# Matrix Models and D-Branes in Twistor String Theory 

Christian Sämann



Dublin Institute for Advanced Studies
LMS Durham Symposium 2007

Based on:

- JHEP 0603 (2006) 002, O. Lechtenfeld and CS.


## Motivation

## Extending understanding of topological/super D-branes and mirror symmetry

Well-known motivation for studying twistor strings:

## Motivation

## Extending understanding of topological/super D-branes and mirror symmetry

Well-known motivation for studying twistor strings:

- Alternative description of the AdS/CFT correspondence


## Motivation

## Extending understanding of topological/super D-branes and mirror symmetry

Well-known motivation for studying twistor strings:

- Alternative description of the AdS/CFT correspondence
- New tools for calculating gluon scattering amplitudes


## Motivation

Extending understanding of topological/super D-branes and mirror symmetry
Well-known motivation for studying twistor strings:

- Alternative description of the AdS/CFT correspondence
- New tools for calculating gluon scattering amplitudes
- Alternative descriptions of supergravity


## Motivation

Extending understanding of topological/super D-branes and mirror symmetry
Well-known motivation for studying twistor strings:

- Alternative description of the AdS/CFT correspondence
- New tools for calculating gluon scattering amplitudes
- Alternative descriptions of supergravity

My motivation here:

- Description of super D-branes?


## Motivation

Extending understanding of topological/super D-branes and mirror symmetry
Well-known motivation for studying twistor strings:

- Alternative description of the AdS/CFT correspondence
- New tools for calculating gluon scattering amplitudes
- Alternative descriptions of supergravity

My motivation here:

- Description of super D-branes?
- Relationship between topological and physical D-branes?
$\Rightarrow$ Study variations of the usual twistor geometries and the
associated Penrose-Ward transform.


## Motivation

Extending understanding of topological/super D-branes and mirror symmetry
Well-known motivation for studying twistor strings:

- Alternative description of the AdS/CFT correspondence
- New tools for calculating gluon scattering amplitudes
- Alternative descriptions of supergravity

My motivation here:

- Description of super D-branes?
- Relationship between topological and physical D-branes?
- Rôle of Calabi-Yau supermanifolds in mirror symmetry?

interesting interpretations in terms of D-brab


## Motivation

Extending understanding of topological/super D-branes and mirror symmetry
Well-known motivation for studying twistor strings:

- Alternative description of the AdS/CFT correspondence
- New tools for calculating gluon scattering amplitudes
- Alternative descriptions of supergravity

My motivation here:

- Description of super D-branes?
- Relationship between topological and physical D-branes?
- Rôle of Calabi-Yau supermanifolds in mirror symmetry?
$\Rightarrow$ Study variations of the usual twistor geometries and the associated Penrose-Ward transform.
interesting interpretations in terms of
The presented results are onlv a verv oreliminany step towards
answering the above questions.


## Motivation

Extending understanding of topological/super D-branes and mirror symmetry
Well-known motivation for studying twistor strings:

- Alternative description of the AdS/CFT correspondence
- New tools for calculating gluon scattering amplitudes
- Alternative descriptions of supergravity

My motivation here:

- Description of super D-branes?
- Relationship between topological and physical D-branes?
- Rôle of Calabi-Yau supermanifolds in mirror symmetry?
$\Rightarrow$ Study variations of the usual twistor geometries and the associated Penrose-Ward transform.
Here: Full dimensional reductions yielding matrix models with interesting interpretations in terms of D-branes.


## Motivation

Extending understanding of topological/super D-branes and mirror symmetry
Well-known motivation for studying twistor strings:

- Alternative description of the AdS/CFT correspondence
- New tools for calculating gluon scattering amplitudes
- Alternative descriptions of supergravity

My motivation here:

- Description of super D-branes?
- Relationship between topological and physical D-branes?
- Rôle of Calabi-Yau supermanifolds in mirror symmetry?
$\Rightarrow$ Study variations of the usual twistor geometries and the associated Penrose-Ward transform.
Here: Full dimensional reductions yielding matrix models with interesting interpretations in terms of D-branes.
The presented results are only a very preliminary step towards answering the above questions.


## Outline

(1) Notation: Twistors and Penrose-Ward transform
(3) Construction of the matrix models
(3) D-Brane interpretation and completion for


## Outline

(1) Notation: Twistors and Penrose-Ward transform
(2) Construction of the matrix models
© D-Brane interpretation and completion for


## Outline

(1) Notation: Twistors and Penrose-Ward transform
(2) Construction of the matrix models
(3) D-Brane interpretation and completion for


## Outline

(1) Notation: Twistors and Penrose-Ward transform
(2) Construction of the matrix models
(3) D-Brane interpretation and completion for

- ADHM construction



## Outline

(1) Notation: Twistors and Penrose-Ward transform
(2) Construction of the matrix models
(3) D-Brane interpretation and completion for

- ADHM construction
- Nahm construction



## Outline

(1) Notation: Twistors and Penrose-Ward transform
(2) Construction of the matrix models
(3) D-Brane interpretation and completion for

- ADHM construction
- Nahm construction
(a) Conclusions


The Twistor Correspondence
The twistor correspondence is a relation between subsets of twistor space and spacetime.
Incidence Relation: $\omega^{\alpha}=x^{\alpha \dot{\alpha}} \lambda_{\dot{\alpha}}$, Twistor: $Z^{i}=\left(\omega^{\alpha}, \lambda_{\dot{\alpha}}\right) \in \mathbb{C} P^{3}$


## The Twistor Correspondence

The twistor correspondence is a relation between subsets of twistor space and spacetime.

Incidence Relation: $\omega^{\alpha}=x^{\alpha \dot{\alpha}} \lambda_{\dot{\alpha}}$, Twistor: $Z^{i}=\left(\omega^{\alpha}, \lambda_{\dot{\alpha}}\right) \in \mathbb{C} P^{3}$

## Twistor Correspondence

Point $x^{\alpha \dot{\alpha}}$ corresponds to sphere $\mathbb{C} P^{1} \ni \lambda_{\dot{\alpha}}$


## The Twistor Correspondence

The twistor correspondence is a relation between subsets of twistor space and spacetime.
Incidence Relation: $\omega^{\alpha}=x^{\alpha \dot{\alpha}} \lambda_{\dot{\alpha}}$, Twistor: $Z^{i}=\left(\omega^{\alpha}, \lambda_{\dot{\alpha}}\right) \in \mathbb{C} P^{3}$

## Twistor Correspondence

Point $x^{\alpha \dot{\alpha}}$ corresponds to sphere $\mathbb{C} P^{1} \ni \lambda_{\dot{\alpha}}$
A twistor $Z^{i}$ is incident to a plane of points $x^{\alpha \dot{\alpha}}=x_{0}^{\alpha \dot{\alpha}}+\kappa^{\alpha} \lambda^{\dot{\alpha}}$.


## The Twistor Correspondence

The twistor correspondence is a relation between subsets of twistor space and spacetime.
Incidence Relation: $\omega^{\alpha}=x^{\alpha \dot{\alpha}} \lambda_{\dot{\alpha}}$, Twistor: $Z^{i}=\left(\omega^{\alpha}, \lambda_{\dot{\alpha}}\right) \in \mathbb{C} P^{3}$

## Twistor Correspondence

Point $x^{\alpha \dot{\alpha}}$ corresponds to sphere $\mathbb{C} P^{1} \ni \lambda_{\dot{\alpha}}$
A twistor $Z^{i}$ is incident to a plane of points $x^{\alpha \dot{\alpha}}=x_{0}^{\alpha \dot{\alpha}}+\kappa^{\alpha} \lambda^{\dot{\alpha}}$.

## Decompactification

$\mathbb{C} P^{3} \quad$ is the twistor space of $\quad S^{4}$ or $S_{c}^{4}$

## The Twistor Correspondence

The twistor correspondence is a relation between subsets of twistor space and spacetime.
Incidence Relation: $\omega^{\alpha}=x^{\alpha \dot{\alpha}} \lambda_{\dot{\alpha}}$, Twistor: $Z^{i}=\left(\omega^{\alpha}, \lambda_{\dot{\alpha}}\right) \in \mathbb{C} P^{3}$

## Twistor Correspondence

Point $x^{\alpha \dot{\alpha}}$ corresponds to sphere $\mathbb{C} P^{1} \ni \lambda_{\dot{\alpha}}$
A twistor $Z^{i}$ is incident to a plane of points $x^{\alpha \dot{\alpha}}=x_{0}^{\alpha \dot{\alpha}}+\kappa^{\alpha} \lambda^{\dot{\alpha}}$.

## Decompactification

$\mathbb{C} P^{3} \quad$ is the twistor space of $\quad S^{4}$ or $S_{c}^{4}$
$\mathbb{C} P^{1}$
take out

## The Twistor Correspondence

The twistor correspondence is a relation between subsets of twistor space and spacetime.
Incidence Relation: $\omega^{\alpha}=x^{\alpha \dot{\alpha}} \lambda_{\dot{\alpha}}$, Twistor: $Z^{i}=\left(\omega^{\alpha}, \lambda_{\dot{\alpha}}\right) \in \mathbb{C} P^{3}$

## Twistor Correspondence

Point $x^{\alpha \dot{\alpha}}$ corresponds to sphere $\mathbb{C} P^{1} \ni \lambda_{\dot{\alpha}}$
A twistor $Z^{i}$ is incident to a plane of points $x^{\alpha \dot{\alpha}}=x_{0}^{\alpha \dot{\alpha}}+\kappa^{\alpha} \lambda^{\dot{\alpha}}$.

## Decompactification

$\mathbb{C} P^{3} \quad$ is the twistor space of $\quad S^{4}$ or $S_{c}^{4}$
take out
$\infty$
$\mathcal{P}^{3} \quad$ is the twistor space of $\mathbb{R}^{4}$ or $\mathbb{C}^{4}$

## The Twistor Correspondence

The twistor correspondence is a relation between subsets of twistor space and spacetime.
Incidence Relation: $\omega^{\alpha}=x^{\alpha \dot{\alpha}} \lambda_{\dot{\alpha}}$, Twistor: $Z^{i}=\left(\omega^{\alpha}, \lambda_{\dot{\alpha}}\right) \in \mathbb{C} P^{3}$

## Twistor Correspondence

Point $x^{\alpha \dot{\alpha}}$ corresponds to sphere $\mathbb{C} P^{1} \ni \lambda_{\dot{\alpha}}$
A twistor $Z^{i}$ is incident to a plane of points $x^{\alpha \dot{\alpha}}=x_{0}^{\alpha \dot{\alpha}}+\kappa^{\alpha} \lambda^{\dot{\alpha}}$.

## Decompactification

$\mathbb{C} P^{3} \quad$ is the twistor space of $S^{4}$ or $S_{c}^{4}$ $\mathbb{C} P^{1}$ take out $\infty$
$\mathcal{P}^{3}$ is the twistor space of $\mathbb{R}^{4}$ or $\mathbb{C}^{4}$ $\mathbb{C} P_{\infty}^{1}$ is described by $\lambda_{\dot{\alpha}}=0$, therefore:

$$
\mathcal{P}^{3}:=\mathcal{O}(1) \oplus \mathcal{O}(1) \rightarrow \mathbb{C} P^{1}
$$

Homog. coords. $\lambda_{\dot{\alpha}}$ on $\mathbb{C} P^{1}$ and $\omega^{\alpha}$ in fibres


## The Twistor Correspondence

The twistor correspondence is a relation between subsets of twistor space and spacetime.
Incidence Relation: $\omega^{\alpha}=x^{\alpha \dot{\alpha}} \lambda_{\dot{\alpha}}$, Twistor: $Z^{i}=\left(\omega^{\alpha}, \lambda_{\dot{\alpha}}\right) \in \mathbb{C} P^{3}$

## Twistor Correspondence

Point $x^{\alpha \dot{\alpha}}$ corresponds to sphere $\mathbb{C} P^{1} \ni \lambda_{\dot{\alpha}}$
A twistor $Z^{i}$ is incident to a plane of points $x^{\alpha \dot{\alpha}}=x_{0}^{\alpha \dot{\alpha}}+\kappa^{\alpha} \lambda^{\dot{\alpha}}$.

## Decompactification

$\mathbb{C} P^{3} \quad$ is the twistor space of $S^{4}$ or $S_{c}^{4}$ $\mathbb{C} P^{1} \quad$ take out $\quad \infty$
$\mathcal{P}^{3}$ is the twistor space of $\mathbb{R}^{4}$ or $\mathbb{C}^{4}$ $\mathbb{C} P_{\infty}^{1}$ is described by $\lambda_{\dot{\alpha}}=0$, therefore:

$$
\mathcal{P}^{3}:=\mathcal{O}(1) \oplus \mathcal{O}(1) \rightarrow \mathbb{C} P^{1}
$$

Homog. coords. $\lambda_{\dot{\alpha}}$ on $\mathbb{C} P^{1}$ and $\omega^{\alpha}$ in fibres
Moduli of sections of $\mathcal{P}^{3}: x^{\alpha \dot{\alpha}} \in \mathbb{C}^{4}$

## Underlying Idea of Twistor String Theory

To make contact with string theory, we need to extend this picture supersymmetrically.

