Heterotic Twistor-Strings David Skinner, Oxford & Perimeter

Based on arXiv:0807.2276 with Lionel Mason also Katz & Sharpe hep-th/0406226; Witten hep-th/0504078; Adams, Distler & Ernebjerg hep-th/0506263 and standard twistor-string papers

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

There are a number of difficulties in understanding the twistor-string models of Witten and Berkovits, including

There are a number of difficulties in understanding the twistor-string models of Witten and Berkovits, including

- Conformal supergravity
 - Witten: arises from coupling to D-instantons
 - Berkovits: vertex operators on worldsheet boundary

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

There are a number of difficulties in understanding the twistor-string models of Witten and Berkovits, including

Conformal supergravity

- Witten: arises from coupling to D-instantons
- Berkovits: vertex operators on worldsheet boundary
- Topological strings on target supermanifold
 - $\mathbb{P}^{3|4}$ is Calabi-Yau supermanifold, with threefold body

There are a number of difficulties in understanding the twistor-string models of Witten and Berkovits, including

Conformal supergravity

- Witten: arises from coupling to D-instantons
- Berkovits: vertex operators on worldsheet boundary
- Topological strings on target supermanifold
 - $\mathbb{P}^{3|4}$ is Calabi-Yau supermanifold, with threefold body

- B-model D-instantons not completely well-defined
 - Role of D1-D1 strings?
 - Effective action for D-instantons themselves?

There are a number of difficulties in understanding the twistor-string models of Witten and Berkovits, including

Conformal supergravity

- Witten: arises from coupling to D-instantons
- Berkovits: vertex operators on worldsheet boundary
- Topological strings on target supermanifold
 - $\mathbb{P}^{3|4}$ is Calabi-Yau supermanifold, with threefold body
- B-model D-instantons not completely well-defined
 - Role of D1-D1 strings?
 - Effective action for D-instantons themselves?
- Choice of spacetime signature
 - \blacktriangleright Worldsheet boundary on $\mathbb{RP}^{3|4} \subset \mathbb{CP}^{3|4}$ in Berkovits' model

There are a number of difficulties in understanding the twistor-string models of Witten and Berkovits, including

Conformal supergravity

- Witten: arises from coupling to D-instantons
- Berkovits: vertex operators on worldsheet boundary
- Topological strings on target supermanifold
 - $\mathbb{P}^{3|4}$ is Calabi-Yau supermanifold, with threefold body
- B-model D-instantons not completely well-defined
 - Role of D1-D1 strings?
 - Effective action for D-instantons themselves?
- Choice of spacetime signature
 - \blacktriangleright Worldsheet boundary on $\mathbb{RP}^{3|4} \subset \mathbb{CP}^{3|4}$ in Berkovits' model

We'd like to understand these issues better, and also see how the Witten and Berkovits pictures are related.

Outline

(0,2) Basics

Fields & action Vertex operators Anomalies

Heterotic String Theory Coupling to YM Amplitudes

Relation to other twistor-string models Berkovits Witten

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Summary

Twisted (0,2) models

A theory of smooth maps $\Phi : \Sigma \to X$ from a closed, compact Riemann surface Σ to a complex manifold X.

Fields are worldsheet scalars $(\phi^i, \phi^{\bar{\jmath}})$ and

 $\bar{\rho}^{\bar{\jmath}} \in \Gamma(\Sigma, \phi^* \overline{T}_X) \qquad \qquad \rho^i \in \Gamma(\Sigma, K_\Sigma \otimes \phi^* T_X)$

Twisted (0,2) models

A theory of smooth maps $\Phi : \Sigma \to X$ from a closed, compact Riemann surface Σ to a complex manifold X.

Fields are worldsheet scalars $(\phi^i, \phi^{\bar{\jmath}})$ and

 $\bar{\rho}^{\bar{\jmath}} \in \Gamma(\Sigma, \phi^* \overline{T}_X) \qquad \qquad \rho^i \in \Gamma(\Sigma, \mathcal{K}_{\Sigma} \otimes \phi^* T_X)$

Susy transformations are

 $\{ \overline{Q}, \phi^i \} = 0 \qquad \qquad \{ \overline{Q}, \phi^{\overline{j}} \} = \overline{\rho}^{\overline{j}} \\ \{ \overline{Q}, \rho^i \} = \overline{\partial} \phi^i \qquad \qquad \{ \overline{Q}, \overline{\rho}^{\overline{j}} \} = 0$

and

$$\{\overline{Q}^{\dagger}, \phi^{i}\} = \rho^{i}$$
$$\{\overline{Q}^{\dagger}, \rho^{i}\} = 0$$

 $\{\overline{Q}^{\dagger}, \phi^{\bar{j}}\} = 0$ $\{\overline{Q}^{\dagger}, \bar{\rho}^{\bar{j}}\} = \overline{\partial}\phi^{\bar{j}}$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Twisted (0,2) models

A theory of smooth maps $\Phi : \Sigma \to X$ from a closed, compact Riemann surface Σ to a complex manifold X.

