Quantum Phases of k-Strings

S. Prem Kumar (Swansea U.)

July 19, 2010, LMS Symposium, NPTFT, Durham

Based on 0810.3201 and 0908.4278 with Roberto Auzzi

S. Prem Kumar (Swansea U.) Quantum Phases of *k*-Strings

- R

- Confinement and QCD flux tubes or "k-strings"
- **2** Mass deformed $\mathcal{N} = 4$ theory and Olive-Montonen duality.
- \bullet *k*-string solitons from gauge theory.
- World-sheet theory
- I k-strings at large N

向下 イヨト イヨト

• Confinement in pure gauge theories (or with adjoint matter) is associated with the formation of colour flux tubes

- Flux tubes carry a discrete quantum number residing in the center of the gauge group. For SU(N) theories, this is an integer $k \pmod{N}$ "N-ality"
- k-strings interact with each other and in particular, annihilate in groups of N.

• The tension $T_k = \Lambda^2 f(k, N, ...)$ with $T_k = T_{N-k}$ by charge conjugation. The string tension and world-sheet dynamics of this soliton-like object is interesting in its own right. These are fundamental properties of the confining theory.

 \bullet Results from SUSY models in the "universality class" of $\mathcal{N}=1$ SYM:

$\frac{T_k}{T'_k} =$	$\sin \frac{\pi k}{N}$
	$\sin \frac{\pi k'}{N}$

- MQCD (Hanany-Strassler-Zaffaroni 1997)
- Softly broken $\mathcal{N}=2$ SYM (Douglas-Shenker 1995)
- Large *N* Gravity Duals: Maldacena-Nuñez and Klebanov-Strassler backgrounds (Herzog-Klebanov 2002)

• Lattice data for pure SU(N) Yang-Mills are consistent with both Sine Law and Casimir Scaling $T_k \propto k(N-k)$. (Lucini-Teper-Wenger '02, del Debbio-Panagopoulous-Vicari '03)

• It is interesting to explore possible behaviours in confining gauge theories where string tensions are calculable, and perhaps the world-sheet dynamics is tractable.

• A natural question is whether the *k*-string can be realized as a classical soliton in a confining theory.

• Generally speaking this would be possible, if there were some dual weakly coupled description of the confined phase, such as a Generalized Dual Meissner effect, containing solitonic magnetic *k*-strings.

- 4 同 ト 4 目 ト 4 目 ト

• Olive-Montonen $SL(2,\mathbb{Z})$ duality of $\mathcal{N}=4$ theory provides a precise setting for the above picture.

• Deform the SU(N), $\mathcal{N} = 4$ theory with $\mathcal{N} = 1$ supersymmetric masses (m_1, m_2, m_3) for the adjoint matter fields $\Phi_{1,2,3}$ ($\mathcal{N} = 1$ multiplets). [Also known as $\mathcal{N} = 1^*$ SYM.]

Classical vacuum equations coincide with su(2) algebra

 $[\Phi_i, \Phi_j] = i\epsilon_{ijk}\Phi_k m_k$

• Large number of ground states $\sim e^{\sqrt{N}}$ for large N. These include Higgs (**H**), confined (**C**), partially Higgsed/confined phases, etc.

・ロト ・回ト ・ヨト ・ヨト

• Olive-Montonen $SL(2,\mathbb{Z})$ duality of $\mathcal{N}=4$ theory provides a precise setting for the above picture.

• Deform the SU(N), $\mathcal{N} = 4$ theory with $\mathcal{N} = 1$ supersymmetric masses (m_1, m_2, m_3) for the adjoint matter fields $\Phi_{1,2,3}$ ($\mathcal{N} = 1$ multiplets). [Also known as $\mathcal{N} = 1^*$ SYM.]

• Classical vacuum equations coincide with su(2) algebra

 $[\Phi_i, \Phi_j] = i\epsilon_{ijk}\Phi_k m_k$

• Large number of ground states $\sim e^{\sqrt{N}}$ for large *N*. These include Higgs (**H**), confined (**C**), partially Higgsed/confined phases, etc.

• S-duality:

.

