'd.)

- The solution has to do with dynamical generation of mass in 3 dimensions.
- In strong coupling, this is related to the generation of mass in the Hamiltonian analysis.
- Also seen by resummation in a 3d-covariant approach; or integrate out modes of high momenta to get an RG change

$$
\int F^{2} / 4 M \Longrightarrow \int F^{2} / 4 M+\mu^{2} S_{\text {mass }}, \quad \mu \approx\left(1.2 c_{A} / 2 \pi\right) M
$$

- $S_{\text {mass }}\left(A^{(s)}\right)=(1 / s) S_{m}(A)$; this explains why small s values are cut-off and we get $\int d \mu<\infty$.
- Eventually, we expect $\frac{1}{M_{\text {new }}}=\frac{1}{M}+\frac{1}{\Lambda}$
- Can one understand better how such $S_{\text {mass }}$ can arise from twistor space?

