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The String Picture



Spinors and the null cone
• Penrose’s twistor theory tried to incorporate spinorial

structures into general relativity in a non-local way.
• Spinors, particularly for spin one-half, are naturally complex

and link to quantum mechanics as the space of states at a
point of a quantum (fermionic) particle.

• Two-component spinors parametrize the future null cone, so
are directly tied to ideas of causality. Explicitly, we represent
a space-time point X = (t , x , y , z) ∈ C4 by a 2× 2-matrix:

X =
t + z x − iy
x + iy t − z

, det(X ) = t2−x2−y2−z2, tr(X ) = 2t .

• X is real iff X = X ∗, where ∗ denotes hermitian conjugation.
• X is real null and future pointing iff 0 6= π = (p,q) ∈ C2

exists with:
X = 2ππ∗.

• Thus we may parametrize the future null cone as follows:

π → (|p|2+|q|2, pq+qp, i(pq−qp), |p|2−|q|2) = (t , x , y , z),

t2 − x2 − y2 − z2 = 0



The Lorentz group and SL(2, C)

• π is called a spinor and the two-complex dimensional
vector space of all spinors is called spin space S.

• The formula X = 2ππ∗ is phase invariant: π and tπ give the
same null ray if t 6= 0 and the same null vector if |t | = 1.

• The group GL(2,C) acts naturally on X by X → LXL∗, for
L ∈ GL(2,C), inducing a real linear transformation, Λ(L) of
space-time, which preserves the metric up to a dilation.

• Then GL(2,C) acts on the spin space by π → Lπ.
• If det(L) = 1, Λ(L) ∈ O+

+(1,3,R), the identity component of
the real Lorentz group. The map SL(2,C)→ O+

+(1,3,R),
L→ Λ(L) is 2:1 and onto, with kernel Z2 = {±I}.

• For a vector space V of dimension n, and for 0 ≤ k ≤ n,
G(k ,V) denotes the Grassmanian of all subspaces of V of
dimension k . Then G(k ,V) has dimension k(n − k).

• The space of null rays at a space-time point is naturally a
Riemann sphere, PS = G(1,S). PS has as its symmetry
group PSL(2,C) = SL(2,C)/Z2 = O+

+(1,3,R) and the
group actions on spinors, vectors and null rays all mesh.



The four kinds of spinors
• There are four kinds of two-component spinors,

distinguished by how they transform under a Lorentz
transformation L ∈ SL(2,C):

• S, the unprimed spin space, with typical element αA and
transformation matrix L.

• S∗, the unprimed co-spin space, with typical element βA and
transformation matrix L−1.

• S′, the primed spin space, with typical element γA′
and

transformation matrix L.
• (S′)∗, the primed co-spin space, with typical element δA′

and transformation matrix L
−1

.
• The spaces S and S∗ are naturally dual, as are the spaces

S′ and (S′)∗.
• Conjugation interchanges S with S′ and S∗ with (S′)∗.
• The tensor product S⊗C S′ transforms as a complex

Lorentz vector, whereas S∗ ⊗C (S′)∗ transforms as a
complex Lorentz co-vector.

• The spinor algebra subsumes the Lorentz tensor algebra.



The metric and the spinor symplectic forms

We use lower case Latin indices for Lorentz tensors.
• A real Lorentz vector xa has a spinor description as

xa = xAA′
, where xAA′

is self-conjugate: xA′A = xAA′
.

• Then the metric gab = gABA′B′ factorizes as gab = εABεA′B′ ,
where εAB 6= 0 is skew and has complex conjugate εA′B′ .

• Then εAB and εA′B′ are complex symplectic structures for
the unprimed and primed spin-spaces, respectively.

• Abstractly we have ε ∈ Ω2(S∗), such that g = ε⊗C ε.
• The inverse symplectic form is εAB, normalized by the

relation εABε
AC = δ C

B .
• Spinor indices are raised and lowered according to the

rules:
αAεAB = αB, βBε

AB = βA.

• A spin frame {αA, βB} is normalized iff αAβB −αBβA = εAB.



Relating the abstract and matrix approaches
• We relate the position vector xa of a space-time point to its

Minkowskian co-ordinates (t , x , y , z) using the
decomposition:

xa
√

2 = (t+z)αAαA′
+(t−z)βAβ

A′
+(x+iy)αAβ

A′
+(x−iy)βAαA′

.

Here {αA, βA} is a normalized spin frame.
Then we have:

gabxaxb = xaxa = t2 − x2 − y2 − z2.

