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Outline  

• MHV diagrams (Cachazo, Svrcek, Witten) 

‣ Loop MHV diagrams (Brandhuber, Spence, GT)                   

• Amplitudes in pure Yang-Mills  from       
MHV diagrams (Brandhuber, Spence, Zoubos, GT)

‣ All-plus amplitude

• MHV amplitudes in N=4 SYM from a   
Wilson loop calculation at weak coupling   

‣ One-loop calculation at n points (Brandhuber, Heslop, GT)

‣ Higher loops (Brandhuber, Heslop, Spence, GT, in preparation)                



Motivations

• Unifying theme is simplicity of amplitudes 
‣ Geometry in Twistor Space

• unexplained by Feynman diagrams
‣ Parke-Taylor formula for Maximally Helicity Violating amplitude of 

gluons (helicities are a permutation of −−++ ....+)         

• New methods account for this simplicity, 
and allow for very efficient calculations



Number of Feynman diagrams for scattering  gg       n g :

Result is: 

Large numbers of Feynman diagrams 
combine to produce unexpectedly and 
mysteriously simple expressions 

(tree level)

☞

☞

systematic analysis of their phenomenological implications. In addition to the development of these
tools for the calculation of exact matrix elements, effort has therefore also been put into finding
proper approximations which reliably simulate the exact solutions in the relevant regions of the
multi-particle phase-space and which are sufficiently simple to be handled analytically and fast to
evaluate numerically.

n 2 3 4 5 6 7 8

# of diagrams 4 25 220 2485 34300 559405 10525900

Table 1: The number of Feynman diagrams contributing to the scattering process gg → n g .

In this Report we collect and review these recent developments for the calculation of multi-parton
matrix elements in non-abelian gauge theories. For examples of how these matrix elements can be
used to obtain cross sections for processes in high energy colliders see EHLQ [29] and references
contained within.

In Section 2 we describe the helicity-amplitude technique and introduce explicit parametrizations
of the polarization vectors in terms of massless spinors. To reach a wide an audience as possible we
have chosen not to use the Weyl - van der Waarden formalism preferred by some researchers, see
for example Ref.[10].

In Section 3 we introduce an alternative to the standard Feynman diagram expansion, based
on the equivalence between the massless sector of a string theory and a Yang-Mills theory. This
expansion groups together subsets of Feynman diagrams for a given process in a gauge invariant
way. These subsets are easier to evaluate than the complete set and different gauges can be used for
each subset so as to maximize the simplifications induced by a proper choice of gauge. Furthermore,
different subsets of diagrams are related to one another through symmetry properties or algebraic
relations and can be obtained without further effort from the knowledge of a small number of building
blocks. This expansion can be extended to arbitrary processes involving particles in representations
other than the adjoint, and in this Section we construct this generalization.

Section 4 describes the use of Supersymmetry Ward identities to relate amplitudes with parti-
cles of different statistics. These relations are useful even when dealing with non-supersymmetric
theories because in many cases the additional supersymmetric degrees of freedom decouple from
the processes of interest. In addition, if the energy of the scattering process is large with respect to
the mass splittings within supersymmetry multiplets, these relations can be used to easily calculate
the matrix elements for the production of supersymmetric particles.

In Section 5 we illustrate the use of these tools with the explicit calculation of matrix elements
for processes with four and five partons, and give results for the scattering of six gluons and four
gluons plus a quark-antiquark pair. We hope this Section is useful for the reader who wants to
familiarize himself with the details of how these calculations are performed.

In Section 6 we prove various factorization properties using a string-theoretic approach, which
provides a compact way to represent multi-parton amplitudes. The results contained in this Section
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→

A(1±,2+, . . .n+) = 0
at tree level

AMHV(1+ . . . i− . . . j− . . .n+) =
〈i j〉4

〈12〉〈23〉 · · ·〈n1〉



 LHC is coming !



A = A({λi, λ̃i, ;hi})

   Amplitudes 

• Colour-ordered partial amplitudes 

‣ momenta and polarisation vectors expressed in terms   
of spinors and helicities

‣ colour indices stripped off

• Planar theory



• n-point MHV amplitude in N=4 SYM at   
one loop:

A
tree

MHV
×

From Trees to Loops, cont’d

a :=
2(pq)

P2Q2− st

F2me(s, t,P2,Q2) =−c!
"2

[(−s
µ2

)−"
2F1 (1,−",1− ",as) +

(−t
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)−"
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with

the all order in 
2-mass easy box function:

!