Fields are worldsheet scalars $(\phi^i, \phi^{\bar{\jmath}})$ and

 $\bar{\rho}^{\bar{\jmath}} \in \Gamma(\Sigma, \phi^* \overline{T}_X) \qquad \qquad \rho^i \in \Gamma(\Sigma, \mathcal{K}_{\Sigma} \otimes \phi^* T_X)$

Susy transformations are

$\{\overline{Q},\phi^i\}=0$	$\{\overline{Q},\phi^{ar{\jmath}}\}=ar{ ho}^{ar{\jmath}}$
$\{\overline{Q}, \rho^i\} = \overline{\partial}\phi^i$	$\{\overline{Q},ar{ ho}^{ar{\jmath}}\}=0$

and

$$\{\overline{Q}^{\dagger}, \phi^{i}\} = \rho^{i} \qquad \qquad \{\overline{Q}^{\dagger}, \phi^{\bar{j}}\} = 0$$
$$\{\overline{Q}^{\dagger}, \rho^{i}\} = 0 \qquad \qquad \{\overline{Q}^{\dagger}, \bar{\rho}^{\bar{j}}\} = \overline{\partial}\phi^{\bar{j}}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 \overline{Q} acts on functions of $\phi, ar{\phi}$ as the $\overline{\partial}$ operator on $\mathrm{Maps}(\Sigma, X)$

Action

The basic action is

$$\begin{split} S_0 &= \mathrm{t} \int_{\Sigma} g\left(\overline{\partial}\phi,\partial\bar{\phi}\right) - g(\rho,\nabla\bar{\rho}) + \int_{\Sigma} \phi^*\omega \\ &= \mathrm{t} \left\{\overline{Q},\int_{\Sigma} g(\rho,\partial\bar{\phi})\right\} + \int_{\Sigma} \phi^*\omega \end{split}$$

for $t \in \mathbb{R}^+$ and g a Hermitian (not pseudo-Hermitian) metric on X with $\omega(X, Y) = g(X, JY)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Action

The basic action is

$$\begin{split} S_0 &= \mathrm{t} \int_{\Sigma} g\left(\overline{\partial}\phi,\partial\bar{\phi}\right) - g(\rho,\nabla\bar{\rho}) + \int_{\Sigma} \phi^*\omega \\ &= \mathrm{t} \left\{\overline{Q},\int_{\Sigma} g(\rho,\partial\bar{\phi})\right\} + \int_{\Sigma} \phi^*\omega \end{split}$$

for $t \in \mathbb{R}^+$ and g a Hermitian (not pseudo-Hermitian) metric on X with $\omega(X, Y) = g(X, JY)$

- Action is \overline{Q} -exact \Rightarrow partition function independent of t, g
- $S_0 = -t |\overline{\partial}\phi|^2 + \text{fermions} \Rightarrow \text{localize on holomorphic maps}$
- Manifestly invariant under Q
 ; also invariant under Q

 Kähler
- ► Can generalize by coupling to B-field: ∂∂ω = 0 and ∇ has torsion determined by B

Action

The basic action is

$$\begin{split} S_0 &= \mathrm{t} \int_{\Sigma} g\left(\overline{\partial}\phi,\partial\bar{\phi}\right) - g(\rho,\nabla\bar{\rho}) + \int_{\Sigma} \phi^*\omega \\ &= \mathrm{t} \left\{\overline{Q},\int_{\Sigma} g(\rho,\partial\bar{\phi})\right\} + \int_{\Sigma} \phi^*\omega \end{split}$$

for $t \in \mathbb{R}^+$ and g a Hermitian (not pseudo-Hermitian) metric on X with $\omega(X, Y) = g(X, JY)$

- Action is \overline{Q} -exact \Rightarrow partition function independent of t, g
- $S_0 = -t |\overline{\partial}\phi|^2 + \text{fermions} \Rightarrow \text{localize on holomorphic maps}$
- Manifestly invariant under Q
 ; also invariant under Q

 Kähler
- ► Can generalize by coupling to B-field: ∂∂ω = 0 and ∇ has torsion determined by B

Coupling to a bundle

We can also couple in a holomorphic bundle $\mathcal{V} \to X$ by introducing

 $\psi^{a} \in \Gamma(\Sigma, \phi^{*}\mathcal{V})$ $r^{a} \in \Gamma(\Sigma, \overline{K}_{\Sigma} \otimes \phi^{*}\mathcal{V})$

