
Weakly commensurable arithmetic groups and locally
symmetric spaces

Andrei S. Rapinchuk

University of Virginia

Durham July 2011



Outline

1 Weak commensurability
Definition and motivations
Basic results
Arithmetic Groups
Remarks on nonarithmetic case

2 Length-commensurable locally symmetric spaces
Links between length-commensurability and weak
commensurability
Main results
Applications to isospectral locally symmetric spaces

3 Proofs
“Special” elements in Zariski-dense subgroups

Andrei S. Rapinchuk (UVA) Durham July 2011 2 / 57



References

[1] G. Prasad, A.S. Rapinchuk, Weakly commensurable arithmetic
groups and isospectral locally symmetric spaces, Publ. math. IHES
109(2009), 113-184.

[2] — , —, Local-global principles for embedding of fields with involu-
tion into simple algebras with involution, Comment. Math. Helv.
85(2010), 583-645.

[3] — , —, On the fields generated by the length of closed geodesics in
locally symmetric spaces, preprint.

SURVEY:

[4] — , —, Number-theoretic techniques in the theory of Lie groups and
differential geometry, 4th International Congress of Chinese Mathe-
maticians, AMS/IP Stud. Adv. Math. 48, AMS 2010, pp. 231-250.

Andrei S. Rapinchuk (UVA) Durham July 2011 3 / 57



Weak commensurability Definition and motivations

Outline

1 Weak commensurability
Definition and motivations
Basic results
Arithmetic Groups
Remarks on nonarithmetic case

2 Length-commensurable locally symmetric spaces
Links between length-commensurability and weak
commensurability
Main results
Applications to isospectral locally symmetric spaces

3 Proofs
“Special” elements in Zariski-dense subgroups

Andrei S. Rapinchuk (UVA) Durham July 2011 4 / 57



Weak commensurability Definition and motivations

Definition

Let G1 and G2 be two semi-simple groups defined over a field F (of
characteristic zero).

Semi-simple gi ∈ Gi(F) (i = 1, 2) are weakly commensurable if
there exist maximal F-tori Ti ⊂ Gi such that gi ∈ Ti(F) and for
some χi ∈ X(Ti) (defined over F) we have

χ1(g1) = χ2(g2) 6= 1.

(Zariski-dense) subgroups Γi ⊂ Gi(F) are weakly commensurable
if every semi-simple γ1 ∈ Γ1 of infinite order is weakly commen-
surable to some semi-simple γ2 ∈ Γ2 of infinite order, and vice
versa.
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Weak commensurability Definition and motivations

If T ⊂ GLn is an F-torus, then given g ∈ T(F) and χ ∈ X(T) we have

χ(g) = λa1
1 · · · λ

an
n

where λ1, . . . , λn are eigenvalues of g and a1, . . . , an ∈ Z.

Pick matrix realizations Gi ⊂ GLni for i = 1, 2.

Semi-simple g1 ∈ G1(F) and g2 ∈ G2(F) with eigenvalues

λ1, . . . , λn1 and µ1, . . . , µn2

are weakly commensurable if

λa1
1 · · · λ

an1
n1 = µb1

1 · · · µ
bn2
n2 6= 1

for some a1, . . . an1 and b1, . . . bn2 ∈ Z.
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Weak commensurability Definition and motivations

Commensurability vs. Weak Commensurability

MAIN QUESTION: What can one say about Zariski-dense subgroups
Γi ⊂ Gi(F) (i = 1, 2) given that they are weakly commensurable?

More specifically, under what conditions are Γ1 and Γ2 necessarily
commensurable?

RECALL: subgroups H1 and H2 of a group G are commensurable if

[Hi : H1 ∩H2] < ∞ for i = 1, 2.

Γ1 and Γ2 are commensurable up to an F-isomorphism between G1 and G2
if there exists an F-isomorphism

σ : G1 → G2

such that σ(Γ1) and Γ2 are commensurable in usual sense.

Andrei S. Rapinchuk (UVA) Durham July 2011 7 / 57



Weak commensurability Definition and motivations

Commensurability vs. Weak Commensurability

MAIN QUESTION: What can one say about Zariski-dense subgroups
Γi ⊂ Gi(F) (i = 1, 2) given that they are weakly commensurable?

More specifically, under what conditions are Γ1 and Γ2 necessarily
commensurable?

RECALL: subgroups H1 and H2 of a group G are commensurable if

[Hi : H1 ∩H2] < ∞ for i = 1, 2.