## Marrying Twistor- and Calabi-Yau geometry


... with supermanifolds: Witten, hep-th/0312171

## Supertwistor Space

The supertwistor space $\mathcal{P}^{3 \mid \mathcal{N}}$ is a holomorphic vector bundle of rank $3 \mid 4 \mathcal{N}$ over $\mathbb{C} P^{1}$

## The Supertwistor Space $\mathcal{P}^{3 / \mathcal{N}}$

Start from $\mathbb{C} P^{3 \mid \mathcal{N}}$, take out $\mathbb{C} P^{1 \mid \mathcal{N}}$ at infinity:

$$
\mathcal{P}^{3 \mid \mathcal{N}}:=\mathbb{C}^{2} \otimes \mathcal{O}(1) \oplus \mathbb{C}^{\mathcal{N}} \otimes \Pi \mathcal{O}(1) \rightarrow \mathbb{C} P^{1}
$$

Incidence Relations
$\mathcal{O}(1) 1, \Pi \mathcal{O}(1)-1$, in total: $c_{1}=0$.
Therefore, there exists a holomorphic measure $\Omega$

## Supertwistor Space

The supertwistor space $\mathcal{P}^{3 \mid \mathcal{N}}$ is a holomorphic vector bundle of rank $3 \mid 4 \mathcal{N}$ over $\mathbb{C} P^{1}$.

## The Supertwistor Space $\mathcal{P}^{3 / \mathcal{N}}$

Start from $\mathbb{C} P^{3 \mid \mathcal{N}}$, take out $\mathbb{C} P^{1 \mid \mathcal{N}}$ at infinity:

$$
\mathcal{P}^{3 \mid \mathcal{N}}:=\mathbb{C}^{2} \otimes \mathcal{O}(1) \oplus \mathbb{C}^{\mathcal{N}} \otimes \Pi \mathcal{O}(1) \rightarrow \mathbb{C} P^{1}
$$

## Incidence Relations



$$
\omega^{\alpha}=x^{\alpha \dot{\alpha}} \lambda_{\dot{\alpha}}
$$

$\square$
$\mathcal{O}(1) 1, \Pi \mathcal{O}(1)-1$, in total: $c_{1}=0$.
Therefore, there exists a holomorphic measure $\Omega^{3,0 \mid 4,0}$,

## Supertwistor Space

The supertwistor space $\mathcal{P}^{3 \mid \mathcal{N}}$ is a holomorphic vector bundle of rank $3 \mid 4 \mathcal{N}$ over $\mathbb{C} P^{1}$.

## The Supertwistor Space $\mathcal{P}^{3 \mid \mathcal{N}}$

Start from $\mathbb{C} P^{3 \mid \mathcal{N}}$, take out $\mathbb{C} P^{1 \mid \mathcal{N}}$ at infinity:

$$
\mathcal{P}^{3 \mid \mathcal{N}}:=\mathbb{C}^{2} \otimes \mathcal{O}(1) \oplus \mathbb{C}^{\mathcal{N}} \otimes \Pi \mathcal{O}(1) \rightarrow \mathbb{C} P^{1}
$$

## Incidence Relations



$$
\begin{aligned}
\omega^{\alpha} & =x^{\alpha \dot{\alpha}} \lambda_{\dot{\alpha}} \\
\eta_{i} & =\eta_{i}^{\dot{\alpha}} \lambda_{\dot{\alpha}}
\end{aligned}
$$

$\mathcal{O}(1) 1, \Pi \bigcirc(1)-1$, in total: $c_{1}=0$.
Therefore there exists a holomornhic measure ( $3,014.0$

## Supertwistor Space

The supertwistor space $\mathcal{P}^{3 \mid \mathcal{N}}$ is a holomorphic vector bundle of rank $3 \mid 4 \mathcal{N}$ over $\mathbb{C} P^{1}$.

## The Supertwistor Space $\mathcal{P}^{3 \mid \mathcal{N}}$

Start from $\mathbb{C} P^{3 \mid \mathcal{N}}$, take out $\mathbb{C} P^{1 \mid \mathcal{N}}$ at infinity:

$$
\mathcal{P}^{3 \mid \mathcal{N}}:=\mathbb{C}^{2} \otimes \mathcal{O}(1) \oplus \mathbb{C}^{\mathcal{N}} \otimes \Pi \mathcal{O}(1) \rightarrow \mathbb{C} P^{1}
$$

## Incidence Relations

## Double Fibration

$$
\begin{aligned}
\omega^{\alpha} & =x^{\alpha \dot{\alpha}} \lambda_{\dot{\alpha}} \\
\eta_{i} & =\eta_{i}^{\dot{\alpha}} \lambda_{\dot{\alpha}}
\end{aligned}
$$

$$
\mathcal{P}^{3 \mid \mathcal{N}}
$$

$\mathcal{O}(1) 1, \Pi \mathcal{O}(1)-1$, in total: $c_{1}=0$.
Therefore, there exists a holomorphic measure $\Omega$

## Supertwistor Space

The supertwistor space $\mathcal{P}^{3 \mid \mathcal{N}}$ is a holomorphic vector bundle of rank $3 \mid 4 \mathcal{N}$ over $\mathbb{C} P^{1}$.

## The Supertwistor Space $\mathcal{P}^{3 \mid \mathcal{N}}$

Start from $\mathbb{C} P^{3 \mid \mathcal{N}}$, take out $\mathbb{C} P^{1 \mid \mathcal{N}}$ at infinity:

$$
\mathcal{P}^{3 \mid \mathcal{N}}:=\mathbb{C}^{2} \otimes \mathcal{O}(1) \oplus \mathbb{C}^{\mathcal{N}} \otimes \Pi \mathcal{O}(1) \rightarrow \mathbb{C} P^{1}
$$

## Incidence Relations

$$
\begin{aligned}
\omega^{\alpha} & =x^{\alpha \dot{\alpha}} \lambda_{\dot{\alpha}} \\
\eta_{i} & =\eta_{i}^{\dot{\alpha}} \lambda_{\dot{\alpha}}
\end{aligned}
$$

## Double Fibration



[^0]
## Supertwistor Space

The supertwistor space $\mathcal{P}^{3 \mid \mathcal{N}}$ is a holomorphic vector bundle of rank $3 \mid 4 \mathcal{N}$ over $\mathbb{C} P^{1}$.

## The Supertwistor Space $\mathcal{P}^{3 / \mathcal{N}}$

Start from $\mathbb{C} P^{3 \mid \mathcal{N}}$, take out $\mathbb{C} P^{1 \mid \mathcal{N}}$ at infinity:

$$
\mathcal{P}^{3 \mid \mathcal{N}}:=\mathbb{C}^{2} \otimes \mathcal{O}(1) \oplus \mathbb{C}^{\mathcal{N}} \otimes \Pi \mathcal{O}(1) \rightarrow \mathbb{C} P^{1}
$$

## Incidence Relations

$$
\begin{aligned}
\omega^{\alpha} & =x^{\alpha \dot{\alpha}} \lambda_{\dot{\alpha}} \\
\eta_{i} & =\eta_{i}^{\dot{\alpha}} \lambda_{\dot{\alpha}}
\end{aligned}
$$

## Double Fibration



First Chern Class of $P^{3 \mid 4}$
$T \mathbb{C} P^{1} 2, \mathcal{O}(1) 1, \Pi \mathcal{O}(1)-1$, in total: $c_{1}=0$.
Therefore, there exists a holomorphic measure $\Omega^{3,0 \mid 4,0}$.

## Supertwistor Space

The supertwistor space $\mathcal{P}^{3 \mid \mathcal{N}}$ is a holomorphic vector bundle of rank $3 \mid 4 \mathcal{N}$ over $\mathbb{C} P^{1}$.

## The Supertwistor Space $\mathcal{P}^{3 \mid \mathcal{N}}$

Start from $\mathbb{C} P^{3 \mid \mathcal{N}}$, take out $\mathbb{C} P^{1 \mid \mathcal{N}}$ at infinity:

$$
\mathcal{P}^{3 \mid \mathcal{N}}:=\mathbb{C}^{2} \otimes \mathcal{O}(1) \oplus \mathbb{C}^{\mathcal{N}} \otimes \Pi \mathcal{O}(1) \rightarrow \mathbb{C} P^{1}
$$

## Incidence Relations

$$
\begin{aligned}
\omega^{\alpha} & =x^{\alpha \dot{\alpha}} \lambda_{\dot{\alpha}} \\
\eta_{i} & =\eta_{i}^{\dot{\alpha}} \lambda_{\dot{\alpha}}
\end{aligned}
$$

## Double Fibration



First Chern Class of $\mathcal{P}^{3 \mid 4}$

$$
T \mathbb{C} P^{1} 2,
$$

## Supertwistor Space

The supertwistor space $\mathcal{P}^{3 \mid \mathcal{N}}$ is a holomorphic vector bundle of rank $3 \mid 4 \mathcal{N}$ over $\mathbb{C} P^{1}$.

## The Supertwistor Space $\mathcal{P}^{3 \mid \mathcal{N}}$

Start from $\mathbb{C} P^{3 \mid \mathcal{N}}$, take out $\mathbb{C} P^{1 \mid \mathcal{N}}$ at infinity:

$$
\mathcal{P}^{3 \mid \mathcal{N}}:=\mathbb{C}^{2} \otimes \mathcal{O}(1) \oplus \mathbb{C}^{\mathcal{N}} \otimes \Pi \mathcal{O}(1) \rightarrow \mathbb{C} P^{1}
$$

## Incidence Relations

$$
\begin{aligned}
\omega^{\alpha} & =x^{\alpha \dot{\alpha}} \lambda_{\dot{\alpha}} \\
\eta_{i} & =\eta_{i}^{\dot{\alpha}} \lambda_{\dot{\alpha}}
\end{aligned}
$$

## Double Fibration



First Chern Class of $\mathcal{P}^{3 \mid 4}$

$$
T \mathbb{C} P^{1} 2, \mathcal{O}(1) 1,
$$

Therefore, there exists a holomorphic measure

## Supertwistor Space

The supertwistor space $\mathcal{P}^{3 \mid \mathcal{N}}$ is a holomorphic vector bundle of rank $3 \mid 4 \mathcal{N}$ over $\mathbb{C} P^{1}$.

## The Supertwistor Space $\mathcal{P}^{3 \mid \mathcal{N}}$

Start from $\mathbb{C} P^{3 \mid \mathcal{N}}$, take out $\mathbb{C} P^{1 \mid \mathcal{N}}$ at infinity:

$$
\mathcal{P}^{3 \mid \mathcal{N}}:=\mathbb{C}^{2} \otimes \mathcal{O}(1) \oplus \mathbb{C}^{\mathcal{N}} \otimes \Pi \mathcal{O}(1) \rightarrow \mathbb{C} P^{1}
$$

## Incidence Relations

$$
\begin{aligned}
\omega^{\alpha} & =x^{\alpha \dot{\alpha}} \lambda_{\dot{\alpha}} \\
\eta_{i} & =\eta_{i}^{\dot{\alpha}} \lambda_{\dot{\alpha}}
\end{aligned}
$$

First Chern Class of $\mathcal{P}^{3 \mid 4}$

$$
T \mathbb{C} P^{1} 2, \mathcal{O}(1) 1, \Pi \mathcal{O}(1)-1
$$

## Supertwistor Space

The supertwistor space $\mathcal{P}^{3 \mid \mathcal{N}}$ is a holomorphic vector bundle of rank $3 \mid 4 \mathcal{N}$ over $\mathbb{C} P^{1}$.

## The Supertwistor Space $\mathcal{P}^{3 \mid \mathcal{N}}$

Start from $\mathbb{C} P^{3 \mid \mathcal{N}}$, take out $\mathbb{C} P^{1 \mid \mathcal{N}}$ at infinity:

$$
\mathcal{P}^{3 \mid \mathcal{N}}:=\mathbb{C}^{2} \otimes \mathcal{O}(1) \oplus \mathbb{C}^{\mathcal{N}} \otimes \Pi \mathcal{O}(1) \rightarrow \mathbb{C} P^{1}
$$

Incidence Relations

$$
\begin{aligned}
\omega^{\alpha} & =x^{\alpha \dot{\alpha}} \lambda_{\dot{\alpha}} \\
\eta_{i} & =\eta_{i}^{\dot{\alpha}} \lambda_{\dot{\alpha}}
\end{aligned}
$$

## Double Fibration



First Chern Class of $\mathcal{P}^{3 \mid 4}$
$T \mathbb{C} P^{1} 2, \mathcal{O}(1) 1, \Pi \mathcal{O}(1)-1$, in total: $c_{1}=0$.
Therefore, there exists a holomorphic measure $\Omega^{3,0 \mid 4,0}$.

# Outline of the Penrose-Ward Transform on $\mathcal{P}^{3 \mid 4}$ 

The PW-transform takes us from the topological B-model to SDYM theory.
topological B-model on $\mathcal{P}^{3 \mid 4}$

## Outline of the Penrose-Ward Transform on $\mathcal{P}^{3 \mid 4}$

The PW-transform takes us from the topological B-model to SDYM theory.