 $ar{\psi}_{\mathsf{a}} \in \mathsf{\Gamma}(\Sigma, \mathcal{K}_{\Sigma} \otimes \phi^* \mathcal{V}^{ee}) \ ar{r}_{\mathsf{a}} \in \mathsf{\Gamma}(\Sigma, \mathcal{K}_{\Sigma} \otimes \phi^* \mathcal{V}^{ee})$

with susy transformations

$$\{\overline{Q}, \psi^a\} = 0 \qquad \{\overline{Q}, \bar{\psi}_a\} = \bar{r}_a \{\overline{Q}, r^a\} = \overline{D}\psi^a + F_{i\bar{j}\ b}\psi^b\rho^i\bar{\rho}^{\bar{j}} \qquad \{\overline{Q}, \bar{r}_a\} = \overline{\partial}\bar{\psi}_a$$

and action

$$S_{1} = \left\{ \overline{Q}, \int_{\Sigma} \bar{\psi}_{a} r^{a} \right\}$$
$$= \int_{\Sigma} \bar{\psi}_{a} \overline{D} \psi^{a} + F_{i\bar{j}}{}^{a}{}_{b} \bar{\psi}_{a} \psi^{b} \rho^{i} \bar{\rho}^{\bar{j}} + \bar{r}_{a} r^{a}$$

Total action $S_0 + S_1$ is twisted version of heterotic string on general background

Twistor theory

We could choose $X = \mathbb{P}^{3|4}$, but

 Difficult to interpret bosonic worldsheet superpartners of fermionic target coordinates

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Not clear how to promote to string theory
- Can't use D-brane to set $\overline{\psi} = 0$

Twistor theory

We could choose $X = \mathbb{P}^{3|4}$, but

- Difficult to interpret bosonic worldsheet superpartners of fermionic target coordinates
- Not clear how to promote to string theory
- Can't use D-brane to set $\overline{\psi} = 0$

Instead, we'll choose $X = \mathbb{P}^3$ and include the bundle $\mathcal{V} = \mathcal{O}(1)^{\oplus 4}$

The advantages are

- ▶ ψ is a worldsheet scalar, as it would be with $\mathbb{P}^{3|4}$ target, but $\overline{\psi}$ is a 1-form naturally on different footing
- First-order action for worldsheet fermions
- Worldsheet superpartners are auxiliary

Sheaves of chiral algebras

The antiholomorphic stress tensor $T_{\overline{z}\overline{z}} = \{\overline{Q}, \overline{G}_{\overline{z}\overline{z}}\}$, so all the antiholomorphic Virasoro generators \overline{L}_n are \overline{Q} -exact.

 $[\overline{L}_0, \mathcal{O}] = \overline{h}\mathcal{O}$, but since $\overline{L}_0 = \{\overline{Q}, \overline{G}_0\}$ we find

$$\overline{h}\mathcal{O} = \begin{bmatrix} \{\overline{Q}, \overline{G}_0\}, \mathcal{O} \end{bmatrix} = \underbrace{\{\overline{Q}, [\overline{G}_0, \mathcal{O}]\}}_{\overline{Q}\text{-exact}} + \underbrace{\{[\overline{Q}, \mathcal{O}], \overline{G}_0\}}_{= 0}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

so \overline{Q} -cohomology is trivial except at $\overline{h} = 0$.

Sheaves of chiral algebras

The antiholomorphic stress tensor $T_{\overline{z}\overline{z}} = \{\overline{Q}, \overline{G}_{\overline{z}\overline{z}}\}$, so all the antiholomorphic Virasoro generators \overline{L}_n are \overline{Q} -exact.

 $[\overline{L}_0, \mathcal{O}] = \overline{h}\mathcal{O}, \text{ but since } \overline{L}_0 = \{\overline{Q}, \overline{G}_0\} \text{ we find}$ $\overline{h}\mathcal{O} = \left[\{\overline{Q}, \overline{G}_0\}, \mathcal{O}\right] = \underbrace{\{\overline{Q}, [\overline{G}_0, \mathcal{O}]\}}_{\overline{Q}-\text{exact}} + \underbrace{\{[\overline{Q}, \mathcal{O}], \overline{G}_0\}}_{= 0}$

so \overline{Q} -cohomology is trivial except at $\overline{h} = 0$.

In the A- or B-model, we'd similarly find h = 0, but in a (0,2) model there is no holomorphic susy and all $h \ge 0$ are allowed. Vertex operators form "sheaf of chiral algebras" over target.

(0,2) model is holomorphic (not topological) field theory.

Focus on operators with $(h, \bar{h}) = (1, 0)$ and ghost number +1 (related to deformations of the (0,2) action via descent).