Γ1 and Γ2 are commensurable up to an F-isomorphism between G1 and G2
if there exists an F-isomorphism

σ : G1 → G2

such that σ(Γ1) and Γ2 are commensurable in usual sense.

Andrei S. Rapinchuk (UVA) Durham July 2011 7 / 57



Weak commensurability Definition and motivations

Commensurability vs. Weak Commensurability

MAIN QUESTION: What can one say about Zariski-dense subgroups
Γi ⊂ Gi(F) (i = 1, 2) given that they are weakly commensurable?

More specifically, under what conditions are Γ1 and Γ2 necessarily
commensurable?

RECALL: subgroups H1 and H2 of a group G are commensurable if

[Hi : H1 ∩H2] < ∞ for i = 1, 2.

Γ1 and Γ2 are commensurable up to an F-isomorphism between G1 and G2
if there exists an F-isomorphism

σ : G1 → G2

such that σ(Γ1) and Γ2 are commensurable in usual sense.

Andrei S. Rapinchuk (UVA) Durham July 2011 7 / 57



Weak commensurability Definition and motivations

Commensurability vs. Weak Commensurability

MAIN QUESTION: What can one say about Zariski-dense subgroups
Γi ⊂ Gi(F) (i = 1, 2) given that they are weakly commensurable?

More specifically, under what conditions are Γ1 and Γ2 necessarily
commensurable?

RECALL: subgroups H1 and H2 of a group G are commensurable if

[Hi : H1 ∩H2] < ∞ for i = 1, 2.

Γ1 and Γ2 are commensurable up to an F-isomorphism between G1 and G2
if there exists an F-isomorphism

σ : G1 → G2

such that σ(Γ1) and Γ2 are commensurable in usual sense.
Andrei S. Rapinchuk (UVA) Durham July 2011 7 / 57



Weak commensurability Definition and motivations

Algebraic Perspective

GENERAL FRAMEWORK: Characterization of linear groups in terms of
spectra of its elements.

COMPLEX REPRESENTATIONS OF FINITE GROUPS:

Let Γ be a finite group,

ρi : Γ → GLni(C) (i = 1, 2)

be representations. Then

ρ1 ' ρ2 ⇔ χρ1(g) = χρ2(g) ∀g ∈ Γ,

where χρi(g) = tr ρi(g) = ∑ λj (λ1, . . . , λni eigenvalues of ρi(g))
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Weak commensurability Definition and motivations

Algebraic perspective

Data afforded by weak commensurability is much more convoluted
than data afforded by character of a group representation:

when computing
χ(g) = λa1

1 · · · λ
an
n

one can use arbitrary integer weights a1, . . . , an. So weak
commensurability appears to be difficult to analyze.

EXAMPLE. Let Γ ⊂ SLn(C) be a neat Zariski-dense subgroup. For
d > 0, let

Γ(d) = 〈γd | γ ∈ Γ〉.

Then any Γ(d) ⊂ ∆ ⊂ Γ is weakly commensurable to Γ.

So, one needs to limit attention to some special subgroups in order
to generate meaningful results.
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Weak commensurability Definition and motivations

Geometric perspective

Let M be a Riemannian manifold.

L(M) - (weak) length spectrum (collection of lengths of closed
geodesics w/o multiplicities)

Definition. M1 and M2 are length-commensurable if

Q · L(M1) = Q · L(M2).

Weak commensurability (of fundamental groups) adequately
reflects length-commensurability of locally symmetric space.

We will demonstrate this for Riemann surfaces - for now.
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Weak commensurability Definition and motivations

Geometric perspective

Let G = SL2. Corresponding symmetric space:

SO2(R)\SL2(R) = H (upper half-plane)

Any Riemann (compact) surface of genus > 1 is of the form

M = H/Γ

where Γ ⊂ SL2(R) is a discrete subgroup (with torsion-free image
in PSL2(R)).

Any closed geodesic c in M corresponds to a semi-simple γ ∈ Γ,
i.e. c = cγ, and has length

`(cγ) = (1/nγ) · log tγ

where tγ is the eigenvalue of ±γ which is > 1,
nγ is an integer > 1.

NOTE that ±γ is conjugate to
(

tγ 0
0 t−1

γ

)
.
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Weak commensurability Definition and motivations

Geometric perspective

If Mi = H/Γi (i = 1, 2) are length-commensurable then:

for any nontrivial semi-simple γ1 ∈ Γ1 there exists a nontrivial
semi-simple γ2 ∈ Γ2 such that

n1 · log tγ1 = n2 · log tγ2

for some integers n1, n2 > 1, and vice versa.