Sum of two-mass easy box functions, all with coefficient 1 

Simplicity of amplitudes persists at loop level:

A1−loop
MHV = A tree

MHV∑

Diagrammatic 
interpretation 

Q

·



• Computed in 1994 by Bern, Dixon, Dunbar, 
Kosower using unitarity 

• Rederived in 2004 with loop MHV diagrams...       
(Brandhuber, Spence, GT) 

• ...and, more recently, with a weakly-coupled 
Wilson loop calculation, with the Alday-
Maldacena polygonal contour (Brandhuber, Heslop, GT)



• n-point MHV amplitudes in N=4 SYM 

All-loop conjecture of Bern, Dixon, Smirnov

Mn := An,MHV/A tree
n,MHV

M (1)
n (ε) is the all-orders in ε one-loop amplitude

Mn = exp
[ ∞

∑
L=1

aL
(

f (L)(ε)M (1)
n (Lε)+C(L) +E(L)

n (ε)
)]

f (L)(ε) = f (L)
0 + ε f (L)

1 + ε2 f (L)
2

anomalous dimension of twist-two operators at large spin
☝

C(L), E(L)
n (ε)

·

·

·

·

More on this later...

Zvi Bern and Anastasia Volovich’s talks



• All-plus amplitude in pure Yang-Mills, 1 loop 

‣ like MHV amplitude, no multiparticle poles

‣ all-plus equivalently computed in Self-Dual Yang-Mills             

‣ vanishes in supersymmetric theories

‣ dimension shifting relations (Bern, Dixon, Dunbar, Kosower) 

• Escapes naive application of MHV rules !

Another intriguing, simple amplitude:

One-loop 
vertex ? 

A1−loop
n (1+, . . . ,n+) =

−i
48π2 ∑

1≤l1<l2<l3<l4≤n

Tr(1−γ5

2 l̂1 l̂2 l̂3 l̂4)
〈12〉〈23〉 · · ·〈n1〉

finite, rational



Amplitudes in Twistor Space  
(Witten, 2003)

• Scattering amplitudes are supported on 
algebraic curves in Penrose’s twistor space

• d = q − 1 + l

• g ≤ l

‣ Tree MHV:  q=2, l=0  ➡ d=1, g=0   (complex line)

     l = # loops

 q = # negative helicity gluons, 
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Twistor space structure



• MHV amplitudes         complex lines in 
twistor space (Witten)

• Line in twistor space        point in Minkowski 
space (Penrose)

• MHV amplitude        local interaction in 
spacetime ! 

‣ Locality in lightcone formulation (Mansfield; Gorsky & Rosly)

Why MHV diagrams  

➡

➡

➡
(Cachazo, Svrcek, Witten)



  MHV Rules  
   (Cachazo, Svrcek, Witten)

• MHV amplitude ➡ MHV  vertex

• Off-shell continuation for internal (possibly 
loop) momenta needed

‣  Same as in lightcone Yang-Mills 

• Scalar propagators connect MHV vertices

M M
· Internal momentum is off-shell

· Need to define spinor λ for an 
off-shell vector! 



• Off-shell prescription:

‣                is the off-shell continuation

‣     is a reference vector

Laȧ = laȧ + zηaȧ

laȧ := lal̃ȧ
η



• Draw all diagrams obtained by sewing         
d = q − 1 + l  MHV vertices 

            

• Examples:

‣ MHV:          q=2,   l=1       d=2

‣ All minus:    q=n,   l=1       d=n

‣ All plus:       q=0,   l=1       d=0 ?? 

     l = # loops

 q = # negative helicity gluons, 



From Trees to Loops  (AB-Spence-Travaglini)

• Original prognosis from twistor string theory was negative 
(Berkovits-Witten), Conformal SUGRA modes spoil duality

• Try anyway:

• Connect MHV vertices, using the same off-shell 
continuation as for trees

• Chose measure, perform loop integration

• MHV 1-loop amplitudes in N=4/N=1 SYM (agrees with BDDK)

Z
dM !

m1,m2,h
∑

Z
dM

  

                      

• Sum over

‣ all possible MHV diagrams

‣ internal particle species (g, f, s) and helicities 

• dM = phase space measure X dispersive measure

• Different from unitarity-based approach of BDDK

          One-loop MHV amplitudes in N=4 
(Brandhuber, Spence, GT)



The  integration measure

• Use                        ,  and                 :

 

From Trees to Loops  (AB-Spence-Travaglini)

• Original prognosis from twistor string theory was negative 
(Berkovits-Witten), Conformal SUGRA modes spoil duality

• Try anyway:

• Connect MHV vertices, using the same off-shell 
continuation as for trees

• Chose measure, perform loop integration

• MHV 1-loop amplitudes in N=4/N=1 SYM (agrees with BDDK)

Z
dM !

m1,m2,h

PL ·      is the momentum  
on the left

dM :=
d4L1

L2
1 + iε

d4L2

L2
2 + iε

δ(4)(L2−L1 +PL)

L→ (l,z)

d4L
L2 + iε

=
dz

z + isgn (l0η0)ε
d3l
2 l0

dispersive measure  X phase-space measure
(Nair measure)

➡

L = l + zη



Applications (with supersymmetry)

• One-loop MHV amplitudes in N=4 SYM   
(Brandhuber, Spence, GT)                

• One-loop MHV amplitudes in N=1,2 SYM                          
(Bedford, Brandhuber, Spence, GT; Quigley, Rozali) 