Focus on operators with $(h, \bar{h}) = (1, 0)$ and ghost number +1 (related to deformations of the (0,2) action via descent).

$$\begin{aligned} \mathcal{O}_{M} &:= g_{i\bar{k}} M^{i}{}_{\bar{j}} \bar{\rho}^{\bar{j}} \partial \phi^{\bar{k}} & \mathcal{O}_{\mu} &:= \mu^{a}{}_{\bar{j}} \bar{\rho}^{\bar{j}} \bar{\psi}_{a} \\ \mathcal{O}_{b} &:= b_{i\bar{j}} \bar{\rho}^{\bar{j}} \partial \phi^{i} & \mathcal{O}_{\beta} &:= \beta_{a\bar{j}} \bar{\rho}^{\bar{j}} \partial \psi^{a} \end{aligned}$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Focus on operators with $(h, \bar{h}) = (1, 0)$ and ghost number +1 (related to deformations of the (0,2) action via descent).

$$\mathcal{O}_{M} := g_{i\bar{k}} M^{i}{}_{\bar{j}} \bar{\rho}^{\bar{j}} \partial \phi^{k} \qquad \qquad \mathcal{O}_{\mu} := \mu^{a}{}_{\bar{j}} \bar{\rho}^{\bar{j}} \bar{\psi}_{a} \\ \mathcal{O}_{b} := b_{i\bar{j}} \bar{\rho}^{\bar{j}} \partial \phi^{i} \qquad \qquad \mathcal{O}_{\beta} := \beta_{a\bar{j}} \bar{\rho}^{\bar{j}} \partial \psi^{a}$$

M, μ, b & β may depend on ψ as this has h = 0. They must be independent of ψ
, which has h = 1.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Focus on operators with $(h, \bar{h}) = (1, 0)$ and ghost number +1 (related to deformations of the (0,2) action via descent).

$$\mathcal{O}_{\mathcal{M}} := g_{i\bar{k}} \mathcal{M}^{i}{}_{\bar{j}} \bar{\rho}^{\bar{j}} \partial \phi^{\bar{k}} \qquad \qquad \mathcal{O}_{\mu} := \mu^{a}{}_{\bar{j}} \bar{\rho}^{\bar{j}} \bar{\psi}_{a} \\ \mathcal{O}_{b} := b_{i\bar{j}} \bar{\rho}^{\bar{j}} \partial \phi^{i} \qquad \qquad \mathcal{O}_{\beta} := \beta_{a\bar{j}} \bar{\rho}^{\bar{j}} \partial \psi^{a}$$

- ▶ *M*, μ , *b* & β may depend on ψ as this has h = 0. They must be independent of $\bar{\psi}$, which has h = 1.
- Non-trivial in Q̄-cohomology if [M] ∈ H^{0,1}(ℙT', T_{ℙT'}), plus supersymmetric extensions.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Focus on operators with $(h, \bar{h}) = (1, 0)$ and ghost number +1 (related to deformations of the (0,2) action via descent).

$$\mathcal{O}_{\mathcal{M}} := g_{i\bar{k}} \mathcal{M}^{i}{}_{\bar{j}} \bar{\rho}^{\bar{j}} \partial \phi^{\bar{k}} \qquad \qquad \mathcal{O}_{\mu} := \mu^{a}{}_{\bar{j}} \bar{\rho}^{\bar{j}} \bar{\psi}_{a} \\ \mathcal{O}_{b} := b_{i\bar{j}} \bar{\rho}^{\bar{j}} \partial \phi^{i} \qquad \qquad \mathcal{O}_{\beta} := \beta_{a\bar{j}} \bar{\rho}^{\bar{j}} \partial \psi^{a}$$

- ▶ *M*, μ , *b* & β may depend on ψ as this has h = 0. They must be independent of $\bar{\psi}$, which has h = 1.
- Non-trivial in Q̄-cohomology if [M] ∈ H^{0,1}(ℙT', T_{ℙT'}), plus supersymmetric extensions.
- ► $b \rightarrow b + \partial \chi$ changes vertex operator by total derivative (upto $\rho \text{ eom}$) $\Rightarrow \mathcal{H} = \partial b$ nontrivial in $H^{0,1}(\mathbb{PT}', \Omega_{cl}^2)$, plus super extension

(0,2) moduli correspond to states of $\mathcal{N} = 4$ conformal supergravity under the Penrose transform

Sigma model anomaly unless

 $\operatorname{ch}_2(T_X) - \operatorname{ch}_2(\mathcal{V}) = 0$ $\operatorname{c}_1(T_{\Sigma})(\operatorname{c}_1(T_X) - \operatorname{c}_1(\mathcal{V})) = 0$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Sigma model anomaly unless

 $\operatorname{ch}_2(T_X) - \operatorname{ch}_2(\mathcal{V}) = 0$ $\operatorname{c}_1(T_{\Sigma})(\operatorname{c}_1(T_X) - \operatorname{c}_1(\mathcal{V})) = 0$

Twistor-strings: $c(T_{\mathbb{P}^3}) = c(\mathcal{O}(1)^{\oplus 4}) \Rightarrow$ no sigma model anomaly

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Sigma model anomaly unless

 $\operatorname{ch}_2(T_X) - \operatorname{ch}_2(\mathcal{V}) = 0$ $\operatorname{c}_1(T_{\Sigma})(\operatorname{c}_1(T_X) - \operatorname{c}_1(\mathcal{V})) = 0$ Twistor-strings: $\operatorname{c}(T_{\mathbb{P}^3}) = \operatorname{c}(\mathcal{O}(1)^{\oplus 4}) \Rightarrow$ no sigma model anomaly

Anomalies in global symmetries

$$\operatorname{ind}(\overline{\partial}_{\phi^*\mathcal{T}_{\mathbb{P}^3}}) = 4d + 3(1-g)$$

 $\operatorname{ind}(\overline{\partial}_{\phi^*\mathcal{O}(1)^{\oplus 4}}) = 4(d+1-g)$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

for a map of degree d, genus g.

