# Scattering Amplitudes, MHV Diagrams, and Wilson Loops 

Gabriele Travaglini<br>Queen Mary, University of London

```
Brandhuber, Spence, GT hep-th/06I2007
Brandhuber, Spence, Zoubos, GT 0704.0245 [hep-th]
Nasti, GT 0706.0976 [hep-th]
Brandhuber, Heslop, GT 0707.II53 [hep-th]
Brandhuber, Heslop, Spence, GT in preparation
```

Twistors, Strings, and Scattering Amplitudes, LMS Durham Symposium Durham, August 2007

## Outline

- MHV diagrams (Cachazo, Svreck,Wititen)
- Loop MHV diagrams (Branduber: Spence, GT)
- Amplitudes in pure Yang-Mills from MHV diagrams (Branduber, Spence, Zowoos, GT)
- All-plus amplitude
- MHV amplitudes in N=4 SYM from a Wilson loop calculation at weak coupling
- One-loop calculation at $n$ points (Brandhuber, Heslo, GT)
- Higher loops (Brandhuber, Heslop, Spence, GT, in preparation)


## Motivations

- Unifying theme is simplicity of amplitudes
- Geometry in Twistor Space
- unexplained by Feynman diagrams
- Parke-Taylor formula for Maximally Helicity Violating amplitude of gluons (helicities are a permutation of --++ ....+)
- New methods account for this simplicity, and allow for very efficient calculations

Number of Feynman diagrams for scattering $g g \longrightarrow n g$ :

| $n$ | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| \# of diagrams | 4 | 25 | 220 | 2485 | 34300 | 559405 | 10525900 |

$\mathcal{O}$ Result is: $\mathcal{A}\left(1^{ \pm}, 2^{+}, \ldots n^{+}\right)=0$
at tree level

$$
\mathscr{A}_{\mathrm{MHV}}\left(1^{+} \ldots i^{-} \ldots j^{-} \ldots n^{+}\right)=\frac{\langle i j\rangle^{4}}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle}
$$



Large numbers of Feynman diagrams combine to produce unexpectedly and mysteriously simple expressions


## Amplitudes

$$
\mathcal{A}=\mathcal{A}\left(\left\{\lambda_{i}, \widetilde{\lambda}_{i} ; ; h_{i}\right\}\right)
$$

- Colour-ordered partial amplitudes
- momenta and polarisation vectors expressed in terms of spinors and helicities
- colour indices stripped off
- Planar theory


## Simplicity of amplitudes persists at loop level:

- n-point MHV amplitude in N=4 SYM at one loop:
$\mathcal{A}_{\mathrm{MHV}}^{1 \text {-loop }}=\mathcal{A}_{\mathrm{MHV}}^{\text {tree }} \sum$

- Sum of two-mass easy box functions, all with coefficient 1

- Computed in 1994 by Bern, Dixon, Dunbar, Kosower using unitarity
- Rederived in 2004 with loop MHV diagrams... (Brandhuber, Spence, GT)
- ...and, more recently, with a weakly-coupled Wilson loop calculation, with the AldayMaldacena polygonal contour (Brandhuer, Hessop, GT)


## All-loop conjecture of Bern, Dixon, Smirnov

## Zvi Bern and Anastasia Volovich's talks

- n-point MHV amplitudes in $\mathrm{N}=4$ SYM
$\mathscr{M}_{n}=\exp \left[\sum_{L=1}^{\infty} a^{L}\left(f^{(L)}(\varepsilon) \mathscr{M}_{n}^{(1)}(L \varepsilon)+C^{(L)}+E_{n}^{(L)}(\varepsilon)\right)\right]$
- $\mathscr{M}_{n}:=\mathcal{A}_{n, \mathrm{MHV}} / \mathcal{A}_{n, \mathrm{MHV}}^{\text {tree }}$
- $\mathcal{M}_{n}^{(1)}(\varepsilon) \quad$ is the all-orders in $\varepsilon$ one-loop amplitude
- $f^{(L)}(\varepsilon)=f_{0}^{(L)}+\varepsilon f_{1}^{(L)}+\varepsilon^{2} f_{2}^{(L)}$
anomalous dimension of twist-two operators at large spin
- $C^{(L)}, E_{n}^{(L)}(\varepsilon)$

More on this later...

