

Why reformulate twistor-string theory?

There are a number of difficulties in understanding the twistor-string models of Witten and Berkovits, including

Why reformulate twistor-string theory?

There are a number of difficulties in understanding the twistor-string models of Witten and Berkovits, including

- Conformal supergravity
- Witten: arises from coupling to D-instantons
- Berkovits: vertex operators on worldsheet boundary

Why reformulate twistor-string theory?

There are a number of difficulties in understanding the twistor-string models of Witten and Berkovits, including

- Conformal supergravity
- Witten: arises from coupling to D-instantons
- Berkovits: vertex operators on worldsheet boundary
- Topological strings on target supermanifold
- $\mathbb{P}^{3 \mid 4}$ is Calabi-Yau supermanifold, with threefold body

Why reformulate twistor-string theory?

There are a number of difficulties in understanding the twistor-string models of Witten and Berkovits, including

- Conformal supergravity
- Witten: arises from coupling to D-instantons
- Berkovits: vertex operators on worldsheet boundary
- Topological strings on target supermanifold
- $\mathbb{P}^{3 \mid 4}$ is Calabi-Yau supermanifold, with threefold body
- B-model D-instantons not completely well-defined
- Role of D1-D1 strings?
- Effective action for D-instantons themselves?

Why reformulate twistor-string theory?

There are a number of difficulties in understanding the twistor-string models of Witten and Berkovits, including

- Conformal supergravity
- Witten: arises from coupling to D-instantons
- Berkovits: vertex operators on worldsheet boundary
- Topological strings on target supermanifold
- $\mathbb{P}^{3 \mid 4}$ is Calabi-Yau supermanifold, with threefold body
- B-model D-instantons not completely well-defined
- Role of D1-D1 strings?
- Effective action for D-instantons themselves?
- Choice of spacetime signature
- Worldsheet boundary on $\mathbb{R} \mathbb{P}^{3 \mid 4} \subset \mathbb{C} \mathbb{P}^{3 \mid 4}$ in Berkovits' model

Why reformulate twistor-string theory?

There are a number of difficulties in understanding the twistor-string models of Witten and Berkovits, including

- Conformal supergravity
- Witten: arises from coupling to D-instantons
- Berkovits: vertex operators on worldsheet boundary
- Topological strings on target supermanifold
- $\mathbb{P}^{3 \mid 4}$ is Calabi-Yau supermanifold, with threefold body
- B-model D-instantons not completely well-defined
- Role of D1-D1 strings?
- Effective action for D-instantons themselves?
- Choice of spacetime signature
- Worldsheet boundary on $\mathbb{R} \mathbb{P}^{3 \mid 4} \subset \mathbb{C} \mathbb{P}^{3 \mid 4}$ in Berkovits' model

We'd like to understand these issues better, and also see how the Witten and Berkovits pictures are related.

Outline

$(0,2)$ Basics
Fields \& action
Vertex operators
Anomalies

Heterotic String Theory
Coupling to YM
Amplitudes
Relation to other twistor-string models
Berkovits
Witten
Summary

Twisted $(0,2)$ models

A theory of smooth maps $\Phi: \Sigma \rightarrow X$ from a closed, compact Riemann surface Σ to a complex manifold X.

Fields are worldsheet scalars ($\phi^{i}, \phi^{\bar{\jmath}}$) and

$$
\bar{\rho}^{\bar{\jmath}} \in \Gamma\left(\Sigma, \phi^{*} \bar{T}_{X}\right) \quad \rho^{i} \in \Gamma\left(\Sigma, K_{\Sigma} \otimes \phi^{*} T_{X}\right)
$$

Twisted $(0,2)$ models

A theory of smooth maps $\Phi: \Sigma \rightarrow X$ from a closed, compact Riemann surface Σ to a complex manifold X.

Fields are worldsheet scalars ($\phi^{i}, \phi^{\bar{\jmath}}$) and

$$
\bar{\rho}^{\bar{\jmath}} \in \Gamma\left(\Sigma, \phi^{*} \bar{T}_{X}\right) \quad \rho^{i} \in \Gamma\left(\Sigma, K_{\Sigma} \otimes \phi^{*} T_{X}\right)
$$

Susy transformations are

$$
\begin{array}{ll}
\left\{\bar{Q}, \phi^{i}\right\}=0 & \left\{\bar{Q}, \phi^{\bar{\jmath}}\right\}=\bar{\rho}^{\bar{\jmath}} \\
\left\{\bar{Q}, \rho^{i}\right\}=\bar{\partial} \phi^{i} & \left\{\bar{Q}, \bar{\rho}^{\bar{\jmath}}\right\}=0
\end{array}
$$

and

$$
\begin{array}{ll}
\left\{\bar{Q}^{\dagger}, \phi^{i}\right\}=\rho^{i} & \left\{\bar{Q}^{\dagger}, \phi^{\bar{\jmath}}\right\}=0 \\
\left\{\bar{Q}^{\dagger}, \rho^{i}\right\}=0 & \left\{\bar{Q}^{\dagger}, \bar{\rho}^{\bar{\jmath}}\right\}=\bar{\partial} \phi^{\bar{\jmath}}
\end{array}
$$

Twisted $(0,2)$ models

A theory of smooth maps $\Phi: \Sigma \rightarrow X$ from a closed, compact Riemann surface Σ to a complex manifold X.