Sigma model anomaly unless

 $\operatorname{ch}_2(T_X) - \operatorname{ch}_2(\mathcal{V}) = 0$ $\operatorname{c}_1(T_{\Sigma})(\operatorname{c}_1(T_X) - \operatorname{c}_1(\mathcal{V})) = 0$

Twistor-strings: $c(\mathcal{T}_{\mathbb{P}^3}) = c(\mathcal{O}(1)^{\oplus 4}) \Rightarrow$ no sigma model anomaly

Anomalies in global symmetries

$$\operatorname{ind}(\overline{\partial}_{\phi^*\mathcal{T}_{\mathbb{P}^3}}) = 4d + 3(1-g)$$

 $\operatorname{ind}(\overline{\partial}_{\phi^*\mathcal{O}(1)^{\oplus 4}}) = 4(d+1-g)$

for a map of degree d, genus g. Amplitudes with n_h external SYM states of helicity h supported on maps of degree

$$d = g - 1 + \sum_{h=-1}^{+1} \frac{h+1}{2} n_h$$

Coefficient of $(\psi)^{\text{top}}$ is a section of canonical bundle of instanton moduli space

Perturbative corrections

There are also perturbative corrections to the theory. (0,2) susy ensures that $\Delta \overline{T}_{\overline{z}\overline{z}}$ and $\Delta T_{z\overline{z}}$ are \overline{Q} -exact, but there is no such statement for T_{zz} .

At one loop, correction to worldsheet action is

$$\Delta S^{1-\text{loop}} = \left\{ \overline{Q}, \int_{\Sigma} R_{i\bar{\jmath}} \rho^i \partial \phi^{\bar{\jmath}} + g^{i\bar{\jmath}} F_{i\bar{\jmath}}{}^a{}_b \bar{\psi}_a r^b \right\}$$

- On $\mathbb{P}^{3|4}$ we have R = 0 and no bundle
- ▶ For \mathbb{P}^3 and bundle $\mathcal{O}(1)^{\oplus 4}$ we have $R_{i\overline{j}} = 4g_{i\overline{j}}$ and $F_{i\overline{j}}{}^a{}_b = \delta^a{}_b g_{i\overline{j}}$ so the 1-loop correction is ∞ classical action.

The twistor model is a holomorphic CFT provided we study correlators of \overline{Q} -closed operators.

Holomorphic *bc*-system

Supercurrent $\overline{G}_{\overline{z}\overline{z}}$ plays role of \overline{b} -antighost

No left-moving susy, so need to include holomorphic *bc*-ghost system

$$S = \int_{\Sigma} b \overline{\partial} c \qquad b \in \Gamma(\Sigma, K_{\Sigma} \otimes K_{\Sigma}) ; \ c \in \Gamma(\Sigma, T_{\Sigma})$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Provides holomorphic BRST operator Q
- $Q + \overline{Q}$ has complete descent chain

Holomorphic *bc*-system

Supercurrent $\overline{G}_{\overline{z}\overline{z}}$ plays role of \overline{b} -antighost

No left-moving susy, so need to include holomorphic *bc*-ghost system

$$S = \int_{\Sigma} b \overline{\partial} c \qquad b \in \Gamma(\Sigma, K_{\Sigma} \otimes K_{\Sigma}) \; ; \; c \in \Gamma(\Sigma, T_{\Sigma})$$

- Provides holomorphic BRST operator Q
- $Q + \overline{Q}$ has complete descent chain
- Fixed vertex operators ⇒ sigma-model vertex operators of (h, h) = (1, 0), contracted with c

Physical string states \Leftrightarrow (0,2) moduli \Leftrightarrow $\mathcal{N} = 4$ conformal supergravity

・ロト・西ト・ヨト・ヨト ・ ヨー・ うらぐ

Yang-Mills current algebra

In order for $Q^2 = 0$ we need to include a holomorphic current algebra contributing central charge c = 28 (= $26 + 2 \times (4 - 3)$), as in both Berkovits' and Witten's models (*see later* ...)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Yang-Mills current algebra

In order for $Q^2 = 0$ we need to include a holomorphic current algebra contributing central charge c = 28 (= $26 + 2 \times (4 - 3)$), as in both Berkovits' and Witten's models (*see later* ...)

e.g. Could include further fermions

 $\lambda^{\alpha} \in \Gamma(\Sigma, \sqrt{K_{\Sigma}} \otimes \phi^{*}E) \qquad \qquad \bar{\lambda}_{\alpha} \in \Gamma(\Sigma, \sqrt{K_{\Sigma}} \otimes \phi^{*}E^{\vee})$

for some holomorphic bundle $E \rightarrow X$ (together with auxiliary superpartners).