So, χ1(γ1) = χ2(γ2) 6= 1

where χi is the character of the maximal R-torus Ti ⊂ SL2

corresponding to
(

t 0
0 t−1

)
7→ tni .

THUS, Γ1 and Γ2 are weakly commensurable.
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Weak commensurability Basic results
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Weak commensurability Basic results

Type

In this section, we will discuss two results dealing with weak
commensurability of arbitrary finitely generated Zariski-dense
subgroups.

The first result shows that weak commensurability “almost” retains
information about the type of the ambient algebraic group.

Theorem 1. Let G1 and G2 be two connected absolutely almost simple

algebraic groups defined over a field F of characteristic zero. If there exist

finitely generated Zariski-dense subgroups Γi ⊂ Gi(F) (i = 1, 2) that are

weakly commensurable then either G1 and G2 have the same Killing-Cartan

type, or one of them is of type Bn and the other is of type Cn for some n > 3.

NOTE that groups of types Bn and Cn can indeed contain Zariski-dense
weakly commensurable subgroups - more later.
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Weak commensurability Basic results

Field of definition

Let

G be a connected almost simple algebraic group defined over
a field F of characteristic zero,

Γ ⊂ G(F) be a Zariski-dense subgroup.

Let KΓ denote the subfield of F generated by Tr Ad γ for all γ ∈ Γ.

Then KΓ is the (minimal) field of definition of Ad Γ (E.B. Vinberg).

Theorem 2. Let G1 and G2 be two connected absolutely almost simple

algebraic groups defined over a field F of characteristic zero, and let

Γi ⊂ Gi(F) (i = 1, 2) be finitely generated Zariski-dense subgroups.

If Γ1 and Γ2 are weakly commensurable then KΓ1 = KΓ2 .
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Weak commensurability Arithmetic Groups

Notion of arithmeticity

For a Q-defined algebraic group G ⊂ GLn, we set

G(Z) = G∩GLn(Z).

The subgroups of G(F) (where F/Q) commensurable with G(Z),
are called arithmetic.

Replace Z with Z [1/2] (= ring of S-integers ZS ⊂ Q for S = {v∞, v2}).
The subgroups of G(F) commensurable with

G(ZS) = G∩GLn(ZS)

are called S-arithmetic.

More generally, given a number field K and a (finite) S ⊂ VK

containing VK
∞ (archimedean places), one defined the ring of S-integers

OK(S) = {a ∈ K× | v(a) > 0 for all v ∈ VK \ S} ∪ {0}.
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Weak commensurability Arithmetic Groups

Notion of arithmeticity

Given a K-defined algebraic group G ⊂ GLn, we set

G(OK(S)) = G∩GLn(OK(S)).

The subgroups of G(F) (where F/K) commensurable with G(OK(S)) are
called S-arithmetic or (K, S)-arithmetic.

What is an arithmetic subgroup of an algebraic group which is NOT
defined over a number field?

E.g.: What is an arithmetic subgroup of G(R) where

G = SO3(f ) and f = x2 + e · y2 − π · z2?
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Weak commensurability Arithmetic Groups

Notion of arithmeticity

We define arithmetic subgroups of G(F) in terms of all possible forms of
G over subfields of F that are number fields.

In our example, we can consider rational quadratic forms that are
R-equivalent to f , e.g.:

f1 = x2 + y2 − 3z2 or f2 = x2 + 2y2 − 7z2.

Then SO3(fi) ' SO3(f ) over R, and

Γi := SO3(fi) ∩GL3(Z)

are arithmetic subgroups of G(R) for i = 1, 2.

One can also consider K = Q(
√

2) ⊂ R and f3 = x2 + y2 −
√

2z2. Then

Γ3 = SO3(f3) ∩GL3(Z[
√

2])

is an arithmetic subgroup of G(R) over K.

One can further replace integers by S-integers, etc.
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Weak commensurability Arithmetic Groups

Definition of arithmeticity

Definition. Let G be an absolutely almost simple algebraic group over
a field F, char F = 0, and π : G → G be isogeny onto adjoint group.

Suppose we are given:

1 a number field K with a fixed embedding K ↪→ F;
2 a finite set S ⊂ VK containing VK

∞;
3 an F/K-form G of G, i.e. FG ' G over F.

