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Outline

1 Confinement and QCD flux tubes or “k-strings”

2 Mass deformed N = 4 theory and Olive-Montonen duality.

3 k-string solitons from gauge theory.

4 World-sheet theory

5 k-strings at large N
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• Confinement in pure gauge theories (or with adjoint matter) is

associated with the formation of colour flux tubes

V = T L
q q

k

_
R

R

• Flux tubes carry a discrete quantum number residing in the
center of the gauge group. For SU(N) theories, this is an integer k
(mod N) - “N-ality”

• k-strings interact with each other and in particular, annihilate in
groups of N.
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• The tension Tk = Λ2 f (k ,N, . . .) with Tk = TN−k by charge
conjugation. The string tension and world-sheet dynamics of this
soliton-like object is interesting in its own right. These are
fundamental properties of the confining theory.

• Results from SUSY models in the “universality class” of N = 1
SYM:

Tk
T ′

k
=

sin πk
N

sin πk′
N

MQCD (Hanany-Strassler-Zaffaroni 1997)

Softly broken N = 2 SYM (Douglas-Shenker 1995)

Large N Gravity Duals: Maldacena-Nuñez and
Klebanov-Strassler backgrounds (Herzog-Klebanov 2002)
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• Lattice data for pure SU(N) Yang-Mills are consistent with both
Sine Law and Casimir Scaling Tk ∝ k(N − k). (Lucini-Teper-Wenger ’02 , del

Debbio-Panagopoulous-Vicari ’03)

• It is interesting to explore possible behaviours in confining gauge
theories where string tensions are calculable, and perhaps the
world-sheet dynamics is tractable.

• A natural question is whether the k-string can be realized as a
classical soliton in a confining theory.

• Generally speaking this would be possible, if there were some
dual weakly coupled description of the confined phase, such as a
Generalized Dual Meissner effect, containing solitonic magnetic
k-strings.
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Mass deformed N = 4 SYM

• Olive-Montonen SL(2,Z) duality of N = 4 theory provides a
precise setting for the above picture.

• Deform the SU(N), N = 4 theory with N = 1 supersymmetric
masses (m1,m2,m3) for the adjoint matter fields Φ1,2,3 (N = 1
multiplets). [Also known as N = 1∗ SYM.]

• Classical vacuum equations coincide with su(2) algebra

[Φi ,Φj ] = iεijkΦk mk

• Large number of ground states ∼ e
√

N for large N. These include
Higgs (H), confined (C), partially Higgsed/confined phases, etc.
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• S-duality:

g2
YM
4π ↔

4π
g2

YM
=⇒ H ↔ C (θ = 0)

Confining k-strings at gYM � 1 → solitonic magnetic flux
tubes in H at gYM � 1.

Solitonic strings have quantum number π1 (SU(N)/ZN)= ZN

.

• To find these solitonic strings, we will take m1 = m2 = m3 = m

=⇒ global O(3) flavor symmetry.

• In Higgs phase, VEVs 〈Φi 〉 = mJi (Ji ∈ su(2)), break O(3)f ,

but a combination of global colour and flavour O(3)c+f is

preserved.
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• Look for classical axially-symmetric solutions with
(Markov-Marshakov-Yung 2004; Auzzi-SPK 2009)

Φi (r →∞) → mJi

exp(i
∮

Aϕ(r →∞)) = e2πik/N , k = 1, 2 . . .N − 1

Non-abelian flux
∮

Aϕ ∝ diag(k , k , . . .N − k , N − k) as
r →∞

O(3)c+f → U(1)c+f , and SUSY broken.

• Solutions exist, and are obtained numerically.

• The tensions evaluated numerically for N = 4, 5, 6

Tk ' 2πm2

g2
YM

k(N − k) ( Casimir scaling works at > 99% accuracy)
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World-sheet theory

There is an SO(3)c+f /U(1)c+f ' S2 moduli space of solutions.