Fields are worldsheet scalars ($\phi^{i}, \phi^{\bar{\jmath}}$) and

$$
\bar{\rho}^{\bar{\jmath}} \in \Gamma\left(\Sigma, \phi^{*} \bar{T}_{X}\right) \quad \rho^{i} \in \Gamma\left(\Sigma, K_{\Sigma} \otimes \phi^{*} T_{X}\right)
$$

Susy transformations are

$$
\begin{array}{ll}
\left\{\bar{Q}, \phi^{i}\right\}=0 & \left\{\bar{Q}, \phi^{\bar{\jmath}}\right\}=\bar{\rho}^{\bar{\jmath}} \\
\left\{\bar{Q}, \rho^{i}\right\}=\bar{\partial} \phi^{i} & \left\{\bar{Q}, \bar{\rho}^{\bar{\jmath}}\right\}=0
\end{array}
$$

and

$$
\begin{array}{ll}
\left\{\bar{Q}^{\dagger}, \phi^{i}\right\}=\rho^{i} & \left\{\bar{Q}^{\dagger}, \phi^{\bar{\jmath}}\right\}=0 \\
\left\{\bar{Q}^{\dagger}, \rho^{i}\right\}=0 & \left\{\bar{Q}^{\dagger}, \bar{\rho}^{\bar{\jmath}}\right\}=\bar{\partial} \phi^{\bar{\jmath}}
\end{array}
$$

\bar{Q} acts on functions of $\phi, \bar{\phi}$ as the $\bar{\partial}$ operator on $\operatorname{Maps}(\Sigma, X)$

Action

The basic action is

$$
\begin{aligned}
S_{0} & =\mathrm{t} \int_{\Sigma} g(\bar{\partial} \phi, \partial \bar{\phi})-g(\rho, \nabla \bar{\rho})+\int_{\Sigma} \phi^{*} \omega \\
& =\mathrm{t}\left\{\bar{Q}, \int_{\Sigma} g(\rho, \partial \bar{\phi})\right\}+\int_{\Sigma} \phi^{*} \omega
\end{aligned}
$$

for $\mathrm{t} \in \mathbb{R}^{+}$and g a Hermitian (not pseudo-Hermitian) metric on X with $\omega(X, Y)=g(X, J Y)$

Action

The basic action is

$$
\begin{aligned}
S_{0} & =\mathrm{t} \int_{\Sigma} g(\bar{\partial} \phi, \partial \bar{\phi})-g(\rho, \nabla \bar{\rho})+\int_{\Sigma} \phi^{*} \omega \\
& =\mathrm{t}\left\{\bar{Q}, \int_{\Sigma} g(\rho, \partial \bar{\phi})\right\}+\int_{\Sigma} \phi^{*} \omega
\end{aligned}
$$

for $\mathrm{t} \in \mathbb{R}^{+}$and g a Hermitian (not pseudo-Hermitian) metric on X with $\omega(X, Y)=g(X, J Y)$

- Action is \bar{Q}-exact \Rightarrow partition function independent of t, g
- $S_{0}=-\mathrm{t}|\bar{\partial} \phi|^{2}+$ fermions \Rightarrow localize on holomorphic maps
- Manifestly invariant under \bar{Q}; also invariant under \bar{Q}^{\dagger} if X is Kähler
- Can generalize by coupling to B-field: $\partial \bar{\partial} \omega=0$ and ∇ has torsion determined by B

Action

The basic action is

$$
\begin{aligned}
S_{0} & =\mathrm{t} \int_{\Sigma} g(\bar{\partial} \phi, \partial \bar{\phi})-g(\rho, \nabla \bar{\rho})+\int_{\Sigma} \phi^{*} \omega \\
& =\mathrm{t}\left\{\bar{Q}, \int_{\Sigma} g(\rho, \partial \bar{\phi})\right\}+\int_{\Sigma} \phi^{*} \omega
\end{aligned}
$$

for $\mathrm{t} \in \mathbb{R}^{+}$and g a Hermitian (not pseudo-Hermitian) metric on X with $\omega(X, Y)=g(X, J Y)$

- Action is \bar{Q}-exact \Rightarrow partition function independent of t, g
- $S_{0}=-\mathrm{t}|\bar{\partial} \phi|^{2}+$ fermions \Rightarrow localize on holomorphic maps
- Manifestly invariant under \bar{Q}; also invariant under \bar{Q}^{\dagger} if X is Kähler
- Can generalize by coupling to B-field: $\partial \bar{\partial} \omega=0$ and ∇ has torsion determined by B

Coupling to a bundle

We can also couple in a holomorphic bundle $\mathcal{V} \rightarrow X$ by introducing

$$
\begin{array}{ll}
\psi^{a} \in \Gamma\left(\Sigma, \phi^{*} \mathcal{V}\right) & \bar{\psi}_{a} \in \Gamma\left(\Sigma, K_{\Sigma} \otimes \phi^{*} \mathcal{V}^{\vee}\right) \\
r^{a} \in \Gamma\left(\Sigma, \bar{K}_{\Sigma} \otimes \phi^{*} \mathcal{V}\right) & \bar{r}_{a} \in \Gamma\left(\Sigma, K_{\Sigma} \otimes \phi^{*} \mathcal{V}^{\vee}\right)
\end{array}
$$