‣ No twistor string theory for N=1 SYM, nevertheless    
MHV diagram method works



• Covariance  (η-independence)

• Correct singularity structure

‣ Discontinuities across (generalised) cuts 

‣ Soft, collinear

‣ Multiparticle 

 Proving MHV diagrams at one loop
Supersymmetric theories 

(Brandhuber, Spence, GT)

Feynman Tree Theorem



• Use tree-level BCFW proof at one loop:

‣ If all singularities match, and the amplitude is 
covariant, then                      is a polynomial     
in the external momenta whose dimension is         
4 − # particles ➡

AMHV = AFeynman

AMHV − AFeynman



• Proof from field redefinition on lightcone 
Yang-Mills action (Mansfield)

• Proof from twistor actions (Boels, Mason, Skinner)

• Relation with BCFW recursion relation      
(tree level)   (Risager)

Tim Morris and Rutger Boels talks tomorrow



• Cut-constructible part of one-loop MHV 
amplitudes in pure Yang-Mills                   
(Bedford, Brandhuber, Spence, GT)

• Rational terms in non-supersymmetric 
amplitudes missed by MHV diagrams 

‣ Non-supersymmetric amplitudes are not cut-
constructible in four dimensions  

‣ use recursive techniques to derive rational terms           
(Bern, Dixon, Kosower; Bern, Berger, Dixon, Forde, Kosower)

Without supersymmetry



• n three-point MHV vertices (for                    )  

• Key observation: three-point MHV vertices 
are the same as lightcone vertices      result 
is a priori correct

The all-minus amplitude 

(Brandhuber, Spence, GT)

➡

A(1− · · ·n−)



• Use supersymmetric decomposition: 

• N=4 and N=1 contributions vanish

• Gluon       scalar running in the loop

‣ simpler to calculate

Ag = (Ag +4A f +3As) − 4(A f +As) + As

➡

Explicit calculation



+ pms

+ pm

Result ~  K4 = −ε(1− ε) I4
D=8−2ε −→−1
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(Originally derived by Bern & Kosower, and Bern & Morgan)
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• Define                     with 

• A finite, non-zero result arises from 
incomplete cancellations of propagators  

‣ MHV vertices are 4-dimensional 

‣ D-dimensional propagators 

Finiteness of the all-minus amplitude

L2
4

L2
D

=
L2

4−µ2 +µ2

L2
D

= 1+
µ2

L2
D

LD = L4 +L−2ε L2
D = L2

4 +L2
−2ε := L2

4−µ2



• Naive calculation directly in 4d gives zero

• Finite, non-zero result related to an 
anomaly ?

‣ Finiteness arises as          effect 

‣ Anomaly in worldsheet conformal symmetry in N=2 

open strings (Chalmers, Siegel)

ε/ε

Reminiscent of an 
anomaly...



• All-minus amplitude understood within 
MHV diagram method

• All-plus amplitude 

‣ Parity conjugate of all-minus, but MHV method treats the 
two helicities differently

• Longstanding speculations on a one-loop  
all-plus vertex

‣ All-plus amplitude has no multiparticle poles (as MHV) 

‣ Twistor space geometry seems to confirm this 



Where is the all-plus amplitude ?

• Mansfield’s procedure:  (in a nutshell)

‣ Start from lightcone quantisation of YM,

‣ integrate out       (no derivatives wrt lightcone time     )

‣           correspond to physical polarisations

• Action is 

A+ x−

S = S−+ + S−−+ + S++− + S−−++

(Scherk, Schwarz)
anti MHV 

Go back to the path integral !

A− = 0

Az, Az̄



• Change variables in path integral:

• Further require:  

‣ Transformation is canonical, with

‣ Canonicality         Jacobian equal to 1 (classically)

‣ Subtleties related to 

Az ,Az̄ → B+ ,B−

(S−+ + S−++)[Az,Az̄] = S−+[B+,B−]

Az = Az[B+]

 · LHS is SDYM action

➡
det ∂+

 · Bäcklund transformation



• Plug                                    

      in 

• Result is    

• Vertices have MHV helicity configuration

(S−−+ + S−−++)[Az,Az̄]

Az ∼ B+ + B2
+ + B3

+ + · · ·

S[B+,B−] = S−+ + S−−+ + S−−++ + S−−+++ + · · ·

Az̄ ∼ B− (1 + B+ + B2
+ + B3

+ + · · ·)



• Jacobian for                       is 1 (classically)

• Equivalence Theorem:       

‣ Green’s functions of the B fields are different from those 
of the A fields, however

‣ S-matrix elements are the same modulo a    wave-
function renormalisation...

‣ ...equal to 1 at one loop   (Ettle & Morris) 

• We can equivalently calculate amplitudes 
with B fields insertions

Az ,Az̄ → B+ ,B−

Comments



• We have just mapped Self-Dual Yang-Mills to 
a free theory...