• Bosonic CP1 sigma model with
θ-term.

•Sσ =∫
dz dt

(
1
g2

σ
(∂s~n)2 − θσ

8π ε
sr ~n · ∂s~n × ∂r~n

)

• θσ = k(N − k) θYM

z

Translational 
zero modes

Internal non-Abelian
zero modes

World-sheet dynamics

n(t, z)

Asymp. free with a mass gap. Spectrum is an O(3) triplet.

θσ = π. Flow to c = 1 CFT. Spectrum consists of deconfined
doublets. (Zamolodchikov-Zamolodchikov)

[cf. Hanany,Tong 2003-4; Auzzi-Bolognesi-Evslin-Konishi-Yung 2003; Shifman-Yung 2004 ...]
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Moving away from O(3) symmetric point

Take m1 = m2 = m and m3 6= m. Preserves U(1)c+f .

Small enough deformation δ = m2
3 −m2 induces a potential

on the S2 moduli space, Lσ → Lσ − δ n 2
3 .

m3 < m - Classically massive - 2
vacua.

BPS kinks and “dyonic kinks”

m3 > m - Classically massless O(2)
model

Vortex “merons” on the world-sheet
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m3 < m and N = 2 limit

• The semiclassical (anti)-kinks exhibit a 2D “Witten effect” when
θσ 6= 0 whereby they acquire a U(1) charge (−) θσ

2π . (Dorey 1998,

Abraham-Townsend 1991)

• Dyonic “rotating” kinks with U(1) charge Q obey BPS mass
formula Mkink ∝ |Q + θσ

2π + i
g2

σ
|.

Kinks with charge Q and −Q − 1 become degenerate at θσ = π.

• In 4D gauge theory, a kink interpolates
between two flux orientations

k N-k
charge

(1,1,..1,0,0,...1,1,..)

k times
Baryon Vertex
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• When m3 � m (N = 2 limit), 4D theory has BPS monopoles
with the above charges and
Mmon =

√
2m|Q + k(N − k)( θYM

2π + 4πi
g2

YM
)|

These undergo level crossing precisely when k(N − k)θ = π.
(Auzzi-SPK, 2009)

• The identification of monopoles with σ-model kinks, explains

why θσ = k(N − k)θ .

m3 > m and sigma-model merons:

(Affleck, 1986)

• Vacuum manifold is the equator: N pole and S pole vortices with
topological charge = ±1

2 .

• Coulomb gas of vortex-merons → Sine-Gordon model

Lσ = g2
σ(∂ψ)2 − 2ζ cos θσ

2 cosψ

• Massless at θσ = π. For generic θσ, exhibits BKT transition.
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Phase diagram for the k-string

σ
θ

0
π

Massless O(2)

Massive 

Massive

BKT

m3
m

Free Kinks

O(3)

• The significance of the new massless internal mode on the
world-sheet is unclear.

• However, it does have a physical effect, since it will contribute to
the Luscher term for the k-string.
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Large-N String Dual (C/H phases)

• At large N, flux tubes are F1/D1
strings in Polchinski-Strassler
background - deformation of the
AdS5 × S5, type IIB geometry.

• Confinement/Higgs reflected by
NS5/D5 with world-volume R4 × S2,
cutting off IR.

F1/D1

x

NS5/D5

Flux tubek=1

k=1  string

AdS5

S
2

x S5

• Motivated by weak-coupling picture of
D3’s blowing up into a transverse fuzzy S2,

Φ1
2 + Φ2

2 + Φ2
3 = 1 m2(N2−1)

4

x

N D3-branes

S2Fuzzy X  R
4

NS5 / D5 brane

• The confining string is an instanton in 6D U(1) gauge theory on
S2

NC × R4. (Andrews-Dorey 2005)

S. Prem Kumar (Swansea U.) Quantum Phases of k-Strings



Large-N String Dual (C/H phases)

• At large N, flux tubes are F1/D1
strings in Polchinski-Strassler
background - deformation of the
AdS5 × S5, type IIB geometry.