Then subgroups Γ ⊂ G(F) such that π(Γ) is commensurable with
G(OK(S)) are called (G, K, S)-arithmetic.

Convention: S does not contain nonarchimedean v such that G is
Kv-anisotropic.

We do NOT fix an F-isomorphism FG ' G in n◦ 3, and by varying it we
obtain a class of groups invariant under F-automorphisms.
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Weak commensurability Arithmetic Groups

Proposition. Let G1 and G2 be connected absolutely almost simple algebraic
groups defined over a field F, char F = 0, and let Γi ⊂ Gi(F) be a Zariski-
dense (Gi, Ki, Si)-arithmetic group (i = 1, 2).

Then Γ1 and Γ2 are commensurable up to an F-isomorphism between G1 and
G2 if and only if

• K1 = K2 =: K;

• S1 = S2;
• G1 and G2 are K-isomorphic.

In the above example, Γ1, Γ2 and Γ3 are pairwise noncommensurable.

• Γ1 and Γ2 are NOT commensurable b/c the corresponding Q-forms
G1 = SO3(f1) and G2 = SO3(f2) are NOT isomorphic over Q.

• Γ3 is NOT commensurable with either Γ1 or Γ2 b/c they have different
fields of definition: Q(

√
2) for Γ3, and Q for Γ1 and Γ2.
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Weak commensurability Arithmetic Groups

Theorem 3. Let G1 and G2 be two connected absolutely almost simple
algebraic groups defined over a field F of characteristic zero.

If Zariski-dense (Gi, Ki, Si)-arithmetic Γi ⊂ Gi(F) are weakly commensurable
for i = 1, 2, then K1 = K2 and S1 = S2.

The forms G1 and G2 may NOT be K-isomorphic in general, but we
have the following.

Theorem 4. Let G1 and G2 be two connected absolutely almost simple
algebraic groups defined over a field F of characteristic zero, of the same type
different from An, D2n+1 with n > 1, and E6, and let Γi ⊂ Gi(F) be a
(Gi, K, S)-arithmetic subgroup.

If Γ1 and Γ2 are weakly commensurable then G1 ' G2 over K, and hence Γ1

and Γ2 are commensurable up to an F-isomorphism between G1 and G2.

[1] - groups of type 6= D2n; [2] - groups of type D2n other than D4;

Skip Garibaldi - type D4 and alternative proof for all D2n.
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Weak commensurability Arithmetic Groups

Theorem 5. (Garibaldi-R.) Let G1 and G2 be connected absolutely almost
simple groups of types Bn and Cn (n > 3) respectively, defined over a field F
of characteristic zero, and let Γi ⊂ Gi(F) be a Zariski-dense (Gi, K, S)-
arithmetic subgroup.

Then Γ1 and Γ2 are weakly commensurable if and only if

• rkKv G1 = rkKv G2 = 0 or n for all v ∈ VK
∞;

• rkKv G1 = rkKv G2 = n for all v ∈ VK \VK
∞.

Theorem 6. Let G1 and G2 be two connected absolutely almost simple
groups defined over a field F of characteristic zero, and let Γ1 ⊂ G1(F) be
a Zariski-dense (K, S)-arithmetic subgroup.

Then the set of Zariski-dense (K, S)-arithmetic subgroups Γ2 ⊂ G2(F)
which are weakly commensurable to Γ1, is a union of finitely many
commensurability classes.
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Weak commensurability Arithmetic Groups

Theorem 7. Let G1 and G2 be two connected absolutely almost simple
algebraic groups defined over a field F of characteristic zero, and let
Γi ⊂ Gi(F) be a Zariski-dense (Gi, K, S)-arithmetic subgroup for i = 1, 2.

If Γ1 and Γ2 are weakly commensurable then rkK G1 = rkK G2; in particular,
if G1 is K-isotropic then so is G2.

Theorem 8. Let G1 and G2 be two connected absolutely almost simple
algebraic groups defined over a nondiscrete locally compact field F of
characteristic zero, and let Γi ⊂ Gi(F) be a Zariski-dense lattice for i = 1, 2.
Assume that Γ1 is a (K, S)-arithmetic subgroup of G1(F).