• ...with the consequence of eliminating the       
all-plus amplitude

• Potential sources of problems:

‣ Jacobian

‣ Equivalence Theorem

‣ Regularisation

One missing thing !



• Use Thorn worldsheet friendly regularisation

‣ inherently four-dimensional 

• Perform Mansfield-Bäcklund transformation 
on the regularised, 4d action

‣ SDYM classically integrable only in 4d 

• New one-loop effective interactions from 
regularisation, plus

• Usual MHV vertices 

Our solution  
(Brandhuber, Spence, Zoubos, GT)

simple...



•  Worldsheet friendly regulator:

‣ δ is sent to zero at the end of calculation

•      are loop region (T-dual) momenta

• Regularisation generate Lorentz-violating 
processes

‣ cancel with appropriate ++ counterterm

The “worldsheet–friendly” regulator that CQT employ is simply defined as follows [49]:
For a general n–loop diagram, with qi being the loop region momenta, one simply inserts an
exponential cutoff factor

exp(−δ
n

∑

i=1

q2
i ) (2.13)

in the loop integrand, where δ is positive and will be taken to zero at the end of the calcula-
tion. This clearly regulates UV divergences (from large transverse momenta), but, as we will
see, has some surprising consequences since it will lead to finite values for certain Lorentz–
violating processes, which therefore have to be cancelled by the introduction of appropriate
counterterms.

Note that q2 = 2qzqz̄ has components only along the two transverse directions, hence it
breaks explicitly even more Lorentz invariance than the lightcone usually does. This might
seem rather unnatural from a field-theoretical point of view, however it is crucial in the
lightcone worldsheet approach. Indeed, the lightcone time x− and x+ (or in practice its
dual momentum p+) parametrise the worldsheet itself, and are regulated by discretisation;
thus, they are necessarily treated very differently from the two transverse momenta qz, qz̄

which appear as dynamical worldsheet scalars. Fundamentally, this is because of the need
to preserve longitudinal (x+) boost invariance (which eventually leads to conservation of
discrete p+). The fact that the regulator depends on the region momenta rather than the
actual ones is a consequence of asking for it to have a local description on the worldsheet.

The main ingredient for what will follow later in this paper is the computation of the
(++) one–loop gluon self–energy in the regularisation scheme discussed earlier. This is
performed on page 10 of [40], and we will briefly outline it here. This helicity–flipping
gluon self–energy, which we denote by Π++, is the only potential self–energy contribution in
self–dual Yang–Mills; in full YM we would also have Π+− and, by parity invariance, Π+−.

There are two contributions to this process, corresponding to the two ways to route
helicity in the loop, but they can be easily shown to be equal so we will concentrate on one
of them, which is pictured in Figure 2.

A A

A Ā

AĀ

k′

k

q
p −p

l

p + l

Figure 2: Labelling of one of the selfenergy diagrams contributing to Π++.

In Figure 2, p,−p are the outgoing line momenta, l is the loop line momentum, and
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☜

(Chakrabarti, Qiu, Thorn)



•  +               +   counterterm ~ 

• Applying Mansfield transformation on 
counterterm generates all-plus amplitudes:

Notice that this nonvanishing, finite result violates Lorentz invariance, since it would
imply that a single gluon can flip its helicity. Also, it explicitly depends on only the z̄
components of the region momenta. Such a term is clearly absent in the tree-level Lagrangian
(unlike e.g. the Π+− contribution in full Yang–Mills theory), thus it cannot be absorbed
through renormalisation – it will have to be explicitly cancelled by a counterterm. This
counterterm, which will play a major rôle in the following, is defined in such a way that:

+ = 0 , (2.19)

in other words it will cancel all insertions of Π++, diagram by diagram. Let us note here
that, had we been doing dimensional regularisation, all bubble contributions would vanish
on their own, so there would be no need to add any counterterms. So this effect is purely
due to the “worldsheet–friendly” regulator (2.13).

It is also interesting to observe that in a supersymmetric theory this bubble contribution
would vanish7 so this effect is only of relevance to pure Yang–Mills theory.

2.3 The one–loop (++++) amplitude

Now let us look at the all–plus four-point one–loop amplitude in this theory. It is easy to
see that it will receive contributions from three types of geometries: boxes, triangles and
bubbles. It is a remarkable property8 that the sum of all these geometries adds up to zero.
In particular, with a suitable routing of momenta, the integrand itself is zero. Pictorially,
we can state this as:

+ 4 × + 2 × + 8 × = 0 . (2.20)

The coefficients mean that we need to add that number of inequivalent orderings. So
we see (and refer to [40] for the explicit calculation) that the sum of all the diagrams that
one can construct from the single vertex in our theory, gives a vanishing answer. However,
as discussed in the previous section, this is not everything: we need to also include the
contribution of the counterterm that we are forced to add in order to preserve Lorentz
invariance. Since this counterterm, by design, cancels all the bubble graph contributions, we
are left with just the sum of the box and the four triangle diagrams. In pictures,

A++++ = +4× +






2 × + 8 × + 2 × + 8 ×






(2.21)

7This can in fact be derived from the results of [53], where similar calculations were considered with
fermions and scalars in the loop.

