Geometric Structures on Manifolds III: Three-dimensional Margulis spacetimes

William M. Goldman

Department of Mathematics University of Maryland

Geometry and Arithmetic of Lattices
London Mathematical Society - EPSRC Durham Symposium
University of Durham
7 July 2011

Complete affine 3-manifolds

■ Every complete affine 3 -manifold $M^{3}=\mathbb{R}^{3} / \Gamma$, where $\Gamma \subset \operatorname{Aff}\left(\mathbb{R}^{3}\right)$ is a discrete subgroup acting freely and properly, is either:

■ Iterated S^{1} or \mathbb{R}-fibration (Γ solvable); or

- Complete flat Lorentzian 3-manifold

$$
M^{3}=\mathrm{E}^{2,1} / \Gamma
$$

where Γ is an affine deformation of a a non-cocompact Fuchsian representation

$$
\Gamma_{0} \stackrel{\rho_{0}}{\leftrightarrows} \mathrm{SO}(2,1) .
$$

Notation and terminology

- Denote the Lorentzian affine space $\mathrm{E}:=\mathrm{E}^{2,1}$
- The underlying Lorentzian vector space is $\mathrm{V}:=\mathbb{R}^{2,1}$ It consists of translations $\mathrm{E} \longrightarrow \mathrm{E}$.
- Denote the discrete embedding of a Fuchsian group Γ_{0} by ρ_{0}; the corresponding hyperbolic surface is $\Sigma:=\mathrm{H}^{2} / \Gamma_{0}$.
- An affine deformation of ρ_{0} will be denoted ρ, and its image $\Gamma=\rho\left(\Gamma_{0}\right)$. Furthermore $\Gamma_{0} \cong \mathrm{~L}(\Gamma)$.
■ If ρ is proper, then the quotient is a complete flat Lorentz 3-manifold M^{3} with fundamental group $\pi_{1}\left(M^{3}\right) \cong \Gamma$.

Notation and terminology

■ Denote the Lorentzian affine space $\mathrm{E}:=\mathrm{E}^{2,1}$.

- The underlying Lorentzian vector space is $\mathrm{V}:=\mathbb{R}^{2,1}$ It consists of translations $E \longrightarrow E$.
- Denote the discrete embedding of a Fuchsian group Γ_{0} by ρ_{0}; the corresponding hyperbolic surface is $\Sigma:=\mathrm{H}^{2} / \Gamma_{0}$.
- An affine deformation of ρ_{0} will be denoted ρ, and its image $\Gamma=\rho\left(\Gamma_{0}\right)$. Furthermore $\Gamma_{0} \cong \mathrm{~L}(\Gamma)$.
- If ρ is proper, then the quotient is a complete flat Lorentz 3-manifold M^{3} with fundamental group $\pi_{1}\left(M^{3}\right) \cong \Gamma$.

Notation and terminology

■ Denote the Lorentzian affine space $\mathrm{E}:=\mathrm{E}^{2,1}$.
■ The underlying Lorentzian vector space is $\mathrm{V}:=\mathbb{R}^{2,1}$. It consists of translations $E \longrightarrow E$.

- Denote the discrete embedding of a Fuchsian group Γ_{0} by ρ_{0}; the corresponding hyperbolic surface is $\Sigma:=\mathrm{H}^{2} / \Gamma_{0}$.
- An affine deformation of ρ_{0} will be denoted ρ, and its image $\Gamma=\rho\left(\Gamma_{0}\right)$. Furthermore $\Gamma_{0} \cong L(\Gamma)$
- If ρ is proper, then the quotient is a complete flat Lorentz 3-manifold M^{3} with fundamental group $\pi_{1}\left(M^{3}\right) \cong \Gamma$.

Notation and terminology

■ Denote the Lorentzian affine space $\mathrm{E}:=\mathrm{E}^{2,1}$.
■ The underlying Lorentzian vector space is $\mathrm{V}:=\mathbb{R}^{2,1}$. It consists of translations $E \longrightarrow E$.

■ Denote the discrete embedding of a Fuchsian group Γ_{0} by ρ_{0}; the corresponding hyperbolic surface is $\Sigma:=\mathrm{H}^{2} / \Gamma_{0}$.

- An affine deformation of ρ_{0} will be denoted ρ, and its image $\Gamma=\rho\left(\Gamma_{0}\right)$. Furthermore $\Gamma_{0} \cong \mathrm{~L}(\Gamma)$
- If ρ is proper, then the quotient is a complete flat Lorentz 3-manifold M^{3} with fundamental group $\pi_{1}\left(M^{3}\right) \cong \Gamma$.

Notation and terminology

■ Denote the Lorentzian affine space $\mathrm{E}:=\mathrm{E}^{2,1}$.
■ The underlying Lorentzian vector space is $\mathrm{V}:=\mathbb{R}^{2,1}$. It consists of translations $E \longrightarrow E$.

■ Denote the discrete embedding of a Fuchsian group Γ_{0} by ρ_{0}; the corresponding hyperbolic surface is $\Sigma:=\mathrm{H}^{2} / \Gamma_{0}$.
■ An affine deformation of ρ_{0} will be denoted ρ, and its image $\Gamma=\rho\left(\Gamma_{0}\right)$. Furthermore $\Gamma_{0} \cong \mathrm{~L}(\Gamma)$.

- If ρ is proper, then the quotient is a complete flat Lorentz 3-manifold M^{3} with fundamental group $\pi_{1}\left(M^{3}\right) \cong \Gamma$.

Notation and terminology

■ Denote the Lorentzian affine space $\mathrm{E}:=\mathrm{E}^{2,1}$.
■ The underlying Lorentzian vector space is $\mathrm{V}:=\mathbb{R}^{2,1}$. It consists of translations $\mathrm{E} \longrightarrow \mathrm{E}$.
■ Denote the discrete embedding of a Fuchsian group Γ_{0} by ρ_{0}; the corresponding hyperbolic surface is $\Sigma:=\mathrm{H}^{2} / \Gamma_{0}$.
■ An affine deformation of ρ_{0} will be denoted ρ, and its image $\Gamma=\rho\left(\Gamma_{0}\right)$. Furthermore $\Gamma_{0} \cong \mathrm{~L}(\Gamma)$.
■ If ρ is proper, then the quotient is a complete flat Lorentz 3-manifold M^{3} with fundamental group $\pi_{1}\left(M^{3}\right) \cong \Gamma$.