## Another intriguing, simple amplitude:

- All-plus amplitude in pure Yang-Mills, 1 loop
- like MHV amplitude, no multiparticle poles
- all-plus equivalently computed in Self-Dual Yang-Mills
- vanishes in supersymmetric theories
- dimension shifting relations (Bern, Dixon, Dunbar, Kosower)
- Escapes naive application of MHV rules !


## Amplitudes in Twistor Space

 (Witten, 2003)- Scattering amplitudes are supported on algebraic curves in Penrose's twistor space
- $d=q-1+l \quad q=\#$ negative helicity gluons,

$$
l=\# \text { loops }
$$

- $g \leq l$
- Tree MHV: $q=2, l=0 \Rightarrow d=1, g=0 \quad$ (complex line)

Amplitude
Twistor space structure

MHV
nMHV


## MHV diagrams





## Why MHV diagrams

- MHV amplitudes $\Rightarrow$ complex lines in twistor space (witen)
- Line in twistor space $\Rightarrow$ point in Minkowski space (Perrose)
- MHV amplitude $\Rightarrow$ local interaction in spacetime! (Cachazo, Svreek,Witen)
- Locality in lightcone formulation (Mansfield; Gorsky \& Rosly)


## MHV Rules

(Cachazo, Svrcek, Witten)

- MHV amplitude $\Rightarrow$ MHV vertex
- Off-shell continuation for internal (possibly loop) momenta needed
- Same as in lightcone Yang-Mills

- Scalar propagators connect MHV vertices


## Off-shell prescription:

$$
L_{a \dot{a}}=l_{a \dot{a}}+z \eta_{a \dot{a}}
$$

- $l_{a \dot{a}}:=l_{a} \tilde{l}_{\dot{a}}$ is the off-shell continuation
- $\eta$ is a reference vector
- Draw all diagrams obtained by sewing $d=q-l+l$ MHV vertices

$$
\begin{aligned}
& q=\# \text { negative helicity gluons, } \\
& l=\text { \# loops }
\end{aligned}
$$

- Examples:
- MHV:

$$
q=2, \quad l=1 \quad d=2
$$

- All minus: $q=n, \quad l=1 \quad d=n$
- All plus: $\quad q=0, \quad l=1 \quad d=0$ ??


## One-loop MHV amplitudes in $\mathrm{N}=4$

(Brandhuber, Spence, GT)


- Sum over
- all possible MHV diagrams
- internal particle species ( $\mathrm{g}, \mathrm{f}, \mathrm{s}$ ) and helicities
- $d \mathcal{M}=$ phase space measure $\mathbf{X}$ dispersive measure
- Different from unitarity-based approach of BDDK


## The integration measure

- $P_{L}$ is the momentum on the left


$$
d \mathscr{M}:=\frac{d^{4} L_{1}}{L_{1}^{2}+i \varepsilon} \frac{d^{4} L_{2}}{L_{2}^{2}+i \varepsilon} \delta^{(4)}\left(L_{2}-L_{1}+P_{L}\right)
$$

- Use $L=l+z \eta$, and $L \rightarrow(l, z)$
$\Rightarrow \quad \frac{d^{4} L}{L^{2}+i \varepsilon}=\frac{d z}{z+i \operatorname{sgn}\left(l_{0} \eta_{0}\right) \varepsilon} \frac{d^{3} l}{2 l_{0}}$
dispersive measure $X$ phase-space measure (Nair measure)


## Applications (with supersymmetry)

- One-loop MHV amplitudes in N=4 SYM
(Brandhuber, Spence, GT)
- One-loop MHV amplitudes in N=1,2 SYM
(Bedford, Brandhuber, Spence, GT; Quigley, Rozali)
- No twistor string theory for N=1 SYM, nevertheless MHV diagram method works


# Proving MHV diagrams at one loop <br> Supersymmetric theories 

(Brandhuber, Spence, GT)

- Covariance ( $\eta$-independence)

Feynman Tree Theorem

- Correct singularity structure
- Discontinuities across (generalised) cuts
- Soft, collinear
- Multiparticle
- Use tree-level BCFW proof at one loop:
- If all singularities match, and the amplitude is covariant, then $\mathscr{A}_{\text {MHv }}-\mathscr{A}_{\text {Fevmman }}$ is a polynomial in the external momenta whose dimension is 4 - \# particles $\rightarrow$

$$
\mathcal{A}_{\mathrm{MHV}}=\mathcal{A}_{\text {Feynman }}
$$

- Proof from field redefinition on lightcone Yang-Mills action (Mansfele)
- Proof from twistor actions (Boels, Mason, Skinner)