- Conformal invariance requires $c_1(E) = 0$
- Freedom from sigma model anomalies requires $ch_2(E) = 0$

 $\Rightarrow E \text{ corresponds to a zero-instanton spacetime bundle}$ Vertex operators $c\mathcal{A}_{\overline{j}\ \beta}^{\ \alpha} \overline{\lambda}_{\alpha} \lambda^{\beta} \Leftrightarrow \text{External states in } \mathcal{N} = 4 \text{ SYM}$

Yang-Mills instantons

Heterotic strings contain NS branes which couple magnetically to the NS B-field.

・ロト・日本・モート モー うへで

- Physical heterotic strings (10-manifold) \rightarrow 5-branes
- Twisted heterotic strings (complex 3-fold) \rightarrow 1-branes

Yang-Mills instantons

Heterotic strings contain NS branes which couple magnetically to the NS B-field.

- Physical heterotic strings (10-manifold) \rightarrow 5-branes
- Twisted heterotic strings (complex 3-fold) \rightarrow 1-branes

Modified Green-Schwarz condition

$$\operatorname{ch}_2(T_X) - \operatorname{ch}_2(\mathcal{V}) - \operatorname{ch}_2(E) + \sum_i [NS]_i = 0$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 \Rightarrow instanton backgrounds allowed

Yang-Mills instantons

Heterotic strings contain NS branes which couple magnetically to the NS B-field.

- ▶ Physical heterotic strings (10-manifold) → 5-branes
- Twisted heterotic strings (complex 3-fold) \rightarrow 1-branes

Modified Green-Schwarz condition

$$\operatorname{ch}_2(T_X) - \operatorname{ch}_2(\mathcal{V}) - \operatorname{ch}_2(E) + \sum_i [NS]_i = 0$$

- \Rightarrow instanton backgrounds allowed
- e.g. 't Hooft SU(2) k-instanton

$$A(x) = \mathrm{i}\,\mathrm{d} x^{\mu}\sigma_{\mu\nu}\partial^{\nu}\log\Phi \ ,$$

$$\Phi(x) = \sum_{i=0}^{k} \frac{\lambda_i}{(x-x_i)^2}$$

wrap NS branes on the k + 1 lines in twistor space corresponding to the x_i s.

A puzzle

	Physical heterotic	Twistor-string
С	16	28
Field theory	$SO(32), \ E_8 imes E_8, \ E_8 imes U(1)^{248}, \ U(1)^{496}$	$SU(2) imes U(1),\ U(1)^4$
Modular invariance	SO(32), $E_8 imes E_8$??

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三回 - のへで

A puzzle

	Physical heterotic	Twistor-string
С	16	28
Field theory	$SO(32), \ E_8 imes E_8, \ E_8 imes U(1)^{248}, \ U(1)^{496}$	$SU(2) imes U(1),\ U(1)^4$
Modular invariance	SO(32), $E_8 imes E_8$??

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Change level of current algebra?
- Include additional fields contributing to c?
- Promote to string theory by some other means than bc-system?

Clear that modular invariance is key test.

Amplitudes and contours

Choose basis of Beltrami differentials μ and compute

$$\left\langle \prod_{i=1}^{3g-3+n} (\mu^{(i)}, b)(\overline{\mu}^{(i)}, \overline{G}) \prod_{j=1}^{n} \mathcal{O}_{j} \right\rangle$$

where \mathcal{O}_j are fixed vertex operators.

- ▶ bc-ghost number anomaly absorbed by (µ, b) and vertex operators
- *U*(1)_R anomaly is 3(1 − g) + 4d. Remaining anomaly of 4d = vdim_C M_{g,0}(P³, d)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Amplitudes and contours

Choose basis of Beltrami differentials μ and compute

$$\left\langle \prod_{i=1}^{3g-3+n} (\mu^{(i)}, b)(\overline{\mu}^{(i)}, \overline{G}) \prod_{j=1}^{n} \mathcal{O}_{j} \right\rangle$$

where \mathcal{O}_j are fixed vertex operators.

- ▶ bc-ghost number anomaly absorbed by (µ, b) and vertex operators
- *U*(1)_R anomaly is 3(1 − g) + 4d. Remaining anomaly of 4d = vdim_CM_{g,0}(P³, d)

Integrand is effectively a (4d, 0) form on moduli space of stable maps \Rightarrow contour integral.

