Implications of hyperbolic geometry to operator *K*-theory of arithmetic groups

Alexander D. Rahm

Weizmann Institute of Science

- Department of Mathematics

LMS-EPSRC Durham Symposium Geometry and Arithmetic of Lattices, July 6th, 2011

・ロト ・ 同ト ・ ヨト・・ ヨト・

This talk will be about

- The Mathematical topics connected by the Baum/Connes assembly map
- ► An interesting example: the Bianchi groups
- Motivations for studying Bianchi groups
- The system of representation rings of their finite subgroups
- ► The equivariant *K*-homology of the Bianchi groups
- Torsion subcomplexes of the Bianchi groups

イロト イポト イヨト イヨト

Paul Frank Baum

Alain Connes

・ 同 ト ・ ヨ ト ・ ヨ ト

 $\mu_i: K_i^{\mathcal{G}}(\underline{\mathsf{E}}\mathcal{G}) \longrightarrow K_i(\mathcal{C}_r^*(\mathcal{G})), \qquad i \in \mathbb{N} \cup \{0\}$

Definition

For m a positive square-free integer, let \mathcal{O}_{-m} denote the ring of algebraic integers in the imaginary quadratic field extension $\mathbb{Q}[\sqrt{-m}]$ of the rational numbers. The Bianchi groups are the projective special linear groups $\Gamma := \mathsf{PSL}_2(\mathcal{O}_{-m})$.

Motivations

- Group theory
- Hyperbolic geometry
- Knot theory
- Automorphic forms

- Baum/Connes conjecture
- Algebraic K-theory
- Heat kernels
- Quantized orbifold cohomology

The modular tree for $PSL_2(\mathbb{Z})$

Underlying picture by Robert Fricke for Felix Klein's lecture notes, 1892

The $PSL_2(\mathbb{Z})$ -equivariant retraction

A fundamental domain for $\Gamma = \mathsf{PSL}_2\left(\mathbb{Z}[\sqrt{-37}]\right)$

$$\begin{array}{cccc} \mathsf{PSL}_2(\mathbb{Z}) & \hookrightarrow & \mathsf{PSL}_2(\mathbb{R}) & \circlearrowright & \mathcal{H}^2_{\mathbb{R}} \\ \downarrow & & \downarrow & & \downarrow \\ \mathsf{PSL}_2(\mathcal{O}_{-m}) & \hookrightarrow & \mathsf{PSL}_2(\mathbb{C}) & \circlearrowright & \mathcal{H}^3_{\mathbb{R}} \end{array}$$

E

Complex representation rings of the cell stabilisers

Character tables.

$$\begin{array}{c|cccc} \mathbb{Z}/2 & 1 & g \\ \hline \rho_1 & 1 & 1 \\ \rho_2 & 1 & -1 \end{array}$$

Let $j = e^{\frac{2\pi i}{3}}$.

Frobenius reciprocity: $(\phi | \tau \uparrow)_{\mathcal{G}} = (\phi \downarrow | \tau)_{\mathcal{H}}$

The Bredon chain complex

E

Theorem (R.) Let $\Gamma := PSL_2(\mathcal{O}_{-m})$. Then, for \mathcal{O}_{-m} principal, the equivariant *K*-homology of Γ has isomorphy types

	m = 1	m = 2	<i>m</i> = 3	<i>m</i> = 7	m = 11	$m \in \{19, 43, 67, 163\}$
$\mathcal{K}_0^{\Gamma}(\underline{E}\Gamma)$	\mathbb{Z}^6	$\mathbb{Z}^5\oplus\mathbb{Z}/2$	$\mathbb{Z}^5\oplus\mathbb{Z}/2$	\mathbb{Z}^3	$\mathbb{Z}^4\oplus\mathbb{Z}/2$	$\mathbb{Z}^{eta_2}\oplus\mathbb{Z}^3\oplus\mathbb{Z}/2$
$K_1^{\Gamma}(\underline{E}\Gamma)$	Z	\mathbb{Z}^3	0	\mathbb{Z}^3	\mathbb{Z}^3	$\mathbb{Z}\oplus\mathbb{Z}^{eta_1},$

where the Betti numbers are

т	19	43	67	163
β_1	1	2	3	7
β_2	0	1	2	6.

イロト イヨト イヨト

Extracting the torsion subcomplexes

For a prime ℓ , consider the subcomplex of the orbit space consisting of the cells with elements of order ℓ in their stabiliser. We call it the ℓ -torsion subcomplex.

The non-Euclidean principal ideal domain cases

Alexander D. Rahm

Hyperbolic geometry and operator K-theory

Theorem (R.)

For any vertex $v \in H$, there is a natural bijection between the Γ -rotation axes passing through it and the non-trivial cyclic subgroups of its stabiliser.

Corollary (R.)

For any vertex $v \in \mathcal{H}$, the action of its stabiliser on the set of Γ -rotation axes passing through it, restricted from the action of Γ on \mathcal{H} , is given by conjugation of its non-trivial cyclic subgroups.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Theorem (R.)

Let v be vertex in hyperbolic 3-space. Then the number n of orbits of subdivided edges adjacent to v, with stabiliser in Γ isomorphic to $\mathbb{Z}/\ell\mathbb{Z}$, is given as follows for $\ell = 2$ and $\ell = 3$.

Isomorphy type of Γ_{ν}	{1}	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/3\mathbb{Z}$	\mathcal{D}_2	\mathcal{S}_3	\mathcal{A}_4
<i>n</i> for $\ell = 2$	0	2	0	3	2	1
<i>n</i> for $\ell = 3$	0	0	2	0	1	2.

イロト イポト イヨト イヨト

Fritz Grunewald (1949-2010)

$$P^{\ell}(t) := \sum_{q \, = \, \mathrm{vcd}(\Gamma) + 1}^{\infty} \dim_{\mathbb{F}_{\ell}} \mathsf{H}_{q}\left(\Gamma; \, \mathbb{Z}/\ell\right) \, t^{q}.$$

Hyperbolic geometry and operator K-theory

Theorem (R.)

The ℓ -primary part of the integral homology of $PSL_2(\mathcal{O}_{-m})$ depends in degrees greater than 2 (the virtual cohomological dimension) only on the homeomorphism type of the ℓ -torsion subcomplex.

The results in homological 3-torsion

-

Let
$$P_m^3(t) := \sum_{q=3}^{\infty} \dim_{\mathbb{F}_3} H_q(\mathsf{PSL}_2(\mathcal{O}_{\mathbb{Q}[\sqrt{-m}]}); \mathbb{Z}/3)t^q.$$

<i>m</i> specifying the Bianchi group	3–torsion subcomplex, homeomorphism type	$P_m^3(t)$
2, 5, 6, 10, 11, 15, 22, 29, 34, 35, 46, 51, 58, 87, 95, 115, 123, 155, 159, 187, 191, 235, 267	\bigcirc	$\frac{-2t^3}{t-1}$
7, 19, 37, 43, 67, 139, 151, 163	•-•	$rac{-t^3(t^2-t+2)}{(t-1)(t^2+1)}$
13, 91, 403, 427	⊷ ⊷	$2\left(\frac{-t^3(t^2-t+2)}{(t-1)(t^2+1)}\right)$
39	\bigcirc \leftarrow	$\frac{-2t^3}{t-1} + \frac{-t^3(t^2-t+2)}{(t-1)(t^2+1)}$

ヘロト 人間 と 人 ヨ と 人 ヨ と

3

Thanks a lot for your attention!

Alexander D. Rahm Hyperbolic geometry and operator *K*-theory

イロト イヨト イヨト

nar

Э