Tim Morris and Rutger Boels talks tomorrow

- Relation with BCFW recursion relation (tree level) (Risager)


## Without supersymmetry

- Cut-constructible part of one-loop MHV amplitudes in pure Yang-Mills
(Bedford, Brandhuber, Spence, GT)
- Rational terms in non-supersymmetric amplitudes missed by MHV diagrams
- Non-supersymmetric amplitudes are not cutconstructible in four dimensions
- use recursive techniques to derive rational terms (Bern, Dixon, Kosower; Bern, Berger, Dixon, Forde, Kosower)


## The all-minus amplitude

(Brandhuber, Spence, GT)

- $n$ three-point MHV vertices (for $A\left(1^{-} \cdots n^{-}\right)$)
- Key observation: three-point MHV vertices are the same as lightcone vertices $\Rightarrow$ result is a priori correct


## Explicit calculation

- Use supersymmetric decomposition:

$$
\mathcal{A}_{g}=\left(\mathcal{A}_{g}+4 \mathcal{A}_{f}+3 \mathcal{A}_{s}\right)-4\left(\mathfrak{A}_{f}+\mathcal{A}_{s}\right)+\mathscr{A}_{s}
$$

- $\mathrm{N}=4$ and $\mathrm{N}=1$ contributions vanish
- Gluon $\Rightarrow$ scalar running in the loop
- simpler to calculate


Result $\sim \frac{\langle 12\rangle\langle 34\rangle}{[12][34]} K_{4} \quad K_{4}=-\varepsilon(1-\varepsilon) L_{4}^{D=8-2 e} \underset{e \rightarrow 0}{\longrightarrow}-\frac{1}{6}$
(Originally derived by Bern \& Kosower, and Bern \& Morgan)

## Finiteness of the all-minus amplitude

- Define $L_{D}=L_{4}+L_{-2 \varepsilon}$ with $L_{D}^{2}=L_{4}^{2}+L_{-2 \varepsilon}^{2}:=L_{4}^{2}-\mu^{2}$
- A finite, non-zero result arises from incomplete cancellations of propagators

$$
\frac{L_{4}^{2}}{L_{D}^{2}}=\frac{L_{4}^{2}-\mu^{2}+\mu^{2}}{L_{D}^{2}}=1+\frac{\mu^{2}}{L_{D}^{2}}
$$

- MHV vertices are 4-dimensional
- D-dimensional propagators
- Naive calculation directly in 4d gives zero
- Finite, non-zero result related to an anomaly?
- Finiteness arises as $\varepsilon / \varepsilon$ effect
- Anomaly in worldsheet conformal symmetry in $\mathrm{N}=2$ open strings (Chalmers, Siegel)
- All-minus amplitude understood within MHV diagram method
- All-plus amplitude
- Parity conjugate of all-minus, but MHV method treats the two helicities differently
- Longstanding speculations on a one-loop all-plus vertex
- All-plus amplitude has no multiparticle poles (as MHV)
- Twistor space geometry seems to confirm this


## Where is the all-plus amplitude ? Go back to the path integral !

- Mansfield's procedure: (in a nutshell)
- Start from lightcone quantisation of YM, $A^{-}=0$
- integrate out $A^{+}$(no derivatives wrt lightcone time $x^{-}$)
- $A_{z}, A_{\bar{z}}$ correspond to physical polarisations
- Action is

- Change variables in path integral: $A_{\bar{z}}, A_{\bar{z}} \rightarrow B_{+}, B_{-}$

$$
\left(S^{-+}+S^{-++}\right)\left[A_{z}, A_{z}\right]=S^{-+}\left[B_{+}, B_{-}\right]
$$