with susy transformations

$$
\begin{array}{ll}
\left\{\bar{Q}, \psi^{a}\right\}=0 & \left\{\bar{Q}, \bar{\psi}_{a}\right\}=\bar{r}_{a} \\
\left\{\bar{Q}, r^{a}\right\}=\bar{D} \psi^{a}+F_{i \bar{j}}{ }^{a}{ }_{b} \psi^{b} \rho^{i} \bar{\rho}^{\bar{\jmath}} & \left\{\bar{Q}, \bar{r}_{a}\right\}=\bar{\partial} \bar{\psi}_{a}
\end{array}
$$

and action

$$
\begin{aligned}
S_{1} & =\left\{\bar{Q}, \int_{\Sigma} \bar{\psi}_{a} r^{a}\right\} \\
& =\int_{\Sigma} \bar{\psi}_{a} \bar{D} \psi^{a}+F_{i \bar{\jmath}}{ }^{a}{ }_{b} \bar{\psi}_{a} \psi^{b} \rho^{i} \bar{\rho}^{\bar{\jmath}}+\bar{r}_{a} r^{a}
\end{aligned}
$$

Total action $S_{0}+S_{1}$ is twisted version of heterotic string on general background

Twistor theory

We could choose $X=\mathbb{P}^{3 \mid 4}$, but

- Difficult to interpret bosonic worldsheet superpartners of fermionic target coordinates
- Not clear how to promote to string theory
- Can't use D-brane to set $\bar{\psi}=0$

Twistor theory

We could choose $X=\mathbb{P}^{3 \mid 4}$, but

- Difficult to interpret bosonic worldsheet superpartners of fermionic target coordinates
- Not clear how to promote to string theory
- Can't use D-brane to set $\bar{\psi}=0$

Instead, we'll choose $X=\mathbb{P}^{3}$ and include the bundle $\mathcal{V}=\mathcal{O}(1)^{\oplus 4}$
The advantages are

- ψ is a worldsheet scalar, as it would be with $\mathbb{P}^{3 \mid 4}$ target, but $\bar{\psi}$ is a 1 -form - naturally on different footing
- First-order action for worldsheet fermions
- Worldsheet superpartners are auxiliary

Sheaves of chiral algebras

The antiholomorphic stress tensor $T_{\overline{\bar{z}} \overline{\bar{L}}}=\left\{\bar{Q}, \bar{G}_{\bar{z} \bar{z}}\right\}$, so all the antiholomorphic Virasoro generators \bar{L}_{n} are \bar{Q}-exact.
$\left[\bar{L}_{0}, \mathcal{O}\right]=\bar{h} \mathcal{O}$, but since $\bar{L}_{0}=\left\{\bar{Q}, \bar{G}_{0}\right\}$ we find

$$
\bar{h} \mathcal{O}=\left[\left\{\bar{Q}, \bar{G}_{0}\right\}, \mathcal{O}\right]=\underbrace{\left\{\bar{Q},\left[\bar{G}_{0}, \mathcal{O}\right]\right\}}_{\bar{Q} \text {-exact }}+\underbrace{\left\{[\bar{Q}, \mathcal{O}], \bar{G}_{0}\right\}}_{=0}
$$

so \bar{Q}-cohomology is trivial except at $\bar{h}=0$.

Sheaves of chiral algebras

The antiholomorphic stress tensor $T_{\overline{\bar{z}} \overline{\bar{L}}}=\left\{\bar{Q}, \bar{G}_{\bar{z} \bar{z}}\right\}$, so all the antiholomorphic Virasoro generators \bar{L}_{n} are \bar{Q}-exact.
$\left[\bar{L}_{0}, \mathcal{O}\right]=\bar{h} \mathcal{O}$, but since $\bar{L}_{0}=\left\{\bar{Q}, \bar{G}_{0}\right\}$ we find

$$
\bar{h} \mathcal{O}=\left[\left\{\bar{Q}, \bar{G}_{0}\right\}, \mathcal{O}\right]=\underbrace{\left\{\bar{Q},\left[\bar{G}_{0}, \mathcal{O}\right]\right\}}_{\bar{Q} \text {-exact }}+\underbrace{\left\{[\bar{Q}, \mathcal{O}], \bar{G}_{0}\right\}}_{=0}
$$

so \bar{Q}-cohomology is trivial except at $\bar{h}=0$.
In the A- or B-model, we'd similarly find $h=0$, but in a $(0,2)$ model there is no holomorphic susy and all $h \geq 0$ are allowed.
Vertex operators form "sheaf of chiral algebras" over target.
$(0,2)$ model is holomorphic (not topological) field theory.

$(0,2)$ moduli

Focus on operators with $(h, \bar{h})=(1,0)$ and ghost number +1 (related to deformations of the $(0,2)$ action via descent).