- ► Absorb anomaly by inserting Poincaré dual into path integral, soaking up remaining p̄ zero-modes (*Dolbeault picture*).
- ► Choice of contour ⇔ choice of spacetime signature
- Leading-trace SYM amplitudes agree with Witten's & Berkovits' models. Sub-leading trace = cSUGRA (by unitarity)

Instanton corrections and twistor actions

At degree d, the heterotic generating function for amplitudes in $\mathcal{N}=4$ csugra + SYM is

$$\int_{\mathcal{M}_{g,d}} \mathrm{d}\mu \, \exp\left(\frac{-\mathcal{A}(C)}{2\pi} + \mathrm{i}\int_{C} B\right) \frac{\det \overline{\partial}_{E\otimes S_{-}}}{\det' \overline{\partial}_{N_{C|\mathbb{PT}_{s}}}} \qquad (\star)$$

- M_{g,d} is contour in space of genus g, degree d curves, measure dµ (= d^{4|8}x at g = 0, d = 1)
- ► A(C) = area of curve C (from the restriction of the Kähler form)

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• $N_{C|\mathbb{PT}_s}$ is normal bundle to C in supertwistor space

Instanton corrections and twistor actions

At degree d, the heterotic generating function for amplitudes in $\mathcal{N}=4$ csugra + SYM is

$$\int_{\mathcal{M}_{g,d}} \mathrm{d}\mu \, \exp\left(\frac{-\mathcal{A}(C)}{2\pi} + \mathrm{i}\int_{C} B\right) \frac{\det \overline{\partial}_{E\otimes S_{-}}}{\det' \overline{\partial}_{N_{C}|\mathbb{PT}_{s}}} \qquad (\star)$$

- M_{g,d} is contour in space of genus g, degree d curves, measure dµ (= d^{4|8}x at g = 0, d = 1)
- ► A(C) = area of curve C (from the restriction of the Kähler form)
- $N_{C|\mathbb{PT}_s}$ is normal bundle to C in supertwistor space

In compactifications on $CY \times \mathbb{R}^4$, (*) describes instanton corrections to 4d superpotential. Here, the d = 1 contribution can be used together with the Chern-Simons (d = 0 term) as a twistor action.

Berkovits' model I

On contractible open patch $U \subset \mathbb{PT}$

- Action becomes free
- $H^p(U, S) = 0$ for $p > 0 \Rightarrow$ Vertex ops independent of $\overline{\rho}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Berkovits' model I

On contractible open patch $U \subset \mathbb{PT}$

- Action becomes free
- $H^p(U, S) = 0$ for $p > 0 \Rightarrow$ Vertex ops independent of $\overline{\rho}$

 \Rightarrow All correlation functions on U obtainable from

$$S_{\beta\gamma} = \int_{\Sigma} \beta_i \overline{\partial} \gamma^i + \bar{\psi}_{\mathsf{a}} \overline{\partial} \psi^{\mathsf{a}}$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where $\beta_i := \delta_{i\overline{j}} \partial \phi^{\overline{j}}$, $\gamma := \phi$

Berkovits' model I

On contractible open patch $U \subset \mathbb{PT}$

- Action becomes free
- $H^p(U, S) = 0$ for $p > 0 \Rightarrow$ Vertex ops independent of $\overline{\rho}$

 \Rightarrow All correlation functions on $\it U$ obtainable from

$$S_{\beta\gamma} = \int_{\Sigma} \beta_i \overline{\partial} \gamma^i + \bar{\psi}_{a} \overline{\partial} \psi^{a}$$

where $\beta_i := \delta_{i\bar{j}} \partial \phi^{\bar{j}}$, $\gamma := \phi$

Cover target with patches, each supporting free $\beta\gamma$ system

- Anomaly conditions arise from consistency in gluing
- Higher vertex operators described by Čech cohomology

Berkovits' model II

Equivalently, work on non-projective space

$$S = \int_{\Sigma} Y_I \overline{D} Z^I$$
 $I = (\alpha | \mathbf{a}) = (1, \dots, 4 | 1, \dots, 4)$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

with $\overline{D} = \overline{\partial} + A$ a $GL(1, \mathbb{C})$ connection. To recover previous description: integrate out $A \Rightarrow Y_I Z^I = 0$ and solve on patches $Z^{\alpha} \neq 0$.

Berkovits' model II

Equivalently, work on non-projective space

$$S = \int_{\Sigma} Y_I \overline{D} Z^I \qquad I = (\alpha | \mathbf{a}) = (1, \dots, 4 | 1, \dots, 4)$$

with $\overline{D} = \overline{\partial} + A$ a $GL(1, \mathbb{C})$ connection. To recover previous description: integrate out $A \Rightarrow Y_I Z^I = 0$ and solve on patches $Z^{\alpha} \neq 0$.

- Introduce holomorphic *bc*-system and current algebra as before
- ▶ Path integral only involves holomorphic Zs ⇒ contour still needed

Given antiholomorphic involutions on Σ and \mathbb{P}^3 , perform orientifold projection. ++-- orientifolded theory \Leftrightarrow "open string theory" on Σ' with action

$$S = \int_{\Sigma'} Y_I \overline{D} Z^I + \overline{Y}_{\overline{I}} D Z^{\overline{I}} + b \overline{\partial} c + \overline{b} \partial \overline{c} + S_{\rm YM}$$

where $Z(\partial \Sigma') \subset \mathbb{RP}^3$, and $Z'|_{\partial \Sigma'} = \overline{Z}^{\overline{I}}|_{\partial \Sigma'}$ etc., etc.,

The D1-D5 strings in Witten's B-model give a factor $\det \overline{\partial}_{E \otimes S_{-}}(C)$ for each curve *C*.