•
$$\frac{g_{YM}^2}{4\pi} \leftrightarrow \frac{4\pi}{g_{YM}^2} \implies \mathbf{H} \leftrightarrow \mathbf{C} \qquad (\theta = 0)$$

- Confining k-strings at g_{YM} ≫ 1 → solitonic magnetic flux tubes in H at g_{YM} ≪ 1.
- Solitonic strings have quantum number $\pi_1(SU(N)/\mathbb{Z}_N) = \mathbb{Z}_N$

• To find these solitonic strings, we will take $m_1 = m_2 = m_3 = m$ \implies global O(3) flavor symmetry.

• In Higgs phase, VEVs $\langle \Phi_i \rangle = mJ_i$ $(J_i \in su(2))$, break $O(3)_f$, but a combination of global colour and flavour $O(3)_{c+f}$ is preserved.

・ 同 ト ・ ヨ ト ・ ヨ ト

• S-duality:

٠

•
$$\frac{g_{Y_M}^2}{4\pi} \leftrightarrow \frac{4\pi}{g_{Y_M}^2} \implies \mathbf{H} \leftrightarrow \mathbf{C} \qquad (\theta = 0)$$

- Confining k-strings at $g_{YM} \gg 1 \rightarrow$ solitonic magnetic flux tubes in **H** at $g_{YM} \ll 1$.
- Solitonic strings have quantum number $\pi_1(SU(N)/\mathbb{Z}_N) = \mathbb{Z}_N$

• To find these solitonic strings, we will take $m_1 = m_2 = m_3 = m$ \implies global O(3) flavor symmetry.

• In Higgs phase, VEVs $\langle \Phi_i \rangle = mJ_i$ $(J_i \in su(2))$, break $O(3)_f$, but a combination of global colour and flavour $O(3)_{c+f}$ is preserved.

・ロト ・回ト ・ヨト ・ ヨト

• Look for classical axially-symmetric solutions with

(Markov-Marshakov-Yung 2004; Auzzi-SPK 2009)

•
$$\Phi_i(r \to \infty) \to mJ_i$$

- $\exp(i \oint A_{\varphi}(r \to \infty)) = e^{2\pi i k/N}$, $k = 1, 2 \dots N 1$
- Non-abelian flux $\oint A_{\varphi} \propto \operatorname{diag}(k, k, \dots, N-k, N-k)$ as $r \to \infty$
- $O(3)_{c+f} \rightarrow U(1)_{c+f}$, and SUSY broken.
- Solutions exist, and are obtained numerically.
- The tensions evaluated numerically for N = 4, 5, 6

(Casimir scaling works at > 99% accuracy)

Look for classical axially-symmetric solutions with

(Markov-Marshakov-Yung 2004: Auzzi-SPK 2009)

•
$$\Phi_i(r \to \infty) \to mJ_i$$

- $\exp(i \oint A_{\omega}(r \to \infty)) = e^{2\pi i k/N}, \ k = 1, 2 \dots N 1$
- Non-abelian flux $\oint A_{\varphi} \propto \operatorname{diag}(k, k, \dots N k, N k)$ as $r \rightarrow \infty$
- $O(3)_{c+f} \rightarrow U(1)_{c+f}$, and SUSY broken.
- Solutions exist, and are obtained numerically.
- The tensions evaluated numerically for N = 4, 5, 6

 $T_k \simeq \frac{2\pi m^2}{\sigma^2} k(N-k)$ (Casimir scaling works at > 99% accuracy)

World-sheet theory

There is an $SO(3)_{c+f}/U(1)_{c+f} \simeq S^2$ moduli space of solutions.

• Bosonic \mathbf{CP}^1 sigma model with θ -term.

•
$$S_{\sigma} = \int dz \, dt \, \left(\frac{1}{g_{\sigma}^2} (\partial_s \vec{n})^2 - \frac{\theta_{\sigma}}{8\pi} \epsilon^{sr} \, \vec{n} \cdot \partial_s \vec{n} \times \partial_r \vec{n} \right)$$

• $\theta_{\sigma} = k(N-k) \, \theta_{YM}$

Asymp. free with a mass gap. Spectrum is an O(3) triplet.

• $\theta_{\sigma} = \pi$. Flow to c = 1 CFT. Spectrum consists of deconfined doublets. (zamolodchikov-zamolodchikov)

[cf. Hanany,Tong 2003-4; Auzzi-Bolognesi-Evslin-Konishi-Yung 2003; Shifman-Yung 2004...]