Affine deformations

- Start with a noncocompact Fuchsian group $\Gamma_{0} \subset S O(2,1)$. An affine deformation is a representation $\rho=\rho_{u}$ with image $\Gamma=\Gamma_{u}$

$$
\operatorname{Isom}(E) \cong V \rtimes S O(2,1)
$$

determined by its translational part

$$
u \in Z^{1}\left(\Gamma_{0}, V\right)
$$

- Conjugating ρ by a translation \Longleftrightarrow adding a coboundary to u.
- Translational conjugacy classes of affine deformations of Γ_{0} form the vector space $H^{1}\left(\Gamma_{0}, \mathbb{R}^{2,1}\right)$.

Affine deformations

■ Start with a noncocompact Fuchsian group $\Gamma_{0} \subset S O(2,1)$. An affine deformation is a representation $\rho=\rho_{u}$ with image $\Gamma=\Gamma_{u}$

determined by its translational part

$$
u \in Z^{1}\left(\Gamma_{0}, V\right)
$$

- Conjugating ρ by a translation \Longleftrightarrow adding a coboundary to u.
- Translational coniugacy classes of affine deformations of Γ_{0} form the vector space $H^{1}\left(\Gamma_{0}, \mathbb{R}^{2,1}\right)$.

Affine deformations

■ Start with a noncocompact Fuchsian group $\Gamma_{0} \subset S O(2,1)$. An affine deformation is a representation $\rho=\rho_{u}$ with image $\Gamma=\Gamma_{u}$

determined by its translational part

$$
u \in Z^{1}\left(\Gamma_{0}, V\right)
$$

■ Conjugating ρ by a translation \Longleftrightarrow adding a coboundary to u.

- Translational conjugacy classes of affine deformations of Γ_{0} form the vector space $H^{1}\left(\Gamma_{0}, \mathbb{R}^{2,1}\right)$

Affine deformations

■ Start with a noncocompact Fuchsian group $\Gamma_{0} \subset S O(2,1)$. An affine deformation is a representation $\rho=\rho_{u}$ with image $\Gamma=\Gamma_{u}$

determined by its translational part

$$
u \in Z^{1}\left(\Gamma_{0}, V\right)
$$

■ Conjugating ρ by a translation \Longleftrightarrow adding a coboundary to u.
■ Translational conjugacy classes of affine deformations of Γ_{0} form the vector space $H^{1}\left(\Gamma_{0}, \mathbb{R}^{2,1}\right)$.

The hyperbolic surface

$\Sigma \Sigma:=\mathrm{H}^{2} / \Gamma_{0}$ is naturally associated to the complete flat Lorentz 3-manifold.

■ corresponds to the space of parallelism classes of timelike geodesics on M^{3}.

- Drumm's construction involves passing from a fundamental polygon for Σ to a fundamental polyhedron for M built from crooked planes.

The hyperbolic surface

■ $\Sigma:=\mathrm{H}^{2} / \Gamma_{0}$ is naturally associated to the complete flat Lorentz 3-manifold.

- \sum corresponds to the space of parallelism classes of timelike geodesics on M^{3}
- Drumm's construction involves passing from a fundamental polygon for Σ to a fundamental polyhedron for M built from crooked planes.

The hyperbolic surface

■ $\Sigma:=\mathrm{H}^{2} / \Gamma_{0}$ is naturally associated to the complete flat Lorentz 3-manifold.
■ Σ corresponds to the space of parallelism classes of timelike geodesics on M^{3}.

- Drumm's construction involves passing from a fundamental polygon for Σ to a fundamental polyhedron for M built from crooked planes.

The hyperbolic surface

■ $\Sigma:=\mathrm{H}^{2} / \Gamma_{0}$ is naturally associated to the complete flat Lorentz 3-manifold.
■ Σ corresponds to the space of parallelism classes of timelike geodesics on M^{3}.
■ Drumm's construction involves passing from a fundamental polygon for Σ to a fundamental polyhedron for M built from crooked planes.

Crooked planes

Linear action of ultra-ideal triangle group

Affine deformation of ultraideal triangle group

Affine deformation of ultraideal triangle group

Carefully chosen affine deformation acts properly on $\mathrm{E}^{2,1}$.

Affine action of level 2 congruence subgroup of $\mathrm{GL}(2, \mathbb{Z})$

An arithmetic example

- For $i=1,2,3$ choose three positive integers $\mu_{1}, \mu_{2}, \mu_{3}$. Then the subgroup Γ of $\operatorname{Sp}(4, \mathbb{Z})$ generated by
$\left[\begin{array}{cccc}-1 & -2 & \mu_{1}+\mu_{2}-\mu_{3} & 0 \\ 0 & -1 & 2 \mu_{1} & -\mu_{1} \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 2 & -1\end{array}\right],\left[\begin{array}{cccc}-1 & 0 & -\mu_{2} & -2 \mu_{2} \\ 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & -2 \\ 0 & 0 & 0 & -1\end{array}\right]$
is a proper affine deformation of a rank two free group.
- M^{3} is an onen solid handlebody of genus two.
- Σ^{2} is a 3 -punctured sphere.

An arithmetic example

■ For $i=1,2,3$ choose three positive integers $\mu_{1}, \mu_{2}, \mu_{3}$. Then the subgroup Γ of $\operatorname{Sp}(4, \mathbb{Z})$ generated by

$$
\left[\begin{array}{cccc}
-1 & -2 & \mu_{1}+\mu_{2}-\mu_{3} & 0 \\
0 & -1 & 2 \mu_{1} & -\mu_{1} \\
0 & 0 & -1 & 0 \\
0 & 0 & 2 & -1
\end{array}\right],\left[\begin{array}{cccc}
-1 & 0 & -\mu_{2} & -2 \mu_{2} \\
2 & -1 & 0 & 0 \\
0 & 0 & -1 & -2 \\
0 & 0 & 0 & -1
\end{array}\right]
$$

is a proper affine deformation of a rank two free group.

- M^{3} is an open solid handlebody of genus two. $\square \Sigma^{2}$ is a 3 -punctured sphere.