• Abstractly, using X for the position vector, this
decomposition is:

X
√

2 = (t+z)α⊗Cα+(t−z)β⊗Cβ+(x+iy)α⊗Cβ+(x−iy)β⊗Cα.

• A complex vector va is null iff vAA′
= γAδA′

for some
spinors γA and δA′

(abstractly v = γ ⊗C δ).
• Further va is real, null and future-pointing iff vAA′

= γAγA′
,

for some non-zero spinor γA (unique up to a phase).



Twistors for flat space-time

• The basic twistor is a light ray in space-time; in
compactified complexified Minkowski space-time, this
generalizes naturally to a completely null self-dual complex
two-plane. The space of such twistors is a complex
projective three-space PT, whose real dimension is six.
The space of light rays forms a real hypersurface PN, of
PT, with a regular CR-structure of Levi signature (1,1).

• At the projective level there are three intertwined spaces:
PT, the dual space, PT∗, and the Klein quadric, M.

• There is a four-complex dimensional vector space, twistor
space T, such that PT = G(1,T), PT∗ = G(3,T) and
M = G(2,T). Note that M is also the projective space of
the space of elements X of Ω2(T), such that X ∧ X = 0, so
M has a natural conformally flat conformal structure.



Twistors and reality

• The twistor space carries a conjugation Z ∈ T→ Z ∈ T∗,
such that the quadratic form Z (Z ) has signature (2,2).

• If we also preserve a volume form on the twistor space, the
symmetry group is SU(2,2,C) which is fifteen-dimensional.

• The three groups SU(2,2,C), SO(2,4,R) and C(1,3,R),
the conformal group of compactified Minkowksi space-time
are real Lie groups of fifteen dimensions and are naturally
locally isomorphic.

• The fifteen dimensions are accounted for by:
• Spatial rotations: three dimensions
• Lorentz boosts: three dimensions
• Spatial translations: three dimensions
• Time translations: one dimension
• Dilations: one dimension
• Special conformal transformations: four dimensions



Twistor groups
We use Greek indices for twistors.
• The group SU(2,2,C) acts as Zα → LαβZβ, for each twistor

Zα and each Lαβ ∈ SU(2,2,C).
• The twistor pseudo-hermitian form, Z αZ α, is preserved, so

we have Lα
γ L

γ

β = δα
β ; also det(L) = 1.

• The induced action on any Xαβ = −Xβα ∈ Ω2(T) is:
Xαβ → LαγLβδX γδ.

• This action preserves XαβXαβ and gives an action of the
group SOe(2,4,R) (the subscript e denotes identity
component). The transformations ±Lα

β are identified.
• The action on Ω2(T) preserves the null cone X [αβX γδ] = 0,

so induces a conformal transformation of space-time.
• Here the transformations tLα

β with t4 = 1 are identified,
since Xαβ and −Xαβ represent the same space-time point.

• Summarizing, we have group epimorphisms with kernel Z2:

SU(2,2,C)→ SOe(2,4,R)→ Ce(1,3,R).

Here the subscript e signifies identity component. The
kernel in each case is Z2.



Twistors and reality
We parametrize twistors by pairs of spinors as follows:
• Zα = (ωA, πA′) = (p,q, r , s), Zα = (πA, ω

A′
) = (r , s,p,q).

Here ωA = (p,q) and πA′ = (r , s). Then the twistor form is:

ZαZα = pr + rp + qs + sq = ωAπA + πA′ωA′
.

• We embed space-time in Ω2(T) as follows:

Xαβ =

0 u ix + y −it − iz
−u 0 it − iz −ix + y

−ix − y −it + iz 0 −v
it + iz ix − y v 0

.

• Then we have:

Xαβ =

0 −v ix − y it − iz
v 0 −i t − iz −ix − y

−ix + y it + iz 0 u
−i t + iz ix + y −u 0

,

• So XαβXαβ = −2uv − 2vu + 4|t |2 − 4|x |2 − 4|y |2 − 4|z|2.



Twistors and reality

Dualizing Xαβ, we get:

1
2
εαβγδX γδ =

0 u ix + y −i t − iz
−u 0 i t − iz −ix + y

−ix − y −i t + iz 0 −v
it + iz ix − y v 0

.

Here εαβγδ is totally skew and ε1234 = 1.



• The incidence of a space-time point X = (t , x , y , z) ∈ C4

with a twistor Z = (ω, π) = (p,q, r , s) ∈ C4, where
ω = (p,q) and π = (r , s), is given by: the formula:

p
q

= i
t − z x − iy
x + iy t + z

r
s
, ω = iXπ.