## topological B-model on $\mathcal{P}^{3 \mid 4}$ <br> §

holomorphic Chern-Simons theory on $\mathcal{E} \rightarrow \mathcal{P}^{3 \mid 4}$ :

$$
\begin{gathered}
\int \Omega^{3,0 \mid 4,0} \wedge \operatorname{tr}\left(\mathcal{A}^{0,1} \wedge \bar{\partial} \mathcal{A}^{0,1}+\frac{2}{3} \mathcal{A}^{0,1} \wedge \mathcal{A}^{0,1} \wedge \mathcal{A}^{0,1}\right) \\
\text { with eom } \bar{\partial} \mathcal{A}^{0,1}+\mathcal{A}^{0,1} \wedge \mathcal{A}^{0,1}=0
\end{gathered}
$$

# Outline of the Penrose-Ward Transform on $\mathcal{P}^{3 \mid 4}$ 

The PW-transform takes us from the topological B-model to SDYM theory.

## topological B-model on $\mathcal{P}^{3 \mid 4}$ <br> §

holomorphic Chern-Simons theory on $\mathcal{E} \rightarrow \mathcal{P}^{3 \mid 4}$ :

$$
\begin{gathered}
\int \Omega^{3,0 \mid 4,0} \wedge \operatorname{tr}\left(\mathcal{A}^{0,1} \wedge \bar{\partial} \mathcal{A}^{0,1}+\frac{2}{3} \mathcal{A}^{0,1} \wedge \mathcal{A}^{0,1} \wedge \mathcal{A}^{0,1}\right) \\
\text { with eom } \bar{\partial} \mathcal{A}^{0,1}+\mathcal{A}^{0,1} \wedge \mathcal{A}^{0,1}=0 \\
\mathbb{\Downarrow}
\end{gathered}
$$

holomorphic vector bundles over $\mathcal{P}^{3 \mid 4}$

Field contents:

## Outline of the Penrose-Ward Transform on $\mathcal{P}^{3 \mid 4}$

 The PW-transform takes us from the topological B-model to SDYM theory.topological B-model on $\mathcal{P}^{3 \mid 4}$
i
holomorphic Chern-Simons theory on $\mathcal{E} \rightarrow \mathcal{P}^{3 \mid 4}$ :

$$
\begin{gathered}
\int \Omega^{3,0 \mid 4,0} \wedge \operatorname{tr}\left(\mathcal{A}^{0,1} \wedge \bar{\partial} \mathcal{A}^{0,1}+\frac{2}{3} \mathcal{A}^{0,1} \wedge \mathcal{A}^{0,1} \wedge \mathcal{A}^{0,1}\right) \\
\text { with eom } \bar{\partial} \mathcal{A}^{0,1}+\mathcal{A}^{0,1} \wedge \mathcal{A}^{0,1}=0 \\
\mathbb{\Downarrow}
\end{gathered}
$$

holomorphic vector bundles over $\mathcal{P}^{3 \mid 4}$
§
solutions to the $\mathcal{N}=4$ SDYM equations on $\mathbb{C}^{4 \mid 8}$
Field contents: $\left(f_{\alpha \beta}, \chi^{\alpha i}, \phi^{[i j]}, \tilde{\chi}_{\dot{\alpha}}^{[i j k]}, G_{\dot{\alpha} \dot{\beta}}^{[i j k l]}\right)$

$$
\begin{aligned}
f_{\dot{\alpha} \dot{\beta}} & =0, & \nabla_{\alpha \dot{\alpha}} \tilde{\chi}^{\dot{\alpha} i j k}-\left[\chi_{\alpha}^{[i}, \phi^{j k]}\right] & =0 \\
\nabla_{\alpha \dot{\alpha}} \chi^{\alpha i} & =0, & \varepsilon^{\dot{\alpha} \dot{\gamma}} \nabla_{\alpha \dot{\alpha}} G_{\dot{\gamma} \dot{\delta}}^{[i j k l]}+\ldots & =0
\end{aligned}
$$

$$
\square \phi^{i j}+2\left\{\chi^{\alpha i}, \chi_{\alpha}^{j}\right\}=0
$$

## Penrose-Ward Transform on $\mathcal{P}_{\tau}^{3 / 4}$

Imposing reality conditions simplifies the situation significantly.
Introducing a real structure, the double fibration collapses:

( $\tau_{ \pm 1}$ related to Kleinian and Euclidean metrics on $\mathbb{R}_{\tau}^{4 \mid 2 \mathcal{N}}$.)

## Penrose-Ward Transform on $\mathcal{P}_{\tau}^{3 \mid 4}$

Imposing reality conditions simplifies the situation significantly.
Introducing a real structure, the double fibration collapses:

( $\tau_{ \pm 1}$ related to Kleinian and Euclidean metrics on $\mathbb{R}_{\tau}^{4 \mid 2 \mathcal{N}}$.)
Now: Field expansion of hCS gauge potential $\mathcal{A}^{0,1}$ available:

$$
\begin{aligned}
& \mathcal{A}_{\alpha}=\lambda^{\dot{\alpha}} A_{\alpha \dot{\alpha}}(x)+\eta_{i} \chi_{\alpha}^{i}(x)+\gamma \frac{1}{2!} \eta_{i} \eta_{j} \hat{\lambda}^{\dot{\alpha}} \phi_{\alpha \dot{\alpha}}^{i j}(x)+ \\
& \gamma^{2} \frac{1}{3!} \eta_{i} \eta_{j} \eta_{k} \hat{\lambda}^{\dot{\alpha}} \hat{\lambda}^{\dot{\beta}} \tilde{\chi}_{\alpha \dot{\alpha} \dot{\beta}}^{i j k}(x)+\gamma^{3} \frac{1}{4!} \eta_{i} \eta_{j} \eta_{k} \eta_{l} \hat{\lambda}^{\dot{\alpha}} \hat{\lambda}^{\dot{\beta}} \hat{\lambda}^{\dot{\gamma}} G_{\alpha \dot{\alpha} \dot{\beta} \dot{\gamma}}^{i j k l}(x) \\
& \mathcal{A}_{\bar{\lambda}}=\gamma^{2} \eta_{i} \eta_{j} \phi^{i j}(x)-\gamma^{3} \eta_{i} \eta_{j} \eta_{k} \hat{\lambda}^{\dot{\alpha}} \tilde{\chi}_{\dot{\alpha}}^{i j k}(x)+2 \gamma^{4} \eta_{i} \eta_{j} \eta_{k} \eta_{l} \hat{\lambda}^{\dot{\alpha}} \hat{\lambda}^{\dot{\beta}} G_{\dot{\alpha} \dot{\beta}}^{i j k l}(x) \\
& \text { Popov, CS, ATMP 9 (2005) } 931
\end{aligned}
$$

This field expansion makes the equivalence $\mathrm{hCS} \leftrightarrow$ SDYM manifest.

## Matrix Models

Matrix models are obtained by dim. reduction or from spacetime noncommutativity.

Two ways of obtaining the matrix models:

## Matrix Models

Matrix models are obtained by dim. reduction or from spacetime noncommutativity.

Two ways of obtaining the matrix models:

- Dimensionally reducing the moduli space $\mathbb{R}^{4 \mid 8} \rightarrow \mathbb{R}^{0 \mid 8}$ :



## Matrix Models

Matrix models are obtained by dim. reduction or from spacetime noncommutativity.
Two ways of obtaining the matrix models:

- Dimensionally reducing the moduli space $\mathbb{R}^{4 \mid 8} \rightarrow \mathbb{R}^{0 \mid 8}$ :

- Making the moduli space $\mathbb{R}^{4 \mid 8}$ noncommutative:



## Matrix Models via Dimensional Reduction

Full dimensional reduction yields equivalence between SDYM MM and hCS MQM.

- Matrix Model from $\mathcal{N}=4$ SDYM theory:

$$
S:=\operatorname{tr}\left(G^{\dot{\alpha} \dot{\beta}}\left(-\frac{1}{2} \varepsilon^{\alpha \beta}\left[A_{\alpha \dot{\alpha}}, A_{\beta \dot{\beta}}\right]\right)+\frac{\varepsilon}{2} \phi^{i j}\left[A_{\alpha \dot{\alpha}},\left[A^{\alpha \dot{\alpha}}, \phi_{i j}\right]\right]+\ldots\right)
$$

- Equivalence explicitly via:


## Matrix Models via Dimensional Reduction

Full dimensional reduction yields equivalence between SDYM MM and hCS MQM.

- Matrix Model from $\mathcal{N}=4$ SDYM theory:

$$
S:=\operatorname{tr}\left(G^{\dot{\alpha} \dot{\beta}}\left(-\frac{1}{2} \varepsilon^{\alpha \beta}\left[A_{\alpha \dot{\alpha}}, A_{\beta \dot{\beta}}\right]\right)+\frac{\varepsilon}{2} \phi^{i j}\left[A_{\alpha \dot{\alpha}},\left[A^{\alpha \dot{\alpha}}, \phi_{i j}\right]\right]+\ldots\right)
$$

- Matrix Model from $\mathcal{N}=4 \mathrm{hCS}$ theory (MQM):

$$
\begin{aligned}
S & :=\int_{\mathbb{C} P_{\mathrm{ch}}^{1}} \Omega_{\mathrm{red}} \wedge \operatorname{tr} \varepsilon^{\alpha \beta} \mathcal{X}_{\alpha}\left(\bar{\partial} \mathcal{X}_{\beta}+\left[\mathcal{A}_{\mathbb{C} P^{1}}^{0,1}, \mathcal{X}_{\beta}\right]\right) \\
\Omega_{\mathrm{red}} & :=\left.\Omega^{3,0 \mid 4,0}\right|_{\mathbb{C} P_{\mathrm{ch}}^{1}} \quad \Omega_{\mathrm{red} \pm}= \pm \mathrm{d} \lambda_{ \pm} \wedge \mathrm{d} \eta_{1}^{ \pm} \ldots \mathrm{d} \eta_{4}^{ \pm}
\end{aligned}
$$

## Matrix Models via Dimensional Reduction

Full dimensional reduction yields equivalence between SDYM MM and hCS MQM.

- Matrix Model from $\mathcal{N}=4$ SDYM theory:

$$
S:=\operatorname{tr}\left(G^{\dot{\alpha} \dot{\beta}}\left(-\frac{1}{2} \varepsilon^{\alpha \beta}\left[A_{\alpha \dot{\alpha}}, A_{\beta \dot{\beta}}\right]\right)+\frac{\varepsilon}{2} \phi^{i j}\left[A_{\alpha \dot{\alpha}},\left[A^{\alpha \dot{\alpha}}, \phi_{i j}\right]\right]+\ldots\right)
$$

- Matrix Model from $\mathcal{N}=4 \mathrm{hCS}$ theory (MQM):

$$
\begin{aligned}
S & :=\int_{\mathbb{C} P_{\mathrm{ch}}^{1}} \Omega_{\mathrm{red}} \wedge \operatorname{tr} \varepsilon^{\alpha \beta} \mathcal{X}_{\alpha}\left(\bar{\partial} \mathcal{X}_{\beta}+\left[\mathcal{A}_{\mathbb{C} P^{1}}^{0,1}, \mathcal{X}_{\beta}\right]\right) \\
\Omega_{\mathrm{red}} & :=\left.\Omega^{3,0 \mid 4,0}\right|_{\mathbb{C} P_{\mathrm{ch}}^{1}} \quad \Omega_{\mathrm{red} \pm}= \pm \mathrm{d} \lambda_{ \pm} \wedge \mathrm{d} \eta_{1}^{ \pm} \ldots \mathrm{d} \eta_{4}^{ \pm}
\end{aligned}
$$

- Equivalence explicitly via:

$$
\begin{aligned}
\mathcal{X}_{\alpha}= & \lambda^{\dot{\alpha}} A_{\alpha \dot{\alpha}}+\eta_{i} \chi_{\alpha}^{i}+\gamma \frac{1}{2!} \eta_{i} \eta_{j} \hat{\lambda}^{\dot{\alpha}} \phi_{\alpha \dot{\alpha}}^{i j}+ \\
& \gamma^{2} \frac{1}{3!} \eta_{i} \eta_{j} \eta_{k} \hat{\lambda}^{\dot{\alpha}} \hat{\lambda}^{\dot{\beta}} \tilde{\chi}_{\alpha \dot{\alpha} \dot{\beta}}^{i j k}+\gamma^{3} \frac{1}{4!} \eta_{i} \eta_{j} \eta_{k} \eta_{l} \hat{\lambda}^{\dot{\alpha}} \hat{\lambda}^{\dot{\beta}} \hat{\lambda}^{\dot{\gamma}} G_{\alpha \dot{\alpha} \dot{\beta} \dot{\gamma}}^{i j k l} \\
\mathcal{A}_{\bar{\lambda}}= & \gamma^{2} \eta_{i} \eta_{j} \phi^{i j}-\gamma^{3} \eta_{i} \eta_{j} \eta_{k} \hat{\lambda}^{\dot{\alpha}} \tilde{\chi}_{\dot{\alpha}}^{i j k}+2 \gamma^{4} \eta_{i} \eta_{j} \eta_{k} \eta_{l} \hat{\lambda}^{\dot{\alpha}} \hat{\lambda}^{\dot{\beta}} G_{\dot{\alpha} \dot{\beta} \dot{\beta}}^{i j l}
\end{aligned}
$$

