Geometric Structures on Manifolds II: Complete affine structures

William M. Goldman

Department of Mathematics University of Maryland

Geometry and Arithmetic of Lattices London Mathematical Society — EPSRC Durham Symposium University of Durham 6 July 2011

- A complete affine manifold Mⁿ is a quotient M = ℝⁿ/Γ where Γ is a discrete group of affine transformations acting properly and freely.
- Which kind of groups Γ can occur?
- Two types when n = 3:
 - Γ is solvable: M³ is finitely covered by an iterated fibration of circles and cells.
 - Γ is free: M³ is (conjecturally) an open solid handlbody with complete flat Lorentzian structure.
- First examples discovered by Margulis in early 1980's.
- Closely related to surfaces with hyperbolic structures and deformations which "stretch" or "shrink" the surface.

- A complete affine manifold Mⁿ is a quotient M = Rⁿ/Γ where Γ is a discrete group of affine transformations acting properly and freely.
- Which kind of groups Γ can occur?
- Two types when n = 3:
 - F is solvable: M³ is finitely covered by an iterated fibration of circles and cells.
 - Γ is free: M³ is (conjecturally) an open solid handlbody with complete flat Lorentzian structure.
- First examples discovered by Margulis in early 1980's.
- Closely related to surfaces with hyperbolic structures and deformations which "stretch" or "shrink" the surface.

- A complete affine manifold Mⁿ is a quotient M = Rⁿ/Γ where Γ is a discrete group of affine transformations acting properly and freely.
- Which kind of groups Γ can occur?
- Two types when n = 3:
 - Γ is solvable: M³ is finitely covered by an iterated fibration of circles and cells.
 - Γ is free: M³ is (conjecturally) an open solid handlbody with complete flat Lorentzian structure.
- First examples discovered by Margulis in early 1980's.
- Closely related to surfaces with hyperbolic structures and deformations which "stretch" or "shrink" the surface.

- A complete affine manifold Mⁿ is a quotient M = Rⁿ/Γ where Γ is a discrete group of affine transformations acting properly and freely.
- Which kind of groups Γ can occur?
- Two types when n = 3:
 - Γ is solvable: M³ is finitely covered by an iterated fibration of circles and cells.
 - Γ is free: M³ is (conjecturally) an open solid handlbody with complete flat Lorentzian structure.
- First examples discovered by Margulis in early 1980's.
- Closely related to surfaces with hyperbolic structures and deformations which "stretch" or "shrink" the surface.

- A complete affine manifold Mⁿ is a quotient M = Rⁿ/Γ where Γ is a discrete group of affine transformations acting properly and freely.
- Which kind of groups Γ can occur?
- Two types when n = 3:
 - Γ is solvable: M³ is finitely covered by an iterated fibration of circles and cells.
 - Γ is free: M³ is (conjecturally) an open solid handlbody with complete flat Lorentzian structure.
- First examples discovered by Margulis in early 1980's.
- Closely related to surfaces with hyperbolic structures and deformations which "stretch" or "shrink" the surface.

- A complete affine manifold Mⁿ is a quotient M = Rⁿ/Γ where Γ is a discrete group of affine transformations acting properly and freely.
- Which kind of groups Γ can occur?
- Two types when n = 3:
 - Γ is solvable: M³ is finitely covered by an iterated fibration of circles and cells.
 - Γ is free: M³ is (conjecturally) an open solid handlbody with complete flat Lorentzian structure.
- First examples discovered by Margulis in early 1980's.
- Closely related to surfaces with hyperbolic structures and deformations which "stretch" or "shrink" the surface.

- A complete affine manifold Mⁿ is a quotient M = Rⁿ/Γ where Γ is a discrete group of affine transformations acting properly and freely.
- Which kind of groups Γ can occur?
- Two types when n = 3:
 - Γ is solvable: M³ is finitely covered by an iterated fibration of circles and cells.
 - Γ is free: M³ is (conjecturally) an open solid handlbody with complete flat Lorentzian structure.
- First examples discovered by Margulis in early 1980's.
- Closely related to surfaces with hyperbolic structures and deformations which "stretch" or "shrink" the surface.

- A complete affine manifold Mⁿ is a quotient M = Rⁿ/Γ where Γ is a discrete group of affine transformations acting properly and freely.
- Which kind of groups Γ can occur?
- Two types when n = 3:
 - Γ is solvable: M³ is finitely covered by an iterated fibration of circles and cells.
 - Γ is free: M³ is (conjecturally) an open solid handlbody with complete flat Lorentzian structure.
- First examples discovered by Margulis in early 1980's.
- Closely related to surfaces with hyperbolic structures and deformations which "stretch" or "shrink" the surface.

■ A *Euclidean manifold* is modeled on Euclidean space ℝⁿ with coordinate changes *affine transformations*

$p \stackrel{\gamma}{\longmapsto} \mathsf{L}(\gamma)p + u(\gamma)$

where the *linear part* $L(\gamma)$ is an orthogonal linear map.

- If M is compact, it's geodesically complete and isometric to \mathbb{R}^n/Γ where Γ finite extension of a subgroup of *translations* $\Lambda := \Gamma \cap \mathbb{R}^n \cong \mathbb{Z}^k$ (Bieberbach 1912);
- M finitely covered by flat torus ℝⁿ/Λ (where Λ ⊂ ℝⁿ is a lattice).
- In general, M is a flat orthogonal vector bundle over a compact Euclidean manifold.

■ A *Euclidean manifold* is modeled on Euclidean space ℝⁿ with coordinate changes *affine transformations*

$p \stackrel{\gamma}{\longmapsto} \mathsf{L}(\gamma)p + u(\gamma)$

where the *linear part* $L(\gamma)$ is an orthogonal linear map.

- If *M* is compact, it's geodesically complete and isometric to \mathbb{R}^n/Γ where Γ finite extension of a subgroup of *translations* $\Lambda := \Gamma \cap \mathbb{R}^n \cong \mathbb{Z}^k$ (Bieberbach 1912);
- M finitely covered by flat torus ℝⁿ/Λ (where Λ ⊂ ℝⁿ is a lattice).
- In general, M is a flat orthogonal vector bundle over a compact Euclidean manifold.

■ A *Euclidean manifold* is modeled on Euclidean space ℝⁿ with coordinate changes *affine transformations*

$$p \stackrel{\gamma}{\longmapsto} \mathsf{L}(\gamma)p + u(\gamma)$$

where the *linear part* $L(\gamma)$ is an orthogonal linear map.

- If *M* is compact, it's geodesically complete and isometric to \mathbb{R}^n/Γ where Γ finite extension of a subgroup of *translations* $\Lambda := \Gamma \cap \mathbb{R}^n \cong \mathbb{Z}^k$ (Bieberbach 1912);
- M finitely covered by flat torus ℝⁿ/Λ (where Λ ⊂ ℝⁿ is a lattice).
- In general, M is a flat orthogonal vector bundle over a compact Euclidean manifold.

■ A *Euclidean manifold* is modeled on Euclidean space ℝⁿ with coordinate changes *affine transformations*

$$p \stackrel{\gamma}{\longmapsto} \mathsf{L}(\gamma)p + u(\gamma)$$

where the *linear part* $L(\gamma)$ is an orthogonal linear map.

- If *M* is compact, it's geodesically complete and isometric to \mathbb{R}^n/Γ where Γ finite extension of a subgroup of *translations* $\Lambda := \Gamma \cap \mathbb{R}^n \cong \mathbb{Z}^k$ (Bieberbach 1912);
- M finitely covered by flat torus ℝⁿ/Λ (where Λ ⊂ ℝⁿ is a lattice).
- In general, M is a flat orthogonal vector bundle over a compact Euclidean manifold.