Then the twistor quadratic form is:

Z (Z ) = rp + sq + pr + qs = π∗ω + ω∗π = iπ∗(X − X ∗)π.

• Reality of the space-time point X = X ∗ gives Z (Z ) = 0.
• Conversely if Z (Z ) = 0, for all r and s, then X is real.
• As r and s vary, for fixed X , we trace out a two-dimensional

subspace of T, so an element of G(2,T).
• Given Z 6= 0, the incidence relation has a two parameter

set of solutions, X, giving the self-dual null two-plane of
complex space-time, corresponding to Z . Z and tZ have
the same two-plane for any complex number t 6= 0.



ODE questions
An ODE is Ψ(y , y ′, y ′′, . . . , y (n), x) = 0.
Solution depends on n constants of the motion:

Φ(x , y ,a1,a2, . . . ,an) = 0.

• Case n = 2; Φ(x , y ,a1,a2) = 0.
Get ODE by y = f (x ,a1,a2), y ′ = g(x ,a1,a2),
y ′′ = h(x ,a1,a2): eliminate (a1,a2) between these three
relations get Ψ(x , y , y ′, y ′′) = 0.

• Example: Φ(x , y ,a1,a2) = y2 − ax2 − bx − c = 0.

2yy ′ − 2ax − b = 0,

yy ′′ = a− (y ′)2,

4y3y ′′ = 4ay2 − (2ax + b)2

= 4a(ax2 + bx + c)− (2ax + b)2 = 4ac − b2,

y3y ′′ + F = 0, F = b2 − 4ac.



• Symmetry (a,b)↔ (x , y).
• Dual differential equation
• Bifoliate structure
• Associated Cartan-Tanaka-Chern-Moser structure.
• Associated Fefferman conformal structure.

• Dual equation for y ′′ + Fy−3 = 0.

y2 = ax2 + bx + c, F = b2 − 4ac,

y2 = a′x2 + b′x + c′,

y2 = a′′x2 + b′′x + c′′.

[P,Q,R] = [a− a,b − b′, c − c′]× [a− a′′,b − b′′, c − c′′].

0 = Q2 − PR,

0 = bb′ − 2a′c − 2ac′ = 0,

0 = (b′)2 + bb′′ − 2a′′c − 2ac′′ − 4a′c′ = 0.

Algebraic differential equation, quadratic in second
derivatives, degree six in first derivatives.



• Case n = 3: Φ(x , y ,a,b, c) = 0:
Strange asymmetry between the (x , y)-space and the
(a,b, c)-space.

• Wunschmann invariant zero: information coded in a
conformal three-geometry: standard twistor construction
gives an associated Fefferman conformal structure in six
dimensions, (3, 3)-signature.

• Wunschmann non-zero: no conformal three-geometry; but
generalized Fefferman conformal structure still persists.
Believe it is a (split) G2-structure.

Problem: understand this from first principles.
• Case n = 4: ????
• Case n > 4: ?????



What is a quantum massless particle?
• The Hilbert space H carries the standard representation of

the
Heisenberg algebra for a system of n degrees of freedom:

[ka, kb] = 0, [ka, xb] = i}δb
a , [xa, xb] = 0.

Here xa is the quantum operator xa = −i}
∂

∂ka
.

• We have H = H+ +H−, where f ∈ H± iff f (−k) = ±f (k).
• Then the second quantization is straightforward:

• H+ is the one-particle boson Hilbert space
• H− is the one-particle fermion Hilbert space.
• The second quantization of the operators ka and xb

gives the superalgebra:

[ka, kb]+ = Eab, [ka, xb] = Eb
a , [xa, xb]+ = Eab, . . . .

Here the E operators generate the symplectic algebra.
• The algebra has 2n odd generators
• The algebra has n(2n + 1) even generators.
• The algebra is called the orthosymplectic algebra.



The case n = 4
• The case n = 4 gives the massless particles of relativity.

We write ka as a complex two-component spinor: kA′ .
The expansion of X is then written as:

X =x+xA′
kA′+xAkA+xABkAkB+xAA′

kA′kA+xA′B′
kA′kB′+. . .

If we suppress the other components of X , φ(X , f )
becomes a function on the spin bundle of space-time:

φ(X , f ) = φ(xAA′
, xA, xA′

).

The field equation is just:

∂AA′φ = ∂A∂A′φ.