8This observation is attributed to Zvi Bern [40].

11

In terms of spinor brackets this amplitude has terms of the form 〈 〉2−n[ ]2. A quick look
at the Ettle-Morris coefficients shows that, for an n–point vertex coming from LCT, they
contribute exactly 2 − n powers of the spinor brackets 〈 〉. Furthermore, there are exactly
two powers of [ ] coming from the counterterm Lagrangian LCT ∼ (k2

z̄)A
2 – one for each

power of k. Thus the general structure of LCT is appropriate to reproduce (3.29).

Pictorially, we can represent the general n–point amplitude, arising from the counterterm
in the new variables, as in Figure 5.

Bi

Bi−1

Bj+1

Bj

Bj−1
Bi+1

ki kj

Figure 5: The structure of a generic term contributing to the n–point vertex. All momenta
are taken to be outgoing, and all indices are modulo n.

Thus we can write this n–point all–plus vertex as follows:

A(n)
+···+ =

∫

1···n

δ(p + p′)
∑

1≤i<j≤n

Y(p; j + 1, . . . , i)
(

(ki
z̄)

2 + (kj
z̄)

2 + ki
z̄k

j
z̄

)

Y(p′; i + 1, . . . , j)×

× tr[BiBi+1 · · ·BjBj+1 · · ·Bi−1]

=(2i)n−1

∫

1···n

δ(p1 + · · · + pn)
∑

1≤i<j≤n

(pj+1
+ + · · ·+ pi

+)
√

pj+1
+ pi

+

1

〈j + 1, j + 2〉 · · · 〈i − 1, i〉×

×
(

(ki
z̄)

2 + (kj
z̄)

2 + ki
z̄k

j
z̄

) (pi+1
+ + · · ·+ pj

+)
√

pi+1
+ pj

+

1

〈i + 1, i + 2〉 · · · 〈j − 1, j〉
tr[B1 · · ·Bn] .

(3.30)

Focusing only on the relevant part of the above expression, and ignoring all coefficients, the
general structure we obtain is the following:

V(n)
+···+ =

1

〈12〉 · · · 〈n1〉
×





∑

1≤i<j≤n

〈j, j + 1〉〈i, i + 1〉
√

pi
+pi+1

+ pj
+pj+1

+

(kj
+ − ki

+)2((ki
z̄)

2 + (kj
z̄)

2 + ki
z̄k

j
z̄)



 (3.31)

23

Reminders:                 holomorphic

  is positive-helicity gluon

A = A(B)

A

Equivalence Theorem: A→ B

k, k′, q are the region momenta, in terms of which the line momenta are given by

p = k′ − k, l = q − k′ . (2.14)

Remembering to double the result of this diagram, we find the following expression for
the self–energy:

Π++ =8g2N

∫

d4l

(2π)4

[

−(p + l)+

p+l+
(p+lz̄ − l+pz̄)

]

× 1

l2(p + l)2
×

×
[

−l+
(−p+)(p + l)+

((−p+)(pz̄ + lz̄) − (p+ + l+)(pz̄))

]

=
g2N

2π4

∫

d4l
1

(p+)2
(p+lz̄ − l+pz̄)(p+(pz̄ + lz̄) − (p+ + l+)pz̄)

1

l2(p + l)2
.

(2.15)

Although we are suppressing the colour structure, the factor of N is easy to see by thinking
of the double–line representation of this diagram6. One of the crucial properties of (2.15)
is that the factors of the loop momentum l+ coming from the vertices have cancelled out,
hence there are no potential subtleties in the loop integration as l+ → 0. This means that,
although for general loop calculations one would have to follow the DLCQ procedure and
discretise l+ (as is done for other processes considered in [39, 40, 41]), this issue does not
arise at all for this particular integral, and we are free to keep l+ continuous.

To proceed, we convert momenta to region momenta, rewrite propagators in Schwinger
representation, and regulate divergences using the regulator (2.13). Thus, (2.15) can be
recast as:

Π++ =
g2N

2π4

∫ ∞

0

dT1dT2

∫

d4q
1

(k′
+)2

eT1(q−k)2+T2(q−k′)2−δq2×

×
[

k′
+(qz̄ − k′

z̄) − (q+ − k′
+)(k′

z̄ − kz̄)
] [

k′
+(qz̄ − kz̄) − q+(k′

z̄ − kz̄)
]

.