■ A *Euclidean manifold* is modeled on Euclidean space ℝⁿ with coordinate changes *affine transformations*

$$p \stackrel{\gamma}{\longmapsto} \mathsf{L}(\gamma)p + u(\gamma)$$

where the *linear part* $L(\gamma)$ is an orthogonal linear map.

- If *M* is compact, it's geodesically complete and isometric to \mathbb{R}^n/Γ where Γ finite extension of a subgroup of *translations* $\Lambda := \Gamma \cap \mathbb{R}^n \cong \mathbb{Z}^k$ (Bieberbach 1912);
- M finitely covered by flat torus ℝⁿ/Λ (where Λ ⊂ ℝⁿ is a lattice).
- In general, M is a flat orthogonal vector bundle over a compact Euclidean manifold.

For Euclidean manifolds:

- Only finitely many topological types in each dimension.
- Only one commensurability class.
- $\pi_1(M)$ is finitely generated.
- π₁(M) is finitely presented.
- $\chi(M) = 0.$
- None of these properties hold in general for complete affine manifolds!

For Euclidean manifolds:

- Only finitely many topological types in each dimension.
- Only one commensurability class.
- $\pi_1(M)$ is finitely generated.
- $\pi_1(M)$ is finitely presented.
- None of these properties hold in general for complete affine manifolds!

For Euclidean manifolds:

- Only finitely many topological types in each dimension.
- Only one *commensurability* class.
- $\pi_1(M)$ is finitely generated.
- $\pi_1(M)$ is finitely presented.
- None of these properties hold in general for complete affine manifolds!

For Euclidean manifolds:

- Only finitely many topological types in each dimension.
- Only one commensurability class.
- $\pi_1(M)$ is finitely generated.
- $\pi_1(M)$ is finitely presented.

None of these properties hold in general for complete affine manifolds!

For Euclidean manifolds:

- Only finitely many topological types in each dimension.
- Only one *commensurability* class.
- $\pi_1(M)$ is finitely generated.
- $\pi_1(M)$ is finitely presented.

None of these properties hold in general for complete affine manifolds!

For Euclidean manifolds:

- Only finitely many topological types in each dimension.
- Only one *commensurability* class.
- $\pi_1(M)$ is finitely generated.
- $\pi_1(M)$ is finitely presented.

None of these properties hold in general for complete affine manifolds!

For Euclidean manifolds:

- Only finitely many topological types in each dimension.
- Only one *commensurability* class.
- $\pi_1(M)$ is finitely generated.
- $\pi_1(M)$ is finitely presented.

$$\chi(M)=0.$$

None of these properties hold in general for complete affine manifolds!

- Suppose $M = \mathbb{R}^n / \Gamma$ is a complete affine manifold:
- For *M* to be a (Hausdorff) smooth manifold, Γ must act:
 - Discretely: $(\mathsf{\Gamma} \subset \mathsf{Homeo}(\mathbb{R}^n) \mathsf{ discrete});$
 - Ereely: (No fixed points);
 - Froperly: (Go to co in $\mathbb{F} \Longrightarrow$ go to co in every orbit Ex).

◆□> ◆□> ◆三> ◆三> ・三 のへで

Suppose $M = \mathbb{R}^n / \Gamma$ is a complete affine manifold:

For *M* to be a (Hausdorff) smooth manifold, Γ must act:

Discretely: $(\Gamma \subset Homeo(\mathbb{R}^n) \text{ discrete});$

Freely: (No fixed points);

Properly: (Go to co in $\mathbb{R} \longrightarrow$ go to co in every orbit Ex).

Suppose $M = \mathbb{R}^n / \Gamma$ is a complete affine manifold:

For *M* to be a (Hausdorff) smooth manifold, Γ must act:

Discretely: $(\Gamma \subset \text{Homeo}(\mathbb{R}^n) \text{ discrete});$

Freely: (No fixed points);

Properly: (Go to ∞ in $\Gamma \Longrightarrow$ go to ∞ in every orbit Γx).

fore precisely, the map

$\Gamma \times X \longrightarrow X \times X$

 $(\gamma, \mathsf{x}) \longmapsto (\gamma \mathsf{x}, \mathsf{x})$

▲日▼▲□▼▲□▼▲□▼ □ ののの

is a proper map (preimages of compacts are compact). Unlike Riemannian isometries, discreteness does not imply properness.

Suppose $M = \mathbb{R}^n / \Gamma$ is a complete affine manifold:

- For *M* to be a (Hausdorff) smooth manifold, Γ must act:
 - **Discretely**: $(\Gamma \subset \text{Homeo}(\mathbb{R}^n) \text{ discrete});$
 - Freely: (No fixed points);
 - Properly: (Go to ∞ in $\Gamma \Longrightarrow$ go to ∞ in every orbit Γx).

More precisely, the map

- is a proper map (preimages of compacta are compact).
- Unlike Riemannian isometries, discreteness does not imply properness.

Suppose $M = \mathbb{R}^n / \Gamma$ is a complete affine manifold:

- For *M* to be a (Hausdorff) smooth manifold, Γ must act:
 - **Discretely**: $(\Gamma \subset \text{Homeo}(\mathbb{R}^n) \text{ discrete});$
 - Freely: (No fixed points);
 - Properly: (Go to ∞ in $\Gamma \Longrightarrow$ go to ∞ in every orbit Γx).

More precisely, the map

- is a proper map (preimages of compacta are compact).
- Unlike Riemannian isometries, discreteness does not imply properness.

Suppose $M = \mathbb{R}^n / \Gamma$ is a complete affine manifold:

- For *M* to be a (Hausdorff) smooth manifold, Γ must act:
 - **Discretely**: $(\Gamma \subset \text{Homeo}(\mathbb{R}^n) \text{ discrete});$
 - Freely: (No fixed points);
 - Properly: (Go to ∞ in $\Gamma \Longrightarrow$ go to ∞ in every orbit Γx).

More precisely, the map

$$\Gamma \times X \longrightarrow X \times X$$
$$(\gamma, x) \longmapsto (\gamma x, x)$$

▲日▼▲□▼▲□▼▲□▼ □ ののの

is a proper map (preimages of compacta are compact).

Unlike Riemannian isometries, discreteness does not imply properness.

Suppose $M = \mathbb{R}^n / \Gamma$ is a complete affine manifold:

- For *M* to be a (Hausdorff) smooth manifold, Γ must act:
 - **Discretely**: $(\Gamma \subset \text{Homeo}(\mathbb{R}^n) \text{ discrete});$
 - Freely: (No fixed points);
 - Properly: (Go to ∞ in $\Gamma \Longrightarrow$ go to ∞ in every orbit Γx).
 - More precisely, the map

$$\begin{array}{c} \mathsf{\Gamma} \times X \longrightarrow X \times X \\ (\gamma, x) \longmapsto (\gamma x, x) \end{array}$$

- is a proper map (preimages of compacta are compact).
- Unlike Riemannian isometries, discreteness does not imply properness.

Suppose $M = \mathbb{R}^n / \Gamma$ is a complete affine manifold:

- For *M* to be a (Hausdorff) smooth manifold, Γ must act:
 - **Discretely**: $(\Gamma \subset \text{Homeo}(\mathbb{R}^n) \text{ discrete});$
 - Freely: (No fixed points);
 - Properly: (Go to ∞ in $\Gamma \Longrightarrow$ go to ∞ in every orbit Γx).
 - More precisely, the map

$$\begin{array}{c} \mathsf{\Gamma} \times X \longrightarrow X \times X \\ (\gamma, x) \longmapsto (\gamma x, x) \end{array}$$

- is a proper map (preimages of compacta are compact).
- Unlike Riemannian isometries, discreteness does not imply properness.