## Matrix Models from Noncommutativity

Functions on the noncommutative moduli space are infinite-dimensional matrices.
Noncommutativity on the moduli space

$$
\left[\hat{x}^{\alpha \dot{\alpha}}, \hat{x}^{\beta \dot{\beta}}\right]=\mathrm{i} \theta^{\alpha \dot{\alpha} \beta \dot{\beta}}
$$

with: $(\kappa= \pm 1)$

$$
\theta^{1 i 2 \dot{2}}=-\theta^{2 \dot{2} 1 \dot{1}}=-2 \mathrm{i} \kappa \varepsilon \theta \text { and } \theta^{1 \dot{2} 2 \dot{1}}=-\theta^{2 \dot{1} 1 \dot{2}}=2 \mathrm{i} \varepsilon \theta
$$

- representation space: two oscillator Fock space with $\mid 0,0)$
- derivatives become inner derivations of the above algebra:


## Matrix Models from Noncommutativity

Functions on the noncommutative moduli space are infinite-dimensional matrices.
Noncommutativity on the moduli space

$$
\left[\hat{x}^{\alpha \dot{\alpha}}, \hat{x}^{\beta \dot{\beta}}\right]=\mathrm{i} \theta^{\alpha \dot{\alpha} \beta \dot{\beta}}
$$

with: $(\kappa= \pm 1)$

$$
\theta^{1 \dot{1} 2 \dot{2}}=-\theta^{2 \dot{2} 1 \dot{1}}=-2 \mathrm{i} \kappa \varepsilon \theta \quad \text { and } \quad \theta^{1 \dot{2} 2 \dot{1}}=-\theta^{2 \dot{1} 1 \dot{2}}=2 \mathrm{i} \varepsilon \theta
$$

- representation space: two oscillator Fock space with $|0,0\rangle$

$$
\hat{a}_{1} \sim \hat{x}^{2 \dot{1}}+\hat{x}^{1 \dot{2}} \quad \text { and } \quad \hat{a}_{2} \sim \hat{x}^{2 \dot{2}}-\hat{x}^{1 \mathrm{i}}
$$

- derivatives become inner derivations of the above algebra:


## Matrix Models from Noncommutativity

Functions on the noncommutative moduli space are infinite-dimensional matrices.
Noncommutativity on the moduli space

$$
\left[\hat{x}^{\alpha \dot{\alpha}}, \hat{x}^{\beta \dot{\beta}}\right]=\mathrm{i} \theta^{\alpha \dot{\alpha} \beta \dot{\beta}}
$$

with: $(\kappa= \pm 1)$

$$
\theta^{1 \dot{1} 2 \dot{2}}=-\theta^{2 \dot{2} 1 \dot{1}}=-2 \mathrm{i} \kappa \varepsilon \theta \quad \text { and } \quad \theta^{1 \dot{2} 2 \dot{1}}=-\theta^{2 \dot{1} 1 \dot{2}}=2 \mathrm{i} \varepsilon \theta
$$

- representation space: two oscillator Fock space with $|0,0\rangle$

$$
\hat{a}_{1} \sim \hat{x}^{2 \dot{1}}+\hat{x}^{1 \dot{2}} \quad \text { and } \quad \hat{a}_{2} \sim \hat{x}^{2 \dot{2}}-\hat{x}^{1 \dot{1}}
$$

- derivatives become inner derivations of the above algebra:

$$
\frac{\partial}{\partial \hat{x}^{1 \dot{1}}} f \sim\left[\hat{x}^{2 \dot{2}}, f\right], \quad \text { etc. }
$$

## Matrix Models from Noncommutativity

Functions on the noncommutative moduli space are infinite-dimensional matrices.
Noncommutativity on the moduli space

$$
\left[\hat{x}^{\alpha \dot{\alpha}}, \hat{x}^{\beta \dot{\beta}}\right]=\mathrm{i} \theta^{\alpha \dot{\alpha} \beta \dot{\beta}}
$$

with: $(\kappa= \pm 1)$

$$
\theta^{1 \dot{1} 2 \dot{2}}=-\theta^{2 \dot{2} 1 \dot{1}}=-2 \mathrm{i} \kappa \varepsilon \theta \quad \text { and } \quad \theta^{1 \dot{2} 2 \dot{1}}=-\theta^{2 \dot{1} 1 \dot{2}}=2 \mathrm{i} \varepsilon \theta
$$

- representation space: two oscillator Fock space with $|0,0\rangle$

$$
\hat{a}_{1} \sim \hat{x}^{2 \dot{1}}+\hat{x}^{1 \dot{2}} \quad \text { and } \quad \hat{a}_{2} \sim \hat{x}^{2 \dot{2}}-\hat{x}^{1 \dot{1}}
$$

- derivatives become inner derivations of the above algebra:

$$
\frac{\partial}{\partial \hat{x}^{1 \dot{1}}} f \sim\left[\hat{x}^{2 \dot{2}}, f\right], \quad \text { etc. }
$$

- integral becomes trace: $\int \mathrm{d}^{4} x f \mapsto(2 \pi \theta)^{2} \operatorname{tr}_{\mathcal{H}} \hat{f}$


## Matrix Models from Noncommutativity

Sections $\omega$ of the bundle defining supertwistor space are now matrix valued.

## Noncommutativity on the twistor space

Induced algebra:

$$
\begin{array}{ll}
{\left[\hat{\omega}_{ \pm}^{1}, \hat{\omega}_{ \pm}^{2}\right]=2(\kappa-1) \varepsilon \lambda_{ \pm} \theta,} & {\left[\hat{\bar{\omega}}_{ \pm}^{1}, \hat{\bar{\omega}}_{ \pm}^{2}\right]=-2(\kappa-1) \varepsilon \bar{\lambda}_{ \pm} \theta} \\
{\left[\hat{\omega}_{+}^{1}, \hat{\bar{\omega}}_{+}^{1}\right]=2\left(\kappa \varepsilon-\lambda_{+} \bar{\lambda}_{+}\right) \theta,} & {\left[\hat{\omega}_{-}^{1}, \hat{\bar{\omega}}_{-}^{1}\right]=2\left(\kappa \varepsilon \lambda_{-} \bar{\lambda}_{-}-1\right) \theta} \\
{\left[\hat{\omega}_{+}^{2}, \hat{\omega}_{+}^{2}\right]=2\left(1-\varepsilon \kappa \lambda_{+} \bar{\lambda}_{+}\right) \theta,} & {\left[\hat{\omega}_{-}^{2}, \hat{\omega}_{-}^{2}\right]=2\left(\lambda_{-} \bar{\lambda}_{-}-\varepsilon \kappa\right) \theta}
\end{array}
$$

[^1]
## Matrix Models from Noncommutativity

Sections $\omega$ of the bundle defining supertwistor space are now matrix valued.

## Noncommutativity on the twistor space

## Induced algebra:

$$
\begin{array}{ll}
{\left[\hat{\omega}_{ \pm}^{1}, \hat{\omega}_{ \pm}^{2}\right]=2(\kappa-1) \varepsilon \lambda_{ \pm} \theta,} & {\left[\hat{\bar{\omega}}_{ \pm}^{1}, \hat{\bar{\omega}}_{ \pm}^{2}\right]=-2(\kappa-1) \varepsilon \bar{\lambda}_{ \pm} \theta,} \\
{\left[\hat{\omega}_{+}^{1}, \hat{\bar{\omega}}_{+}^{1}\right]=2\left(\kappa \varepsilon-\lambda_{+} \bar{\lambda}_{+}\right) \theta,} & {\left[\hat{\omega}_{-}^{1}, \hat{\bar{\omega}}_{-}^{1}\right]=2\left(\kappa \varepsilon \lambda_{-} \bar{\lambda}_{-}-1\right) \theta} \\
{\left[\hat{\omega}_{+}^{2}, \hat{\bar{\omega}}_{+}^{2}\right]=2\left(1-\varepsilon \kappa \lambda_{+} \bar{\lambda}_{+}\right) \theta,} & {\left[\hat{\omega}_{-}^{2}, \hat{\bar{\omega}}_{-}^{2}\right]=2\left(\lambda_{-} \bar{\lambda}_{-}-\varepsilon \kappa\right) \theta}
\end{array}
$$

## Matrix Models

All operators can be seen as infinite dimensional matrices.

## Matrix Models from Noncommutativity

Sections $\omega$ of the bundle defining supertwistor space are now matrix valued.

## Noncommutativity on the twistor space

## Induced algebra:

$$
\begin{array}{ll}
{\left[\hat{\omega}_{ \pm}^{1}, \hat{\omega}_{ \pm}^{2}\right]=2(\kappa-1) \varepsilon \lambda_{ \pm} \theta,} & {\left[\hat{\bar{\omega}}_{ \pm}^{1}, \hat{\bar{\omega}}_{ \pm}^{2}\right]=-2(\kappa-1) \varepsilon \bar{\lambda}_{ \pm} \theta} \\
{\left[\hat{\omega}_{+}^{1}, \hat{\bar{\omega}}_{+}^{1}\right]=2\left(\kappa \varepsilon-\lambda_{+} \bar{\lambda}_{+}\right) \theta,} & {\left[\hat{\omega}_{-}^{1}, \hat{\bar{\omega}}_{-}^{1}\right]=2\left(\kappa \varepsilon \lambda_{-} \bar{\lambda}_{-}-1\right) \theta} \\
{\left[\hat{\omega}_{+}^{2}, \hat{\omega}_{+}^{2}\right]=2\left(1-\varepsilon \kappa \lambda_{+} \bar{\lambda}_{+}\right) \theta,} & {\left[\hat{\omega}_{-}^{2}, \hat{\omega}_{-}^{2}\right]=2\left(\lambda_{-} \bar{\lambda}_{-}-\varepsilon \kappa\right) \theta,}
\end{array}
$$

## Matrix Models

All operators can be seen as infinite dimensional matrices.
$\Rightarrow$ Matrix models from SDYM and hCS theory
rank of gauge group, limit

## Matrix Models from Noncommutativity

Sections $\omega$ of the bundle defining supertwistor space are now matrix valued.

## Noncommutativity on the twistor space

## Induced algebra:

$$
\begin{array}{ll}
{\left[\hat{\omega}_{ \pm}^{1}, \hat{\omega}_{ \pm}^{2}\right]=2(\kappa-1) \varepsilon \lambda_{ \pm} \theta,} & {\left[\hat{\bar{\omega}}_{ \pm}^{1}, \hat{\bar{\omega}}_{ \pm}^{2}\right]=-2(\kappa-1) \varepsilon \bar{\lambda}_{ \pm} \theta} \\
{\left[\hat{\omega}_{+}^{1}, \hat{\bar{\omega}}_{+}^{1}\right]=2\left(\kappa \varepsilon-\lambda_{+} \bar{\lambda}_{+}\right) \theta,} & {\left[\hat{\omega}_{-}^{1}, \hat{\bar{\omega}}_{-}^{1}\right]=2\left(\kappa \varepsilon \lambda_{-} \bar{\lambda}_{-}-1\right) \theta} \\
{\left[\hat{\omega}_{+}^{2}, \hat{\omega}_{+}^{2}\right]=2\left(1-\varepsilon \kappa \lambda_{+} \bar{\lambda}_{+}\right) \theta,} & {\left[\hat{\omega}_{-}^{2}, \hat{\omega}_{-}^{2}\right]=2\left(\lambda_{-} \bar{\lambda}_{-}-\varepsilon \kappa\right) \theta,}
\end{array}
$$

## Matrix Models

All operators can be seen as infinite dimensional matrices.
$\Rightarrow$ Matrix models from SDYM and hCS theory explict equivalence again via field expansion.

## Matrix Models from Noncommutativity

Sections $\omega$ of the bundle defining supertwistor space are now matrix valued.

## Noncommutativity on the twistor space

## Induced algebra:

$$
\begin{array}{ll}
{\left[\hat{\omega}_{ \pm}^{1}, \hat{\omega}_{ \pm}^{2}\right]=2(\kappa-1) \varepsilon \lambda_{ \pm} \theta,} & {\left[\hat{\bar{\omega}}_{ \pm}^{1}, \hat{\bar{\omega}}_{ \pm}^{2}\right]=-2(\kappa-1) \varepsilon \bar{\lambda}_{ \pm} \theta,} \\
{\left[\hat{\omega}_{+}^{1}, \hat{\bar{\omega}}_{+}^{1}\right]=2\left(\kappa \varepsilon-\lambda_{+} \bar{\lambda}_{+}\right) \theta,} & {\left[\hat{\omega}_{-}^{1}, \hat{\bar{\omega}}_{-}^{1}\right]=2\left(\kappa \varepsilon \lambda_{-} \bar{\lambda}_{-}-1\right) \theta,} \\
{\left[\hat{\omega}_{+}^{2}, \hat{\bar{\omega}}_{+}^{2}\right]=2\left(1-\varepsilon \kappa \lambda_{+} \bar{\lambda}_{+}\right) \theta,} & {\left[\hat{\omega}_{-}^{2}, \hat{\bar{\omega}}_{-}^{2}\right]=2\left(\lambda_{-} \bar{\lambda}_{-}-\varepsilon \kappa\right) \theta,}
\end{array}
$$

## Matrix Models

All operators can be seen as infinite dimensional matrices.
$\Rightarrow$ Matrix models from SDYM and hCS theory explict equivalence again via field expansion.