• Confinement/Higgs reflected by
NS5/D5 with world-volume R4 × S2,
cutting off IR.

F1/D1

x

NS5/D5

Flux tubek=1

k=1  string

AdS5

S
2

x S5

• Motivated by weak-coupling picture of
D3’s blowing up into a transverse fuzzy S2,

Φ1
2 + Φ2

2 + Φ2
3 = 1 m2(N2−1)

4

x

N D3-branes

S2Fuzzy X  R
4

NS5 / D5 brane

• The confining string is an instanton in 6D U(1) gauge theory on
S2

NC × R4. (Andrews-Dorey 2005)

S. Prem Kumar (Swansea U.) Quantum Phases of k-Strings



• k = 1 string tension -

Nambu-Goto for F1 in C phase (λ = g2
YMN � 1): TF1 = m2 λ

8π

DBI action for D1 in H phase TD1 = 2πm2 N
g2

YM
.

• What is a k-string when
k ∼ O(N)? (e.g. Klebanov-Herzog)

x

k F1 / D1
k ~ N

D3-brane

k-string

• Flux tubes made of same material as baryon-vertex (with
attached strings). N = 4 SYM baryon-vertex - D5-brane wrapping
S5. Flux tube is a D5-brane wrapping S4 ⊂ S5. (Callan-Guijosa-Savvidy)

• Baryon vertex of N = 1∗ is a D3-ball.

• k-string ∼ slice of D3-ball i.e. D3
disk.

x

  R
4

NS5 / D5 brane

D3 ball
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D3-brane as a k-string k ∼ N and
√
λ� 1

Confining vacuum,
k-string is the expanded
D3 “cap + disk”.

Dilaton diverges in small
region ∼ 1√

λ
× sphere

radius.

η

1

X
NS5 

D3
Confining phase

• Large dilaton forces cap to settle near NS5, Tcap → 0.

• Near NS5 CRR
2 6= 0 and D3-cap acquires k-string charge:

SWZ ∼
∫
cap
∗C2 ∧ Ftz and (1− cos η) = 2k

N .

• D3-disk sees flat space.
k-string tension = Disk area = m2λN

32π sin2 η.

Tk = m2λ
8π k(1− k

N ) + unknown corrections from edge . . .
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Moduli space dynamics

• The moduli space dynamics is obtained
by allowing the D3-cap orientation to
depend on string coordinates.

NS5 / D5

D3

• Theta-dependence is easily included in the Higgs vacuum via
SL(2,R) transformation, CRR

2 → CRR
2 + θ

2πBNS
2 .

• From the WZ terms of the D3-cap SWZ =

k(N − k) θ
8π

∫
dtdz εsr ~n · ∂s~n × ∂r~n.

• The expanded D3-cap and the k(1− k
N ) dependence is

reminiscent of Abelian-Higgs vortices on the sphere in 2D which
behave as hard-core discs (Manton-Nasir). The volume of the moduli
space of k-coincident vortices = k (1- k×Area excluded by disc).
(In our case, the NC string instantons have a core area ∼ 1

N ).
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Summary and questions

Magnetic k-string world-sheet, at weak coupling, can peer
into aspects of 4D gauge theory physics.

The interpretation of phase transitions on the k-string and
appearance new massless modes is puzzling – unclear what it
says about the 4D gauge theory.

Connection to instantons in R4 × S2
NC and large-N.

Casimir scaling, if correct for k ∼ O(1) implies O( 1
N )

corrections. This is a potential conflict with expectations in a
theory with a 1

N2 expansion. (e.g. Armoni-Shifman, 2003).

Exploration of k-string tensions at large N, in other massive
phases involving multiple 5-branes. Moving away from the
O(3) symmetric theory in gravity dual to look for world-sheet
kinks/monopoles.
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