- An affine structure is a flat torsionfree affine connection.
- Even if *M* is compact, it may be *incomplete*.
 - Example: Hopf manifold
 - Quotient $V \setminus \{0\}/\langle A \rangle$, where $V \xrightarrow{A} V$ linear expansion.
 - Diffeomorphic to $S^{n-1} \times S^1$.
 - Geodesics aimed at the origin don't extend...
- *Geodesic completeness* ⇔ developing map bijective.
- Affine holonomy group Γ ⊂ Aff(E) acts properly, discretely, freely on E.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ●

An affine structure is a *flat torsionfree affine connection*.

Even if *M* is compact, it may be *incomplete*.

- Example: Hopf manifold
 - Quotient $V \setminus \{0\}/\langle A \rangle$, where $V \xrightarrow{A} V$ linear expansion.
- Diffeomorphic to $S^{n-1} \times S^1$.
- Geodesics aimed at the origin don't extend...
- *Geodesic completeness* ⇔ developing map bijective.
- Affine holonomy group Γ ⊂ Aff(E) acts properly, discretely, freely on E.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ●

- An affine structure is a *flat torsionfree affine connection*.
- Even if *M* is compact, it may be *incomplete*.
 - Example: Hopf manifold
 - Quotient $V \setminus \{0\}/\langle A \rangle$, where $V \xrightarrow{A} V$ linear expansion.
 - Diffeomorphic to $S^{n-1} \times S^1$.
 - Geodesics aimed at the origin don't extend...
- *Geodesic completeness* ⇔ developing map bijective.
- Affine holonomy group Γ ⊂ Aff(E) acts properly, discretely, freely on E.

- An affine structure is a *flat torsionfree affine connection*.
- Even if *M* is compact, it may be *incomplete*.
 - Example: Hopf manifold
 - Quotient $V \setminus \{0\}/\langle A \rangle$, where $V \xrightarrow{A} V$ linear expansion.
 - Diffeomorphic to $S^{n-1} \times S^1$.
 - Geodesics aimed at the origin don't extend...
- *Geodesic completeness* ⇔ developing map bijective.
- Affine holonomy group Γ ⊂ Aff(E) acts properly, discretely, freely on E.

- An affine structure is a *flat torsionfree affine connection*.
- Even if *M* is compact, it may be *incomplete*.
 - Example: Hopf manifold
 - Quotient $V \setminus \{0\}/\langle A \rangle$, where $V \xrightarrow{A} V$ linear expansion.
 - Diffeomorphic to $S^{n-1} \times S^1$.

Geodesics aimed at the origin don't extend...

- *Geodesic completeness* ⇐⇒ developing map bijective.
- Affine holonomy group $\Gamma \subset Aff(E)$ acts properly, discretely, freely on E.

- An affine structure is a *flat torsionfree affine connection*.
- Even if *M* is compact, it may be *incomplete*.
 - Example: Hopf manifold
 - Quotient $V \setminus \{0\}/\langle A \rangle$, where $V \xrightarrow{A} V$ linear expansion.
 - Diffeomorphic to $S^{n-1} \times S^1$.
 - Geodesics aimed at the origin don't extend...
- *Geodesic completeness* ⇐⇒ developing map bijective.
- Affine holonomy group $\Gamma \subset Aff(E)$ acts properly, discretely, freely on E.

- An affine structure is a *flat torsionfree affine connection*.
- Even if *M* is compact, it may be *incomplete*.
 - Example: Hopf manifold
 - Quotient $V \setminus \{0\}/\langle A \rangle$, where $V \xrightarrow{A} V$ linear expansion.
 - Diffeomorphic to $S^{n-1} \times S^1$.
 - Geodesics aimed at the origin don't extend...
- Geodesic completeness ⇔ developing map bijective.
- Affine holonomy group Γ ⊂ Aff(E) acts properly, discretely, freely on E.

Geodesic completeness

- An affine structure is a flat torsionfree affine connection.
- Even if *M* is compact, it may be *incomplete*.
 - Example: Hopf manifold
 - Quotient $V \setminus \{0\}/\langle A \rangle$, where $V \xrightarrow{A} V$ linear expansion.
 - Diffeomorphic to $S^{n-1} \times S^1$.
 - Geodesics aimed at the origin don't extend...
- *Geodesic completeness* ⇔ developing map bijective.
- Affine holonomy group $\Gamma \subset Aff(E)$ acts properly, discretely, freely on E.

■ Most interesting examples: Margulis (~ 1980):

- Γ is a free group acting isometrically on \mathbb{E}^{2+1}
 - $L(\Gamma) \subset O(2,1)$ is isomorphic to Γ .
 - M^3 noncompact complete flat Lorentz 3-manifold.
- Associated to every Margulis spacetime M³ is a noncompact complete hyperbolic surface Σ².
- Closely related to the geometry of M³ is a *deformation* of the hyperbolic structure on Σ².

■ Most interesting examples: Margulis (~ 1980):

- \blacksquare Γ is a free group acting isometrically on \mathbb{E}^{2+1}
 - $L(\Gamma) \subset O(2,1)$ is isomorphic to Γ .
 - **\square** M^3 noncompact complete flat Lorentz 3-manifold.
- Associated to every Margulis spacetime M³ is a noncompact complete hyperbolic surface Σ².
- Closely related to the geometry of M³ is a *deformation* of the hyperbolic structure on Σ².

■ Most interesting examples: Margulis (~ 1980):

- Γ is a free group acting isometrically on \mathbb{E}^{2+1}
 - $L(\Gamma) \subset O(2,1)$ is isomorphic to Γ .
 - M^3 noncompact complete flat Lorentz 3-manifold.
- Associated to every Margulis spacetime M³ is a noncompact complete hyperbolic surface Σ².
- Closely related to the geometry of M³ is a *deformation* of the hyperbolic structure on Σ².

■ Most interesting examples: Margulis (~ 1980):

- Γ is a free group acting isometrically on \mathbb{E}^{2+1}
 - $L(\Gamma) \subset O(2,1)$ is isomorphic to Γ .
 - \blacksquare M^3 noncompact complete flat Lorentz 3-manifold.
- Associated to every Margulis spacetime M³ is a noncompact complete hyperbolic surface Σ².
- Closely related to the geometry of M³ is a *deformation* of the hyperbolic structure on Σ².

- Most interesting examples: Margulis (~ 1980):
 - Γ is a free group acting isometrically on \mathbb{E}^{2+1}
 - $L(\Gamma) \subset O(2,1)$ is isomorphic to Γ .
 - M^3 noncompact complete flat Lorentz 3-manifold.
 - Associated to every Margulis spacetime M³ is a noncompact complete hyperbolic surface Σ².
 - Closely related to the geometry of M³ is a *deformation* of the hyperbolic structure on Σ².

- Most interesting examples: Margulis (~ 1980):
 - Γ is a free group acting isometrically on \mathbb{E}^{2+1}
 - $L(\Gamma) \subset O(2,1)$ is isomorphic to Γ .
 - M^3 noncompact complete flat Lorentz 3-manifold.
 - Associated to every Margulis spacetime M³ is a noncompact complete hyperbolic surface Σ².
 - Closely related to the geometry of M³ is a *deformation* of the hyperbolic structure on Σ².

- Most interesting examples: Margulis (~ 1980):
 - Γ is a free group acting isometrically on \mathbb{E}^{2+1}
 - $L(\Gamma) \subset O(2,1)$ is isomorphic to Γ .
 - M^3 noncompact complete flat Lorentz 3-manifold.
 - Associated to every Margulis spacetime M³ is a noncompact complete hyperbolic surface Σ².
 - Closely related to the geometry of M³ is a *deformation* of the hyperbolic structure on Σ².