World-sheet theory

There is an $SO(3)_{c+f}/U(1)_{c+f} \simeq S^2$ moduli space of solutions.

World-sheet dynamics

n(t. z)

• Bosonic **CP**¹ sigma model with θ -term.

•
$$S_{\sigma} = \int dz \, dt \, \left(\frac{1}{g_{\sigma}^2} (\partial_s \vec{n})^2 - \frac{\theta_{\sigma}}{8\pi} \epsilon^{sr} \, \vec{n} \cdot \partial_s \vec{n} \times \partial_r \vec{n} \right)$$

• $\theta_{\sigma} = k(N-k) \, \theta_{YM}$

- Asymp. free with a mass gap. Spectrum is an O(3) triplet.
- $\theta_{\sigma} = \pi$. Flow to c = 1 CFT. Spectrum consists of deconfined doublets. (Zamolodchikov-Zamolodchikov)

World-sheet theory

There is an $SO(3)_{c+f}/U(1)_{c+f} \simeq S^2$ moduli space of solutions.

• Bosonic \mathbf{CP}^1 sigma model with θ -term.

•
$$S_{\sigma} = \int dz \, dt \, \left(\frac{1}{g_{\sigma}^2} (\partial_s \vec{n})^2 - \frac{\theta_{\sigma}}{8\pi} \epsilon^{sr} \, \vec{n} \cdot \partial_s \vec{n} \times \partial_r \vec{n} \right)$$

• $\theta_{\sigma} = k(N-k) \, \theta_{YM}$

World-sheet dynamics

- Asymp. free with a mass gap. Spectrum is an O(3) triplet.
- $\theta_{\sigma} = \pi$. Flow to c = 1 CFT. Spectrum consists of deconfined doublets. (Zamolodchikov-Zamolodchikov)

[cf. Hanany, Tong 2003-4; Auzzi-Bolognesi-Evslin-Konishi-Yung 2003; Shifman-Yung 2004...]

- Take $m_1 = m_2 = m$ and $m_3 \neq m$. Preserves $U(1)_{c+f}$.
- Small enough deformation $\delta = m_3^2 m^2$ induces a potential on the S^2 moduli space, $\mathcal{L}_{\sigma} \rightarrow \mathcal{L}_{\sigma} \delta n_3^2$.

•
$$m_3 < m$$
 - Classically massive - 2 vacua.

- BPS kinks and "dyonic kinks"
- *m*₃ > *m* Classically massless O(2) model
- Vortex "merons" on the world-sheet

・ 同 ト ・ ヨ ト ・ ヨ ト

- Take $m_1 = m_2 = m$ and $m_3 \neq m$. Preserves $U(1)_{c+f}$.
- Small enough deformation $\delta = m_3^2 m^2$ induces a potential on the S^2 moduli space, $\mathcal{L}_{\sigma} \rightarrow \mathcal{L}_{\sigma} \delta n_3^2$.

- *m*₃ < *m* Classically massive 2 vacua.
- BPS kinks and "dyonic kinks"

- 4 同 ト 4 目 ト 4 目 ト

- *m*₃ > *m* Classically massless O(2) model
- Vortex "merons" on the world-sheet

- Take $m_1 = m_2 = m$ and $m_3 \neq m$. Preserves $U(1)_{c+f}$.
- Small enough deformation $\delta = m_3^2 m^2$ induces a potential on the S^2 moduli space, $\mathcal{L}_{\sigma} \rightarrow \mathcal{L}_{\sigma} \delta n_3^2$.

- $m_3 < m$ Classically massive 2 vacua.
- BPS kinks and "dyonic kinks"

- *m*₃ > *m* Classically massless O(2) model
- Vortex "merons" on the world-sheet

- Take $m_1 = m_2 = m$ and $m_3 \neq m$. Preserves $U(1)_{c+f}$.
- Small enough deformation $\delta = m_3^2 m^2$ induces a potential on the S^2 moduli space, $\mathcal{L}_{\sigma} \rightarrow \mathcal{L}_{\sigma} \delta n_3^2$.