$(0,2)$ moduli

Focus on operators with $(h, \bar{h})=(1,0)$ and ghost number +1 (related to deformations of the $(0,2)$ action via descent).
$\mathcal{O}_{M}:=g_{i \bar{k}} M^{i}{ }_{j} \bar{\rho}^{\bar{\jmath}} \partial \phi^{\bar{k}}$
$\mathcal{O}_{\mu}:=\mu^{a}{ }_{\bar{\jmath}} \bar{\rho}^{\bar{\rho}} \bar{\psi}_{a}$
$\mathcal{O}_{b}:=b_{i j} \bar{\rho}^{\bar{\rho}} \partial \phi^{i}$
$\mathcal{O}_{\beta}:=\beta_{\mathrm{a} \bar{\jmath} \bar{\rho}} \bar{\rho}^{\bar{\rho}} \psi^{a}$

$(0,2)$ moduli

Focus on operators with $(h, \bar{h})=(1,0)$ and ghost number +1 (related to deformations of the $(0,2)$ action via descent).

$$
\begin{aligned}
\mathcal{O}_{M} & :=g_{i \bar{k}} M^{i} \bar{\jmath}^{\bar{\jmath}} \partial \phi^{\bar{k}} & \mathcal{O}_{\mu}:=\mu^{a} \bar{\jmath}_{\bar{\jmath}} \bar{\rho}^{\bar{\rho}} \bar{\psi}_{a} \\
\mathcal{O}_{b} & :=b_{i \bar{\jmath}} \bar{\rho}^{\bar{\jmath}} \partial \phi^{i} & \mathcal{O}_{\beta}:=\beta_{\mathrm{a} j} \bar{\rho}^{\bar{\jmath}} \partial \psi^{a}
\end{aligned}
$$

- $M, \mu, b \& \beta$ may depend on ψ as this has $h=0$. They must be independent of $\bar{\psi}$, which has $h=1$.

$(0,2)$ moduli

Focus on operators with $(h, \bar{h})=(1,0)$ and ghost number +1 (related to deformations of the $(0,2)$ action via descent).

$$
\begin{aligned}
\mathcal{O}_{M} & :=g_{i \bar{k}} M^{i}{ }_{j} \bar{\rho}^{\bar{\jmath}} \partial \phi^{\bar{k}} & \mathcal{O}_{\mu}:=\mu^{a} \bar{j}^{-\bar{\rho}} \bar{\psi}_{a} \\
\mathcal{O}_{b} & :=b_{i \bar{j}} \bar{\rho}^{\bar{\jmath}} \partial \phi^{i} & \mathcal{O}_{\beta}:=\beta_{a \bar{\jmath}} \bar{\rho}^{\bar{\jmath}} \partial \psi^{a}
\end{aligned}
$$

- $M, \mu, b \& \beta$ may depend on ψ as this has $h=0$. They must be independent of $\bar{\psi}$, which has $h=1$.
- Non-trivial in \bar{Q}-cohomology if $[M] \in H^{0,1}\left(\mathbb{P T}^{\prime}, T_{\mathbb{P T}^{\prime}}\right)$, plus supersymmetric extensions.

$(0,2)$ moduli

Focus on operators with $(h, \bar{h})=(1,0)$ and ghost number +1 (related to deformations of the $(0,2)$ action via descent).

$$
\begin{aligned}
\mathcal{O}_{M} & :=g_{i \bar{k}} M^{i}{ }_{\jmath} \bar{\rho}^{\bar{\jmath}} \partial \phi^{\bar{k}} & \mathcal{O}_{\mu}:=\mu^{a} \bar{\jmath}^{\bar{\rho}} \bar{\psi}_{a} \\
\mathcal{O}_{b} & :=b_{i \bar{\jmath}} \bar{\rho}^{\bar{\jmath}} \partial \phi^{i} & \mathcal{O}_{\beta}:=\beta_{a \mathrm{a}} \bar{\rho}^{\bar{\jmath}} \partial \psi^{a}
\end{aligned}
$$

- $M, \mu, b \& \beta$ may depend on ψ as this has $h=0$. They must be independent of $\bar{\psi}$, which has $h=1$.
- Non-trivial in \bar{Q}-cohomology if $[M] \in H^{0,1}\left(\mathbb{P} \mathbb{T}^{\prime}, T_{\mathbb{P T}^{\prime}}\right)$, plus supersymmetric extensions.
- $b \rightarrow b+\partial \chi$ changes vertex operator by total derivative (upto ρ eom $) \Rightarrow \mathcal{H}=\partial b$ nontrivial in $H^{0,1}\left(\mathbb{P}^{\prime}, \Omega_{\mathrm{cl}}^{2}\right)$, plus super extension
$(0,2)$ moduli correspond to states of $\mathcal{N}=4$ conformal supergravity under the Penrose transform

Anomalies

Sigma model anomaly unless

$$
\operatorname{ch}_{2}\left(T_{X}\right)-\operatorname{ch}_{2}(\mathcal{V})=0 \quad \mathrm{c}_{1}\left(T_{\Sigma}\right)\left(\mathrm{c}_{1}\left(T_{X}\right)-\mathrm{c}_{1}(\mathcal{V})\right)=0
$$

Anomalies

Sigma model anomaly unless

$$
\operatorname{ch}_{2}\left(T_{X}\right)-\operatorname{ch}_{2}(\mathcal{V})=0 \quad \mathrm{c}_{1}\left(T_{\Sigma}\right)\left(\mathrm{c}_{1}\left(T_{X}\right)-\mathrm{c}_{1}(\mathcal{V})\right)=0
$$

Twistor-strings: $\mathrm{c}\left(T_{\mathbb{P}^{3}}\right)=\mathrm{c}\left(\mathcal{O}(1)^{\oplus 4}\right) \Rightarrow$ no sigma model anomaly

Anomalies

Sigma model anomaly unless

$$
\operatorname{ch}_{2}\left(T_{X}\right)-\operatorname{ch}_{2}(\mathcal{V})=0 \quad \mathrm{c}_{1}\left(T_{\Sigma}\right)\left(\mathrm{c}_{1}\left(T_{X}\right)-\mathrm{c}_{1}(\mathcal{V})\right)=0
$$

Twistor-strings: $\mathrm{c}\left(T_{\mathbb{P}^{3}}\right)=\mathrm{c}\left(\mathcal{O}(1)^{\oplus 4}\right) \Rightarrow$ no sigma model anomaly
Anomalies in global symmetries

$$
\begin{aligned}
\operatorname{ind}\left(\bar{\partial}_{\phi^{*} T_{\mathbb{P}^{3}}}\right) & =4 d+3(1-g) \\
\operatorname{ind}\left(\bar{\partial}_{\phi^{*}} \mathcal{O}(1)^{\oplus 4}\right) & =4(d+1-g)
\end{aligned}
$$

for a map of degree d, genus g.