- Unlike the 8 geometries of Thurston's Geometrization, affine structures are not Riemannian.
 - No obvious metrics.
 - Usual tools (distance, angle, metric convexity, completeness, volume) NOT available
 - Available tools: parallelism; geodesics...
 - Equivalently this structure is a geodesically complete torsionfree affine connection on *M* (a notion of parallelism). Even Lorentzian structures are not metric spaces

▲口 → ▲御 → ▲注 → ▲注 → □注 □

Unlike the 8 geometries of Thurston's Geometrization, affine structures are not Riemannian.

- No obvious metrics.
- Usual tools (distance, angle, metric convexity, completeness, volume) NOT available.
- Available tools: parallelism, geodesics...
- Equivalently this structure is a geodesically complete torsionfree affine connection on *M* (a notion of parallelism).

▲日▼▲□▼▲□▼▲□▼ □ のので

Unlike the 8 geometries of Thurston's Geometrization, affine structures are not Riemannian.

- No obvious metrics.
- Usual tools (distance, angle, metric convexity, completeness, volume) NOT available.
- Available tools: parallelism, geodesics...
- Equivalently this structure is a geodesically complete torsionfree affine connection on *M* (a notion of parallelism).

▲日▼▲□▼▲□▼▲□▼ □ のので

- Unlike the 8 geometries of Thurston's Geometrization, affine structures are not Riemannian.
 - No obvious metrics.
 - Usual tools (distance, angle, metric convexity, completeness, volume) NOT available.
 - Available tools: parallelism, geodesics...
 - Equivalently this structure is a geodesically complete torsionfree affine connection on *M* (a notion of parallelism).

▲日▼▲□▼▲□▼▲□▼ □ のので

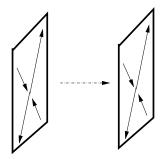
- Unlike the 8 geometries of Thurston's Geometrization, affine structures are not Riemannian.
 - No obvious metrics.
 - Usual tools (distance, angle, metric convexity, completeness, volume) NOT available.
 - Available tools: parallelism, geodesics...
 - Equivalently this structure is a geodesically complete torsionfree affine connection on *M* (a notion of parallelism).

- Unlike the 8 geometries of Thurston's Geometrization, affine structures are not Riemannian.
 - No obvious metrics.
 - Usual tools (distance, angle, metric convexity, completeness, volume) NOT available.
 - Available tools: parallelism, geodesics...
 - Equivalently this structure is a geodesically complete torsionfree affine connection on *M* (a notion of parallelism).

- Unlike the 8 geometries of Thurston's Geometrization, affine structures are not Riemannian.
 - No obvious metrics.
 - Usual tools (distance, angle, metric convexity, completeness, volume) NOT available.
 - Available tools: parallelism, geodesics...
 - Equivalently this structure is a geodesically complete torsionfree affine connection on *M* (a notion of parallelism).

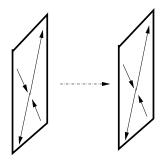
Example: Cyclic groups

■ Most elements γ ∈ Γ are *boosts*, affine deformations of hyperbolic elements of O(2,1) ⊂ GL(3, ℝ). A fundamental domain is the *slab* bounded by two parallel planes.



Example: Cyclic groups

■ Most elements γ ∈ Γ are *boosts*, affine deformations of hyperbolic elements of O(2, 1) ⊂ GL(3, ℝ). A fundamental domain is the *slab* bounded by two parallel planes.



A boost identifying two parallel planes

 Each such element leaves invariant a unique (spacelike) line, whose image in E^{2,1}/Γ is a *closed geodesic*. Like surfaces, most loops are freely homotopic to (unique) closed geodesics.

$$\gamma = egin{bmatrix} e^{\ell(\gamma)} & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & e^{-\ell(\gamma)} \end{bmatrix} egin{bmatrix} 0 \ lpha(\gamma) \ 0 \end{bmatrix}$$

ℓ(γ) ∈ ℝ⁺: geodesic length of γ in Σ²
 α(γ) ∈ ℝ: (signed) Lorentzian length of γ in M³.
 The unique γ-invariant geodesic C_γ inherits a natural orientation and metric.

• γ translates along C_{γ} by $\alpha(\gamma)$.

 Each such element leaves invariant a unique (spacelike) line, whose image in E^{2,1}/Γ is a *closed geodesic*. Like surfaces, most loops are freely homotopic to (unique) closed geodesics.

$$\gamma = \begin{bmatrix} e^{\ell(\gamma)} & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & e^{-\ell(\gamma)} \end{bmatrix} \begin{bmatrix} 0\\ \alpha(\gamma)\\ 0 \end{bmatrix}$$

ℓ(γ) ∈ ℝ⁺: geodesic length of γ in Σ²
 α(γ) ∈ ℝ: (signed) Lorentzian length of γ in M³.
 The unique γ-invariant geodesic C_γ inherits a natural orientation and metric.

 Each such element leaves invariant a unique (spacelike) line, whose image in E^{2,1}/Γ is a *closed geodesic*. Like surfaces, most loops are freely homotopic to (unique) closed geodesics.

$$\gamma = \begin{bmatrix} e^{\ell(\gamma)} & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & e^{-\ell(\gamma)} \end{bmatrix} \begin{bmatrix} 0\\ \alpha(\gamma)\\ 0 \end{bmatrix}$$

ℓ(γ) ∈ ℝ⁺: geodesic length of γ in Σ²
 α(γ) ∈ ℝ: (signed) Lorentzian length of γ in M³.
 The unique γ-invariant geodesic C_γ inherits a natural orientation and metric.

• γ translates along C_{γ} by $\alpha(\gamma)$.

 Each such element leaves invariant a unique (spacelike) line, whose image in E^{2,1}/Γ is a *closed geodesic*. Like surfaces, most loops are freely homotopic to (unique) closed geodesics.

$$\gamma = \begin{bmatrix} e^{\ell(\gamma)} & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & e^{-\ell(\gamma)} \end{bmatrix} \begin{bmatrix} 0\\ \alpha(\gamma)\\ 0 \end{bmatrix}$$

ℓ(γ) ∈ ℝ⁺: geodesic length of γ in Σ²
 α(γ) ∈ ℝ: (signed) Lorentzian length of γ in M³.
 The unique γ-invariant geodesic C_γ inherits a natural orientation and metric.

• γ translates along \mathcal{C}_{γ} by $lpha(\gamma).$

 Each such element leaves invariant a unique (spacelike) line, whose image in E^{2,1}/Γ is a *closed geodesic*. Like surfaces, most loops are freely homotopic to (unique) closed geodesics.

$$\gamma = \begin{bmatrix} e^{\ell(\gamma)} & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & e^{-\ell(\gamma)} \end{bmatrix} \begin{bmatrix} 0\\ \alpha(\gamma)\\ 0 \end{bmatrix}$$

ℓ(γ) ∈ ℝ⁺: geodesic length of γ in Σ²
 α(γ) ∈ ℝ: (signed) Lorentzian length of γ in M³.
 The unique γ-invariant geodesic C_γ inherits a natural orientation and metric.

• γ translates along C_{γ} by $\alpha(\gamma)$.

 Each such element leaves invariant a unique (spacelike) line, whose image in E^{2,1}/Γ is a *closed geodesic*. Like surfaces, most loops are freely homotopic to (unique) closed geodesics.

$$\gamma = \begin{bmatrix} e^{\ell(\gamma)} & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & e^{-\ell(\gamma)} \end{bmatrix} \begin{bmatrix} 0\\ \alpha(\gamma)\\ 0 \end{bmatrix}$$

ℓ(γ) ∈ ℝ⁺: geodesic length of γ in Σ²
 α(γ) ∈ ℝ: (signed) Lorentzian length of γ in M³.