An arithmetic example

■ For $i=1,2,3$ choose three positive integers $\mu_{1}, \mu_{2}, \mu_{3}$. Then the subgroup Γ of $\operatorname{Sp}(4, \mathbb{Z})$ generated by

$$
\left[\begin{array}{cccc}
-1 & -2 & \mu_{1}+\mu_{2}-\mu_{3} & 0 \\
0 & -1 & 2 \mu_{1} & -\mu_{1} \\
0 & 0 & -1 & 0 \\
0 & 0 & 2 & -1
\end{array}\right],\left[\begin{array}{cccc}
-1 & 0 & -\mu_{2} & -2 \mu_{2} \\
2 & -1 & 0 & 0 \\
0 & 0 & -1 & -2 \\
0 & 0 & 0 & -1
\end{array}\right]
$$

is a proper affine deformation of a rank two free group.
■ M^{3} is an open solid handlebody of genus two.

- Σ^{2} is a 3 -punctured sphere.

An arithmetic example

■ For $i=1,2,3$ choose three positive integers $\mu_{1}, \mu_{2}, \mu_{3}$. Then the subgroup Γ of $\operatorname{Sp}(4, \mathbb{Z})$ generated by

$$
\left[\begin{array}{cccc}
-1 & -2 & \mu_{1}+\mu_{2}-\mu_{3} & 0 \\
0 & -1 & 2 \mu_{1} & -\mu_{1} \\
0 & 0 & -1 & 0 \\
0 & 0 & 2 & -1
\end{array}\right],\left[\begin{array}{cccc}
-1 & 0 & -\mu_{2} & -2 \mu_{2} \\
2 & -1 & 0 & 0 \\
0 & 0 & -1 & -2 \\
0 & 0 & 0 & -1
\end{array}\right]
$$

is a proper affine deformation of a rank two free group.

- M^{3} is an open solid handlebody of genus two.
$■ \Sigma^{2}$ is a 3-punctured sphere.

The deformation space

- The deformation space of hyperbolic structures is the Fricke space

$$
\mathfrak{F}(S) \approx[0, \infty)^{b} \times(0, \infty)^{b-3 x(\Sigma)}
$$

where $\partial \Sigma$ has b components.
■ Thus the space of affine deformations of Γ_{0} is the product

$$
\mathfrak{F}(S) \times H^{1}\left(\Gamma_{0}, V\right)
$$

- Similarity classes of (nontrivial) affine deformations of Γ_{0} form the projective space $\mathrm{P} H^{1}\left(\Gamma_{0}, \mathrm{~V}\right)$
- The subset of $H^{1}\left(\Gamma_{0}, \mathbb{R}^{2,1}\right)$ corresponding to proper affine deformations of ρ_{0} is an open convex cone.

The deformation space

■ The deformation space of hyperbolic structures is the Fricke space

$$
\mathfrak{F}(S) \approx[0, \infty)^{b} \times(0, \infty)^{b-3 \chi(\Sigma)}
$$

where $\partial \Sigma$ has b components.

- Thus the space of affine deformations of Γ_{0} is the product $\mathfrak{F}(S) \times H^{1}\left(\Gamma_{0}, V\right)$
- Similarity classes of (nontrivial') affine deformations of Γ_{0} form the projective space $\mathrm{P} H^{1}\left(\Gamma_{0}, \mathrm{~V}\right)$
- The subset of $H^{1}\left(\Gamma_{0}, \mathbb{R}^{2,1}\right)$ corresponding to proper affine deformations of ρ_{0} is an open convex cone.

The deformation space

■ The deformation space of hyperbolic structures is the Fricke space

$$
\mathfrak{F}(S) \approx[0, \infty)^{b} \times(0, \infty)^{b-3 \chi(\Sigma)}
$$

where $\partial \Sigma$ has b components.
■ Thus the space of affine deformations of Γ_{0} is the product

$$
\mathfrak{F}(S) \times H^{1}\left(\Gamma_{0}, \vee\right)
$$

- Similarity classes of (nontrivial) affine deformations of Γ_{0} form the projective space $\mathrm{P} H^{1}\left(\Gamma_{0}, \mathrm{~V}\right)$
- The subset of $H^{1}\left(\Gamma_{0}, \mathbb{R}^{2,1}\right)$ corresponding to proper affine deformations of ρ_{0} is an open convex cone.

The deformation space

■ The deformation space of hyperbolic structures is the Fricke space

$$
\mathfrak{F}(S) \approx[0, \infty)^{b} \times(0, \infty)^{b-3 \chi(\Sigma)}
$$

where $\partial \Sigma$ has b components.
■ Thus the space of affine deformations of Γ_{0} is the product

$$
\mathfrak{F}(S) \times H^{1}\left(\Gamma_{0}, \vee\right)
$$

■ Similarity classes of (nontrivial) affine deformations of Γ_{0} form the projective space $\mathrm{PH}^{1}\left(\Gamma_{0}, \mathrm{~V}\right)$

- The subset of $H^{1}\left(\Gamma_{0}, \mathbb{R}^{2,1}\right)$ corresponding to proper affine deformations of ρ_{0} is an open convex cone.

The deformation space

■ The deformation space of hyperbolic structures is the Fricke space

$$
\mathfrak{F}(S) \approx[0, \infty)^{b} \times(0, \infty)^{b-3 \chi(\Sigma)}
$$

where $\partial \Sigma$ has b components.
■ Thus the space of affine deformations of Γ_{0} is the product

$$
\mathfrak{F}(S) \times H^{1}\left(\Gamma_{0}, \vee\right)
$$

■ Similarity classes of (nontrivial) affine deformations of Γ_{0} form the projective space $\mathrm{PH}^{1}\left(\Gamma_{0}, \mathrm{~V}\right)$
■ The subset of $H^{1}\left(\Gamma_{0}, \mathbb{R}^{2,1}\right)$ corresponding to proper affine deformations of ρ_{0} is an open convex cone.

Deformation spaces for surfaces with $\chi(\Sigma)$

(c) Three-holed sphere

(e) One-holed torus

(d) Two-holed $\mathbb{R} P^{2}$

(f) One-holed Klein bottle

Example: Cyclic groups

- Most elements $\gamma \in \Gamma$ are boosts, affine deformations of hyperbolic elements of $O(2,1) \subset G L(3, \mathbb{R})$. A fundamental domain is the slab bounded by two parallel planes

Example: Cyclic groups

■ Most elements $\gamma \in \Gamma$ are boosts, affine deformations of hyperbolic elements of $\mathrm{O}(2,1) \subset G L(3, \mathbb{R})$. A fundamental domain is the slab bounded by two parallel planes.

A boost identifying two parallel planes

Images of crooked planes under a linear cyclic group

The resulting tessellation for a linear boost.