(2.16)

Since q− only appears in the exponential, the q− integration will lead to a delta function
containing q+, which can be easily integrated and leads to a Gaussian–type integral for qz, qz̄.
Performing this integral, we obtain

Π++ =
g2N

2π2

∫ 1

0

dx

∫ ∞

0

dT δ2 [xkz̄ + (1 − x)k′
z̄]

2

(T + δ)3
eTx(1−x)p2− δT

T+δ
(xk+(1−x)k′)2 . (2.17)

Notice that, had we not regularised using the δ regulator, we would have obtained zero at
this stage. Instead, now we can see that there is a region of the T integration (where T ∼ δ)
that can lead to a nonzero result. On performing the T and x integrations, and sending δ
to zero at the end, we obtain the following finite answer:

Π++ = 2

(

+ +

)

=
g2N

12π2

(

(kz̄)
2 + (k′

z̄)
2 + kz̄k

′
z̄

)

. (2.18)

6 For simplicity, we take the gauge group to be U(N).
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k

k’

A A

Counterterm acts as a generating functional of all-plus amplitudes



• Explicit check at four points

• Soft, collinear limits                   



• Use dimensional regularisation

‣ new interactions due to the regularisation

‣ vanish as 

• Perform Mansfield-Bäcklund transformation 
on the full D-dimensional action

• Violations of the equivalence theorem 
produce the missing amplitudes

A complementary solution  
(Ettle, Fu, Fudger, Mansfield, Morris)

ε→ 0

Tim Morris’s talk tomorrow



• Calculate more general amplitudes, including 
rational terms

• First example:  −++.....+

Next tasks



• Simplicity of gravity amplitudes 

‣ Twistor space structure        (Bern, Bjerrum-Bohr, Dunbar)

‣ Tree-level MHV rules from recursion relations        
(Bjerrum-Bohr, Dunbar, Ita, Perkins, Risager)

‣ Applications to one-loop MHV diagrams (Nasti, GT)

‣ Field redefinitions on lightcone gravity action (Ananth, Theisen)

‣ Recursion  relations (Bedford, Brandhuber, Spence, GT; Cachazo, Svrcek; 
Benincasa, Boucher-Veronneau, Cachazo)

• Finiteness of N=8 ?  (Bern, Dixon, Roiban; Bern, Carrasco, Dixon, 

Johansson, Kosower, Roiban; Green, Russo, Vanhove)

• Surprises even without supersymmetry !    
(Bern, Carrasco, Forde, Ita, Johansson)

Gravity
Zvi Bern’s talk on Friday

Michael Green’s talk 



Back to N=4 Super Yang-Mills 



   Amplitudes and Wilson Loops

• We wish to calculate  < W[C] > at weak 
coupling 

‣ Contour C as in Alday-Maldacena calculation (next slide)

‣ When               Wilson loop is locally supersymmetric

‣ Choose              (lightlike momenta) and 

‣ In general, supersymmetry is broken globally

W [C] := TrPexp
[

ig
I

C
dτ

(
Aµ(x(τ))ẋµ(τ)+φi(x(τ))ẏi(τ)

)]

ẋ2 = ẏ2

(Brandhuber, Heslop, GT; Brandhuber, Heslop, Spence, GT)

ẋ2 = 0 ẏ = 0



• Contour C in the strong-coupling calculation 
of A&M 

‣ Dictated by the momenta of the scattered gluons

!!

!
"

!
#

!
$

!
%

!
&

!
'

p
!

p
"

p
#

p
$

p
&

p
%

p
'

pi = ki− ki+1

n

∑
i=1

pi = 0 Contour is closed

k’s are T-dual (region) momenta



Motivation

• Computation of amplitudes at strong 
coupling (Alday and Maldacena)

‣ dual to that of the area of a string ending on a lightlike 
polygonal loop embedded in the boundary of AdS 

‣ scattering in AdS is at fixed angle, large energy ➡ similar 

to Gross-Mende calculation

‣ leads to an exponential of classical string action 

‣ calculation in the T-dual variables is equivalent to that of   
a lightlike Wilson loop at strong coupling (Maldacena; Rey and Yee)

(Fernando Alday’s talk)



• Calculate  < W[C] > at weak coupling  for   
n points

‣ One loop (two-loop calculation in preparation)

‣ Four-point case addressed by Drummond, Korchemsky, Sokatchev

• Result: < W[C] > gives the n-point MHV 
amplitude in N=4 SYM ! (modulo tree-level prefactor)

• Conjecture that  equality < W[C] > = M 
persists at higher loops 



  < W[C] >   at one loop 

• Calculation done (almost) instantly.         
Two classes of diagrams:

The four-particle case was recently addressed in [8], where it was found that the
result of a one-loop Wilson loop calculation reproduces the four-point MHV amplitude
in N =4 SYM. Here we extend this result in two directions. First, we derive the four-
point MHV amplitude to all-orders in the dimensional regularisation parameter ε.
Secondly, we show that this striking agreement persists for an MHV amplitude with
an arbitrary number of external particles.

k7

k6

k5

k4

k3

k2

k1

p2

p1

p3

p4

p6

p7

p5

Figure 2: A one-loop correction to the Wilson loop, where the gluon stretches between
two lightlike momenta meeting at a cusp. Diagrams in this class provide the infrared-
divergent terms in the n-point scattering amplitudes, given in (2.6).