- $m_3 < m$ Classically massive 2 vacua.
- BPS kinks and "dyonic kinks"

- *m*₃ > *m* Classically massless O(2) model
- Vortex "merons" on the world-sheet

- Take $m_1 = m_2 = m$ and $m_3 \neq m$. Preserves $U(1)_{c+f}$.
- Small enough deformation $\delta = m_3^2 m^2$ induces a potential on the S^2 moduli space, $\mathcal{L}_{\sigma} \to \mathcal{L}_{\sigma} \delta n_3^2$.

- $m_3 < m$ Classically massive 2 vacua.
- BPS kinks and "dyonic kinks"

- *m*₃ > *m* Classically massless O(2) model
- Vortex "merons" on the world-sheet

S. Prem Kumar (Swansea U.)

- Take $m_1 = m_2 = m$ and $m_3 \neq m$. Preserves $U(1)_{c+f}$.
- Small enough deformation $\delta = m_3^2 m^2$ induces a potential on the S^2 moduli space, $\mathcal{L}_{\sigma} \to \mathcal{L}_{\sigma} \delta n_3^2$.

- $m_3 < m$ Classically massive 2 vacua.
- BPS kinks and "dyonic kinks"

- *m*₃ > *m* Classically massless O(2) model
- Vortex "merons" on the world-sheet

- Take $m_1 = m_2 = m$ and $m_3 \neq m$. Preserves $U(1)_{c+f}$.
- Small enough deformation $\delta = m_3^2 m^2$ induces a potential on the S^2 moduli space, $\mathcal{L}_{\sigma} \to \mathcal{L}_{\sigma} \delta n_3^2$.

- $m_3 < m$ Classically massive 2 vacua.
- BPS kinks and "dyonic kinks"

- *m*₃ > *m* Classically massless O(2) model
- Vortex "merons" on the world-sheet

• The semiclassical (anti)-kinks exhibit a 2D "Witten effect" when $\theta_{\sigma} \neq 0$ whereby they acquire a U(1) charge $(-)\frac{\theta_{\sigma}}{2\pi}$. (Dorey 1998, Abraham-Townsend 1991)

• Dyonic "rotating" kinks with U(1) charge Q obey BPS mass formula $M_{\rm kink} \propto |Q + \frac{\theta_{\sigma}}{2\pi} + \frac{i}{g_{\sigma}^2}|$. Kinks with charge Q and -Q - 1 become degenerate at $\theta_{\sigma} = \pi$.

• In 4D gauge theory, a kink interpolates between two flux orientations

イロト イポト イヨト イヨト

• When $m_3 \ll m$ ($\mathcal{N} = 2$ limit), 4D theory has BPS monopoles with the above charges and $M_{\text{mon}} = \sqrt{2}m|Q + k(N - k)(\frac{\theta_{YM}}{2\pi} + \frac{4\pi i}{g_{YM}^2})|$

These undergo level crossing precisely when $k(N - k)\theta = \pi$. (Auzzi-SPK, 2009)

• The identification of monopoles with σ -model kinks, explains why $\theta_{\sigma} = k(N-k)\theta$.

*m*₃ > *m* and sigma-model merons:

(Affleck, 1986)

• Vacuum manifold is the equator: N pole and S pole vortices with topological charge $= \pm \frac{1}{2}$.

• Coulomb gas of vortex-merons \rightarrow Sine-Gordon model

 $\mathcal{L}_{\sigma} = g_{\sigma}^2 (\partial \psi)^2 - 2\zeta \cos \frac{\theta_{\sigma}}{2} \cos \psi$

• Massless at $\theta_{\sigma} = \pi$. For generic θ_{σ} , exhibits **BK**, transition,

• When $m_3 \ll m$ ($\mathcal{N} = 2$ limit), 4D theory has BPS monopoles with the above charges and $M_{\text{mon}} = \sqrt{2}m|Q + k(N - k)(\frac{\theta_{YM}}{2\pi} + \frac{4\pi i}{g_{YM}^2})|$

These undergo level crossing precisely when $k(N - k)\theta = \pi$. (Auzzi-SPK, 2009)

• The identification of monopoles with σ -model kinks, explains why $\theta_{\sigma} = k(N-k)\theta$.