Anomalies

Sigma model anomaly unless

$$
\operatorname{ch}_{2}\left(T_{X}\right)-\operatorname{ch}_{2}(\mathcal{V})=0 \quad \mathrm{c}_{1}\left(T_{\Sigma}\right)\left(\mathrm{c}_{1}\left(T_{X}\right)-\mathrm{c}_{1}(\mathcal{V})\right)=0
$$

Twistor-strings: $\mathrm{c}\left(T_{\mathbb{P}^{3}}\right)=\mathrm{c}\left(\mathcal{O}(1)^{\oplus 4}\right) \Rightarrow$ no sigma model anomaly
Anomalies in global symmetries

$$
\begin{aligned}
\operatorname{ind}\left(\bar{\partial}_{\phi^{*} T_{\mathbb{P}^{3}}}\right) & =4 d+3(1-g) \\
\operatorname{ind}\left(\bar{\partial}_{\phi^{*} \mathcal{O}(1)^{\oplus 4}}\right) & =4(d+1-g)
\end{aligned}
$$

for a map of degree d, genus g.
Amplitudes with n_{h} external SYM states of helicity h supported on maps of degree

$$
d=g-1+\sum_{h=-1}^{+1} \frac{h+1}{2} n_{h}
$$

Coefficient of $(\psi)^{\text {top }}$ is a section of canonical bundle of instanton moduli space

Perturbative corrections

There are also perturbative corrections to the theory. $(0,2)$ susy ensures that $\Delta \bar{T}_{\bar{z} \bar{z}}$ and $\Delta T_{z \bar{z}}$ are \bar{Q}-exact, but there is no such statement for $T_{z z}$.
At one loop, correction to worldsheet action is

$$
\Delta S^{1-\mathrm{loop}}=\left\{\bar{Q}, \int_{\Sigma} R_{i \bar{\jmath}} \rho^{i} \partial \phi^{\bar{\jmath}}+g^{i \bar{\jmath}} F_{i \bar{\jmath}}{ }^{a} b^{b} \bar{\psi}_{a} r^{b}\right\}
$$

- On $\mathbb{P}^{3 \mid 4}$ we have $R=0$ and no bundle
- For \mathbb{P}^{3} and bundle $\mathcal{O}(1)^{\oplus 4}$ we have $R_{i \bar{j}}=4 g_{i \bar{j}}$ and $F_{i \bar{\jmath}}{ }^{a}{ }_{b}=\delta^{a}{ }_{b} g_{i \bar{\jmath}}$ so the 1-loop correction is \propto classical action.

The twistor model is a holomorphic CFT provided we study correlators of \bar{Q}-closed operators.

Holomorphic bc-system

Supercurrent $\bar{G}_{\bar{z} \bar{z}}$ plays role of \bar{b}-antighost
No left-moving susy, so need to include holomorphic bc-ghost system

$$
S=\int_{\Sigma} b \bar{\partial} c \quad b \in \Gamma\left(\Sigma, K_{\Sigma} \otimes K_{\Sigma}\right) ; c \in \Gamma\left(\Sigma, T_{\Sigma}\right)
$$

- Provides holomorphic BRST operator Q
- $Q+\bar{Q}$ has complete descent chain

Holomorphic bc-system

Supercurrent $\bar{G}_{\bar{z} \bar{z}}$ plays role of \bar{b}-antighost
No left-moving susy, so need to include holomorphic bc-ghost system

$$
S=\int_{\Sigma} b \bar{\partial} c \quad b \in \Gamma\left(\Sigma, K_{\Sigma} \otimes K_{\Sigma}\right) ; c \in \Gamma\left(\Sigma, T_{\Sigma}\right)
$$

- Provides holomorphic BRST operator Q
- $Q+\bar{Q}$ has complete descent chain
- Fixed vertex operators \Rightarrow sigma-model vertex operators of $(h, \bar{h})=(1,0)$, contracted with c
Physical string states $\Leftrightarrow(0,2)$ moduli $\Leftrightarrow \mathcal{N}=4$ conformal supergravity

Yang-Mills current algebra

In order for $Q^{2}=0$ we need to include a holomorphic current algebra contributing central charge $c=28(=26+2 \times(4-3))$, as in both Berkovits' and Witten's models (see later ...)

Yang-Mills current algebra

In order for $Q^{2}=0$ we need to include a holomorphic current algebra contributing central charge $c=28(=26+2 \times(4-3))$, as in both Berkovits' and Witten's models (see later ...)
e.g. Could include further fermions

$$
\lambda^{\alpha} \in \Gamma\left(\Sigma, \sqrt{K_{\Sigma}} \otimes \phi^{*} E\right) \quad \bar{\lambda}_{\alpha} \in \Gamma\left(\Sigma, \sqrt{K_{\Sigma}} \otimes \phi^{*} E^{\vee}\right)
$$

for some holomorphic bundle $E \rightarrow X$ (together with auxiliary superpartners).