The unique γ-invariant geodesic C_γ inherits a natural orientation and metric.

• γ translates along C_{γ} by $\alpha(\gamma)$.

- If $G = \pi_1(M)$ is virtually solvable (necessarily virtually polycyclic), then $G \hookrightarrow \operatorname{Aff}(\mathbb{R}^n)$ extends to $H \subset \operatorname{Aff}(\mathbb{R}^n)$, with $\pi_0(H)$ finite and H^0 acting simply transitively on \mathbb{R}^n .
- "Bieberbach-type" theorem: *M* finitely covered by *complete* affine solvmanifold $H/(G \cap H^0)$.
- **Auslander "Conjecture":** $\pi_1(M)$ virtually polycyclic.
- Known up to dimension 6: Abels-Margulis-Soifer, earlier results by Fried-G-Kamishima, Tomanov, Gruenwald-Margulis.

- If $G = \pi_1(M)$ is virtually solvable (necessarily virtually polycyclic), then $G \hookrightarrow \operatorname{Aff}(\mathbb{R}^n)$ extends to $H \subset \operatorname{Aff}(\mathbb{R}^n)$, with $\pi_0(H)$ finite and H^0 acting simply transitively on \mathbb{R}^n .
- "Bieberbach-type" theorem: *M* finitely covered by *complete* affine solvmanifold $H/(G \cap H^0)$.
- **Auslander "Conjecture":** $\pi_1(M)$ virtually polycyclic.
- Known up to dimension 6: Abels-Margulis-Soifer, earlier results by Fried-G-Kamishima, Tomanov, Gruenwald-Margulis.

- If $G = \pi_1(M)$ is virtually solvable (necessarily virtually polycyclic), then $G \hookrightarrow \operatorname{Aff}(\mathbb{R}^n)$ extends to $H \subset \operatorname{Aff}(\mathbb{R}^n)$, with $\pi_0(H)$ finite and H^0 acting simply transitively on \mathbb{R}^n .
- "Bieberbach-type" theorem: *M* finitely covered by *complete* affine solvmanifold $H/(G \cap H^0)$.
- **Auslander "Conjecture":** $\pi_1(M)$ virtually polycyclic.
- Known up to dimension 6: Abels-Margulis-Soifer, earlier results by Fried-G-Kamishima, Tomanov, Gruenwald-Margulis.

- If $G = \pi_1(M)$ is virtually solvable (necessarily virtually polycyclic), then $G \hookrightarrow \operatorname{Aff}(\mathbb{R}^n)$ extends to $H \subset \operatorname{Aff}(\mathbb{R}^n)$, with $\pi_0(H)$ finite and H^0 acting simply transitively on \mathbb{R}^n .
- "Bieberbach-type" theorem: *M* finitely covered by *complete* affine solvmanifold $H/(G \cap H^0)$.
- Auslander "Conjecture": $\pi_1(M)$ virtually polycyclic.
- Known up to dimension 6: Abels-Margulis-Soifer, earlier results by Fried-G-Kamishima, Tomanov, Gruenwald-Margulis.

- If $G = \pi_1(M)$ is virtually solvable (necessarily virtually polycyclic), then $G \hookrightarrow \operatorname{Aff}(\mathbb{R}^n)$ extends to $H \subset \operatorname{Aff}(\mathbb{R}^n)$, with $\pi_0(H)$ finite and H^0 acting simply transitively on \mathbb{R}^n .
- "Bieberbach-type" theorem: *M* finitely covered by *complete* affine solvmanifold $H/(G \cap H^0)$.
- Auslander "Conjecture": $\pi_1(M)$ virtually polycyclic.
- Known up to dimension 6: Abels-Margulis-Soifer, earlier results by Fried-G-Kamishima, Tomanov, Gruenwald-Margulis.

(日) (周) (三) (三) (三) (○) (○)

Can a nonabelian free group act properly, freely and discretely by affine transformations on \mathbb{R}^n ?

 Equivalently (Tits 1971): "Are there discrete groups other than virtually polycycic groups which act properly, affinely?" If NO, M^o finitely covered by iterated S⁻-fibration Dimension 3: M^o compact —> M^o finitely covered by T^o-bundle over S⁺ (Griet C 1983).

Can a nonabelian free group act properly, freely and discretely by affine transformations on \mathbb{R}^n ?

Equivalently (Tits 1971): "Are there discrete groups other than virtually polycycic groups which act properly, affinely?"

If NO, Mⁿ finitely covered by iterated S¹-fibration
 Dimension 3: M³ compact ⇒ M³ finitely covered by T²-bundle over S¹ (Fried-G 1983),

Geometrizable by Euc, Nil or Sol

Can a nonabelian free group act properly, freely and discretely by affine transformations on \mathbb{R}^n ?

Equivalently (Tits 1971): "Are there discrete groups other than virtually polycycic groups which act properly, affinely?"
 If NO, Mⁿ finitely covered by iterated S¹-fibration
 Dimension 3: M³ compact ⇒ M³ finitely covered by T²-bundle over S¹ (Fried-G 1983),

Can a nonabelian free group act properly, freely and discretely by affine transformations on \mathbb{R}^n ?

Equivalently (Tits 1971): "Are there discrete groups other than virtually polycycic groups which act properly, affinely?"
 If NO, Mⁿ finitely covered by iterated S¹-fibration
 Dimension 3: M³ compact ⇒ M³ finitely covered by T²-bundle over S¹ (Fried-G 1983),
 Geometrizable by Euc, Nil or Sol.

Can a nonabelian free group act properly, freely and discretely by affine transformations on \mathbb{R}^n ?

Equivalently (Tits 1971): "Are there discrete groups other than virtually polycycic groups which act properly, affinely?"
 If NO, Mⁿ finitely covered by iterated S¹-fibration
 Dimension 3: M³ compact ⇒ M³ finitely covered by T²-bundle over S¹ (Fried-G 1983),
 Geometrizable by Euc, Nil or Sol.

Evidence?

Milnor offers the following results as possible "evidence" for a negative answer to this question.

- Connected Lie group G admits a proper affine action ⇔ G is amenable (compact-by-solvable).
- Every virtually polycyclic group admits a proper affine action.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Milnor offers the following results as possible "evidence" for a negative answer to this question.

- Connected Lie group G admits a proper affine action G is amenable (compact-by-solvable).
- Every virtually polycyclic group admits a proper affine action.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Evidence?

Milnor offers the following results as possible "evidence" for a negative answer to this question.

- Connected Lie group G admits a proper affine action ⇔ G is amenable (compact-by-solvable).
- Every virtually polycyclic group admits a proper affine action.

▲日▼▲□▼▲□▼▲□▼ □ のので

- Clearly a geometric problem: free groups act properly by isometries on H³ hence by diffeomorphisms of E³
- These actions are *not* affine.
- Milnor suggests:
 - Start with a free discrete subgroup of O(2, 1) and add translation components to obtain a group of affine transformations which acts freely.
 - However it seems difficult to decide whether the resulting group action is properly discontinuous.

- Clearly a geometric problem: free groups act properly by isometries on H³ hence by diffeomorphisms of E³
- These actions are *not* affine.
- Milnor suggests:
 - Start with a free discrete subgroup of O(2, 1) and add translation components to obtain a group of affine transformations which acts freely. *However it seems difficult to decide whether the*
 - resulting group action is properly discontinuous.

- Clearly a geometric problem: free groups act properly by isometries on H³ hence by diffeomorphisms of E³
- These actions are *not* affine.
- Milnor suggests:

Start with a free discrete subgroup of O(2, 1) and add translation components to obtain a group of affine transformations which acts freely. *However it seems difficult to decide whether the*

resulting group action is properly discontinuous.