If Γ1 and Γ2 are weakly commensurable, then Γ2 is a (K, S)-arithmetic
subgroup of G2(F).
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Weak commensurability Remarks on nonarithmetic case

Outline

1 Weak commensurability
Definition and motivations
Basic results
Arithmetic Groups
Remarks on nonarithmetic case

2 Length-commensurable locally symmetric spaces
Links between length-commensurability and weak
commensurability
Main results
Applications to isospectral locally symmetric spaces

3 Proofs
“Special” elements in Zariski-dense subgroups
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Weak commensurability Remarks on nonarithmetic case

Two aspects:

1 Given a Zariski-dense subgroup Γ1 ⊂ G1(F) with KΓ1 =: K,
determine possible K-groups G2 for which there exists
a Zariski-dense subgroup Γ2 ⊂ G2(K) which is weakly
commensurable to Γ1;

2 For a given K-group G2, determine possible Γ2 ⊂ G2(K)
which are weakly commensurable to Γ1.

Item 1◦ is closely related to the following classical question:

To what extent is an absolutely almost simple algebraic K-group G is
determined by the set of isomorphism classes of its maximal K-tori?

(Our results solve this problem for a number field K.)
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Weak commensurability Remarks on nonarithmetic case

(∗) Let D1 and D2 be quaternion division algebras over a field K
(char K 6= 2). Assume that D1 and D2 have same maximal subfields.

Are D1 and D2 necessarily isomorphic?

GEOMETRIC CONNECTION:

Let
M = H/Γ

be a (compact) Riemann surface, Γ ⊂ SL2(R) a discrete subgroup.

Associated Q-subalgebra

D = Q[Γ] ⊂ M2(R)

is a quaternion algebra with center

K = Q(tr γ | γ ∈ Γ) (trace field).

(.. well, one usually considers Q[Γ(2)] where Γ(2) ⊂ Γ is generated by squares ...)
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Weak commensurability Remarks on nonarithmetic case

Let Mi = H/Γi (i = 1, 2) be Riemann surfaces, and let Di

be the quaternion algebra associated with Γi.

Suppose that M1 and M2 are length-commensurable.

Then
Z(D1) = Z(D2) =: K,

and for any semi-simple γ1 ∈ Γ1 there exists a semi-simple γ2 ∈ Γ2 s. t.

γm
1 and γn

2 are conjugate in SL2(R) for some m, n > 1.

⇒ K[γm
1 ] ⊂ D1 and K[γn

2 ] ⊂ D2 are isomorphic.

Thus, length-commensurability of M1 and M2 implies that D1 and D2

have the same isomorphism classes of étale subalgebras that intersect Γ1 and
Γ2, respectively.
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Weak commensurability Remarks on nonarithmetic case

On the other hand,

Γ1 & Γ2 commensurable ⇒ D1 ' D2.

So, analysis of length-commensurability for Riemann surfaces leads to
questions like (∗) for quaternion algebras.

(∗) has affirmative answer over number fields ⇒

L(M1) = L(M2) for arithmetically defined Riemann surfaces M1 & M2

implies that M1 and M2 are commensurable (A. Reid).

(∗) can have negative answer over “large” fields (Rost, Wadsworth,
Schacher ...), but remains widely open over finitely generated fields.
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Weak commensurability Remarks on nonarithmetic case

In [1], we asked (∗) for K = Q(x).

D. SALTMAN gave affirmative answer.

GARIBALDI- SALTMAN proved (∗) for K = k(x) where k is
any number field (and also in some other cases).

Theorem 9. (A.R., I.R.) If (∗) holds over K then it also holds over the field of
rational functions K(x).

Definition. Let D be a finite-dimensional central division algebra /K.
The genus of D is

gen(D) = { [D′] ∈ Br(K) |D′ division algebra with

same maximal subfields as D }.
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Weak commensurability Remarks on nonarithmetic case

Question A: When does gen(D) consist of a single class?
Is this the case for quaternions?

Question B: When is gen(D) finite?

Question A is meaningful only for algebras D of exponent 2.

Indeed, Dop has the same maximal subfields as D. But if D ' Dop

then [D] ∈ Br(K) has exponent 2.

Question B makes sense for division algebras of any degree.

Both questions have the affirmative answer over number fields.
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Weak commensurability Remarks on nonarithmetic case

Question A: When does gen(D) consist of a single class?
Is this the case for quaternions?

Question B: When is gen(D) finite?

Question A is meaningful only for algebras D of exponent 2.

Indeed, Dop has the same maximal subfields as D. But if D ' Dop

then [D] ∈ Br(K) has exponent 2.

Question B makes sense for division algebras of any degree.

Both questions have the affirmative answer over number fields.

Andrei S. Rapinchuk (UVA) Durham July 2011 31 / 57



Weak commensurability Remarks on nonarithmetic case

Question A: When does gen(D) consist of a single class?
Is this the case for quaternions?

