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Complete affine 3-manifolds

Every complete affine 3-manifold M3 = R
3/Γ, where

Γ ⊂ Aff(R3) is a discrete subgroup acting freely and properly,
is either:

Iterated S1 or R-fibration (Γ solvable); or
Complete flat Lorentzian 3-manifold

M3 = E2,1/Γ

where Γ is an affine deformation of a a non-cocompact

Fuchsian representation

Γ0
ρ0
→֒ SO(2, 1).
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Notation and terminology

Denote the Lorentzian affine space E := E2,1.

The underlying Lorentzian vector space is V := R
2,1.

It consists of translations E −→ E.

Denote the discrete embedding of a Fuchsian group Γ0 by ρ0;
the corresponding hyperbolic surface is Σ := H2/Γ0.

An affine deformation of ρ0 will be denoted ρ, and its image
Γ = ρ(Γ0). Furthermore Γ0

∼= L(Γ).

If ρ is proper, then the quotient is a complete flat Lorentz
3-manifold M3 with fundamental group π1(M

3) ∼= Γ.
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Affine deformations

Start with a noncocompact Fuchsian group Γ0 ⊂ SO(2, 1). An
affine deformation is a representation ρ = ρu with image
Γ = Γu

Isom(E) ∼= V ⋊ SO(2, 1)

L
��

Γ0

ρ
66

m

m

m

m

m

m

m
�

� ρ0
// SO(2, 1)

determined by its translational part

u ∈ Z 1(Γ0,V).

Conjugating ρ by a translation⇐⇒ adding a coboundary to u.

Translational conjugacy classes of affine deformations of Γ0

form the vector space H1(Γ0, R
2,1).
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The hyperbolic surface

Σ := H2/Γ0 is naturally associated to the complete flat
Lorentz 3-manifold.

Σ corresponds to the space of parallelism classes of timelike
geodesics on M3.

Drumm’s construction involves passing from a fundamental
polygon for Σ to a fundamental polyhedron for M built from
crooked planes.
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Crooked planes
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Linear action of ultra-ideal triangle group
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Affine deformation of ultraideal triangle group

Carefully chosen affine deformation acts properly on E2,1.
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Affine action of level 2 congruence subgroup of GL(2, Z)
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An arithmetic example

For i = 1, 2, 3 choose three positive integers µ1, µ2, µ3. Then
the subgroup Γ of Sp(4, Z) generated by









−1 −2 µ1 + µ2 − µ3 0
0 −1 2µ1 −µ1

0 0 −1 0
0 0 2 −1









,









−1 0 −µ2 −2µ2

2 −1 0 0
0 0 −1 −2
0 0 0 −1









is a proper affine deformation of a rank two free group.

M3 is an open solid handlebody of genus two.

Σ2 is a 3-punctured sphere.
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The deformation space

The deformation space of hyperbolic structures is the Fricke

space

F(S) ≈ [0,∞)b × (0,∞)b−3χ(Σ).

where ∂Σ has b components.

Thus the space of affine deformations of Γ0 is the product

F(S)×H1(Γ0,V)

Similarity classes of (nontrivial) affine deformations of Γ0 form
the projective space PH1(Γ0,V)

The subset of H1(Γ0, R
2,1) corresponding to proper affine

deformations of ρ0 is an open convex cone.
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Deformation spaces for surfaces with χ(Σ)

(c) Three-holed sphere (d) Two-holed RP2

(e) One-holed torus (f) One-holed Klein bottle
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Example: Cyclic groups

Most elements γ ∈ Γ are boosts, affine deformations of
hyperbolic elements of O(2, 1) ⊂ GL(3, R). A fundamental
domain is the slab bounded by two parallel planes.

A boost identifying two parallel planes
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Images of crooked planes under a linear cyclic group

The resulting tessellation for a linear boost.
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Images of crooked planes under an affine deformation

Adding translations frees up the action

— which is now proper on all of E2,1.
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A foliation by crooked planes
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Closed geodesics and holonomy

Each such element leaves invariant a unique (spacelike) line,
whose image in E2,1/Γ is a closed geodesic. Like surfaces,
most loops are freely homotopic to (unique) closed geodesics.

γ =





eℓ(γ) 0 0
0 1 0

0 0 e−ℓ(γ)









0
α(γ)

0





ℓ(γ) ∈ R
+: geodesic length of γ in Σ2

α(γ) ∈ R: (signed) Lorentzian length of γ in M3.

The unique γ-invariant geodesic Cγ inherits a natural
orientation and metric.

γ translates along Cγ by α(γ).
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Marked Signed Lorentzian Length Spectrum

For every affine deformation Γ
ρ=(L,u)
−−−−−→ Isom(E2,1), define

αu(γ) ∈ R as the (signed) displacement of γ along the unique
γ-invariant geodesic Cγ , when L(γ) is hyperbolic.

αu is a class function on Γ;

When ρ acts properly, |αu(γ)| is the Lorentzian length of the
closed geodesic in M3 corresponding to γ;

(Margulis 1983) If ρ acts properly, either

αu(γ) > 0 ∀γ 6= 1, or
αu(γ) < 0 ∀γ 6= 1.

The Margulis invariant Γ
α
−→ R determines Γ up to conjugacy

(Charette-Drumm 2004).
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Deformations of hyperbolic structures

Translational conjugacy classes of affine deformations of Γ0

←→ infinitesimal deformations of the hyperbolic surface Σ.

The Lorentzian vector space R
2,1 corresponds to the Lie

algebra sl(2, R) with the Killing form, and the action of
O(2, 1) is the adjoint representation.
This Lie algebra comprises the Killing vector fields,

infinitesimal isometries, of H2.