Note that in particular we have the massless Klein-Gordon
equation:

∂AA′∂BB′φ = ∂BA′∂AB′φ.



Basic twistor formulas
• A twistor Zα is a pair (ωA, πA′) of Weyl spinors.
• The relativistic twistor "norm squared" is:

ZαZα = ωAπA + πA′ωA′
.

• Here Zα = (πA, ω
A′

) is the conjugate of Zα.
• The invariance group is SU(2,2) (real dimension 15).

This group covers the conformal group of spacetime.
• The incidence relation of a twistor Zα with a point

xa = xAA′
in complex Minkowski space-time is:

ωA = ixAA′
πA′ . Then ZαZα = −2yaπA′πA.

Here ya is the imaginary part of xa.
• If ya is past pointing timelike then Z αZ α > 0.
• If ya is future pointing timelike then Z αZ α < 0.
• If ya is zero then Z αZ α = 0 (these are called null twistors).

• A null twistor corresponds to a real null geodesic:

xa = −i(ωB′
πB′)−1)ωAωA′

+ sπA′
πA.



Geometrical relations
• A point in space-time is a 2-D plane in twistor space.

• If Y α and Z α lie in the plane, then the skew tensor:
Xαβ = Y αZ β − Z αY β represents the point.

• Conversely Xαβ represents a point iff: X [αβXγδ] = 0.
This defines a quadric in CP5, the Klein quadric.
It has a natural conformally flat conformal structure.

• Z α is incident with Xαβ iff Z [αXβγ] = 0.
• A dual twistor Wα is incident with Xαβ iff WαXαβ = 0.

• The Xαβ incident with a given Zα form a two-plane.
• This is completely null and is called an α-plane.

• The Xαβ incident with a given Wα form a two-plane.
• This is completely null and is called a β-plane.

• Two α-planes meet in a unique point.
Two β-planes meet in a unique point.

• An α-plane (Z α) and a β-plane (Wα) meet iff Z αWα = 0.
Then they meet in a projective line: a null geodesic.
Conversely each null geodesic gives rise to a unique
projective pair (Z α,Wα) with Z αWα = 0.



Anatomy of a relativistic massless particle
The phase space of a classical zero rest mass particle may be
described by:
• n a real unit three-vector.
• J the angular momentum three-vector.
• These obey the Poisson bracket relations:

{J.a, J.b} = (a×b).J, {J.a,n.b} = (a×b).n, {n.a,n.b} = 0.

• In addition there are two canonically conjugate scalars t
and u, which each Poisson commute with both J and n
and which obey the relation:

{t ,u} = 1.

• The particle four-momentum is then p = eu[1,n].
• The boost operator is K = tn + J × n.
• The helicity Casimir operator is S = J.n.



Anatomy of a relativistic massless particle

Altogether there are six degrees of freedom for a particle with a
given helicity. This information is neatly packaged in a classical
twistor:

Zα = (ωA, πA′).

• Energy-momentum four-vector: pa = πA′πA

• Lorentz generators: Mab = iεABπ(A′ωB′) − iεA′B”π(AωB)

• Helicity: 2S = ZαZα = πA′ωA′
+ ωAπA.

Here Zα and eiθZα represent the same particle for any real θ.
The commutation relations (Poisson brackets) are simple:

{Zα,Zβ} = 0, {Zα,Zβ} = 0, {Zα,Zβ} = iδαβ .



What is a quantum massless particle?
Fix n a positive integer.
• The Hilbert space is L2(Rn).
• A state is f (k), a complex square-integrable function of

k ∈ Rn.
• The field Φ(X , f ) is given by the Fourier integral formula:

Φ(X , f ) =

∫
e

i
} X(k)f (k)dnk .

Here X (k) is a real function.
• For the field equations we may use functional

differentiation techniques, or more simply, we expand X (k)
as a power series:

X (k) = x + xaka + xabkakb + xabckakbkc + . . . .

Here each coefficient tensor xa1a2...ak is real and
symmetric. Then the field equations are (one for each
positive integer k ): ∂a1a2...ak Φ(X , f ) = ∂a1∂a2 . . . ∂ak Φ(X , f ).



The second quantization
• The Hilbert space H carries the standard representation of

the Heisenberg algebra for a system of n degrees of
freedom:

[ka, kb] = 0, [ka, xb] = i}δb
a , [xa, xb] = 0.

Here xa is the quantum operator xa = −i}
∂

∂ka
.