Large $N$ limit
$N$ : rank of gauge group, limit $N \rightarrow \infty$ : all MMs equivalent

## D-Brane Interpretation

There is an obvious interpretation of the hCS MM in terms of topological B-branes.

## B-Type Topological Branes <br> - D(-1)-, D1-, D3-, and D5-branes <br> - stack of $N$ D-branes comes with rank $N$ vector bundle <br> - effective action: $G L(N, \mathbb{C})$ holomorphic Chern-Simons theory

hCS MM: stack of $n$ D1|4-branes wrapping $\mathbb{C} P^{\left.1\right|^{4}} \hookrightarrow \mathcal{P}^{3 \mid 4}$

## D-Brane Interpretation

There is an obvious interpretation of the hCS MM in terms of topological B-branes.

## B-Type Topological Branes

- D(-1)-, D1-, D3-, and D5-branes
- stack of $N$ D-branes comes with rank $N$ vector bundle
$\square$
hCS MM: stack of $n$ D1|4-branes wrapping $\mathbb{C} P^{1 / 4} \hookrightarrow \mathcal{P}^{3 \mid 4}$


## D-Brane Interpretation

There is an obvious interpretation of the hCS MM in terms of topological B-branes.

## B-Type Topological Branes

- D(-1)-, D1-, D3-, and D5-branes
- stack of $N$ D-branes comes with rank $N$ vector bundle
- effective action: $\mathrm{GL}(N, \mathbb{C})$ holomorphic Chern-Simons theory
hCS MM: stack of $n$ D1|4-branes wrapping $\mathbb{C} P^{1 / 4} \hookrightarrow P^{3 \mid 4}$ expand Higgs-fields


## D-Brane Interpretation

There is an obvious interpretation of the hCS MM in terms of topological B-branes.

## B-Type Topological Branes

- D(-1)-, D1-, D3-, and D5-branes
- stack of $N$ D-branes comes with rank $N$ vector bundle
- effective action: $\mathrm{GL}(N, \mathbb{C})$ holomorphic Chern-Simons theory
- i.e. $F^{0,2}=F^{2,0}=0$ (stability missing: $k^{d+1} \wedge F^{1,1}=\gamma k^{d}$ )
hCS MM: stack of $n$ D1|4-branes wrapping $\mathbb{C} P^{1 \mid 4} \hookrightarrow \mathcal{P}^{3 \mid 4}$.


## D-Brane Interpretation

There is an obvious interpretation of the hCS MM in terms of topological B-branes.

## B-Type Topological Branes

- D(-1)-, D1-, D3-, and D5-branes
- stack of $N$ D-branes comes with rank $N$ vector bundle
- effective action: $\mathrm{GL}(N, \mathbb{C})$ holomorphic Chern-Simons theory
- i.e. $F^{0,2}=F^{2,0}=0$ (stability missing: $k^{d+1} \wedge F^{1,1}=\gamma k^{d}$ )
hCS MM: stack of $n$ D1|4-branes wrapping $\mathbb{C} P^{1 \mid 4} \hookrightarrow \mathcal{P}^{3 \mid 4}$. expand Higgs-fields $\mathcal{X}_{\alpha}=\mathcal{X}_{\alpha}^{0}+\mathcal{X}_{\alpha}^{i} \eta_{i}+\mathcal{X}_{\alpha}^{i j} \eta_{i} \eta_{j}+\ldots$
bodies $\mathcal{Y}^{0}$ can be diagonalized: positions of the D1/4-branes


## D-Brane Interpretation

There is an obvious interpretation of the hCS MM in terms of topological B-branes.

## B-Type Topological Branes

- D(-1)-, D1-, D3-, and D5-branes
- stack of $N$ D-branes comes with rank $N$ vector bundle
- effective action: $\mathrm{GL}(N, \mathbb{C})$ holomorphic Chern-Simons theory
- i.e. $F^{0,2}=F^{2,0}=0$ (stability missing: $k^{d+1} \wedge F^{1,1}=\gamma k^{d}$ )
hCS MM: stack of $n$ D1|4-branes wrapping $\mathbb{C} P^{1 \mid 4} \hookrightarrow \mathcal{P}^{3 \mid 4}$. expand Higgs-fields $\mathcal{X}_{\alpha}=\mathcal{X}_{\alpha}^{0}+\mathcal{X}_{\alpha}^{i} \eta_{i}+\mathcal{X}_{\alpha}^{i j} \eta_{i} \eta_{j}+\ldots$

$$
\begin{aligned}
{\left[\mathcal{X}_{1}^{0}, \mathcal{X}_{2}^{0}\right] } & =0 \\
{\left[\mathcal{X}_{1}^{i}, \mathcal{X}_{2}^{0}\right]+\left[\mathcal{X}_{1}^{0}, \mathcal{X}_{2}^{i}\right] } & =0, \\
\left\{\mathcal{X}_{1}^{i}, \mathcal{X}_{2}^{j}\right\}-\left\{\mathcal{X}_{1}^{j}, \mathcal{X}_{2}^{i}\right\}+\left[\mathcal{X}_{1}^{i j}, \mathcal{X}_{2}^{0}\right]+\left[\mathcal{X}_{1}^{0}, \mathcal{X}_{2}^{i j}\right] & =0,
\end{aligned}
$$

bodies $\mathcal{X}_{0}^{0}$ can be diagonalized: positions of the D14-branes
Fermionic directions are
even classically

## D-Brane Interpretation

There is an obvious interpretation of the hCS MM in terms of topological B-branes.

## B-Type Topological Branes

- D(-1)-, D1-, D3-, and D5-branes
- stack of $N$ D-branes comes with rank $N$ vector bundle
- effective action: $\mathrm{GL}(N, \mathbb{C})$ holomorphic Chern-Simons theory
- i.e. $F^{0,2}=F^{2,0}=0$ (stability missing: $k^{d+1} \wedge F^{1,1}=\gamma k^{d}$ )
hCS MM: stack of $n$ D1|4-branes wrapping $\mathbb{C} P^{1 \mid 4} \hookrightarrow \mathcal{P}^{3 \mid 4}$. expand Higgs-fields $\mathcal{X}_{\alpha}=\mathcal{X}_{\alpha}^{0}+\mathcal{X}_{\alpha}^{i} \eta_{i}+\mathcal{X}_{\alpha}^{i j} \eta_{i} \eta_{j}+\ldots$

$$
\begin{aligned}
{\left[\mathcal{X}_{1}^{0}, \mathcal{X}_{2}^{0}\right] } & =0, \\
{\left[\mathcal{X}_{1}^{i}, \mathcal{X}_{2}^{0}\right]+\left[\mathcal{X}_{1}^{0}, \mathcal{X}_{2}^{i}\right] } & =0, \\
\left\{\mathcal{X}_{1}^{i}, \mathcal{X}_{2}^{j}\right\}-\left\{\mathcal{X}_{1}^{j}, \mathcal{X}_{2}^{i}\right\}+\left[\mathcal{X}_{1}^{i j}, \mathcal{X}_{2}^{0}\right]+\left[\mathcal{X}_{1}^{0}, \mathcal{X}_{2}^{i j}\right] & =0,
\end{aligned}
$$

bodies $\mathcal{X}_{\alpha}^{0}$ can be diagonalized: positions of the D1|4-branes
Fermionic directions are

## D-Brane Interpretation

There is an obvious interpretation of the hCS MM in terms of topological B-branes.

## B-Type Topological Branes

- D(-1)-, D1-, D3-, and D5-branes
- stack of $N$ D-branes comes with rank $N$ vector bundle
- effective action: $\mathrm{GL}(N, \mathbb{C})$ holomorphic Chern-Simons theory
- i.e. $F^{0,2}=F^{2,0}=0$ (stability missing: $k^{d+1} \wedge F^{1,1}=\gamma k^{d}$ )
hCS MM: stack of $n$ D1|4-branes wrapping $\mathbb{C} P^{1 \mid 4} \hookrightarrow \mathcal{P}^{3 \mid 4}$. expand Higgs-fields $\mathcal{X}_{\alpha}=\mathcal{X}_{\alpha}^{0}+\mathcal{X}_{\alpha}^{i} \eta_{i}+\mathcal{X}_{\alpha}^{i j} \eta_{i} \eta_{j}+\ldots$

$$
\begin{aligned}
{\left[\mathcal{X}_{1}^{0}, \mathcal{X}_{2}^{0}\right] } & =0, \\
{\left[\mathcal{X}_{1}^{i}, \mathcal{X}_{2}^{0}\right]+\left[\mathcal{X}_{1}^{0}, \mathcal{X}_{2}^{i}\right] } & =0, \\
\left\{\mathcal{X}_{1}^{i}, \mathcal{X}_{2}^{j}\right\}-\left\{\mathcal{X}_{1}^{j}, \mathcal{X}_{2}^{i}\right\}+\left[\mathcal{X}_{1}^{i j}, \mathcal{X}_{2}^{0}\right]+\left[\mathcal{X}_{1}^{0}, \mathcal{X}_{2}^{i j}\right] & =0,
\end{aligned}
$$

bodies $\mathcal{X}_{\alpha}^{0}$ can be diagonalized: positions of the D1|4-branes
Fermionic directions are "smeared out" even classically.

## D-Brane Interpretation

Physical D-branes: topological D-branes + stability condition.

## D-Branes in Type IIB String Theory <br> - D(-1)-, D1-, D3-, ... branes <br> - stack of $N$ D-branes comes with rank $N$ vector bundle <br> - effective action: $\mathrm{U}(N)$ SYM reduced from 10 to $p+1$

## D-Brane Interpretation

Physical D-branes: topological D-branes + stability condition.

## D-Branes in Type IIB String Theory

- D(-1)-, D1-, D3-, ... branes
- stack of $N$ D-branes comes with rank $N$ vector bundle - effective action:


## D-Brane Interpretation

Physical D-branes: topological D-branes + stability condition.

## D-Branes in Type IIB String Theory

- D(-1)-, D1-, D3-, ... branes
- stack of $N$ D-branes comes with rank $N$ vector bundle
- effective action: $\mathrm{U}(N)$ SYM reduced from 10 to $p+1$


## D-Brane Interpretation

Physical D-branes: topological D-branes + stability condition.

## D-Branes in Type IIB String Theory

- D(-1)-, D1-, D3-, ... branes
- stack of $N$ D-branes comes with rank $N$ vector bundle
- effective action: $\mathrm{U}(N)$ SYM reduced from 10 to $p+1$
- curved spaces: $F^{0,2}=F^{2,0}=0$ and $k^{d+1} \wedge F^{1,1}=\gamma k^{d}$


## D-Brane Interpretation

Physical D-branes: topological D-branes + stability condition.

## D-Branes in Type IIB String Theory

- D(-1)-, D1-, D3-, ... branes
- stack of $N$ D-branes comes with rank $N$ vector bundle
- effective action: $\mathrm{U}(N)$ SYM reduced from 10 to $p+1$
- curved spaces: $F^{0,2}=F^{2,0}=0$ and $k^{d+1} \wedge F^{1,1}=\gamma k^{d}$
- arising Higgs fields: normal fluctuations of D-branes


## ADHM Construction and D-Brane Bound States

## There is a nice interpretation of the ADHM construction in terms of D-branes.

Bound state of D3-D(-1)-branes (D9-D5-branes + dim. reduction)

$\mathrm{D}(-1)$-D3-strings:


## ADHM Construction and D-Brane Bound States

## There is a nice interpretation of the ADHM construction in terms of D-branes.

Bound state of D3-D(-1)-branes (D9-D5-branes + dim. reduction)


## Perspective of D3-brane

D3-D3-strings + BPS condition:

D(-1)-D3-strings: $\mathcal{N}=(0,1)$ hypmult., bifund. $D$-flatness condition/ADHM eqns $\frac{i}{16 \tau^{2}} \vec{\sigma}^{\dot{\alpha}}{ }_{\dot{\beta}}\left(\bar{w}^{\beta} w_{\dot{\alpha}}+\bar{A}^{\alpha \beta} A_{\alpha \dot{\alpha}}\right)=0$

## ADHM Construction and D-Brane Bound States

## There is a nice interpretation of the ADHM construction in terms of D-branes.

Bound state of D3-D(-1)-branes (D9-D5-branes + dim. reduction)


## Perspective of D3-brane

D3-D3-strings + BPS condition: SDYM equations


## ADHM Construction and D-Brane Bound States

There is a nice interpretation of the ADHM construction in terms of D-branes.
Bound state of D3-D(-1)-branes (D9-D5-branes + dim. reduction)


## Perspective of D3-brane

D3-D3-strings + BPS condition: SDYM equations

$$
\mathrm{D}(-1) \text {-brane: instanton, nontrivial } c h_{2}
$$

## ADHM Construction and D-Brane Bound States

There is a nice interpretation of the ADHM construction in terms of D-branes.
Bound state of D3-D(-1)-branes (D9-D5-branes + dim. reduction)


## Perspective of D3-brane

D3-D3-strings + BPS condition: SDYM equations
D(-1)-brane: instanton, nontrivial $c h_{2}$

## Perspective of $D(-1)$-brane

$D(-1)-D(-1)$-strings:
$\mathcal{N}=(0,1)$ hypmult., adj. $\left(A_{\alpha \dot{\alpha}}, \chi_{\alpha}^{i}\right)$