 $m_3 > m$ and sigma-model merons:

(Affleck, 1986)

- Vacuum manifold is the equator: N pole and S pole vortices with topological charge $= \pm \frac{1}{2}$.
- \bullet Coulomb gas of vortex-merons \rightarrow Sine-Gordon model

$$\mathcal{L}_{\sigma} = g_{\sigma}^2 (\partial \psi)^2 - 2\zeta \cos \frac{\theta_{\sigma}}{2} \cos \psi$$

• Massless at $\theta_{\sigma} = \pi$. For generic θ_{σ} , exhibits BKT transition,

Phase diagram for the k-string

• The significance of the new massless internal mode on the world-sheet is unclear.

• However, it does have a physical effect, since it will contribute to the Luscher term for the *k*-string.

Large-N String Dual (C/H phases)

• At large *N*, flux tubes are F1/D1 strings in Polchinski-Strassler background - deformation of the $AdS_5 \times S^5$, type IIB geometry.

• Confinement/Higgs reflected by NS5/D5 with world-volume $\mathbb{R}^4\times S^2,$ cutting off IR.

• Motivated by weak-coupling picture of D3's blowing up into a transverse fuzzy $S^2 \Phi_1^2 + \Phi_2^2 + \Phi_3^2 = 1 \frac{m^2(N^2-1)}{4}$

• The confining string is an instanton in 6D U(1) gauge theory on $S^2_{NC} imes \mathbb{R}^4$. (Andrews-Dorey 2005)

k=1 string

Large-N String Dual (C/H phases)

• At large *N*, flux tubes are F1/D1 strings in Polchinski-Strassler background - deformation of the $AdS_5 \times S^5$, type IIB geometry.

• Confinement/Higgs reflected by NS5/D5 with world-volume $\mathbb{R}^4\times S^2,$ cutting off IR.

• Motivated by weak-coupling picture of D3's blowing up into a transverse fuzzy S^2 , $\Phi_1^2 + \Phi_2^2 + \Phi_3^2 = 1 \frac{m^2(N^2-1)}{4}$

 S^2

▲ □ ► ▲ □ ►

k=1 string

• k = 1 string tension -Nambu-Goto for F1 in **C** phase ($\lambda = g_{YM}^2 N \gg 1$): $T_{F1} = m^2 \frac{\lambda}{8\pi}$

DBI action for D1 in **H** phase
$$T_{D1} = 2\pi m^2 \frac{N}{g_{YM}^2}$$
.

• What is a k-string when $k \sim \mathcal{O}(N)$? (e.g. Klebanov-Herzog)

• Flux tubes made of same material as baryon-vertex (with attached strings). $\mathcal{N} = 4$ SYM baryon-vertex - D5-brane wrapping S^5 . Flux tube is a D5-brane wrapping $S^4 \subset S^5$. (Callan-Guijosa-Savvidy)

Baryon vertex of N = 1* is a D3-ball. *k*-string ~ slice of D3-ball i.e. D3 disk.

• k = 1 string tension -Nambu-Goto for F1 in **C** phase ($\lambda = g_{YM}^2 N \gg 1$): $T_{F1} = m^2 \frac{\lambda}{8\pi}$

DBI action for D1 in **H** phase
$$T_{D1} = 2\pi m^2 \frac{N}{g_{YM}^2}$$
.

- What is a k-string when $k \sim \mathcal{O}(N)$? (e.g. Klebanov-Herzog) $k \in F1/D1$ $k \sim N$ Elux tubes made of same material as hereon vortex (with
- Flux tubes made of same material as baryon-vertex (with attached strings). $\mathcal{N} = 4$ SYM baryon-vertex D5-brane wrapping S^5 . Flux tube is a D5-brane wrapping $S^4 \subset S^5$. (Callan-Guijosa-Savvidy)
- Baryon vertex of N = 1* is a D3-ball. *k*-string ~ slice of D3-ball i.e. D3 disk.

D3-brane as a k-string $k \sim N$ and $\sqrt{\lambda} \gg 1$

- Confining vacuum, k-string is the expanded D3 "cap + disk".
- Dilaton diverges in small region $\sim \frac{1}{\sqrt{\lambda}} \times$ sphere radius.

同下 イヨト イヨト

- Large dilaton forces cap to settle near NS5, $T_{
 m cap}
 ightarrow 0$.
- Near NS5 $C_2^{RR} \neq 0$ and D3-cap acquires k-string charge: $S_{WZ} \sim \int_{\text{cap}} {}^*C_2 \wedge F_{tz}$ and $(1 - \cos \eta) = \frac{2k}{N}$.