Infinitesimal deformations of the hyperbolic structure on Σ
comprise H1(Σ, sl(2, R)) ∼= H1(Γ0,V).
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Infinitesimal deformations of the hyperbolic structure on Σ
comprise H1(Σ, sl(2, R)) ∼= H1(Γ0,V).
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Deformation-theoretic interpretation of Margulis invariant

Suppose u ∈ Z 1(Γ0,V) defines an infinitesimal deformation
tangent to a smooth deformation Σt of Σ.

The marked length spectrum ℓt of Σt varies smoothly with t.
Margulis’s invariant αu(γ) represents the derivative

d

dt

∣

∣

∣

∣

t=0

ℓt(γ)

Γu is proper =⇒ all closed geodesics lengthen (or shorten)
under the deformation Σt .

Converse: When Σ is homeomorphic to a three-holed sphere
or two-holed RP2.
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Extensions of the Margulis invariant

αu extends to parabolic L(γ) given decorations of the cusps
(Charette-Drumm 2005).

(Margulis 1983) αu(γ
n) = |n|αu(γ).

Therefore αu(γ)/ℓ(γ) is constant on cyclic (hyperbolic)
subgroups of Γ.
Such cyclic subgroups correspond to periodic orbits of the
geodesic flow Φ of UΣ.
Margulis invariant extends to continuous functional Ψu(µ) on
the space C(Σ) of Φ-invariant probability measures µ on UΣ.
(G-Labourie-Margulis 2010)

When L(Γ) is convex cocompact, Γu acts properly ⇐⇒
Ψu(µ) 6= 0 for all invariant probability measures µ.

C(Σ) connected =⇒ Either Ψu(µ) are all positive or all
negative.
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The Crooked Plane Conjecture

Conjecture: Every Margulis spacetime M3 admits a
fundamental polyhedron bounded by disjoint crooked planes.

Corollary: (Tameness) M3 ≈ open solid handlebody.

Proved when χ(Σ) = −1 (that is, rank(π1(Σ)) = 2).
(Charette-Drumm-G 2010)

Four possible topologies for Σ:

Three-holed sphere;
Two-holed cross-surface (projective plane);
One-holed Klein bottle;
One-holed torus.



university-logo

Geometric Structures on Manifolds

The Crooked Plane Conjecture

Conjecture: Every Margulis spacetime M3 admits a
fundamental polyhedron bounded by disjoint crooked planes.

Corollary: (Tameness) M3 ≈ open solid handlebody.

Proved when χ(Σ) = −1 (that is, rank(π1(Σ)) = 2).
(Charette-Drumm-G 2010)

Four possible topologies for Σ:

Three-holed sphere;
Two-holed cross-surface (projective plane);
One-holed Klein bottle;
One-holed torus.



university-logo

Geometric Structures on Manifolds

The Crooked Plane Conjecture

Conjecture: Every Margulis spacetime M3 admits a
fundamental polyhedron bounded by disjoint crooked planes.

Corollary: (Tameness) M3 ≈ open solid handlebody.

Proved when χ(Σ) = −1 (that is, rank(π1(Σ)) = 2).
(Charette-Drumm-G 2010)

Four possible topologies for Σ:

Three-holed sphere;
Two-holed cross-surface (projective plane);
One-holed Klein bottle;
One-holed torus.



university-logo

Geometric Structures on Manifolds

The Crooked Plane Conjecture

Conjecture: Every Margulis spacetime M3 admits a
fundamental polyhedron bounded by disjoint crooked planes.

Corollary: (Tameness) M3 ≈ open solid handlebody.

Proved when χ(Σ) = −1 (that is, rank(π1(Σ)) = 2).
(Charette-Drumm-G 2010)

Four possible topologies for Σ:

Three-holed sphere;
Two-holed cross-surface (projective plane);
One-holed Klein bottle;
One-holed torus.



university-logo

Geometric Structures on Manifolds

The Crooked Plane Conjecture

Conjecture: Every Margulis spacetime M3 admits a
fundamental polyhedron bounded by disjoint crooked planes.

Corollary: (Tameness) M3 ≈ open solid handlebody.

Proved when χ(Σ) = −1 (that is, rank(π1(Σ)) = 2).
(Charette-Drumm-G 2010)

Four possible topologies for Σ:

Three-holed sphere;
Two-holed cross-surface (projective plane);
One-holed Klein bottle;
One-holed torus.



university-logo

Geometric Structures on Manifolds

Functionals α(γ) when Σ ≈ three-holed sphere

Charette-Drumm-Margulis functionals of ∂Σ completely describe
deformation space as (0,∞)3.
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Functionals α(γ) when Σ ≈ two-holed RP2.

Deformation space is quadrilateral bounded by the four lines
defined by CDM-functionals of ∂Σ and the two
orientation-reversing interior simple loops.



university-logo

Geometric Structures on Manifolds

Functionals α(γ) when Σ ≈ one-holed torus

Properness region bounded by infinitely many intervals, each
corresponding to simple loop.

∂-points lie on intervals or are points of strict convexity
(irrational laminations) (G-Margulis-Minsky).
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Realizing an ideal triangulation by crooked planes

Properness region tiled by triangles.

Triangles ←→ ideal triangulations of Σ.

Flip of ideal triangulation ←→ moving to adjacent triangle.
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Functionals α(γ) when Σ ≈ one-holed Klein bottle

Properness region bounded by infinitely many intervals, each
defined by CDM-invariants of simple orientation-reversing loops,
arranged cyclically, and the one orientation-preserving interior
simple loop.
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