## ADHM Construction and D-Brane Bound States

There is a nice interpretation of the ADHM construction in terms of D-branes.
Bound state of D3-D(-1)-branes (D9-D5-branes + dim. reduction)


## Perspective of D3-brane

D3-D3-strings + BPS condition:
SDYM equations
D(-1)-brane: instanton, nontrivial $c h_{2}$

## Perspective of $D(-1)$-brane

D(-1)-D(-1)-strings:
$\mathcal{N}=(0,1)$ hypmult., adj. $\left(A_{\alpha \dot{\alpha}}, \chi_{\alpha}^{i}\right)$
D(-1)-D3-strings:
$\mathcal{N}=(0,1)$ hypmult., bifund. $\left(w_{\dot{\alpha}}, \psi^{i}\right)$

Witten, hep-th/9510135,

## ADHM Construction and D-Brane Bound States

There is a nice interpretation of the ADHM construction in terms of D-branes.
Bound state of D3-D(-1)-branes (D9-D5-branes + dim. reduction)


## Perspective of D3-brane

D3-D3-strings + BPS condition:
SDYM equations
$\mathrm{D}(-1)$-brane: instanton, nontrivial $\mathrm{ch}_{2}$

## Perspective of $D(-1)$-brane

$D(-1)-D(-1)$-strings:
$\mathcal{N}=(0,1)$ hypmult., adj. $\left(A_{\alpha \dot{\alpha}}, \chi_{\alpha}^{i}\right)$
D(-1)-D3-strings:
$\mathcal{N}=(0,1)$ hypmult., bifund. $\left(w_{\dot{\alpha}}, \psi^{i}\right)$
$D$-flatness condition/ADHM eqns.:
$\frac{\mathrm{i}}{16 \pi^{2}} \vec{\sigma}^{\dot{\alpha}}{ }_{\dot{\beta}}\left(\bar{w}^{\dot{\beta}} w_{\dot{\alpha}}+\bar{A}^{\alpha \dot{\beta}} A_{\alpha \dot{\alpha}}\right)=0$

Witten, hep-th/9510135, Douglas, hep-th/9512077, 兰.

## ADHM and the SDYM Matrix Model

The SDYM Matrix Model is almost equivalent to the ADHM equations.

- Perspective of $\mathrm{D}(-1)$-branes
- Supersymmetrically extend ADHM eqns.:



## ADHM and the SDYM Matrix Model

The SDYM Matrix Model is almost equivalent to the ADHM equations.

- Perspective of $D(-1)$-branes
- Supersymmetrically extend ADHM eqns.:

$$
A_{\alpha \dot{\alpha}} \rightarrow A_{\alpha \dot{\alpha}}+\eta_{\dot{\alpha}}^{i} \chi_{i \alpha} \text { and } w_{\dot{\alpha}} \rightarrow w_{\dot{\alpha}}+\eta_{\dot{\alpha}}^{i} \psi_{i}
$$



## ADHM and the SDYM Matrix Model

The SDYM Matrix Model is almost equivalent to the ADHM equations.

- Perspective of $D(-1)$-branes
- Supersymmetrically extend ADHM eqns.:
$A_{\alpha \dot{\alpha}} \rightarrow A_{\alpha \dot{\alpha}}+\eta_{\dot{\alpha}}^{i} \chi_{i \alpha}$ and $w_{\dot{\alpha}} \rightarrow w_{\dot{\alpha}}+\eta_{\dot{\alpha}}^{i} \psi_{i}$
- Drop the $D(-1)$-D3-strings, i.e. $w_{\dot{\alpha}} \stackrel{!}{=} 0$



## ADHM and the SDYM Matrix Model

The SDYM Matrix Model is almost equivalent to the ADHM equations.

- Perspective of $D(-1)$-branes
- Supersymmetrically extend ADHM eqns.:

$$
A_{\alpha \dot{\alpha}} \rightarrow A_{\alpha \dot{\alpha}}+\eta_{\dot{\alpha}}^{i} \chi_{i \alpha} \text { and } w_{\dot{\alpha}} \rightarrow w_{\dot{\alpha}}+\eta_{\dot{\alpha}}^{i} \psi_{i}
$$

- Drop the $\mathrm{D}(-1)$-D3-strings, i.e. $w_{\dot{\alpha}} \stackrel{!}{=} 0$
- $\Rightarrow$ SDYM MM equations



## ADHM and the SDYM Matrix Model

The SDYM Matrix Model is almost equivalent to the ADHM equations.

- Perspective of $D(-1)$-branes
- Supersymmetrically extend ADHM eqns.:

$$
A_{\alpha \dot{\alpha}} \rightarrow A_{\alpha \dot{\alpha}}+\eta_{\dot{\alpha}}^{i} \chi_{i \alpha} \text { and } w_{\dot{\alpha}} \rightarrow w_{\dot{\alpha}}+\eta_{\dot{\alpha}}^{i} \psi_{i}
$$

- Drop the $\mathrm{D}(-1)$-D3-strings, i.e. $w_{\dot{\alpha}} \stackrel{!}{=} 0$
- $\Rightarrow$ SDYM MM equations
- How to obtain the full picture?



## ADHM and the SDYM Matrix Model

The SDYM Matrix Model is almost equivalent to the ADHM equations.

- Perspective of $\mathrm{D}(-1)$-branes
- Supersymmetrically extend ADHM eqns.:
$A_{\alpha \dot{\alpha}} \rightarrow A_{\alpha \dot{\alpha}}+\eta_{\dot{\alpha}}^{i} \chi_{i \alpha}$ and $w_{\dot{\alpha}} \rightarrow w_{\dot{\alpha}}+\eta_{\dot{\alpha}}^{i} \psi_{i}$
- Drop the $D(-1)$-D3-strings, i.e. $w_{\dot{\alpha}} \stackrel{!}{=} 0$
- $\Rightarrow$ SDYM MM equations
- How to obtain the full picture?
- Incorporate $\mathrm{D}(-1)$-D3-strings in MM in hCS: D1-D5-strings.



## ADHM and the Extended Matrix Models

The hCS MM can be extended to be equivalent to the ADHM equations.

## Extended action

$$
S_{\mathrm{ext}}=S_{\mathrm{hCS} \mathrm{MM}}+\int_{\mathbb{C} P_{\mathrm{ch}}^{1}} \Omega_{\mathrm{red}} \wedge \operatorname{tr}\left(\beta \bar{\partial} \alpha+\beta \mathcal{A}_{\mathbb{C} P^{1}}^{0,1} \alpha\right)
$$

$\square$

## ADHM and the Extended Matrix Models

The hCS MM can be extended to be equivalent to the ADHM equations.

## Extended action

$$
S_{\mathrm{ext}}=S_{\mathrm{hCS} \mathrm{MM}}+\int_{\mathbb{C} P_{\mathrm{ch}}^{1}} \Omega_{\mathrm{red}} \wedge \operatorname{tr}\left(\beta \bar{\partial} \alpha+\beta \mathcal{A}_{\mathbb{C} P^{1}}^{0,1} \alpha\right)
$$

$\alpha=\beta^{*}$, sections of $\mathcal{O}(1)$, fund. and antifund. of $\operatorname{GL}(N, \mathbb{C})$

## ADHM and the Extended Matrix Models

The hCS MM can be extended to be equivalent to the ADHM equations.

## Extended action

$$
S_{\mathrm{ext}}=S_{\mathrm{hCS} \mathrm{MM}}+\int_{\mathbb{C} P_{\mathrm{ch}}^{1}} \Omega_{\mathrm{red}} \wedge \operatorname{tr}\left(\beta \bar{\partial} \alpha+\beta \mathcal{A}_{\mathbb{C} P^{1}}^{0,1} \alpha\right)
$$

$\alpha=\beta^{*}$, sections of $\mathcal{O}(1)$, fund. and antifund. of $\operatorname{GL}(N, \mathbb{C})$ ( $\alpha$ and $\beta$ bosons not fermions as in Witten, hep-th/0312171)

## ADHM and the Extended Matrix Models

The hCS MM can be extended to be equivalent to the ADHM equations.

## Extended action

$$
S_{\mathrm{ext}}=S_{\mathrm{hCS} \mathrm{MM}}+\int_{\mathbb{C} P_{\mathrm{ch}}^{1}} \Omega_{\mathrm{red}} \wedge \operatorname{tr}\left(\beta \bar{\partial} \alpha+\beta \mathcal{A}_{\mathbb{C} P^{1}}^{0,1} \alpha\right)
$$

$\alpha=\beta^{*}$, sections of $\mathcal{O}(1)$, fund. and antifund. of $\operatorname{GL}(N, \mathbb{C})$ ( $\alpha$ and $\beta$ bosons not fermions as in Witten, hep-th/0312171)

## Equations of motion:

$$
\begin{gathered}
\bar{\partial} \mathcal{X}_{\alpha}+\left[\mathcal{A}_{\mathbb{C} P^{1}}^{0,1}, \mathcal{X}_{\alpha}\right]=0 \\
{\left[\mathcal{X}_{1}, \mathcal{X}_{2}\right]+\alpha \beta=0} \\
\bar{\partial} \alpha+\mathcal{A}_{\mathbb{C} P^{1}}^{0,1} \alpha=0 \quad \text { and } \quad \bar{\partial} \beta+\beta \mathcal{A}_{\mathbb{C} P^{1}}^{0,1}=0
\end{gathered}
$$

## ADHM and the Extended Matrix Models

Again, the equivalence can be made manifest by a field expansion.

## Extended Penrose-Ward transform explicitly

$$
\begin{aligned}
\beta & =\lambda^{\dot{\alpha}} w_{\dot{\alpha}}+\psi^{i} \eta_{i}+\gamma \frac{1}{2!} \eta_{i} \eta_{j} \hat{\lambda}^{\dot{\alpha}} \rho_{\dot{\alpha}}^{i j}+\gamma^{2} \frac{1}{3!} \eta_{i} \eta_{j} \eta_{k} \hat{\lambda}^{\dot{\alpha}} \hat{\lambda}^{\dot{\beta}} \sigma_{\dot{\alpha} \dot{\beta}}^{i j k}+\ldots \\
\alpha & =\lambda^{\dot{\alpha}} \varepsilon_{\dot{\alpha} \dot{\beta}} \bar{w}^{\dot{\beta}}+\ldots
\end{aligned}
$$

Truncate the SDYM field content ( $\phi^{i j}, \tilde{\chi}_{\dot{\alpha}}^{i j k}, G_{\dot{\alpha} \dot{\beta}}^{i j k l}=0$ ):

$$
\begin{aligned}
& \text { Higher fields in extension also vanish } \\
& \text { This expansion and the hCS MM equations yield } \\
& \text { the full ADHM-equations. }
\end{aligned}
$$

## ADHM and the Extended Matrix Models

Again, the equivalence can be made manifest by a field expansion.

## Extended Penrose-Ward transform explicitly

$$
\begin{aligned}
\beta & =\lambda^{\dot{\alpha}} w_{\dot{\alpha}}+\psi^{i} \eta_{i}+\gamma \frac{1}{2!} \eta_{i} \eta_{j} \hat{\lambda}^{\dot{\alpha}} \rho_{\dot{\alpha}}^{i j}+\gamma^{2} \frac{1}{3!} \eta_{i} \eta_{j} \eta_{k} \hat{\lambda}^{\dot{\alpha}} \hat{\lambda}^{\dot{\beta}} \sigma_{\dot{\alpha} \dot{\beta}}^{i j k}+\ldots \\
\alpha & =\lambda^{\dot{\alpha}} \varepsilon_{\dot{\alpha} \dot{\beta}} \bar{w}^{\dot{\beta}}+\ldots
\end{aligned}
$$

Truncate the SDYM field content ( $\phi^{i j}, \tilde{\chi}_{\dot{\alpha}}^{i j k}, G_{\dot{\alpha} \dot{\beta}}^{i j k l}=0$ ):

- Higher fields in extension also vanish

[^2]
## ADHM and the Extended Matrix Models

Again, the equivalence can be made manifest by a field expansion.

## Extended Penrose-Ward transform explicitly

$$
\begin{aligned}
\beta & =\lambda^{\dot{\alpha}} w_{\dot{\alpha}}+\psi^{i} \eta_{i}+\gamma \frac{1}{2!} \eta_{i} \eta_{j} \hat{\lambda}^{\dot{\alpha}} \rho_{\dot{\alpha}}^{i j}+\gamma^{2} \frac{1}{3!} \eta_{i} \eta_{j} \eta_{k} \hat{\lambda}^{\dot{\alpha}} \hat{\lambda}^{\dot{\beta}} \sigma_{\dot{\alpha} \dot{\beta}}^{i j k}+\ldots \\
\alpha & =\lambda^{\dot{\alpha}} \varepsilon_{\dot{\alpha} \dot{\beta}} \bar{w}^{\dot{\beta}}+\ldots
\end{aligned}
$$

Truncate the SDYM field content ( $\phi^{i j}, \tilde{\chi}_{\dot{\alpha}}^{i j k}, G_{\dot{\alpha} \dot{\beta}}^{i j k l}=0$ ):

- Higher fields in extension also vanish
- This expansion and the hCS MM equations yield the full ADHM-equations.
Conclusions:


## ADHM and the Extended Matrix Models

Again, the equivalence can be made manifest by a field expansion.