• D3-disk sees flat space. k-string tension = Disk area = $\frac{m^2 \lambda N}{32\pi} \sin^2 \eta$.

 $T_k = \frac{m^2 \lambda}{8\pi} k(1 - \frac{k}{N}) + \text{unknown corrections from edge} \dots$

D3-brane as a k-string $k \sim N$ and $\sqrt{\lambda} \gg 1$

- Confining vacuum, k-string is the expanded D3 "cap + disk".
- Dilaton diverges in small region $\sim \frac{1}{\sqrt{\lambda}} \times$ sphere radius.

- Large dilaton forces cap to settle near NS5, $T_{\rm cap} \rightarrow 0$.
- Near NS5 $C_2^{RR} \neq 0$ and D3-cap acquires k-string charge: $S_{WZ} \sim \int_{\text{cap}} {}^*C_2 \wedge F_{tz}$ and $(1 - \cos \eta) = \frac{2k}{N}$.
- D3-disk sees flat space. k-string tension = Disk area = $\frac{m^2 \lambda N}{32\pi} \sin^2 \eta$.

$$T_k = \frac{m^2 \lambda}{8\pi} k (1 - \frac{k}{N}) + \text{unknown corrections from edge} \dots$$

• The moduli space dynamics is obtained by allowing the D3-cap orientation to depend on string coordinates.

• Theta-dependence is easily included in the Higgs vacuum via $SL(2,\mathbb{R})$ transformation, $C_2^{RR} \rightarrow C_2^{RR} + \frac{\theta}{2\pi}B_2^{NS}$.

• From the WZ terms of the D3-cap $S_{WZ} = \frac{k(N-k)\frac{\theta}{8\pi}\int dt dz \,\epsilon^{sr} \,\vec{n} \cdot \partial_s \vec{n} \times \partial_r \vec{n}.}{k(N-k)\frac{\theta}{8\pi}\int dt dz \,\epsilon^{sr} \,\vec{n} \cdot \partial_s \vec{n} \times \partial_r \vec{n}.}$

• The expanded D3-cap and the $k(1 - \frac{k}{N})$ dependence is reminiscent of Abelian-Higgs vortices on the sphere in 2D which behave as hard-core discs (Manton-Nasir). The volume of the moduli space of k-coincident vortices = k (1- $k \times \text{Area}$ excluded by disc). (In our case, the NC string instantons have a core area $\sim \frac{1}{N}$). • The moduli space dynamics is obtained by allowing the D3-cap orientation to depend on string coordinates.

• Theta-dependence is easily included in the Higgs vacuum via $SL(2,\mathbb{R})$ transformation, $C_2^{RR} \rightarrow C_2^{RR} + \frac{\theta}{2\pi}B_2^{NS}$.

• From the WZ terms of the D3-cap $S_{WZ} = \frac{k(N-k) \frac{\theta}{8\pi} \int dt dz \, \epsilon^{sr} \, \vec{n} \cdot \partial_s \vec{n} \times \partial_r \vec{n}.}{k + k + k + k + k}$

• The expanded D3-cap and the $k(1 - \frac{k}{N})$ dependence is reminiscent of Abelian-Higgs vortices on the sphere in 2D which behave as hard-core discs (Manton-Nasir). The volume of the moduli space of k-coincident vortices = k (1- $k \times \text{Area}$ excluded by disc). (In our case, the NC string instantons have a core area $\sim \frac{1}{N}$).

Summary and questions

- Magnetic *k*-string world-sheet, at weak coupling, can peer into aspects of 4D gauge theory physics.
- The interpretation of phase transitions on the *k*-string and appearance new massless modes is puzzling unclear what it says about the 4D gauge theory.
- Connection to instantons in $\mathbb{R}^4 \times S^2_{NC}$ and large-N.
- Casimir scaling, if correct for $k \sim \mathcal{O}(1)$ implies $\mathcal{O}(\frac{1}{N})$ corrections. This is a potential conflict with expectations in a theory with a $\frac{1}{M^2}$ expansion. (e.g. Armoni-Shifman, 2003).
- Exploration of *k*-string tensions at large *N*, in other massive phases involving multiple 5-branes. Moving away from the *O*(3) symmetric theory in gravity dual to look for world-sheet kinks/monopoles.