Images of crooked planes under a linear cyclic group

The resulting tessellation for a linear boost.

Images of crooked planes under an affine deformation

- Adding translations frees up the action
- which is now proper on all of $E^{2,1}$

Images of crooked planes under an affine deformation

■ Adding translations frees up the action

- which is now proper on all of $E^{2,1}$

Images of crooked planes under an affine deformation

■ Adding translations frees up the action
\square - which is now proper on all of $E^{2,1}$.

A foliation by crooked planes

Closed geodesics and holonomy

- Each such element leaves invariant a unique (spacelike) line, whose image in $E^{2,1} / \Gamma$ is a closed geodesic. Like surfaces, most loops are freely homotopic to (unique) closed geodesics.

- The unique γ-invariant geodesic C_{γ} inherits a natural orientation and metric.

Closed geodesics and holonomy

■ Each such element leaves invariant a unique (spacelike) line, whose image in $\mathrm{E}^{2,1} / \Gamma$ is a closed geodesic. Like surfaces, most loops are freely homotopic to (unique) closed geodesics.

$$
\gamma=\left[\begin{array}{ccc}
e^{\ell(\gamma)} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & e^{-\ell(\gamma)}
\end{array}\right]\left[\begin{array}{c}
0 \\
\alpha(\gamma) \\
0
\end{array}\right]
$$

■ $\ell(\gamma) \in \mathbb{R}^{+}$: geodesic length of γ in Σ^{2}

- The unique γ-invariant geodesic C_{γ} inherits a natural orientation and metric.

Closed geodesics and holonomy

■ Each such element leaves invariant a unique (spacelike) line, whose image in $\mathrm{E}^{2,1} / \Gamma$ is a closed geodesic. Like surfaces, most loops are freely homotopic to (unique) closed geodesics.

$$
\gamma=\left[\begin{array}{ccc}
e^{\ell(\gamma)} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & e^{-\ell(\gamma)}
\end{array}\right]\left[\begin{array}{c}
0 \\
\alpha(\gamma) \\
0
\end{array}\right]
$$

■ $\ell(\gamma) \in \mathbb{R}^{+}$: geodesic length of γ in Σ^{2}

- The unique γ-invariant geodesic C_{γ} inherits a natural orientation and metric.

Closed geodesics and holonomy

■ Each such element leaves invariant a unique (spacelike) line, whose image in $\mathrm{E}^{2,1} / \Gamma$ is a closed geodesic. Like surfaces, most loops are freely homotopic to (unique) closed geodesics.

$$
\gamma=\left[\begin{array}{ccc}
e^{\ell(\gamma)} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & e^{-\ell(\gamma)}
\end{array}\right]\left[\begin{array}{c}
0 \\
\alpha(\gamma) \\
0
\end{array}\right]
$$

- $\ell(\gamma) \in \mathbb{R}^{+}$: geodesic length of γ in Σ^{2}

■ $\alpha(\gamma) \in \mathbb{R}$: (signed) Lorentzian length of γ in M^{3}.

- The unique γ-invariant geodesic C_{γ} inherits a natural orientation and metric.

Closed geodesics and holonomy

■ Each such element leaves invariant a unique (spacelike) line, whose image in $\mathrm{E}^{2,1} / \Gamma$ is a closed geodesic. Like surfaces, most loops are freely homotopic to (unique) closed geodesics.

$$
\gamma=\left[\begin{array}{ccc}
e^{\ell(\gamma)} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & e^{-\ell(\gamma)}
\end{array}\right]\left[\begin{array}{c}
0 \\
\alpha(\gamma) \\
0
\end{array}\right]
$$

- $\ell(\gamma) \in \mathbb{R}^{+}$: geodesic length of γ in Σ^{2}

■ $\alpha(\gamma) \in \mathbb{R}$: (signed) Lorentzian length of γ in M^{3}.
■ The unique γ-invariant geodesic C_{γ} inherits a natural orientation and metric.

Closed geodesics and holonomy

■ Each such element leaves invariant a unique (spacelike) line, whose image in $\mathrm{E}^{2,1} / \Gamma$ is a closed geodesic. Like surfaces, most loops are freely homotopic to (unique) closed geodesics.

$$
\gamma=\left[\begin{array}{ccc}
e^{\ell(\gamma)} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & e^{-\ell(\gamma)}
\end{array}\right]\left[\begin{array}{c}
0 \\
\alpha(\gamma) \\
0
\end{array}\right]
$$

- $\ell(\gamma) \in \mathbb{R}^{+}$: geodesic length of γ in Σ^{2}

■ $\alpha(\gamma) \in \mathbb{R}$: (signed) Lorentzian length of γ in M^{3}.
■ The unique γ-invariant geodesic C_{γ} inherits a natural orientation and metric.

- γ translates along C_{γ} by $\alpha(\gamma)$.

Marked Signed Lorentzian Length Spectrum

- For every affine deformation $\Gamma \xrightarrow{\rho=(\mathrm{L}, u)} \operatorname{Isom}\left(\mathrm{E}^{2,1}\right)$, define $\alpha_{u}(\gamma) \in \mathbb{R}$ as the (signed) displacement of γ along the unique γ-invariant geodesic C_{γ}, when $L(\gamma)$ is hyperbolic.
- α_{u} is a class function on Γ;
- When ρ acts pronerly, $\left|\alpha_{u}(\gamma)\right|$ is the Lorentzian length of the closed geodesic in M^{3} corresponding to γ;
■ (Margulis 1983) If ρ acts properly, either

$\alpha_{u}(\gamma)>0 \forall \gamma \neq 1$,
$\alpha_{u}(\gamma)<0 \forall \gamma \neq 1$.
■ The Margulis invariant $\Gamma \xrightarrow{\alpha} \mathbb{R}$ determines Γ up to conjugacy (Charette-Drumm 2004).