The D1-D5 strings in Witten's B-model give a factor det $\overline{\partial}_{E \otimes S_{-}}(C)$ for each curve *C*.

There are also D1-D1 strings. On the worldvolume of a single D1-brane wrapping C, their effective action is

 $\int_{C} \Phi_1 \overline{\partial} \Phi_0 ; \qquad \Phi_0 \in \Gamma(C, N_{C|\mathbb{PT}_s}) , \ \Phi_1 \in \Gamma(C, K_C \otimes N_{C|\mathbb{PT}_s}^{\vee}) .$

(from dimen. reduc. of Chern-Simons) $\Rightarrow 1/\det \overline{\partial}_{N_{C|\mathbb{PT}_s}}$

The D1-D5 strings in Witten's B-model give a factor $\det \overline{\partial}_{E \otimes S_{-}}(C)$ for each curve *C*.

There are also D1-D1 strings. On the worldvolume of a single D1-brane wrapping C, their effective action is

 $\int_{C} \Phi_{1} \overline{\partial} \Phi_{0} ; \qquad \Phi_{0} \in \Gamma(C, N_{C|\mathbb{PT}_{s}}) , \ \Phi_{1} \in \Gamma(C, K_{C} \otimes N_{C|\mathbb{PT}_{s}}^{\vee}) .$

(from dimen. reduc. of Chern-Simons) $\Rightarrow 1/\det \overline{\partial}_{N_{C|\mathbb{PT}_s}}$

Finally, WB & NOV propose D1-branes themselves $\Rightarrow \exp(A(C)/2\pi + i \int_C B)$ (electric source for $B + i\omega$)

The D1-D5 strings in Witten's B-model give a factor $\det \overline{\partial}_{E \otimes S_{-}}(C)$ for each curve *C*.

There are also D1-D1 strings. On the worldvolume of a single D1-brane wrapping C, their effective action is

 $\int_{C} \Phi_{1} \overline{\partial} \Phi_{0} ; \qquad \Phi_{0} \in \Gamma(C, N_{C|\mathbb{PT}_{s}}) , \ \Phi_{1} \in \Gamma(C, K_{C} \otimes N_{C|\mathbb{PT}_{s}}^{\vee}) .$

(from dimen. reduc. of Chern-Simons) $\Rightarrow 1/\det \overline{\partial}_{N_{C|\mathbb{PT}_{s}}}$

Finally, WB & NOV propose D1-branes themselves $\Rightarrow \exp(A(C)/2\pi + i \int_C B)$ (electric source for $B + i\omega$)

Combining these ingredients gives exactly the same contribution as the heterotic worldsheet instantons.

We've given a construction of twistor-string theory as a heterotic string.

- Entire D1/D5 system in B-model equivalent to heterotic string
 - ▶ Should generalize to non-pert. top. str. on standard CY

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ のへぐ

We've given a construction of twistor-string theory as a heterotic string.

- Entire D1/D5 system in B-model equivalent to heterotic string
 - ▶ Should generalize to non-pert. top. str. on standard CY
- Heterotic \Leftrightarrow Berkovits \sim Dolbeault \Leftrightarrow Čech
 - Pre-orientifold Berkovits model in right category from outset

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Anomaly calculations more standard in heterotic

We've given a construction of twistor-string theory as a heterotic string.

- Entire D1/D5 system in B-model equivalent to heterotic string
 - ▶ Should generalize to non-pert. top. str. on standard CY
- Heterotic \Leftrightarrow Berkovits \sim Dolbeault \Leftrightarrow Čech
 - Pre-orientifold Berkovits model in right category from outset
 - Anomaly calculations more standard in heterotic

Oustanding problems:

- Modular invariance & c = 28
- Penrose transform complete action
- Contour integrals
 - Derivation of RSV? Connected/disconnected equivalence?

We've given a construction of twistor-string theory as a heterotic string.

- Entire D1/D5 system in B-model equivalent to heterotic string
 - ▶ Should generalize to non-pert. top. str. on standard CY
- Heterotic \Leftrightarrow Berkovits \sim Dolbeault \Leftrightarrow Čech
 - Pre-orientifold Berkovits model in right category from outset
 - Anomaly calculations more standard in heterotic

Oustanding problems:

- Modular invariance & c = 28
- Penrose transform complete action
- Contour integrals
 - Derivation of RSV? Connected/disconnected equivalence?
- Replace $\mathcal{O}(1)^{\oplus 4}$ by another bundle?
- Poincaré supergravity? Pure SYM? Phenomenology?