- LHS is SDYM action
- Bäcklund transformation
- Further require:
- Transformation is canonical, with $A_{z}=A_{z}\left[B_{+}\right]$
- Canonicality $\rightarrow$ Jacobian equal to 1 (classically)
- Subtleties related to $\operatorname{det} \partial_{+}$
- Plug $\quad A_{z} \sim B_{+}+B_{+}^{2}+B_{+}^{3}+\cdots$

$$
A_{\bar{z}} \sim B_{-}\left(1+B_{+}+B_{+}^{2}+B_{+}^{3}+\cdots\right)
$$

in

$$
\left(S^{--+}+S^{--++}\right)\left[A_{z}, A_{\bar{z}}\right]
$$

- Result is

$$
S\left[B_{+}, B_{-}\right]=S^{-+}+S^{--+}+S^{--++}+S^{--+++}+\cdots
$$

- Vertices have MHV helicity configuration


## Comments

- Jacobian for $A_{z}, A_{\bar{z}} \rightarrow B_{+}, B_{-}$is 1 (classically)
- Equivalence Theorem:
- Green's functions of the $B$ fields are different from those of the A fields, however
- S-matrix elements are the same modulo a wavefunction renormalisation...
- ...equal to 1 at one loop (Ettle \& Morris)
- We can equivalently calculate amplitudes with $B$ fields insertions


## One missing thing !

- We have just mapped Self-Dual Yang-Mills to a free theory...
- ...with the consequence of eliminating the all-plus amplitude
- Potential sources of problems:
- Jacobian
- Equivalence Theorem
- Regularisation


## Our solution

(Brandhuber, Spence, Zoubos, GT)

- Use Thorn worldsheet friendly regularisation
- inherently four-dimensional
- Perform Mansfield-Bäcklund transformation on the regularised, 4d action
- SDYM classically integrable only in 4d
- New one-loop effective interactions from regularisation, plus
- Usual MHV vertices

- Worldsheet friendly regulator:

$$
\begin{aligned}
& \exp \left(-\delta \sum_{i=1}^{n} \mathbf{q}_{i}^{2}\right) \\
& \mathbf{q}^{2}=2 q_{z} q_{\bar{z}}
\end{aligned}
$$

- $\delta$ is sent to zero at the end of calculation
- $q_{i}$ are loop region (T-dual) momenta


$$
p=k^{\prime}-k
$$

- Regularisation generate Lorentz-violating processes
- cancel with appropriate ++ counterterm (Chakrabarti, Qiu, Thorn)
$\bullet \stackrel{A}{+}+\frac{k}{k^{\prime}} \bigcirc+$
counterterm $\sim \frac{g^{2} N}{12 \pi^{2}}\left(\left(k_{\bar{z}}\right)^{2}+\left(k_{\bar{z}}^{\prime}\right)^{2}+k_{\bar{z}} k_{\bar{z}}^{\prime}\right)$
- Applying Mansfield transformation on counterterm generates all-plus amplitudes:


Reminders: $A=A(B)$ holomorphic
$A$ is positive-helicity gluon
Equivalence Theorem: $A \rightarrow B$

- Explicit check at four points
- Soft, collinear limits


## A complementary solution

(Ettle, Fu, Fudger, Mansfield, Morris)

- Use dimensional regularisation
- new interactions due to the regularisation
( vanish as $\varepsilon \rightarrow 0$
- Perform Mansfield-Bäcklund transformation on the full D-dimensional action
- Violations of the equivalence theorem produce the missing amplitudes


## Next tasks

- Calculate more general amplitudes, including rational terms

First example: -++.....+

## Gravity

- Simplicity of gravity amplitudes
- Twistor space structure (Bern, Bjerrum-Bohr, Dunbar)
- Tree-level MHV rules from recursion relations (Bjerrum-Bohr, Dunbar, Ita, Perkins, Risager)
- Applications to one-loop MHV diagrams (Nasti, GT)
- Field redefinitions on lightcone gravity action (Ananth,Theisen)
- Recursion relations (Bedford, Brandhuber, Spence, GT; Cachazo, Svrcek; Benincasa, Boucher-Veronneau, Cachazo)
- Finiteness of $\mathrm{N}=8$ ? (Bern, Dixon, Roiban; Bern, Carrasco, Dixon, Johansson, Kosower, Roiban; Green, Russo, Vanhove)
- Surprises even without supersymmetry!
(Bern, Carrasco, Forde, Ita, Johansson)


## Back to N=4 Super Yang-Mills

## Amplitudes and Wilson Loops

(Brandhuber, Heslop, GT; Brandhuber, Heslop, Spence, GT)