Three different classes of diagrams give one-loop corrections to the Wilson loop.4

In the first one, a gluon stretches between points belonging to the same segment.
It is immediately seen [8] that these diagrams give a vanishing contribution. In the
second class of diagrams, a gluon stretches between two adjacent segments meeting at
a cusp. Such diagrams are ultraviolet divergent and were calculated long ago [32–39],
specifically in [38,39] for the case of gluons attached to lightlike segments.

In order to compute these diagrams, we will use the gluon propagator in the dual
configuration space, which in D = 4− 2εUV dimensions is

∆µν(z) := −π2−D
2

4π2
Γ
(D

2
− 1

) ηµν

(−z2 + iε)
D
2 −1

(3.2)

= −πεUV

4π2
Γ(1− εUV)

ηµν

(−z2 + iε)1−εUV
.

4Notice that, for a Wilson loop bounded by gluons, we can only exchange gluons at one loop.
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k7

k6

k5

k4

k3

k2

k1

p = p2

p1

p3

p4

p6

p7

q = p5

Figure 3: Diagrams in this class – where a gluon connects two non-adjacent segments
– are finite, and give a contribution equal to the finite part of a two mass easy box
function F 2me(p, q, P,Q), second line of (2.3). p and q are the massless legs of the
two-mass easy box, and correspond to the segments which are connected by the gluon.
The diagram depends on the other gluon momenta only through the combinations P
and Q.

The integral is finite in four dimensions. We begin by calculating it in four dimensions
setting ε = 0 (and will come back later to the calculation for ε != 0). In this case, the
result is

Fε=0(s, t, P,Q) = Li2(as) + Li2(at)− Li2(aP 2)− Li2(aQ2) (3.8)

+ log s log
(P 2 − s)(Q2 − s)

P 2Q2 − st
+ log t log

(P 2 − t)(Q2 − t)

P 2Q2 − st

− log P 2 log
−(P 2 − s)(P 2 − t)

P 2Q2 − st
− log Q2 log

−(Q2 − s)(Q2 − t)

P 2Q2 − st
,

where a is defined in (2.4). Using Euler’s identity

Li2(z) = −Li2(1− z)− log z log(1− z) +
π2

6
, (3.9)

and noticing that [10] (1− as)(1− at)/[(1− aP 2)(1− aQ2)] = 1, we can rewrite

Li2(as) + Li2(at)− Li2(aP 2)− Li2(aQ2) = (3.10)

− Li2(1− as)− Li2(1− at) + Li2(1− aP 2) + Li2(1− aQ2)

− log s log(1− as)− log t log(1− at) + log P 2 log(1− aP 2) + log Q2 log(1− aQ2) .
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Gluon stretched between two 
segments meeting at a cusp 

Gluon stretched between 
two non-adjacent segments

A. Infrared divergent B. Infrared finite

(Brandhuber, Heslop, GT)



• Clean separation between infrared-divergent 
and infrared-finite terms

‣ Important advantage, as ε can be set to zero in the finite 
parts from the start 

• From diagrams in class A :

‣                            is the invariant formed with the 
momenta meeting at the cusp 
si,i+1 = (pi + pi+1)2

M (1)
n |IR = − 1

ε2

n

∑
i=1

(
−si,i+1

µ2

)−ε



• Diagram in class B, with gluon stretched 
between p and q gives a result proportional to

• Explicit evaluation shows that this is equal to 
the finite part of a 2-mass easy box function:  

Fε(s, t,P,Q) =
Z 1

0
dτpdτq

P2 +Q2− s− t
[−

(
P2 +(s−P2)τp +(t−P2)τq +(−s− t +P2 +Q2)τpτq

)
]1+ε



‣ In the example: 

‣ One-to-one correspondence between  Wilson loop diagrams 
and finite parts of 2-mass easy box functions

‣ Explains why each box function appears with coefficient equal 
to 1 in the expression of the one-loop N=4 MHV amplitude

k7

k6

k5

k4

k3

k2

k1

p = p2

p1

p3

p4

p6

p7

q = p5

Figure 3: Diagrams in this class – where a gluon connects two non-adjacent segments
– are finite, and give a contribution equal to the finite part of a two mass easy box
function F 2me(p, q, P,Q), second line of (2.3). p and q are the massless legs of the
two-mass easy box, and correspond to the segments which are connected by the gluon.
The diagram depends on the other gluon momenta only through the combinations P
and Q.