- Conformal invariance requires $c_{1}(E)=0$
- Freedom from sigma model anomalies requires $\operatorname{ch}_{2}(E)=0$
$\Rightarrow E$ corresponds to a zero-instanton spacetime bundle Vertex operators $c \mathcal{A}_{\bar{\jmath}}{ }_{\beta} \bar{\lambda}_{\alpha} \lambda^{\beta} \Leftrightarrow$ External states in $\mathcal{N}=4$ SYM

Yang-Mills instantons

Heterotic strings contain NS branes which couple magnetically to the NS B-field.

- Physical heterotic strings (10-manifold) \rightarrow 5-branes
- Twisted heterotic strings (complex 3-fold) \rightarrow 1-branes

Yang-Mills instantons

Heterotic strings contain NS branes which couple magnetically to the NS B-field.

- Physical heterotic strings (10-manifold) \rightarrow 5-branes
- Twisted heterotic strings (complex 3-fold) \rightarrow 1-branes

Modified Green-Schwarz condition

$$
\operatorname{ch}_{2}\left(T_{X}\right)-\operatorname{ch}_{2}(\mathcal{V})-\operatorname{ch}_{2}(E)+\sum_{i}[N S]_{i}=0
$$

\Rightarrow instanton backgrounds allowed

Yang-Mills instantons

Heterotic strings contain NS branes which couple magnetically to the NS B-field.

- Physical heterotic strings (10-manifold) \rightarrow 5-branes
- Twisted heterotic strings (complex 3-fold) \rightarrow 1-branes

Modified Green-Schwarz condition

$$
\operatorname{ch}_{2}\left(T_{X}\right)-\operatorname{ch}_{2}(\mathcal{V})-\operatorname{ch}_{2}(E)+\sum_{i}[N S]_{i}=0
$$

\Rightarrow instanton backgrounds allowed
e.g. 't Hooft $S U(2) k$-instanton

$$
A(x)=\mathrm{id} x^{\mu} \sigma_{\mu \nu} \partial^{\nu} \log \Phi, \quad \Phi(x)=\sum_{i=0}^{k} \frac{\lambda_{i}}{\left(x-x_{i}\right)^{2}}
$$

wrap NS branes on the $k+1$ lines in twistor space corresponding to the $x_{i} s$.

A puzzle

	Physical heterotic	Twistor-string
c	16	28
Field theory	$S O(32), E_{8} \times E_{8}$,	$S U(2) \times U(1), U(1)^{4}$
	$E_{8} \times U(1)^{248}, U(1)^{496}$	
Modular invariance	$S O(32), E_{8} \times E_{8}$	$? ?$

A puzzle

	Physical heterotic	Twistor-string
c	16	28
Field theory	$S O(32), E_{8} \times E_{8}$, $E_{8} \times U(1)^{248}, U(1)^{496}$	$S U(2) \times U(1), U(1)^{4}$
Modular invariance	$S O(32), E_{8} \times E_{8}$	$? ?$

- Change level of current algebra?
- Include additional fields contributing to c ?
- Promote to string theory by some other means than bc-system?

Clear that modular invariance is key test.

Amplitudes and contours

Choose basis of Beltrami differentials μ and compute

$$
\left\langle\prod_{i=1}^{3 g-3+n}\left(\mu^{(i)}, b\right)\left(\bar{\mu}^{(i)}, \bar{G}\right) \prod_{j=1}^{n} \mathcal{O}_{j}\right\rangle
$$

where \mathcal{O}_{j} are fixed vertex operators.

- bc-ghost number anomaly absorbed by (μ, b) and vertex operators
- $U(1)_{R}$ anomaly is $3(1-g)+4 d$. Remaining anomaly of $4 d=\operatorname{vdim}_{\mathbb{C}} \overline{\mathcal{M}}_{g, 0}\left(\mathbb{P}^{3}, d\right)$

Amplitudes and contours

Choose basis of Beltrami differentials μ and compute

$$
\left\langle\prod_{i=1}^{3 g-3+n}\left(\mu^{(i)}, b\right)\left(\bar{\mu}^{(i)}, \bar{G}\right) \prod_{j=1}^{n} \mathcal{O}_{j}\right\rangle
$$

where \mathcal{O}_{j} are fixed vertex operators.

- bc-ghost number anomaly absorbed by (μ, b) and vertex operators
- $U(1)_{R}$ anomaly is $3(1-g)+4 d$. Remaining anomaly of $4 d=\operatorname{vdim}_{\mathbb{C}} \overline{\mathcal{M}}_{g, 0}\left(\mathbb{P}^{3}, d\right)$
Integrand is effectively a $(4 d, 0)$ form on moduli space of stable maps \Rightarrow contour integral.
- Absorb anomaly by inserting Poincaré dual into path integral, soaking up remaining $\bar{\rho}$ zero-modes (Dolbeault picture).
- Choice of contour \Leftrightarrow choice of spacetime signature
- Leading-trace SYM amplitudes agree with Witten's \& Berkovits' models. Sub-leading trace $=$ cSUGRA (by unitarity)