Marked Signed Lorentzian Length Spectrum

■ For every affine deformation $\Gamma \xrightarrow{\rho=(\mathrm{L}, \mathrm{u})} \operatorname{Isom}\left(\mathrm{E}^{2,1}\right)$ ，define $\alpha_{u}(\gamma) \in \mathbb{R}$ as the（signed）displacement of γ along the unique γ－invariant geodesic C_{γ} ，when $\mathrm{L}(\gamma)$ is hyperbolic．
－α_{u} is a class function on 「
－When ρ acts properly，$\left|\alpha_{u}(\gamma)\right|$ is the Lorentzian length of the
closed geodesic in M^{3} corresponding to γ
－（Margulis 1983）If ρ acts properly，either

－The Margulis invariant「 $\xrightarrow{\alpha} \mathbb{R}$ determines 「 up to conjugacy （Charette－Drumm 2004）

Marked Signed Lorentzian Length Spectrum

■ For every affine deformation $\Gamma \xrightarrow{\rho=(\mathrm{L}, \mathrm{u})} \operatorname{Isom}\left(\mathrm{E}^{2,1}\right)$, define $\alpha_{u}(\gamma) \in \mathbb{R}$ as the (signed) displacement of γ along the unique γ-invariant geodesic C_{γ}, when $\mathrm{L}(\gamma)$ is hyperbolic.

- α_{u} is a class function on Γ;
- When ρ acts properly, $\left|\alpha_{u}(\gamma)\right|$ is the Lorentzian length of the closed geodesic in M^{3} corresponding to
- (Margulis 1983) If ρ acts properly, either

■ The Margulis invariant $\Gamma \xrightarrow{\alpha} \mathbb{R}$ determines Γ up to conjugacy (Charette-Drumm 2004)

Marked Signed Lorentzian Length Spectrum

■ For every affine deformation $\Gamma \xrightarrow{\rho=(\mathrm{L}, \mathrm{u})} \operatorname{Isom}\left(\mathrm{E}^{2,1}\right)$, define $\alpha_{u}(\gamma) \in \mathbb{R}$ as the (signed) displacement of γ along the unique γ-invariant geodesic C_{γ}, when $\mathrm{L}(\gamma)$ is hyperbolic.

- α_{u} is a class function on Γ;

■ When ρ acts properly, $\left|\alpha_{u}(\gamma)\right|$ is the Lorentzian length of the closed geodesic in M^{3} corresponding to γ;

■ The Margulis invariant $\Gamma \xrightarrow{\alpha} \mathbb{R}$ determines Γ up to conjugacy (Charette-Drumm 2004)

Marked Signed Lorentzian Length Spectrum

■ For every affine deformation $\Gamma \xrightarrow{\rho=(\mathrm{L}, \mathrm{u})} \operatorname{Isom}\left(\mathrm{E}^{2,1}\right)$, define $\alpha_{u}(\gamma) \in \mathbb{R}$ as the (signed) displacement of γ along the unique γ-invariant geodesic C_{γ}, when $\mathrm{L}(\gamma)$ is hyperbolic.

- α_{u} is a class function on Γ;

■ When ρ acts properly, $\left|\alpha_{u}(\gamma)\right|$ is the Lorentzian length of the closed geodesic in M^{3} corresponding to γ;
■ (Margulis 1983) If ρ acts properly, either

- $\alpha_{u}(\gamma)>0 \forall \gamma \neq 1$, or
- $\alpha_{u}(\gamma)<0 \forall \gamma \neq 1$.
- The Margulis invariant $\Gamma \xrightarrow{\alpha} \mathbb{R}$ determines「 up to conjugacy (Charette-Drumm 2004)

Marked Signed Lorentzian Length Spectrum

■ For every affine deformation $\Gamma \xrightarrow{\rho=(\mathrm{L}, \mathrm{u})} \operatorname{Isom}\left(\mathrm{E}^{2,1}\right)$, define $\alpha_{u}(\gamma) \in \mathbb{R}$ as the (signed) displacement of γ along the unique γ-invariant geodesic C_{γ}, when $\mathrm{L}(\gamma)$ is hyperbolic.

- α_{u} is a class function on Γ;

■ When ρ acts properly, $\left|\alpha_{u}(\gamma)\right|$ is the Lorentzian length of the closed geodesic in M^{3} corresponding to γ;
■ (Margulis 1983) If ρ acts properly, either

- $\alpha_{u}(\gamma)>0 \forall \gamma \neq 1$, or
- $\alpha_{u}(\gamma)<0 \forall \gamma \neq 1$.

■ The Margulis invariant $\Gamma \xrightarrow{\alpha} \mathbb{R}$ determines Γ up to conjugacy (Charette-Drumm 2004).

Deformations of hyperbolic structures
> - Translational conjugacy classes of affine deformations of Γ_{0} \longleftrightarrow infinitesimal deformations of the hyperbolic surface Σ.

■ Infinitesimal deformations of the hyperbolic structure on Σ comprise $H^{1}(\Sigma, \mathfrak{s l}(2, \mathbb{R})) \cong H^{1}\left(\Gamma_{0}, \mathrm{~V}\right)$.

Deformations of hyperbolic structures

■ Translational conjugacy classes of affine deformations of Γ_{0} \longleftrightarrow infinitesimal deformations of the hyperbolic surface Σ.

- The Lorentzian vector space $\mathbb{R}^{2,1}$ corresponds to the Lie algebra $\mathfrak{s l}(2, \mathbb{R})$ with the Killing form, and the action of $\mathrm{O}(2,1)$ is the adjoint representation - This Lie algebra comprises the Killing vector fields, infinitesimal isometries, of H^{2}
- Infinitesimal deformations of the hyperbolic structure on Σ comprise $H^{1}(\Sigma, \mathfrak{s l}(2, \mathbb{R})) \cong H^{1}\left(\Gamma_{0}, V\right)$

Deformations of hyperbolic structures

■ Translational conjugacy classes of affine deformations of Γ_{0} \longleftrightarrow infinitesimal deformations of the hyperbolic surface Σ.

■ The Lorentzian vector space $\mathbb{R}^{2,1}$ corresponds to the Lie algebra $\mathfrak{s l}(2, \mathbb{R})$ with the Killing form, and the action of $\mathrm{O}(2,1)$ is the adjoint representation.

- This Lie algebra comprises the Killing vector fields, infinitesimal isometries, of H^{2}
- Infinitesimal deformations of the hyperbolic structure on Σ comprise $H^{1}(\Sigma, \mathfrak{s l}(2, \mathbb{R})) \cong H^{1}\left(\Gamma_{0}, V\right)$

Deformations of hyperbolic structures

■ Translational conjugacy classes of affine deformations of Γ_{0} \longleftrightarrow infinitesimal deformations of the hyperbolic surface Σ.