## Extended Penrose-Ward transform explicitly

$$
\begin{aligned}
\beta & =\lambda^{\dot{\alpha}} w_{\dot{\alpha}}+\psi^{i} \eta_{i}+\gamma \frac{1}{2!} \eta_{i} \eta_{j} \hat{\lambda}^{\dot{\alpha}} \rho_{\dot{\alpha}}^{i j}+\gamma^{2} \frac{1}{3!} \eta_{i} \eta_{j} \eta_{k} \hat{\lambda}^{\dot{\alpha}} \hat{\lambda}^{\dot{\beta}} \sigma_{\dot{\alpha} \dot{\beta}}^{i j k}+\ldots \\
\alpha & =\lambda^{\dot{\alpha}} \varepsilon_{\dot{\alpha} \dot{\beta}} \bar{w}^{\dot{\beta}}+\ldots
\end{aligned}
$$

Truncate the SDYM field content ( $\phi^{i j}, \tilde{\chi}_{\dot{\alpha}}^{i j k}, G_{\dot{\alpha} \dot{\beta}}^{i j k l}=0$ ):

- Higher fields in extension also vanish
- This expansion and the hCS MM equations yield the full ADHM-equations.
Conclusions:


## ADHM and the Extended Matrix Models

Again, the equivalence can be made manifest by a field expansion.

## Extended Penrose-Ward transform explicitly

$$
\begin{aligned}
\beta & =\lambda^{\dot{\alpha}} w_{\dot{\alpha}}+\psi^{i} \eta_{i}+\gamma \frac{1}{2!} \eta_{i} \eta_{j} \hat{\lambda}^{\dot{\alpha}} \rho_{\dot{\alpha}}^{i j}+\gamma^{2} \frac{1}{3!} \eta_{i} \eta_{j} \eta_{k} \hat{\lambda}^{\dot{\alpha}} \hat{\lambda}^{\dot{\beta}} \sigma_{\dot{\alpha} \dot{\beta}}^{i j k}+\ldots \\
\alpha & =\lambda^{\dot{\alpha}} \varepsilon_{\dot{\alpha} \dot{\beta}} \bar{w}^{\dot{\beta}}+\ldots
\end{aligned}
$$

Truncate the SDYM field content ( $\phi^{i j}, \tilde{\chi}_{\dot{\alpha}}^{i j k}, G_{\dot{\alpha} \dot{\beta}}^{i j k l}=0$ ):

- Higher fields in extension also vanish
- This expansion and the hCS MM equations yield the full ADHM-equations.
Conclusions:
- Extended hCS MM dual to full hCS (as SDYM $\leftrightarrow A D H M)$.
- D(-1)-D3-brane bound states correspond to
topological D1-D5-brane systems!


## ADHM and the Extended Matrix Models

Again, the equivalence can be made manifest by a field expansion.

Extended Penrose-Ward transform explicitly

$$
\begin{aligned}
\beta & =\lambda^{\dot{\alpha}} w_{\dot{\alpha}}+\psi^{i} \eta_{i}+\gamma \frac{1}{2!} \eta_{i} \eta_{j} \hat{\lambda}^{\dot{\alpha}} \rho_{\dot{\alpha}}^{i j}+\gamma^{2} \frac{1}{3!} \eta_{i} \eta_{j} \eta_{k} \hat{\lambda}^{\dot{\alpha}} \hat{\lambda}^{\dot{\beta}} \sigma_{\dot{\alpha} \dot{\beta}}^{i j k}+\ldots \\
\alpha & =\lambda^{\dot{\alpha}} \varepsilon_{\dot{\alpha} \dot{\beta}} \bar{w}^{\dot{\beta}}+\ldots
\end{aligned}
$$

Truncate the SDYM field content ( $\phi^{i j}, \tilde{\chi}_{\dot{\alpha}}^{i j k}, G_{\dot{\alpha} \dot{\beta}}^{i j k l}=0$ ):

- Higher fields in extension also vanish
- This expansion and the hCS MM equations yield the full ADHM-equations.
Conclusions:
- Extended hCS MM dual to full hCS (as SDYM $\leftrightarrow A D H M$ ).
- $\mathrm{D}(-1)$-D3-brane bound states correspond to topological D1-D5-brane systems!


## Dimensional Reductions and the Nahm equations

Also for the Nahm-Equations, there is a nice interpretation in terms of D-branes.
Reduction of SDYM eqns. $\mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ : Bogomolny monopole eqns.
(static) pair of D3 branes with D1-branes in normal directions


D1-D3-strings: Nahm boundary conditions

## Dimensional Reductions and the Nahm equations

Also for the Nahm-Equations, there is a nice interpretation in terms of D-branes.
Reduction of SDYM eqns. $\mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ : Bogomolny monopole eqns. (static) pair of D3 branes with D1-branes in normal directions

static D3-D3-strings + BPS cond
Bogomolny equations (three-dimensional SDYM) D1-branes: monopoles

## D1-D3-strings: Nahm boundary conditions

Diaconescu, hep-th/9608163

## Dimensional Reductions and the Nahm equations

Also for the Nahm-Equations, there is a nice interpretation in terms of D-branes.
Reduction of SDYM eqns. $\mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ : Bogomolny monopole eqns. (static) pair of D3 branes with D1-branes in normal directions


## Perspective of D3-brane

 static D3-D3-strings + BPS cond.:D1-D3-strings: Nahm boundary conditions

Diaconescu, hep-th/9608163

## Dimensional Reductions and the Nahm equations

 Also for the Nahm-Equations, there is a nice interpretation in terms of D-branes.Reduction of SDYM eqns. $\mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ : Bogomolny monopole eqns. (static) pair of D3 branes with D1-branes in normal directions


## Perspective of D3-brane

 static D3-D3-strings + BPS cond.: Bogomolny equations (three-dimensional SDYM)[^3]
## Dimensional Reductions and the Nahm equations

 Also for the Nahm-Equations, there is a nice interpretation in terms of D-branes.Reduction of SDYM eqns. $\mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ : Bogomolny monopole eqns. (static) pair of D3 branes with D1-branes in normal directions


## Perspective of D3-brane

 static D3-D3-strings + BPS cond.: Bogomolny equations (three-dimensional SDYM)D1-branes: monopoles

[^4]
## Dimensional Reductions and the Nahm equations

 Also for the Nahm-Equations, there is a nice interpretation in terms of D-branes.Reduction of SDYM eqns. $\mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ : Bogomolny monopole eqns. (static) pair of D3 branes with D1-branes in normal directions


## Perspective of D3-brane

 static D3-D3-strings + BPS cond.: Bogomolny equations (three-dimensional SDYM)D1-branes: monopoles

## Perspective of D1-brane

D1-D1-strings: Nahm equations (one-dimensional SDYM)

## Dimensional Reductions and the Nahm equations

 Also for the Nahm-Equations, there is a nice interpretation in terms of D-branes.Reduction of SDYM eqns. $\mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ : Bogomolny monopole eqns. (static) pair of D3 branes with D1-branes in normal directions


## Perspective of D3-brane

 static D3-D3-strings + BPS cond.: Bogomolny equations (three-dimensional SDYM)D1-branes: monopoles

## Perspective of D1-brane

D1-D1-strings: Nahm equations (one-dimensional SDYM)
D1-D3-strings: Nahm boundary conditions

## Diaconescu, hep-th/9608163

## Dimensional Reductions and the Nahm equations

For treating the Nahm eqns., one has to change slightly the geometry of twistor space.

## Recall

All our MM considerations are based upon
$\mathcal{P}^{3 \mid \ldots}=\mathcal{O}(1) \oplus \mathcal{O}(1) \oplus \ldots \rightarrow \mathbb{C} P^{1}$ and its dim. red. $\mathbb{C} P^{1 \mid 4}$.

## Dimensional Reductions and the Nahm equations

For treating the Nahm eqns., one has to change slightly the geometry of twistor space.

## Recall

All our MM considerations are based upon
$\mathcal{P}^{3 \mid \ldots}=\mathcal{O}(1) \oplus \mathcal{O}(1) \oplus \ldots \rightarrow \mathbb{C} P^{1}$ and its dim. red. $\mathbb{C} P^{1 \mid 4}$.
The twistor space for the Bogomolny equations is $\mathcal{O}(2) \rightarrow \mathbb{C} P^{1}$.

Start from
Restrict sections


## Dimensional Reductions and the Nahm equations

For treating the Nahm eqns., one has to change slightly the geometry of twistor space.

## Recall

All our MM considerations are based upon $\mathcal{P}^{3 \mid \ldots}=\mathcal{O}(1) \oplus \mathcal{O}(1) \oplus \ldots \rightarrow \mathbb{C} P^{1}$ and its dim. red. $\mathbb{C} P^{1 \mid 4}$.
The twistor space for the Bogomolny equations is $\mathcal{O}(2) \rightarrow \mathbb{C} P^{1}$.

## New Calabi-Yau supermanifold

Start from $\mathcal{Q}^{3 \mid 4}=\mathcal{O}(2) \oplus \mathcal{O}(0) \oplus \mathbb{C}^{4} \otimes \Pi \mathcal{O}(1)$

## Dimensional Reductions and the Nahm equations

For treating the Nahm eqns., one has to change slightly the geometry of twistor space.

## Recall

All our MM considerations are based upon $\mathcal{P}^{3 \mid \ldots}=\mathcal{O}(1) \oplus \mathcal{O}(1) \oplus \ldots \rightarrow \mathbb{C} P^{1}$ and its dim. red. $\mathbb{C} P^{1 \mid 4}$.
The twistor space for the Bogomolny equations is $\mathcal{O}(2) \rightarrow \mathbb{C} P^{1}$.

## New Calabi-Yau supermanifold

Start from $\mathcal{Q}^{3 \mid 4}=\mathcal{O}(2) \oplus \mathcal{O}(0) \oplus \mathbb{C}^{4} \otimes \Pi \mathcal{O}(1)$
Restrict sections $\hat{\mathcal{Q}}^{3 \mid 4}: w^{1}=y^{\dot{\alpha} \dot{\beta}} \lambda_{\dot{\alpha}} \lambda_{\dot{\beta}}, w^{2}=y^{i \dot{2}}$

## Dimensional Reductions and the Nahm equations

For treating the Nahm eqns., one has to change slightly the geometry of twistor space.

## Recall

All our MM considerations are based upon $\mathcal{P}^{3 \mid \ldots}=\mathcal{O}(1) \oplus \mathcal{O}(1) \oplus \ldots \rightarrow \mathbb{C} P^{1}$ and its dim. red. $\mathbb{C} P^{1 \mid 4}$.
The twistor space for the Bogomolny equations is $\mathcal{O}(2) \rightarrow \mathbb{C} P^{1}$.

## New Calabi-Yau supermanifold

Start from $\mathcal{Q}^{3 \mid 4}=\mathcal{O}(2) \oplus \mathcal{O}(0) \oplus \mathbb{C}^{4} \otimes \Pi \mathcal{O}(1)$
Restrict sections $\hat{\mathcal{Q}}^{3 \mid 4}: w^{1}=y^{\dot{\alpha} \dot{\beta}} \lambda_{\dot{\alpha}} \lambda_{\dot{\beta}}, w^{2}=y^{i \dot{2}}$

Dimensional reductions

$$
\hat{\mathcal{Q}}^{3 \mid 4} \rightarrow\left\{\begin{array}{l}
\mathcal{P}^{\left.2\right|^{4}}:=\mathcal{O}(2) \oplus \mathbb{C}^{4} \otimes \Pi \mathcal{O}(1) \\
\hat{\mathcal{Q}}^{2 \mid 4}:=\mathcal{O}(0) \oplus \mathbb{C}^{4} \otimes \Pi \mathcal{O}(1) \\
\mathbb{C} P^{1 \mid 4}:=\mathbb{C}^{4} \otimes \Pi \mathcal{O}(1)
\end{array}\right.
$$

## Dimensional Reductions and the Nahm equations

Different dimensional reductions yield the various field theories in the Nahm construction.

$$
\hat{\mathcal{Q}}^{3 \mid 4}=\left.\mathcal{O}(2) \oplus \mathcal{O}(0) \oplus \mathbb{C}^{4} \otimes \Pi \mathcal{O}(1)\right|_{\mathrm{res}}
$$

Upon imposing a reality condition, hCS theory turns into partially hCS theory ( $\rightarrow$ CR manifolds, etc.): Equiv. to Bogomolny eqns. Popov, CS, Wolf, JHEP 10 (2005) 058
hCS equations from a
equivalent to Bogomolny equations
hCS equations from a
equivalent to Nahm equat ions

## Dimensional Reductions and the Nahm equations

Different dimensional reductions yield the various field theories in the Nahm construction.

$$
\hat{\mathcal{Q}}^{3 \mid 4}=\left.\mathcal{O}(2) \oplus \mathcal{O}(0) \oplus \mathbb{C}^{4} \otimes \Pi \mathcal{O}(1)\right|_{\mathrm{res}}
$$

Upon imposing a reality condition, hCS theory turns into partially hCS theory ( $\rightarrow$ CR manifolds, etc.): Equiv. to Bogomolny eqns.