Instanton corrections and twistor actions

At degree d, the heterotic generating function for amplitudes in $\mathcal{N}=4$ csugra + SYM is

$$
\int_{\mathcal{M}_{g}, d} \mathrm{~d} \mu \exp \left(\frac{-A(C)}{2 \pi}+\mathrm{i} \int_{C} B\right) \frac{\operatorname{det} \bar{\partial}_{E \otimes S_{-}}}{\operatorname{det}^{\prime} \bar{\partial}_{N_{C \mid \mathbb{P T} T_{s}}}}
$$

- $\mathcal{M}_{g, d}$ is contour in space of genus g, degree d curves, measure $\mathrm{d} \mu\left(=\mathrm{d}^{4 \mid 8} x\right.$ at $\left.g=0, d=1\right)$
- $A(C)=$ area of curve C (from the restriction of the Kähler form)
- $N_{C \mid \mathbb{P} T_{s}}$ is normal bundle to C in supertwistor space

Instanton corrections and twistor actions

At degree d, the heterotic generating function for amplitudes in $\mathcal{N}=4$ csugra + SYM is

$$
\int_{\mathcal{M}_{g}, d} \mathrm{~d} \mu \exp \left(\frac{-A(C)}{2 \pi}+\mathrm{i} \int_{C} B\right) \frac{\operatorname{det} \bar{\partial}_{E \otimes S_{-}}}{\operatorname{det}^{\prime} \bar{\partial}_{N_{C \mid \mathbb{P T} T_{s}}}}
$$

- $\mathcal{M}_{g, d}$ is contour in space of genus g, degree d curves, measure $\mathrm{d} \mu\left(=\mathrm{d}^{4 \mid 8} x\right.$ at $\left.g=0, d=1\right)$
- $A(C)=$ area of curve C (from the restriction of the Kähler form)
- $N_{C \mid \mathbb{P T}}^{s}$ is normal bundle to C in supertwistor space

In compactifications on $C Y \times \mathbb{R}^{4},(\star)$ describes instanton corrections to $4 d$ superpotential.
Here, the $d=1$ contribution can be used together with the
Chern-Simons ($d=0$ term) as a twistor action.

Berkovits' model I

On contractible open patch $U \subset \mathbb{P T}$

- Action becomes free
- $H^{p}(U, \mathcal{S})=0$ for $p>0 \Rightarrow$ Vertex ops independent of $\bar{\rho}$

Berkovits' model I

On contractible open patch $U \subset \mathbb{P T}$

- Action becomes free
- $H^{p}(U, \mathcal{S})=0$ for $p>0 \Rightarrow$ Vertex ops independent of $\bar{\rho}$
\Rightarrow All correlation functions on U obtainable from

$$
S_{\beta \gamma}=\int_{\Sigma} \beta_{i} \bar{\partial} \gamma^{i}+\bar{\psi}_{a} \bar{\partial} \psi^{a}
$$

where $\beta_{i}:=\delta_{i \bar{j}} \partial \phi^{\bar{j}}, \gamma:=\phi$

Berkovits' model I

On contractible open patch $U \subset \mathbb{P T}$

- Action becomes free
- $H^{p}(U, \mathcal{S})=0$ for $p>0 \Rightarrow$ Vertex ops independent of $\bar{\rho}$
\Rightarrow All correlation functions on U obtainable from

$$
S_{\beta \gamma}=\int_{\Sigma} \beta_{i} \bar{\partial} \gamma^{i}+\bar{\psi}_{a} \bar{\partial} \psi^{a}
$$

where $\beta_{i}:=\delta_{i \bar{j}} \partial \phi^{\bar{j}}, \gamma:=\phi$
Cover target with patches, each supporting free $\beta \gamma$ system

- Anomaly conditions arise from consistency in gluing
- Higher vertex operators described by Čech cohomology

Berkovits' model II

Equivalently, work on non-projective space

$$
S=\int_{\Sigma} Y_{I} \bar{D} Z^{\prime} \quad I=(\alpha \mid a)=(1, \ldots, 4 \mid 1, \ldots, 4)
$$

with $\bar{D}=\bar{\partial}+A$ a $G L(1, \mathbb{C})$ connection. To recover previous description: integrate out $A \Rightarrow Y_{1} Z^{\prime}=0$ and solve on patches $Z^{\alpha} \neq 0$.

Berkovits' model II

Equivalently, work on non-projective space

$$
S=\int_{\Sigma} Y_{I} \bar{D} Z^{\prime} \quad I=(\alpha \mid a)=(1, \ldots, 4 \mid 1, \ldots, 4)
$$

with $\bar{D}=\bar{\partial}+A$ a $G L(1, \mathbb{C})$ connection. To recover previous description: integrate out $A \Rightarrow Y_{1} Z^{\prime}=0$ and solve on patches $Z^{\alpha} \neq 0$.

- Introduce holomorphic bc-system and current algebra as before
- Path integral only involves holomorphic $Z \mathrm{~s} \Rightarrow$ contour still needed
Given antiholomorphic involutions on Σ and \mathbb{P}^{3}, perform orientifold projection. ++-- orientifolded theory \Leftrightarrow "open string theory" on Σ^{\prime} with action

$$
S=\int_{\Sigma^{\prime}} Y_{l} \bar{D} Z^{\prime}+\bar{Y}_{\bar{l}} D Z^{\bar{l}}+b \bar{\partial} c+\bar{b} \partial \bar{c}+S_{\mathrm{YM}}
$$

where $Z\left(\partial \Sigma^{\prime}\right) \subset \mathbb{R P}^{3}$, and $\left.Z^{\prime}\right|_{\partial \Sigma^{\prime}}=\left.\bar{Z}^{\bar{\prime}}\right|_{\partial \Sigma^{\prime}}$ etc.