The integral is finite in four dimensions. We begin by calculating it in four dimensions
setting ε = 0 (and will come back later to the calculation for ε != 0). In this case, the
result is

Fε=0(s, t, P,Q) = Li2(as) + Li2(at)− Li2(aP 2)− Li2(aQ2) (3.8)

+ log s log
(P 2 − s)(Q2 − s)

P 2Q2 − st
+ log t log

(P 2 − t)(Q2 − t)

P 2Q2 − st

− log P 2 log
−(P 2 − s)(P 2 − t)

P 2Q2 − st
− log Q2 log

−(Q2 − s)(Q2 − t)

P 2Q2 − st
,

where a is defined in (2.4). Using Euler’s identity

Li2(z) = −Li2(1− z)− log z log(1− z) +
π2

6
, (3.9)

and noticing that [10] (1− as)(1− at)/[(1− aP 2)(1− aQ2)] = 1, we can rewrite

Li2(as) + Li2(at)− Li2(aP 2)− Li2(aQ2) = (3.10)

− Li2(1− as)− Li2(1− at) + Li2(1− aP 2) + Li2(1− aQ2)

− log s log(1− as)− log t log(1− at) + log P 2 log(1− aP 2) + log Q2 log(1− aQ2) .
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A
tree

MHV
×

From Trees to Loops, cont’d

a :=
2(pq)

P2Q2− st

F2me(s, t,P2,Q2) =−c!
"2

[(−s
µ2

)−"
2F1 (1,−",1− ",as) +

(−t
µ2

)−"
2F1 (1,−",1− ",at)

−
(−P2

µ2

)−"
2F1

(
1,−",1− ",aP2

)
−

(−Q2

µ2

)−"
2F1

(
1,−",1− ",aQ2

)]

with

the all order in 
2-mass easy box function:

!

P = p3 + p4 , Q = p6 + p7 + p1

p = p2 q = p5

s := (p+P)2

t := (q+P)2

Q



• Explicit calculation gives: 

• At ε→0 :

‣ Box function in the same compact form derived from 
dispersion integrals using one-loop MHV diagrams    
(Brandhuber, Spence, GT) 

☜

Fε=0 =−Li2(1−as)−Li2(1−at)+Li2(1−aP2)+Li2(1−aQ2)

Fε = − 1
ε2

·
[( a

1−aP2

)ε
2F1

(
ε,ε,1+ ε, 1

1−aP2

)
+

( a
1−aQ2

)ε
2F1

(
ε,ε,1+ ε, 1

1−aQ2

)

−
( a

1−as

)ε
2F1

(
ε,ε,1+ ε, 1

1−as

)
−

( a
1−at

)ε
2F1

(
ε,ε,1+ ε, 1

1−at

)]

a :=
2(pq)

P2Q2− st



• At 4 points, all-orders in ε result:

‣ Agrees with result of Green, Schwarz and Brink 

• For  n >4, missing topologies (vanish as ε→0)

‣ E.g. n >5,  get only parity-even part 

M (1)
4 (ε) =− 2

ε2

[(
−s
µ2

)−ε

2F1

(
1,−ε,1− ε,1+

s
t

)
+

(
−t
µ2

)−ε

2F1

(
1,−ε,1− ε,1+

t
s

)]



  < W[C] >   at higher loops 

• Key result: non-abelian exponentiation 
theorem (Gatheral; Frenkel and Taylor)

• w’s are calculated by keeping only terms 
containing maximal non-abelian colour 
factor

‣ subset of all possible diagrams 

 

(Brandhuber, Heslop, Spence, GT, in preparation)

〈W [C]〉 := 1 +
∞

∑
L=1

aLW (L) = exp
∞

∑
L=1

aLw(L)



• BDS’s Exponential Ansatz naturally emerges 

 

•  If  < W[C] > = M , then

〈Wn[C]〉 := 1 +
∞

∑
L=1

aLW (L)
n = exp

∞

∑
L=1

aLw(L)
n

Mn := 1 +
∞

∑
L=1

aLM (L)
n = exp

[ ∞

∑
L=1

aL
(

f (L)(ε)M (1)
n (Lε)+C(L) +E(L)

n (ε)
)]

w(L)
n = f (L)(ε)M (1)

n (Lε) + C(L) + O(ε)



• Calculation of w at two loops almost 
completed    Stay tuned !

• Four-point MHV amplitude fixed using    
dual conformal invariance and factorisation 
of infrared divergences (Drummond,  Korchemsky, Sokatchev)

‣ appears to be not restrictive enough for n > 4

‣ issues with anomalous dimension of twist 2 operators 

‣ subset of all possible diagrams 

 



Summary

• Simplicity of  scattering amplitudes   ➡  

geometry in Twistor Space

• New, efficient methods to derive amplitudes

‣ MHV diagrams 

‣ recursion relations, generalised unitarity...



• MHV diagrams: provide a new diagrammatic 
method to calculate scattering amplitudes at 
tree and one-loop level in super Yang-Mills

• Progress in non-supersymmetric Yang-Mills

‣ All-minus amplitude, all-plus amplitude

‣ 4d Mansfield-Bäcklund transformation

‣ worldsheet friendly regularisation



• MHV amplitude in N=4 SYM from a Wilson 
loop calculation at weak coupling

‣ One loop

‣ Higher loops



‣ Rational terms in pure YM amplitudes

‣ Higher loops 

‣ Relation to integrability   

‣ Wilson loop calculations to higher loops  

‣ What about correlators of gauge-invariant 
operators ? 

Some of the pressing questions...

...and many more...