- Clearly a geometric problem: free groups act properly by isometries on H³ hence by diffeomorphisms of E³
- These actions are not affine.
- Milnor suggests:

Start with a free discrete subgroup of O(2,1) and add translation components to obtain a group of affine transformations which acts freely. However it seems difficult to decide whether the resulting group action is properly discontinuous.

\square $\mathbb{R}^{2,1}$ is the 3-dimensional real vector space with inner product:

$$\begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix} := x_1 x_2 + y_1 y_2 - z_1 z_2$$

and Minkowski space E^{2,1} is the corresponding *affine space*, a simply connected geodesically complete Lorentzian manifold.

- The Lorentz metric tensor is $dx^2 + dy^2 dz^2$.
- Isom(E^{2,1}) is the semidirect product of ℝ^{2,1} (the vector group of translations) with the orthogonal group O(2,1).
- The stabilizer of the origin is the group O(2,1) which preserves the hyperbolic plane

$$\mathsf{H}^2 := \{ v \in \mathbb{R}^{2,1} \mid v \cdot v = -1, z > 0 \}$$

\square $\mathbb{R}^{2,1}$ is the 3-dimensional real vector space with inner product:

$$\begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix} := x_1 x_2 + y_1 y_2 - z_1 z_2$$

and Minkowski space $E^{2,1}$ is the corresponding *affine space*, a simply connected geodesically complete Lorentzian manifold.

- The Lorentz metric tensor is $dx^2 + dy^2 dz^2$.
- Isom(E^{2,1}) is the semidirect product of ℝ^{2,1} (the vector group of translations) with the orthogonal group O(2,1).
- The stabilizer of the origin is the group O(2,1) which preserves the hyperbolic plane

$$\mathsf{H}^2 := \{ v \in \mathbb{R}^{2,1} \mid v \cdot v = -1, z > 0 \},\$$

<ロト < 団 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < B > < B > < 国 > < 国 > < 国 > < B > < B > < 国 > < 国 > < 国 > < B > < B > < B > < B > < B = < B = < B = < B = < B = < B = < B = < B = < B = < B

\square $\mathbb{R}^{2,1}$ is the 3-dimensional real vector space with inner product:

$$\begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix} := x_1 x_2 + y_1 y_2 - z_1 z_2$$

and Minkowski space $E^{2,1}$ is the corresponding *affine space*, a simply connected geodesically complete Lorentzian manifold.

- The Lorentz metric tensor is $dx^2 + dy^2 dz^2$.
- Isom(E^{2,1}) is the semidirect product of ℝ^{2,1} (the vector group of translations) with the orthogonal group O(2,1).
- The stabilizer of the origin is the group O(2,1) which preserves the hyperbolic plane

$$\mathsf{H}^2 := \{ v \in \mathbb{R}^{2,1} \mid v \cdot v = -1, z > 0 \}$$

 $\blacksquare \ \mathbb{R}^{2,1}$ is the 3-dimensional real vector space with inner product:

$$\begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix} := x_1 x_2 + y_1 y_2 - z_1 z_2$$

and Minkowski space $E^{2,1}$ is the corresponding *affine space*, a simply connected geodesically complete Lorentzian manifold.

- The Lorentz metric tensor is $dx^2 + dy^2 dz^2$.
- Isom(E^{2,1}) is the semidirect product of ℝ^{2,1} (the vector group of translations) with the orthogonal group O(2,1).
- The stabilizer of the origin is the group O(2,1) which preserves the hyperbolic plane

$$\mathsf{H}^2 \ := \ \{ v \in \mathbb{R}^{2,1} \ | \ v \cdot v = -1, z > 0 \}$$

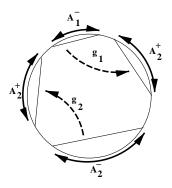
 $\blacksquare \ \mathbb{R}^{2,1}$ is the 3-dimensional real vector space with inner product:

$$\begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix} := x_1 x_2 + y_1 y_2 - z_1 z_2$$

and Minkowski space $E^{2,1}$ is the corresponding *affine space*, a simply connected geodesically complete Lorentzian manifold.

- The Lorentz metric tensor is $dx^2 + dy^2 dz^2$.
- Isom(E^{2,1}) is the semidirect product of ℝ^{2,1} (the vector group of translations) with the orthogonal group O(2,1).
- The stabilizer of the origin is the group O(2,1) which preserves the hyperbolic plane

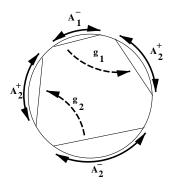
$$\mathsf{H}^2 := \{ v \in \mathbb{R}^{2,1} \mid v \cdot v = -1, z > 0 \}.$$



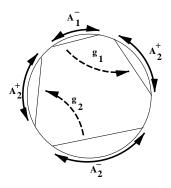
Generators g_1, g_2 pair half-spaces $A_i^- \longrightarrow H^2 \setminus A_i^+$.

 \blacksquare g_1, g_2 freely generate discrete group.

Action proper with fundamental domain $H^2 \setminus \bigcup_{a \to b} A_{a \to b}^{\pm}$



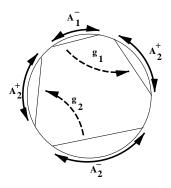
Generators g₁, g₂ pair half-spaces A_i⁻ → H² \ A_i⁺.
 g₁, g₂ freely generate discrete group.
 Action proper with fundamental domain H² \ U A[±].



• Generators g_1, g_2 pair half-spaces $A_i^- \longrightarrow H^2 \setminus A_i^+$.

\square g_1, g_2 freely generate discrete group.

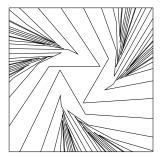
Action proper with fundamental domain $H^2 \setminus \bigcup A^{\pm}$.



- Generators g_1, g_2 pair half-spaces $A_i^- \longrightarrow H^2 \setminus A_i^+$.
- **\square** g_1, g_2 freely generate discrete group.
- Action proper with fundamental domain $H^2 \setminus \bigcup_{i=1}^{4} A_{i=1}^{\pm}$

Margulis's examples

Early 1980's: Margulis tried to answer Milnor's question negatively. Instead he proved that nonabelian free groups can act properly, affinely on \mathbb{R}^3 .

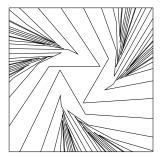


ъ

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Margulis's examples

Early 1980's: Margulis tried to answer Milnor's question negatively. Instead he proved that nonabelian free groups can act properly, affinely on \mathbb{R}^3 .



ъ

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Suppose that $\Gamma \subset Aff(\mathbb{R}^3)$ acts properly and is *not solvable*.

- (Fried-G 1983): Let Γ → GL(3, ℝ) be the *linear part*.
 L(Γ) (conjugate to) a *discrete* subgroup of O(2,1);
 - L injective.
- Homotopy equivalence

$$M^3 := \mathsf{E}^{2,1}/\Gamma \longrightarrow S := \mathsf{H}^2/\mathsf{L}(\Gamma)$$

where S complete hyperbolic surface.

- Mess (1990): Σ not compact .
- Γ free;
- Milnor's suggestion is the only way to construct examples in dimension three.

▲日▼▲□▼▲□▼▲□▼ □ ののの

Suppose that $\Gamma \subset Aff(\mathbb{R}^3)$ acts properly and is *not solvable*.

• (Fried-G 1983): Let $\Gamma \xrightarrow{L} GL(3, \mathbb{R})$ be the *linear part*.

L(Γ) (conjugate to) a *discrete* subgroup of O(2,1);
 L injective.