- We wish to calculate $<W[C]>$ at weak coupling
$W[C]:=\operatorname{Tr} \operatorname{Pexp}\left[i g \oint_{C} d \tau\left(A_{\mu}(x(\tau)) \dot{x}^{\mu}(\tau)+\phi_{i}(x(\tau)) \dot{y}^{i}(\tau)\right)\right]$
- Contour $C$ as in Alday-Maldacena calculation (next side)
- When $\dot{x}^{2}=\dot{y}^{2}$ Wilson loop is locally supersymmetric
- Choose $\dot{x}^{2}=0$ (lightlike momenta) and $\dot{y}=0$
- In general, supersymmetry is broken globally


## - Contour $C$ in the strong-coupling calculation of A\&M

- Dictated by the momenta of the scattered gluons


$$
\begin{array}{lr}
p_{i}=k_{i}-k_{i+1} & k \text { 's are T-dual (region) momenta } \\
\sum_{i=1}^{n} p_{i}=0 & \text { Contour is closed }
\end{array}
$$

## Motivation

- Computation of amplitudes at strong coupling (Addy and Maldacena)
(Fernando Alday's talk)
- dual to that of the area of a string ending on a lightlike polygonal loop embedded in the boundary of AdS
- scattering in AdS is at fixed angle, large energy $\Rightarrow$ similar to Gross-Mende calculation
- leads to an exponential of classical string action
- calculation in the T-dual variables is equivalent to that of a lightlike Wilson loop at strong coupling (Maldacena; Rey andYee)
- Calculate $<W[C]>$ at weak coupling for $n$ points
- One loop (two-loop calculation in preparation)
- Four-point case addressed by Drummond, Korchemsky, Sokatchev
- Result: < $W[C]>$ gives the $n$-point MHV amplitude in $\mathrm{N}=4 \mathrm{SYM}$ ! (modulo tree-level prefactor)
- Conjecture that equality $<W[C]>=\mathcal{M}$ persists at higher loops


## $<W[C]>$ at one loop

(Brandhuber, Heslop, GT)

- Calculation done (almost) instantly. Two classes of diagrams:


Gluon stretched between two segments meeting at a cusp


Gluon stretched between two non-adjacent segments
A. Infrared divergent

- Clean separation between infrared-divergent and infrared-finite terms
- Important advantage, as $\varepsilon$ can be set to zero in the finite parts from the start
- From diagrams in class A :

$$
\left.\mathcal{M}_{n}^{(1)}\right|_{I R}=-\frac{1}{\varepsilon^{2}} \sum_{i=1}^{n}\left(\frac{-s_{i, i+1}}{\mu^{2}}\right)^{-\varepsilon}
$$

- $s_{i, i+1}=\left(p_{i}+p_{i+1}\right)^{2}$ is the invariant formed with the momenta meeting at the cusp
- Diagram in class $B$, with gluon stretched between $p$ and $q$ gives a result proportional to

$$
\mathcal{F}_{\varepsilon}(s, t, P, Q)=\int_{0}^{1} d \tau_{p} d \tau_{q} \frac{P^{2}+Q^{2}-s-t}{\left[-\left(P^{2}+\left(s-P^{2}\right) \tau_{p}+\left(t-P^{2}\right) \tau_{q}+\left(-s-t+P^{2}+Q^{2}\right) \tau_{p} \tau_{q}\right)\right]^{1+\varepsilon}}
$$

- Explicit evaluation shows that this is equal to the finite part of a 2-mass easy box function:

- In the example: $\quad p=p_{2} \quad q=p_{5}$

$$
P=p_{3}+p_{4}, \quad Q=p_{6}+p_{7}+p_{1}
$$

- One-to-one correspondence between Wilson loop diagrams and finite parts of 2-mass easy box functions
- Explains why each box function appears with coefficient equal to 1 in the expression of the one-loop $\mathrm{N}=4 \mathrm{MHV}$ amplitude
- Explicit calculation gives:

$$
\begin{aligned}
& \mathcal{F}_{\varepsilon}=-\frac{1}{\varepsilon^{2}} \\
& {\left[\left(\frac{a}{1-a P^{2}}\right)^{\varepsilon}{ }_{2} F_{1}\left(\varepsilon, \varepsilon, 1+\varepsilon, \frac{1}{1-a P^{2}}\right)+\left(\frac{a}{1-a Q^{2}}\right)^{\varepsilon}{ }_{2} F_{1}\left(\varepsilon, \varepsilon, 1+\varepsilon, \frac{1}{1-a Q^{2}}\right)\right.} \\
& \left.-\left(\frac{a}{1-a s}\right)^{\varepsilon}{ }_{2} F_{1}\left(\varepsilon, \varepsilon, 1+\varepsilon, \frac{1}{1-a s}\right)-\left(\frac{a}{1-a t}\right)^{\varepsilon}{ }_{2} F_{1}\left(\varepsilon, \varepsilon, 1+\varepsilon, \frac{1}{1-a t}\right)\right]
\end{aligned}
$$