$$
\text { Popov, CS, Wolf, JHEP } 10 \text { (2005) } 058
$$

$$
\mathcal{P}^{2 \mid 4}:=\mathcal{O}(2) \oplus \mathbb{C}^{4} \otimes \Pi \mathcal{O}(1)
$$

hCS equations from a holomorphic BF-theory: $\int \Omega \wedge B F^{0,2}$ equivalent to Bogomolny equations
hCS equations from a
equivalent to Nahm equations
$\Pi \mathcal{O}(1)$ : again hCS and SDYM matrix models

## Dimensional Reductions and the Nahm equations

Different dimensional reductions yield the various field theories in the Nahm construction.
$\hat{\mathcal{Q}}^{3 \mid 4}=\left.\mathcal{O}(2) \oplus \mathcal{O}(0) \oplus \mathbb{C}^{4} \otimes \Pi \mathcal{O}(1)\right|_{\text {res }}$
Upon imposing a reality condition, hCS theory turns into partially hCS theory ( $\rightarrow$ CR manifolds, etc.): Equiv. to Bogomolny eqns.

$$
\text { Popov, CS, Wolf, JHEP } 10 \text { (2005) } 058
$$

$$
\mathcal{P}^{2 / 4}:=\mathcal{O}(2) \oplus \mathbb{C}^{4} \otimes \Pi \mathcal{O}(1)
$$

hCS equations from a holomorphic BF-theory: $\int \Omega \wedge B F^{0,2}$ equivalent to Bogomolny equations

$$
\hat{\mathcal{Q}}^{2 \mid 4}:=\mathcal{O}(0) \oplus \mathbb{C}^{4} \otimes \Pi \mathcal{O}(1)
$$

hCS equations from a holomorphic BF-theory: $\int \Omega \wedge B F^{0,2}$ equivalent to Nahm equations

## Dimensional Reductions and the Nahm equations

Different dimensional reductions yield the various field theories in the Nahm construction.
$\hat{\mathcal{Q}}^{3 \mid 4}=\left.\mathcal{O}(2) \oplus \mathcal{O}(0) \oplus \mathbb{C}^{4} \otimes \Pi \mathcal{O}(1)\right|_{\text {res }}$
Upon imposing a reality condition, hCS theory turns into partially hCS theory ( $\rightarrow$ CR manifolds, etc.): Equiv. to Bogomolny eqns.

$$
\text { Popov, CS, Wolf, JHEP } 10 \text { (2005) } 058
$$

$$
\mathcal{P}^{2 \mid 4}:=\mathcal{O}(2) \oplus \mathbb{C}^{4} \otimes \Pi \mathcal{O}(1)
$$

hCS equations from a holomorphic BF-theory: $\int \Omega \wedge B F^{0,2}$ equivalent to Bogomolny equations

$$
\hat{\mathcal{Q}}^{2 \mid 4}:=\mathcal{O}(0) \oplus \mathbb{C}^{4} \otimes \Pi \mathcal{O}(1)
$$

hCS equations from a holomorphic BF-theory: $\int \Omega \wedge B F^{0,2}$ equivalent to Nahm equations
$\mathbb{C} P^{1 \mid 4}:=\mathbb{C}^{4} \otimes \Pi \mathcal{O}(1):$ again hCS and SDYM matrix models

## D-Brane correspondences

We find a list of correspondences between topological and physical D-branes.

Summing up, we have

$$
\text { D5|4-branes in } \mathcal{P}^{3 \mid 4} \leftrightarrow \mathrm{D} 3 \mid 8 \text {-branes in } \mathbb{R}^{4 \mid 8}
$$

## D-Brane correspondences

We find a list of correspondences between topological and physical D-branes.

Summing up, we have

$$
\text { D5|4-branes in } \mathcal{P}^{3 \mid 4} \leftrightarrow \mathrm{D} 3 \mid 8 \text {-branes in } \mathbb{R}^{4 \mid 8}
$$

D3|4-branes wr. $\mathcal{P}^{2 \mid 4}$ in $\mathcal{P}^{3 \mid 4}$ or $\hat{\mathcal{Q}}^{3 \mid 4} \leftrightarrow$ static D3|8-branes in $\mathbb{R}^{4 \mid 8}$

## D-Brane correspondences

We find a list of correspondences between topological and physical D-branes.

Summing up, we have

$$
\text { D5|4-branes in } \mathcal{P}^{3 \mid 4} \leftrightarrow \mathrm{D} 3 \mid 8 \text {-branes in } \mathbb{R}^{4 \mid 8}
$$

D3|4-branes wr. $\mathcal{P}^{2 \mid 4}$ in $\mathcal{P}^{3 \mid 4}$ or $\hat{\mathcal{Q}}^{3 \mid 4} \leftrightarrow$ static D3|8-branes in $\mathbb{R}^{4 \mid 8}$ D3|4-branes wr. $\hat{\mathcal{Q}}^{2 \mid 4}$ in $\hat{\mathcal{Q}}^{3 \mid 4} \leftrightarrow$ static D1|8-branes in $\mathbb{R}^{4 \mid 8}$
straightforward: add diagonal line bundle $\mathcal{D}^{2 \mid 4}$, defined by $\omega^{1}=\omega^{2}$

## D-Brane correspondences

We find a list of correspondences between topological and physical D-branes.

Summing up, we have

$$
\text { D5|4-branes in } \mathcal{P}^{3 \mid 4} \leftrightarrow \mathrm{D} 3 \mid 8 \text {-branes in } \mathbb{R}^{4 \mid 8}
$$

D3|4-branes wr. $\mathcal{P}^{2 \mid 4}$ in $\mathcal{P}^{3 \mid 4}$ or $\hat{\mathcal{Q}}^{3 \mid 4} \leftrightarrow$ static D3|8-branes in $\mathbb{R}^{4 \mid 8}$
D3|4-branes wr. $\hat{\mathcal{Q}}^{2 \mid 4}$ in $\hat{\mathcal{Q}}^{3 \mid 4} \leftrightarrow$ static D1|8-branes in $\mathbb{R}^{4 \mid 8}$
D1|4-branes in $\mathcal{P}^{3 \mid 4} \leftrightarrow \mathrm{D}(-1 \mid 8)$-branes in $\mathbb{R}^{4 \mid 8}$

## D-Brane correspondences

We find a list of correspondences between topological and physical D-branes.

Summing up, we have

$$
\text { D5|4-branes in } \mathcal{P}^{3 \mid 4} \leftrightarrow \mathrm{D} 3 \mid 8 \text {-branes in } \mathbb{R}^{4 \mid 8}
$$

D3|4-branes wr. $\mathcal{P}^{2 \mid 4}$ in $\mathcal{P}^{3 \mid 4}$ or $\hat{\mathcal{Q}}^{3 \mid 4} \leftrightarrow$ static D3|8-branes in $\mathbb{R}^{4 \mid 8}$ D3|4-branes wr. $\hat{\mathcal{Q}}^{2 \mid 4}$ in $\hat{\mathcal{Q}}^{3 \mid 4} \leftrightarrow$ static D1|8-branes in $\mathbb{R}^{4 \mid 8}$

$$
\text { D1|4-branes in } \mathcal{P}^{3 \mid 4} \leftrightarrow D(-1 \mid 8) \text {-branes in } \mathbb{R}^{4 \mid 8}
$$

straightforward: add diagonal line bundle $\mathcal{D}^{2 \mid 4}$, defined by $\omega^{1}=\omega^{2}$
$\qquad$

- Branes extend only into chiral fermionic dimensions
- Branes appear in bound state configurations.


## D-Brane correspondences

We find a list of correspondences between topological and physical D-branes.

Summing up, we have

$$
\text { D5|4-branes in } \mathcal{P}^{3 \mid 4} \leftrightarrow \mathrm{D} 3 \mid 8 \text {-branes in } \mathbb{R}^{4 \mid 8}
$$

D3|4-branes wr. $\mathcal{P}^{2 \mid 4}$ in $\mathcal{P}^{3 \mid 4}$ or $\hat{\mathcal{Q}}^{3 \mid 4} \leftrightarrow$ static D3|8-branes in $\mathbb{R}^{4 \mid 8}$
D3|4-branes wr. $\hat{\mathcal{Q}}^{2 \mid 4}$ in $\hat{\mathcal{Q}}^{3 \mid 4} \leftrightarrow$ static D1|8-branes in $\mathbb{R}^{4 \mid 8}$
D1|4-branes in $\mathcal{P}^{3 \mid 4} \leftrightarrow \mathrm{D}(-1 \mid 8)$-branes in $\mathbb{R}^{4 \mid 8}$
straightforward: add diagonal line bundle $\mathcal{D}^{2 \mid 4}$, defined by $\omega^{1}=\omega^{2}$ D3|4-branes wrapping $\mathcal{D}^{2 \mid 4}$ in $\mathcal{P}^{3 \mid 4} \leftrightarrow$ D1|8-branes in $\mathbb{R}^{4 \mid 8}$.

- Branes extend only into chiral fermionic dimensions
- Branes appear in bound state configurations.


## D-Brane correspondences

We find a list of correspondences between topological and physical D-branes.

Summing up, we have

$$
\text { D5|4-branes in } \mathcal{P}^{3 \mid 4} \leftrightarrow \mathrm{D} 3 \mid 8 \text {-branes in } \mathbb{R}^{4 \mid 8}
$$

D3|4-branes wr. $\mathcal{P}^{2 \mid 4}$ in $\mathcal{P}^{3 \mid 4}$ or $\hat{\mathcal{Q}}^{3 \mid 4} \leftrightarrow$ static D3|8-branes in $\mathbb{R}^{4 \mid 8}$
D3|4-branes wr. $\hat{\mathcal{Q}}^{2 \mid 4}$ in $\hat{\mathcal{Q}}^{3 \mid 4} \leftrightarrow$ static D1|8-branes in $\mathbb{R}^{4 \mid 8}$
D1|4-branes in $\mathcal{P}^{3 \mid 4} \leftrightarrow \mathrm{D}(-1 \mid 8)$-branes in $\mathbb{R}^{4 \mid 8}$
straightforward: add diagonal line bundle $\mathcal{D}^{2 \mid 4}$, defined by $\omega^{1}=\omega^{2}$ D3|4-branes wrapping $\mathcal{D}^{2 \mid 4}$ in $\mathcal{P}^{3 \mid 4} \leftrightarrow$ D1|8-branes in $\mathbb{R}^{4 \mid 8}$.

Note:

- Branes extend only into chiral fermionic dimensions
- Branes appear in bound state configurations.


## D-brane configuration equivalences

We had topological-physical D-brane equivalences for ADHM and Nahm construction.


But: There are many more.

## Conclusions

Summary and Outlook

## Done:

- Definition of twistor matrix models
- Extension of the matrix models to


## Conclusions

## Summary and Outlook

## Done:

- Definition of twistor matrix models
- Extension of the matrix models to
- full ADHM-equations
- full Nahm-equations


## Conclusions

Summary and Outlook

## Done:

- Definition of twistor matrix models
- Extension of the matrix models to
- full ADHM-equations
- full Nahm-equations
- Map between topological and physical D-brane bound states

Future Directions:

- Study Nahm equations more closely


## Conclusions

Summary and Outlook

## Done:

- Definition of twistor matrix models
- Extension of the matrix models to
- full ADHM-equations
- full Nahm-equations
- Map between topological and physical D-brane bound states

Future Directions:

- Study Nahm equations more closely
- Study mirror configurations?
- Generalize to full Yang-Mills theory
- Carry over results from topological strings to physical ones (e.g. Derived Categories).


## Conclusions

Summary and Outlook

## Done:

- Definition of twistor matrix models
- Extension of the matrix models to
- full ADHM-equations
- full Nahm-equations
- Map between topological and physical D-brane bound states

Future Directions:

- Study Nahm equations more closely
- Study mirror configurations?
- Generalize to full Yang-Mills theory

Carry over results from topological strings to physical ones

## Conclusions

Summary and Outlook

Done:

- Definition of twistor matrix models
- Extension of the matrix models to
- full ADHM-equations
- full Nahm-equations
- Map between topological and physical D-brane bound states

Future Directions:

- Study Nahm equations more closely
- Study mirror configurations?
- Generalize to full Yang-Mills theory
- Carry over results from topological strings to physical ones (e.g. Derived Categories).


# Matrix Models and D-Branes in Twistor String Theory 

Christian Sämann



Dublin Institute for Advanced Studies
LMS Durham Symposium 2007

Based on:

- JHEP 0603 (2006) 002, O. Lechtenfeld and CS.


[^0]:    First Chern Class of $P^{34}$
    $T \mathbb{C} P^{1} 2, \mathcal{O}(1) 1, \Pi O(1)-1$, in total: $c_{1}=0$.
    Therefore, there exists a holomorphic measure $\Omega^{3,0 \mid 4,0}$.

[^1]:    Matrix Models
    All operators can be seen as infinite dimensiona
    $\Rightarrow$ Matrix models from SDYM and hCS theory
    explict equivalence again via field expansion.

[^2]:    Conclusions:

[^3]:    D1-D3-strings: Nahm boundary conditions

    Diaconescu, hep-th/9608163

[^4]:    D1-D3-strings: Nahm boundary conditions

    Diaconescu, hep-th/9608163