Homotopy equivalence

$$M^3 := \mathsf{E}^{2,1}/\Gamma \longrightarrow S := \mathsf{H}^2/\mathsf{L}(\Gamma)$$

where S complete hyperbolic surface.

■ Mess (1990): ∑ not compact .

Γ free;

Milnor's suggestion is the only way to construct examples in dimension three.

▲日▼▲□▼▲□▼▲□▼ □ ののの

Suppose that $\Gamma \subset \mathsf{Aff}(\mathbb{R}^3)$ acts properly and is not solvable.

- (Fried-G 1983): Let $\Gamma \xrightarrow{\mathsf{L}} \mathsf{GL}(3,\mathbb{R})$ be the *linear part*.
 - L(Γ) (conjugate to) a *discrete* subgroup of O(2,1);
 L injective.

Homotopy equivalence

$$M^3 := \mathsf{E}^{2,1}/\Gamma \longrightarrow S := \mathsf{H}^2/\mathsf{L}(\Gamma)$$

where S complete hyperbolic surface.

■ Mess (1990): ∑ not compact .

Γ free;

Milnor's suggestion is the only way to construct examples in dimension three.

Suppose that $\Gamma \subset Aff(\mathbb{R}^3)$ acts properly and is *not solvable*.

- (Fried-G 1983): Let $\Gamma \xrightarrow{\mathsf{L}} \mathsf{GL}(3,\mathbb{R})$ be the *linear part*.
 - L(Γ) (conjugate to) a *discrete* subgroup of O(2, 1);
 L injective.

Homotopy equivalence

$$M^3 := \mathsf{E}^{2,1}/\Gamma \longrightarrow S := \mathsf{H}^2/\mathsf{L}(\Gamma)$$

where S complete hyperbolic surface.

■ Mess (1990): ∑ not compact .

Γ free;

Milnor's suggestion is the only way to construct examples in dimension three.

▲日▼▲□▼▲□▼▲□▼ □ ののの

Suppose that $\Gamma \subset Aff(\mathbb{R}^3)$ acts properly and is *not solvable*.

- (Fried-G 1983): Let $\Gamma \xrightarrow{\mathsf{L}} \mathsf{GL}(3,\mathbb{R})$ be the *linear part*.
 - $L(\Gamma)$ (conjugate to) a *discrete* subgroup of O(2,1);
 - L injective.
- Homotopy equivalence

$$M^3 := \mathsf{E}^{2,1}/\Gamma \longrightarrow S := \mathsf{H}^2/\mathsf{L}(\Gamma)$$

where S complete hyperbolic surface.

■ Mess (1990): ∑ not compact .

Γ free;

Milnor's suggestion is the only way to construct examples in dimension three.

Suppose that $\Gamma \subset Aff(\mathbb{R}^3)$ acts properly and is *not solvable*.

- (Fried-G 1983): Let $\Gamma \xrightarrow{\mathsf{L}} \mathsf{GL}(3,\mathbb{R})$ be the *linear part*.
 - $L(\Gamma)$ (conjugate to) a *discrete* subgroup of O(2,1);
 - L injective.
- Homotopy equivalence

$$M^3 := \mathsf{E}^{2,1}/\Gamma \ \longrightarrow \ S := \mathsf{H}^2/\mathsf{L}(\Gamma)$$

where S complete hyperbolic surface.

- Mess (1990): Σ not compact .
- Γ free;
- Milnor's suggestion is the only way to construct examples in dimension three.

Suppose that $\Gamma \subset Aff(\mathbb{R}^3)$ acts properly and is *not solvable*.

- (Fried-G 1983): Let $\Gamma \xrightarrow{\mathsf{L}} \mathsf{GL}(3,\mathbb{R})$ be the *linear part*.
 - $L(\Gamma)$ (conjugate to) a *discrete* subgroup of O(2,1);
 - L injective.
- Homotopy equivalence

$$M^3 := \mathsf{E}^{2,1}/\Gamma \ \longrightarrow \ S := \mathsf{H}^2/\mathsf{L}(\Gamma)$$

where S complete hyperbolic surface.

• Mess (1990): Σ not compact .

- Γ free;
- Milnor's suggestion is the only way to construct examples in dimension three.

Suppose that $\Gamma \subset Aff(\mathbb{R}^3)$ acts properly and is *not solvable*.

- (Fried-G 1983): Let $\Gamma \xrightarrow{\mathsf{L}} \mathsf{GL}(3,\mathbb{R})$ be the *linear part*.
 - L(Γ) (conjugate to) a *discrete* subgroup of O(2,1);
 - L injective.
- Homotopy equivalence

$$M^3 := \mathsf{E}^{2,1}/\Gamma \longrightarrow S := \mathsf{H}^2/\mathsf{L}(\Gamma)$$

where S complete hyperbolic surface.

• Mess (1990): Σ not compact .

Γ free;

Milnor's suggestion is the only way to construct examples in dimension three.

Suppose that $\Gamma \subset Aff(\mathbb{R}^3)$ acts properly and is *not solvable*.

- (Fried-G 1983): Let $\Gamma \xrightarrow{\mathsf{L}} \mathsf{GL}(3,\mathbb{R})$ be the *linear part*.
 - L(Γ) (conjugate to) a *discrete* subgroup of O(2,1);
 - L injective.
- Homotopy equivalence

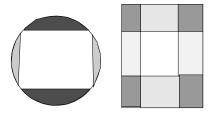
$$M^3 := \mathsf{E}^{2,1}/\Gamma \ \longrightarrow \ S := \mathsf{H}^2/\mathsf{L}(\Gamma)$$

where S complete hyperbolic surface.

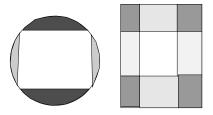
• Mess (1990): Σ not compact .

Γ free;

Milnor's suggestion is the only way to construct examples in dimension three.

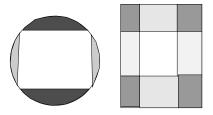


- In H², the half-spaces A_i^{\pm} are disjoint;
- Their complement is a fundamental domain.
- In affine space, half-spaces disjoint \Rightarrow parallel!
- Complements of slabs always intersect,
- Unsuitable for building Schottky groups!

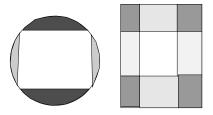


In H², the half-spaces A_i^{\pm} are disjoint;

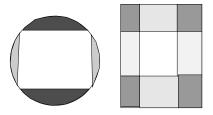
- Their complement is a fundamental domain.
- In affine space, half-spaces disjoint ⇒ parallel!
- Complements of slabs always intersect,
- Unsuitable for building Schottky groups!



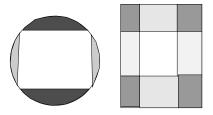
- In H², the half-spaces A_i^{\pm} are disjoint;
- Their complement is a fundamental domain.
- In affine space, half-spaces disjoint ⇒ parallel!
- Complements of slabs always intersect,
- Unsuitable for building Schottky groups!



- In H², the half-spaces A_i^{\pm} are disjoint;
- Their complement is a fundamental domain.
- In affine space, half-spaces disjoint ⇒ parallel!
- Complements of slabs always intersect,
- Unsuitable for building Schottky groups!



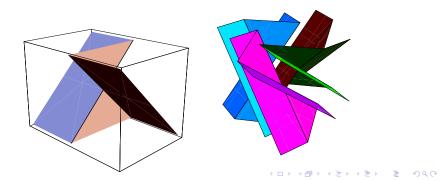
- In H², the half-spaces A_i^{\pm} are disjoint;
- Their complement is a fundamental domain.
- In affine space, half-spaces disjoint ⇒ parallel!
- Complements of slabs always intersect,
- Unsuitable for building Schottky groups!