■ The Lorentzian vector space $\mathbb{R}^{2,1}$ corresponds to the Lie algebra $\mathfrak{s l}(2, \mathbb{R})$ with the Killing form, and the action of $\mathrm{O}(2,1)$ is the adjoint representation.

- This Lie algebra comprises the Killing vector fields, infinitesimal isometries, of H^{2}.
- Infinitesimal deformations of the hyperbolic structure on Σ comprise $H^{1}(\Sigma, \mathfrak{s l}(2, \mathbb{R})) \cong H^{1}\left(\Gamma_{0}, \mathrm{~V}\right)$

Deformations of hyperbolic structures

■ Translational conjugacy classes of affine deformations of Γ_{0} \longleftrightarrow infinitesimal deformations of the hyperbolic surface Σ.

■ The Lorentzian vector space $\mathbb{R}^{2,1}$ corresponds to the Lie algebra $\mathfrak{s l}(2, \mathbb{R})$ with the Killing form, and the action of $\mathrm{O}(2,1)$ is the adjoint representation.
■ This Lie algebra comprises the Killing vector fields, infinitesimal isometries, of H^{2}.
■ Infinitesimal deformations of the hyperbolic structure on Σ comprise $H^{1}(\Sigma, \mathfrak{s l}(2, \mathbb{R})) \cong H^{1}\left(\Gamma_{0}, \mathrm{~V}\right)$.

Deformation-theoretic interpretation of Margulis invariant

■ Suppose $u \in Z^{1}\left(\Gamma_{0}, V\right)$ defines an infinitesimal deformation tangent to a smooth deformation Σ_{t} of Σ.

■ Γ_{u} is proper \Longrightarrow all closed geodesics lengthen (or shorten) under the deformation Σ_{t}.

- Converse: When Σ is homeomorphic to a three-holed sphere or two-holed $\mathbb{R P}^{2}$

Deformation-theoretic interpretation of Margulis invariant

■ Suppose $u \in Z^{1}\left(\Gamma_{0}, V\right)$ defines an infinitesimal deformation tangent to a smooth deformation Σ_{t} of Σ.

- The marked length spectrum ℓ_{t} of Σ_{t} varies smoothly with t - Margulis's invariant $\alpha_{u}(\gamma)$ represents the derivative
$\square \Gamma_{u}$ is proper \Longrightarrow all closed geodesics lengthen (or shorten) under the deformation Σ_{t}
- Converse: When Σ is homeomorphic to a three-holed sphere or two-holed $\mathbb{R} P^{2}$

Deformation-theoretic interpretation of Margulis invariant

■ Suppose $u \in Z^{1}\left(\Gamma_{0}, V\right)$ defines an infinitesimal deformation tangent to a smooth deformation Σ_{t} of Σ.

■ The marked length spectrum ℓ_{t} of Σ_{t} varies smoothly with t. - Margulis's invariant $\alpha_{u}(\gamma)$ represents the derivative
$■ \Gamma_{u}$ is proper \Longrightarrow all closed geodesics lengthen (or shorten) under the deformation Σ_{t}

- Converse: When Σ is homeomorphic to a three-holed sphere or two-holed $\mathbb{R} P^{2}$.

Deformation-theoretic interpretation of Margulis invariant

■ Suppose $u \in Z^{1}\left(\Gamma_{0}, V\right)$ defines an infinitesimal deformation tangent to a smooth deformation Σ_{t} of Σ.

- The marked length spectrum ℓ_{t} of Σ_{t} varies smoothly with t.
- Margulis's invariant $\alpha_{u}(\gamma)$ represents the derivative

$$
\left.\frac{d}{d t}\right|_{t=0} \ell_{t}(\gamma)
$$

$■ \Gamma_{u}$ is proper \Longrightarrow all closed geodesics lengthen (or shorten) under the deformation Σ_{t}

- Converse: When Σ is homeomorphic to a three-holed sphere or two-holed $\mathbb{R} P^{2}$.

Deformation-theoretic interpretation of Margulis invariant

■ Suppose $u \in Z^{1}\left(\Gamma_{0}, V\right)$ defines an infinitesimal deformation tangent to a smooth deformation Σ_{t} of Σ.

- The marked length spectrum ℓ_{t} of Σ_{t} varies smoothly with t.
- Margulis's invariant $\alpha_{u}(\gamma)$ represents the derivative

$$
\left.\frac{d}{d t}\right|_{t=0} \ell_{t}(\gamma)
$$

$■ \Gamma_{u}$ is proper \Longrightarrow all closed geodesics lengthen (or shorten) under the deformation Σ_{t}.

- Converse: When Σ is homeomorphic to a three-holed sphere or two-holed $\mathbb{R} P^{2}$.

Deformation-theoretic interpretation of Margulis invariant

■ Suppose $u \in Z^{1}\left(\Gamma_{0}, V\right)$ defines an infinitesimal deformation tangent to a smooth deformation Σ_{t} of Σ.

- The marked length spectrum ℓ_{t} of Σ_{t} varies smoothly with t.
- Margulis's invariant $\alpha_{u}(\gamma)$ represents the derivative

$$
\left.\frac{d}{d t}\right|_{t=0} \ell_{t}(\gamma)
$$

$■ \Gamma_{u}$ is proper \Longrightarrow all closed geodesics lengthen (or shorten) under the deformation Σ_{t}.
■ Converse: When Σ is homeomorphic to a three-holed sphere or two-holed $\mathbb{R} P^{2}$.

Extensions of the Margulis invariant

- α_{u} extends to parabolic $\mathrm{L}(\gamma)$ given decorations of the cusps (Charette-Drumm 2005).
- (Margulis 1983) $\alpha_{u}\left(\gamma^{n}\right)=|n| \alpha_{u}(\gamma)$.

■ When $\mathrm{L}(\Gamma)$ is convex cocompact, Γ_{μ} acts properly \Longleftrightarrow $\Psi_{u}(\mu) \neq 0$ for all invariant probability measures μ.

- $\mathcal{C}(\Sigma)$ connected \Longrightarrow Either $\psi_{u}(\mu)$ are all positive or all negative.

Extensions of the Margulis invariant

■ α_{u} extends to parabolic $\mathrm{L}(\gamma)$ given decorations of the cusps (Charette-Drumm 2005).

- (Margulis 1983) $\alpha_{u}\left(\gamma^{n}\right)=|n| \alpha_{u}(\gamma)$

■ When $\mathrm{L}(\Gamma)$ is convex cocompact, Γ_{u} acts properly \Longleftrightarrow $\Psi_{u}(\mu) \neq 0$ for all invariant probability measures μ.