Witten's model

The D1-D5 strings in Witten's B-model give a factor $\operatorname{det} \bar{\partial}_{E \otimes S_{-}}(C)$ for each curve C.

Witten's model

The D1-D5 strings in Witten's B-model give a factor $\operatorname{det} \bar{\partial}_{E \otimes S_{-}}(C)$ for each curve C.

There are also D1-D1 strings. On the worldvolume of a single D1-brane wrapping C, their effective action is

$$
\int_{C} \Phi_{1} \bar{\partial} \Phi_{0} ; \quad \Phi_{0} \in \Gamma\left(C, N_{C \mid \mathbb{P} T_{s}}\right), \Phi_{1} \in \Gamma\left(C, K_{C} \otimes N_{C \mid \mathbb{P} T_{s}}^{\vee}\right)
$$

(from dimen. reduc. of Chern-Simons) $\Rightarrow 1 / \operatorname{det} \bar{\partial}_{N_{C \mid \mathbb{P T}}^{s}}$

Witten's model

The D1-D5 strings in Witten's B-model give a factor $\operatorname{det} \bar{\partial}_{E \otimes S_{-}}(C)$ for each curve C.

There are also D1-D1 strings. On the worldvolume of a single D1-brane wrapping C, their effective action is

$$
\int_{C} \Phi_{1} \bar{\partial} \Phi_{0} ; \quad \Phi_{0} \in \Gamma\left(C, N_{C \mid \mathbb{P} \mathbb{T}_{s}}\right), \Phi_{1} \in \Gamma\left(C, K_{C} \otimes N_{C \mid \mathbb{P} \mathbb{T}_{s}}^{\vee}\right)
$$

(from dimen. reduc. of Chern-Simons) $\Rightarrow 1 / \operatorname{det} \bar{\partial}_{N_{C \mid \mathbb{P T}}^{s}}$

Finally, WB \& NOV propose D1-branes themselves \Rightarrow
$\exp \left(A(C) / 2 \pi+\mathrm{i} \int_{C} B\right)$ (electric source for $\left.B+\mathrm{i} \omega\right)$

Witten's model

The D1-D5 strings in Witten's B-model give a factor $\operatorname{det} \bar{\partial}_{E \otimes S_{-}}(C)$ for each curve C.

There are also D1-D1 strings. On the worldvolume of a single D1-brane wrapping C, their effective action is

$$
\int_{C} \Phi_{1} \bar{\partial} \Phi_{0} ; \quad \Phi_{0} \in \Gamma\left(C, N_{C \mid \mathbb{P} \mathbb{T}_{s}}\right), \Phi_{1} \in \Gamma\left(C, K_{C} \otimes N_{C \mid \mathbb{P} T_{s}}^{\vee}\right)
$$

(from dimen. reduc. of Chern-Simons) $\Rightarrow 1 / \operatorname{det} \bar{\partial}_{N_{C_{\mid \mathbb{P T}}^{s}}}$

Finally, WB \& NOV propose D1-branes themselves \Rightarrow $\exp \left(A(C) / 2 \pi+\mathrm{i} \int_{C} B\right)$ (electric source for $B+\mathrm{i} \omega$)

Combining these ingredients gives exactly the same contribution as the heterotic worldsheet instantons.

Conclusions \& Outlook

We've given a construction of twistor-string theory as a heterotic string.

- Entire D1/D5 system in B-model equivalent to heterotic string
- Should generalize to non-pert. top. str. on standard CY

Conclusions \& Outlook

We've given a construction of twistor-string theory as a heterotic string.

- Entire D1/D5 system in B-model equivalent to heterotic string
- Should generalize to non-pert. top. str. on standard CY
- Heterotic \Leftrightarrow Berkovits \sim Dolbeault \Leftrightarrow Čech
- Pre-orientifold Berkovits model in right category from outset
- Anomaly calculations more standard in heterotic

Conclusions \& Outlook

We've given a construction of twistor-string theory as a heterotic string.

- Entire D1/D5 system in B-model equivalent to heterotic string
- Should generalize to non-pert. top. str. on standard CY
- Heterotic \Leftrightarrow Berkovits \sim Dolbeault \Leftrightarrow Čech
- Pre-orientifold Berkovits model in right category from outset
- Anomaly calculations more standard in heterotic

Oustanding problems:

- Modular invariance \& $c=28$
- Penrose transform complete action
- Contour integrals
- Derivation of RSV? Connected/disconnected equivalence?

Conclusions \& Outlook

We've given a construction of twistor-string theory as a heterotic string.

- Entire D1/D5 system in B-model equivalent to heterotic string
- Should generalize to non-pert. top. str. on standard CY
- Heterotic \Leftrightarrow Berkovits \sim Dolbeault \Leftrightarrow Čech
- Pre-orientifold Berkovits model in right category from outset
- Anomaly calculations more standard in heterotic

Oustanding problems:

- Modular invariance \& $c=28$
- Penrose transform complete action
- Contour integrals
- Derivation of RSV? Connected/disconnected equivalence?
- Replace $\mathcal{O}(1)^{\oplus 4}$ by another bundle?
- Poincaré supergravity? Pure SYM? Phenomenology?