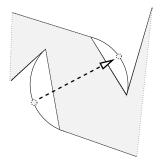


- In H², the half-spaces A_i^{\pm} are disjoint;
- Their complement is a fundamental domain.
- In affine space, half-spaces disjoint ⇒ parallel!
- Complements of slabs always intersect,
- Unsuitable for building Schottky groups!

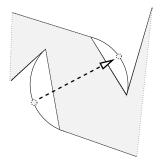
Drumm's Schottky groups

The classical construction of Schottky groups fails using affine half-spaces and slabs. Drumm's geometric construction uses *crooked planes*, PL hypersurfaces adapted to the Lorentz geometry which bound fundamental polyhedra for Schottky groups.



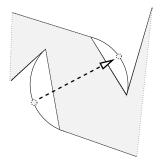


- Start with a *hyperbolic slab* in H^2 .
- Extend into light cone in E^{2,1};
- Extend outside light cone in $E^{2,1}$;
- Action proper except at the origin and two null half-planes.

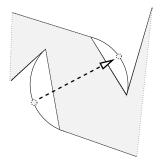


Start with a hyperbolic slab in H^2 .

- Extend into light cone in E^{2,1};
- Extend outside light cone in $E^{2,1}$;
- Action proper except at the origin and two null half-planes.

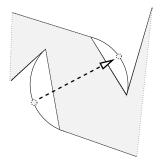


- Start with a hyperbolic slab in H^2 .
- Extend into light cone in E^{2,1};
- Extend outside light cone in $E^{2,1}$;
- Action proper except at the origin and two null half-planes.



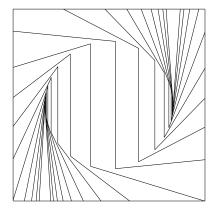
- Start with a *hyperbolic slab* in H^2 .
- Extend into light cone in $E^{2,1}$;
- Extend outside light cone in $E^{2,1}$;

Action proper except at the origin and two null half-planes.



- Start with a *hyperbolic slab* in H^2 .
- Extend into light cone in E^{2,1};
- Extend outside light cone in E^{2,1};
- Action proper except at the origin and two null half-planes.

Images of crooked planes under a linear cyclic group

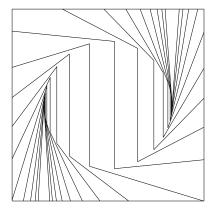


・ロト ・聞ト ・ヨト ・ヨト

3

The resulting tessellation for a linear boost.

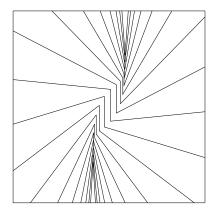
Images of crooked planes under a linear cyclic group



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへ⊙

The resulting tessellation for a linear boost.

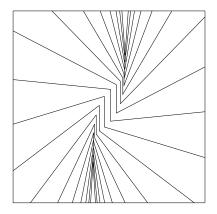
Images of crooked planes under an affine deformation



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Adding translations frees up the action
 — which is now proper on *all* of E^{2,1}.

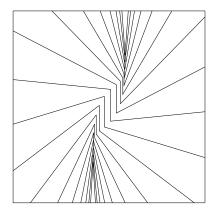
Images of crooked planes under an affine deformation



Adding translations frees up the action

• — which is now proper on *all* of $E^{2,1}$.

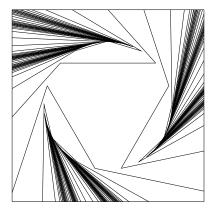
Images of crooked planes under an affine deformation



・ロ・・ 日・・ エ・・ 日・ ・ つくつ

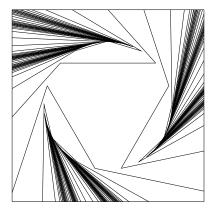
Adding translations frees up the action
 — which is now proper on *all* of E^{2,1}.

Linear action of Schottky group



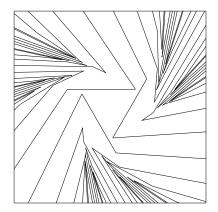
Crooked polyhedra tile H² for subgroup of O(2,1).

Linear action of Schottky group



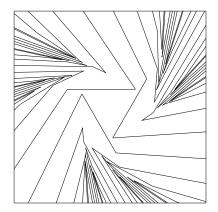
Crooked polyhedra tile H² for subgroup of O(2,1).

Affine action of Schottky group



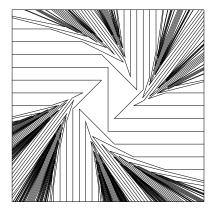
Carefully chosen affine deformation acts properly on $E^{2,1}$.

Affine action of Schottky group



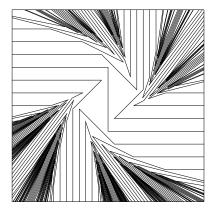
Carefully chosen affine deformation acts properly on $E^{2,1}$.

Affine action of level 2 congruence subgroup of $GL(2,\mathbb{Z})$



Proper affine deformations exist even for *lattices* (Drumm).

Affine action of level 2 congruence subgroup of $GL(2,\mathbb{Z})$



Proper affine deformations exist even for lattices (Drumm).

- Mess's theorem (S noncompact) is the only obstruction for the existence of a proper affine deformation:
 - (Drumm 1990) S noncompact complete hyperbolic surface with finitely generated π₁(S) admits proper affine deformation. M³ is a solid handlebody.
- **Theorem:** (Charette-Drumm-G-Labourie-Margulis) The deformation space of complete affine structures on a solid handlebody Σ of genus 2 consists of four components, one for each topogical type of surface S with $\pi_1(S) \cong \mathbb{Z} \star \mathbb{Z}$. The component corresponding to S is a bundle of open convex cones over the Fricke space $\mathfrak{F}(S)$.

- Mess's theorem (S noncompact) is the only obstruction for the existence of a proper affine deformation:
 - (Drumm 1990) S noncompact complete hyperbolic surface with finitely generated π₁(S) admits proper affine deformation. M³ is a solid handlebody.
- **Theorem:** (Charette-Drumm-G-Labourie-Margulis) The deformation space of complete affine structures on a solid handlebody Σ of genus 2 consists of four components, one for each topogical type of surface S with $\pi_1(S) \cong \mathbb{Z} \star \mathbb{Z}$. The component corresponding to S is a bundle of open convex cones over the Fricke space $\mathfrak{F}(S)$.

- Mess's theorem (S noncompact) is the only obstruction for the existence of a proper affine deformation:
 - (Drumm 1990) S noncompact complete hyperbolic surface with finitely generated π₁(S) admits proper affine deformation. M³ is a solid handlebody.
- **Theorem:** (Charette-Drumm-G-Labourie-Margulis) The deformation space of complete affine structures on a solid handlebody Σ of genus 2 consists of four components, one for each topogical type of surface S with $\pi_1(S) \cong \mathbb{Z} \star \mathbb{Z}$. The component corresponding to S is a bundle of open convex cones over the Fricke space $\mathfrak{F}(S)$.

- Mess's theorem (S noncompact) is the only obstruction for the existence of a proper affine deformation:
 - (Drumm 1990) S noncompact complete hyperbolic surface with finitely generated π₁(S) admits proper affine deformation. M³ is a solid handlebody.
- **Theorem:** (Charette-Drumm-G-Labourie-Margulis) The deformation space of complete affine structures on a solid handlebody Σ of genus 2 consists of four components, one for each topogical type of surface S with $\pi_1(S) \cong \mathbb{Z} \star \mathbb{Z}$. The component corresponding to S is a bundle of open convex cones over the Fricke space $\mathfrak{F}(S)$.