- $\mathcal{C}(\Sigma)$ connected \Longrightarrow Either $\Psi_{u}(\mu)$ are all positive or all negative.

Extensions of the Margulis invariant

■ α_{u} extends to parabolic $\mathrm{L}(\gamma)$ given decorations of the cusps (Charette-Drumm 2005).
■ (Margulis 1983) $\alpha_{u}\left(\gamma^{n}\right)=|n| \alpha_{u}(\gamma)$.

- Therefore $\alpha_{u}(\gamma) / \ell(\gamma)$ is constant on cyclic (hyperbolic) subgroups of Γ.
■ Such cyclic subgroups correspond to periodic orbits of the geodesic flow Φ of $U \Sigma$.
- Margulis invariant extends to continuous functional $\Psi_{u}(\mu)$ on the space $\mathcal{C}(\Sigma)$ of Φ-invariant probability measures μ on $U \Sigma$. (G-Labourie-Margulis 2010)

■ When $\mathrm{L}(\Gamma)$ is convex cocompact, Γ_{u} acts properly \Longleftrightarrow $\Psi_{u}(\mu) \neq 0$ for all invariant probability measures μ.

- $\mathcal{C}(\Sigma)$ connected \Longrightarrow Either $\Psi_{u}(\mu)$ are all positive or all
negative.

Extensions of the Margulis invariant

■ α_{u} extends to parabolic $\mathrm{L}(\gamma)$ given decorations of the cusps (Charette-Drumm 2005).
■ (Margulis 1983) $\alpha_{u}\left(\gamma^{n}\right)=|n| \alpha_{u}(\gamma)$.

- Therefore $\alpha_{u}(\gamma) / \ell(\gamma)$ is constant on cyclic (hyperbolic) subgroups of Γ.
- Such cyclic subgroups correspond to periodic orbits of the geodesic flow Φ of $U \Sigma$.
■ Margulis invariant extends to continuous functional $\psi_{u}(\mu)$ on the space $\mathcal{C}(\Sigma)$ of ϕ-invariant probability measures μ on $U \Sigma$. (G-Labourie-Margulis 2010)
- When $I(\Gamma)$ is convex cocompact, Γ_{u} acts properly \Longleftrightarrow $\Psi_{u}(\mu) \neq 0$ for all invariant probability measures μ.
$\square \mathcal{C}(\Sigma)$ connected \Longrightarrow Either $\Psi_{u}(\mu)$ are all positive or all
negative.

Extensions of the Margulis invariant

■ α_{u} extends to parabolic $\mathrm{L}(\gamma)$ given decorations of the cusps (Charette-Drumm 2005).
■ (Margulis 1983) $\alpha_{u}\left(\gamma^{n}\right)=|n| \alpha_{u}(\gamma)$.

- Therefore $\alpha_{u}(\gamma) / \ell(\gamma)$ is constant on cyclic (hyperbolic) subgroups of Γ.
■ Such cyclic subgroups correspond to periodic orbits of the geodesic flow Φ of $U \Sigma$.
- Margulis invariant extends to continuous functional $\Psi_{u}(\mu)$ on the space $\mathcal{C}(\Sigma)$ of Φ-invariant probability measures μ on $U \Sigma$. (G-Labourie-Margulis 2010)
- When $L(\Gamma)$ is convex cocompact, Γ_{u} acts properly \Longleftrightarrow $\Psi_{u}(\mu) \neq 0$ for all invariant probability measures μ.
- $C(\Sigma)$ connected \Longrightarrow Either $\|_{u}(\mu)$ are all positive or all
negative

Extensions of the Margulis invariant

■ α_{u} extends to parabolic $\mathrm{L}(\gamma)$ given decorations of the cusps (Charette-Drumm 2005).
■ (Margulis 1983) $\alpha_{u}\left(\gamma^{n}\right)=|n| \alpha_{u}(\gamma)$.

- Therefore $\alpha_{u}(\gamma) / \ell(\gamma)$ is constant on cyclic (hyperbolic) subgroups of Γ.
- Such cyclic subgroups correspond to periodic orbits of the geodesic flow Φ of $U \Sigma$.
- Margulis invariant extends to continuous functional $\Psi_{u}(\mu)$ on the space $\mathcal{C}(\Sigma)$ of Φ-invariant probability measures μ on $U \Sigma$. (G-Labourie-Margulis 2010)
- When $L(\Gamma)$ is convex cocompact, Γ_{μ} acts properly \Longleftrightarrow $\Psi_{u}(\mu) \neq 0$ for all invariant probability measures μ.
$\square \mathcal{C}(\Sigma)$ connected \Longrightarrow Either $\Psi_{u}(\mu)$ are all positive or all
negative.

Extensions of the Margulis invariant

■ α_{u} extends to parabolic $\mathrm{L}(\gamma)$ given decorations of the cusps (Charette-Drumm 2005).
■ (Margulis 1983) $\alpha_{u}\left(\gamma^{n}\right)=|n| \alpha_{u}(\gamma)$.

- Therefore $\alpha_{u}(\gamma) / \ell(\gamma)$ is constant on cyclic (hyperbolic) subgroups of Γ.
- Such cyclic subgroups correspond to periodic orbits of the geodesic flow Φ of $U \Sigma$.
- Margulis invariant extends to continuous functional $\Psi_{u}(\mu)$ on the space $\mathcal{C}(\Sigma)$ of Φ-invariant probability measures μ on $U \Sigma$. (G-Labourie-Margulis 2010)
■ When $\mathrm{L}(\Gamma)$ is convex cocompact, Γ_{u} acts properly \Longleftrightarrow $\Psi_{u}(\mu) \neq 0$ for all invariant probability measures μ.
- $\mathcal{C}(\Sigma)$ connected \Longrightarrow Either $\Psi_{u}(\mu)$ are all positive or all negative.

Extensions of the Margulis invariant

■ α_{u} extends to parabolic $\mathrm{L}(\gamma)$ given decorations of the cusps (Charette-Drumm 2005).
■ (Margulis 1983) $\alpha_{u}\left(\gamma^{n}\right)=|n| \alpha_{u}(\gamma)$.
■ Therefore $\alpha_{u}(\gamma) / \ell(\gamma)$ is constant on cyclic (hyperbolic) subgroups of Γ.