• We have H = H+ +H−, where f ∈ H± iff f (−k) = ±f (k).
• Then the second quantization is straightforward:

• H+ is the one-particle boson Hilbert space
• H− is the one-particle fermion Hilbert space.
• The second quantization of the operators ka and xb

gives the superalgebra:
[ka, kb]+ = Eab, [ka, xb] = Eb

a , [xa, xb]+ = Eab, . . . .

Here the E operators generate the symplectic algebra.
• The algebra has 2n odd generators
• The algebra has n(2n + 1) even generators.
• The algebra is called the orthosymplectic algebra.



The case n = 4 gives massless particles
• When n = 4, we write the four-vector ka

as a complex two-component Lorentzian spinor: kA′ .
• The expansion of X is then written as:

X =x+xA′
kA′+xAkA+xABkAkB+xAA′

kA′kA+xA′B′
kA′kB′+. . .

Here xA′B′
= xB′A” and xAA′

= xAA′
.

If we suppress the other components of X , the field φ(X , f )
becomes a function on the spin bundle of space-time:

φ(X , f ) = φ(xAA′
, xA, xA′

).

The field equation is just:

∂AA′φ = ∂A∂A′φ.

In particular the massless Klein-Gordon equation holds:

∂AA′∂BB′φ = ∂BA′∂AB′φ.



The twistor operators
• Zα = (}∂A

, kA′) and Zα = (kA, −}∂A′
) are the twistor

operators. These obey the Heisenberg algebra:

[Zα, Zβ] = 0, [Zα, Zβ] = 0, [Zα, Zβ] = }δβα.

The helicity operator S is given by the formula:

4S = ZαZα + ZαZα = 2}(kA∂
A − kA′∂A′

).

The E operators include the generators of U(2,2):
2Eα

β = ZαZβ + ZβZα. In particular, writing Zα = (ωA, πA′),
we have the fundamental relation of supersymmetry:

πA′πA + πAπA′ = 2PAA′ .

Here Pa is the standard Poincare energy-momentum
operator. Note however that the second supersymmetric
relation that is usually imposed also, namely the formula:

πA′πB′ + πA′πB′ = 0

does not hold here.



The twistor quantization

• The twistor quantization quantizes Zα as a multiplication
operator:

f (Z )→ Zαf (Z ).

Then Zα is quantized as a derivative: Zα = −}
∂

∂Zα
.

• The quantization uses locally defined holomorphic
functions
on the twistor space to represent the particle states.
These are encoded into the first sheaf cohomology group
of the twistor space, with holomorphic coefficients.

• The helicity operator is:

S = −}
2

(Zα∂α + 2).



Helicity eigen-states

So homogeneous holomorphic twistor functions represent
helicity eigenstates:
• Degree -6: helicity 2 (graviton)
• Degree -5: helicity 3

2 (gravitino??)
• Degree -4: helicity 1 (photon)
• Degree -3: helicity 1

2 (neutrino?)
• Degree -2: helicity 0 (scalar massless ??)
• Degree -1: helicity −1

2 (neutrino?)
• Degree 0: helicity −1 (photon)
• Degree 1: helicity −3

2 (gravitino??)
• Degree 2: helicity −2 (graviton)



The nice unitary representations of SU(2, 2)
• The group SU(2,2) is a rank three non-compact Lie group.
• Its nicest unitary representations are those of the discrete

series. These may be characterized in terms of their
decomposition into unitary Poincare representations,
relative to a chosen Poincare subgroup of the group.

• There is a lowest spin j1 and a highest spin j2
(which differ by an integer).
Each spin in between occurs exactly once, with the
intermediate spins j differing from j1 by an integer.

• The allowed particle spectrum may be described as a free
assemblage of:

• spin one half quarks
• spin one half anti-quarks
• spin zero di-quarks
• spin zero anti-di-quarks.

Each of these ingredients is treated as a boson for the
sake of constructing the representation.



The interpretation; the discrete series boundaries

• We think of the generic discrete series representations
as describing an idealized hadron. In this language the
three degrees of freedom corresponding to the rank of the
Lie group are the lowest and highest spins of the
representation and the "baryon number." They require
three-twistors for their description (n = 12 above).

• The first boundary of the discrete series are
representations that can be described by functions of two
twistors (n = 8 above). These form the "walls" of the
three-dimensional representation space. They are each of
a fixed Poincare spin. We think of these boundary discrete
series representations as describing an idealized lepton.

• The second boundary of the discrete series is located
where the walls of the representation space meet. This
gives the standard one-twistor massless particles.
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