- At $\varepsilon \rightarrow 0: \quad \mathcal{F}_{\varepsilon=0}=-\operatorname{Li}_{2}(1-a s)-\operatorname{Li}_{2}(1-a t)+\operatorname{Li}_{2}\left(1-a P^{2}\right)+\operatorname{Li}_{2}\left(1-a Q^{2}\right)$
- Box function in the same compact form derived from dispersion integrals using one-loop MHV diagrams
(Brandhuber, Spence, GT)
- At 4 points, all-orders in $\varepsilon$ result:

$$
\mathcal{M}_{4}^{(1)}(\varepsilon)=-\frac{2}{\varepsilon^{2}}\left[\left(\frac{-s}{\mu^{2}}\right)^{-\varepsilon}{ }_{2} F_{1}\left(1,-\varepsilon, 1-\varepsilon, 1+\frac{s}{t}\right)+\left(\frac{-t}{\mu^{2}}\right)^{-\varepsilon}{ }_{2} F_{1}\left(1,-\varepsilon, 1-\varepsilon, 1+\frac{t}{s}\right)\right]
$$

- Agrees with result of Green, Schwarz and Brink
- For $n>4$, missing topologies (vanish as $\varepsilon \rightarrow 0$ )
- E.g. $n>5$, get only parity-even part


## $<W[C]>$ at higher loops

(Brandhuber, Heslop, Spence, GT, in preparation)

- Key result: non-abelian exponentiation theorem (Gatheral: Frenkel and Taylor)

$$
\langle W[C]\rangle:=1+\sum_{L=1}^{\infty} a^{L} W^{(L)}=\exp \sum_{L=1}^{\infty} a^{L} w^{(L)}
$$

- w's are calculated by keeping only terms containing maximal non-abelian colour factor
- subset of all possible diagrams
- BDS's Exponential Ansatz naturally emerges

$$
\begin{aligned}
& \mathscr{M}_{n}:=1+\sum_{L=1}^{\infty} a^{L} \mathcal{M}_{n}^{(L)}=\exp \left[\sum_{L=1}^{\infty} a^{L}\left(f^{(L)}(\varepsilon) \mathcal{M}_{n}^{(1)}(L \varepsilon)+C^{(L)}+E_{n}^{(L)}(\varepsilon)\right)\right] \\
& \left\langle W_{n}[C]\right\rangle:=1+\sum_{L=1}^{\infty} a^{L} W_{n}^{(L)}=\exp \sum_{L=1}^{\infty} a^{L} w_{n}^{(L)}
\end{aligned}
$$

$$
\text { If }\langle W[C]\rangle=\mathcal{M}, \text { then }
$$

$$
w_{n}^{(L)}=f^{(L)}(\varepsilon) \mathcal{M}_{n}^{(1)}(L \varepsilon)+C^{(L)}+O(\varepsilon)
$$

- Calculation of $w$ at two loops almost completed Stay tuned!
- Four-point MHV amplitude fixed using dual conformal invariance and factorisation of infrared divergences (Drummond, Korchemsk, sokatchere)
- appears to be not restrictive enough for $n>4$
- issues with anomalous dimension of twist 2 operators


## Summary

- Simplicity of scattering amplitudes geometry in Twistor Space
- New, efficient methods to derive amplitudes
- MHV diagrams
- recursion relations, generalised unitarity...
- MHV diagrams: provide a new diagrammatic method to calculate scattering amplitudes at tree and one-loop level in super Yang-Mills
- Progress in non-supersymmetric Yang-Mills
- All-minus amplitude, all-plus amplitude
- 4d Mansfield-Bäcklund transformation
- worldsheet friendly regularisation
- MHV amplitude in N=4 SYM from a Wilson loop calculation at weak coupling
- One loop
- Higher loops


## Some of the pressing questions...

- Rational terms in pure YM amplitudes
- Higher loops
- Relation to integrability
- Wilson loop calculations to higher loops
- What about correlators of gauge-invariant operators?
...and many more...