- Such cyclic subgroups correspond to periodic orbits of the geodesic flow Φ of $U \Sigma$.
- Margulis invariant extends to continuous functional $\Psi_{u}(\mu)$ on the space $\mathcal{C}(\Sigma)$ of Φ-invariant probability measures μ on $U \Sigma$. (G-Labourie-Margulis 2010)
- When $\mathrm{L}(\Gamma)$ is convex cocompact, Γ_{u} acts properly \Longleftrightarrow $\Psi_{u}(\mu) \neq 0$ for all invariant probability measures μ.
$■ \mathcal{C}(\Sigma)$ connected \Longrightarrow Either $\Psi_{u}(\mu)$ are all positive or all negative.

The Crooked Plane Conjecture

- Conjecture: Every Margulis spacetime M^{3} admits a fundamental polyhedron bounded by disjoint crooked planes.

■ Proved when $\chi(\Sigma)=-1$ (that is, $\operatorname{rank}\left(\pi_{1}(\Sigma)\right)=2$). (Charette-Drumm-G 2010)

- Four possible topologies for \sum :
- Three-holed sphere;
- Two-holed cross-surface (projective plane);
- One-holed Klein bottle;
- One-holed torus.

The Crooked Plane Conjecture

■ Conjecture: Every Margulis spacetime M^{3} admits a fundamental polyhedron bounded by disjoint crooked planes.

■ Proved when $\chi(\Sigma)=-1$ (that is, $\operatorname{rank}\left(\pi_{1}(\Sigma)\right)=2$) (Charette-Drumm-G 2010)

- Four possible topologies for Σ
- Three-holed sphere;
- Two-holed cross-surface (projective plane);
- One-holed Klein bottle;
- One-holed torus.

The Crooked Plane Conjecture

■ Conjecture: Every Margulis spacetime M^{3} admits a fundamental polyhedron bounded by disjoint crooked planes.

■ Corollary: (Tameness) $M^{3} \approx$ open solid handlebody.

- Proved when $\chi(\Sigma)=-1$ (that is, $\operatorname{rank}\left(\pi_{1}(\Sigma)\right)=2$). (Charette-Drumm-G 2010)
- Four possible topologies for Σ
- Three-holed sphere;
- Two-holed cross-surface (projective plane);

■ One-holed Klein bottle;

- One-holed torus.

The Crooked Plane Conjecture

■ Conjecture: Every Margulis spacetime M^{3} admits a fundamental polyhedron bounded by disjoint crooked planes.

■ Corollary: (Tameness) $M^{3} \approx$ open solid handlebody.
■ Proved when $\chi(\Sigma)=-1$ (that is, $\operatorname{rank}\left(\pi_{1}(\Sigma)\right)=2$). (Charette-Drumm-G 2010)

- Four possible topologies for Σ

■ Three-holed sphere;

- Two-holed cross-surface (projective plane);
- One-holed Klein bottle;
- One-holed torus.

The Crooked Plane Conjecture

■ Conjecture: Every Margulis spacetime M^{3} admits a fundamental polyhedron bounded by disjoint crooked planes.

■ Corollary: (Tameness) $M^{3} \approx$ open solid handlebody.
■ Proved when $\chi(\Sigma)=-1$ (that is, $\operatorname{rank}\left(\pi_{1}(\Sigma)\right)=2$). (Charette-Drumm-G 2010)
■ Four possible topologies for Σ :

- Three-holed sphere;
- Two-holed cross-surface (projective plane);

■ One-holed Klein bottle;
■ One-holed torus.

Functionals $\alpha(\gamma)$ when $\Sigma \approx$ three-holed sphere

Charette-Drumm-Margulis functionals of $\partial \Sigma$ completely describe
deformation space as $(0, \infty)^{3}$

Functionals $\alpha(\gamma)$ when $\Sigma \approx$ three-holed sphere

Charette-Drumm-Margulis functionals of $\partial \Sigma$ completely describe deformation space as $(0, \infty)^{3}$.

Functionals $\alpha(\gamma)$ when $\Sigma \approx$ two-holed $\mathbb{R} P^{2}$.

Deformation space is quadrilateral bounded by the four lines defined by CDM-functionals of $\partial \Sigma$ and the two orientation-reversing interior simple loops.

Functionals $\alpha(\gamma)$ when $\Sigma \approx$ one-holed torus

- Properness region bounded by infinitely many intervals, each corresponding to simple loop.
- ∂-points lie on intervals or are points of strict convexity (irrational laminations) (G-Margulis-Minsky).

Functionals $\alpha(\gamma)$ when $\Sigma \approx$ one-holed torus

■ Properness region bounded by infinitely many intervals, each corresponding to simple loop.

- ∂-points lie on intervals or are points of strict convexity (irrational laminations) (G-Margulis-Minsky)

Functionals $\alpha(\gamma)$ when $\Sigma \approx$ one-holed torus

■ Properness region bounded by infinitely many intervals, each corresponding to simple loop.

- ∂-points lie on intervals or are points of strict convexity (irrational laminations) (G-Margulis-Minsky).

Realizing an ideal triangulation by crooked planes

- Properness region tiled by triangles.
- Triangles \longleftrightarrow ideal triangulations of Σ
- Flip of ideal triangulation \longleftrightarrow moving to adjacent triangle.

Realizing an ideal triangulation by crooked planes

■ Properness region tiled by triangles.

- Triangles \longleftrightarrow ideal triangulations of Σ.

■ Flip of ideal triangulation \longleftrightarrow moving to adjacent triangle

Realizing an ideal triangulation by crooked planes

■ Properness region tiled by triangles.
■ Triangles \longleftrightarrow ideal triangulations of Σ.

Realizing an ideal triangulation by crooked planes

■ Properness region tiled by triangles.
■ Triangles \longleftrightarrow ideal triangulations of Σ.
■ Flip of ideal triangulation \longleftrightarrow moving to adjacent triangle.

Functionals $\alpha(\gamma)$ when $\Sigma \approx$ one-holed Klein bottle

Properness region bounded by infinitely many intervals, each defined by CDM-invariants of simple orientation-reversing loops,
arranged cyclically, and the one orientation-preserving interior
simple loop

Functionals $\alpha(\gamma)$ when $\Sigma \approx$ one-holed Klein bottle

Properness region bounded by infinitely many intervals, each defined by CDM-invariants of simple orientation-reversing loops, arranged cyclically, and the one orientation-preserving interior simple loop.