Question B: When is gen(D) finite?

Question A is meaningful only for algebras D of exponent 2.

Indeed, Dop has the same maximal subfields as D. But if D ' Dop

then [D] ∈ Br(K) has exponent 2.

Question B makes sense for division algebras of any degree.

Both questions have the affirmative answer over number fields.

Andrei S. Rapinchuk (UVA) Durham July 2011 31 / 57



Weak commensurability Remarks on nonarithmetic case

Question A: When does gen(D) consist of a single class?
Is this the case for quaternions?

Question B: When is gen(D) finite?

Question A is meaningful only for algebras D of exponent 2.

Indeed, Dop has the same maximal subfields as D. But if D ' Dop

then [D] ∈ Br(K) has exponent 2.

Question B makes sense for division algebras of any degree.

Both questions have the affirmative answer over number fields.

Andrei S. Rapinchuk (UVA) Durham July 2011 31 / 57



Weak commensurability Remarks on nonarithmetic case

Question A: When does gen(D) consist of a single class?
Is this the case for quaternions?

Question B: When is gen(D) finite?

Question A is meaningful only for algebras D of exponent 2.

Indeed, Dop has the same maximal subfields as D. But if D ' Dop

then [D] ∈ Br(K) has exponent 2.

Question B makes sense for division algebras of any degree.

Both questions have the affirmative answer over number fields.

Andrei S. Rapinchuk (UVA) Durham July 2011 31 / 57



Weak commensurability Remarks on nonarithmetic case

Theorem 10. (Chernousov + R2) Let K be a field of characteristic 6= 2.
If K satisfies the following property

(•) Any two finite-dimensional central division K-algebras
D1 and D2 of exponent two that have the same maximal
subfields are necessarily isomorphic,

then the field of rational functions K(x) also has (•).

Theorem 11. (C + R2) Let K be a finitely generated field, and let
D be a central division algebra /K of degree n which is prime to char K.

Then gen(D) is finite.
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Weak commensurability Remarks on nonarithmetic case

Conjecture. Let G1, G2 be absolutely simple algebraic groups over a field F,
char F = 0, let Γ1 ⊂ G1(F) be a finitely generated Zariski-dense subgroup.

Set K = KΓ1 .

Then there exist a finite collection G(1)
2 , . . . ,G(r)

2 of F/K-forms of G2 such that

if Γ2 ⊂ G2(F) is a Zariski-dense subgroup weakly commensurable to Γ1 then
Γ2 is contained (up to an F-automorphism of G2) in one of the G(i)

2 (K)’s.

Question: When can one take r = 1?
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Length-commensurable locally symmetric spaces
Links between length-commensurability and weak

commensurability

Outline

1 Weak commensurability
Definition and motivations
Basic results
Arithmetic Groups
Remarks on nonarithmetic case

2 Length-commensurable locally symmetric spaces
Links between length-commensurability and weak
commensurability
Main results
Applications to isospectral locally symmetric spaces

3 Proofs
“Special” elements in Zariski-dense subgroups
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Length-commensurable locally symmetric spaces
Links between length-commensurability and weak

commensurability

Notations

G a connected absolutely (almost) simple algebraic group /R;
G = G(R)

K a maximal compact subgroup of G;
X = K\G associated symmetric space, rk X = rkR G

Γ a discrete torsion-free subgroup of G, XΓ = X/Γ

XΓ is arithmetically defined if Γ is arithmetic (for S = VK
∞) as

defined earlier

Given G1, G2, Γi ⊂ Gi := Gi(R) etc. as above, we will denote
the corresponding locally symmetric spaces by XΓi .
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Length-commensurable locally symmetric spaces
Links between length-commensurability and weak

commensurability

Two Riemannian manifolds M1 and M2 are:
commensurable if they have a common finite-sheeted cover;

length-commensurable if Q · L(M1) = Q · L(M2), where
L(Mi) is the set of lengths of all closed geodesics in Mi.

Question: When does length-commensurability imply commensurability?

XΓ1 and XΓ2 are commensurable ⇔ Γ1 and Γ2 are commensurable
up to an isomorphism between G1 and G2.

Fact. Assume that XΓ1 and XΓ2 are of finite volume.

If XΓ1 and XΓ2 are length-commensurable then (under minor technical
assumptions) Γ1 and Γ2 are weakly commensurable.
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Length-commensurable locally symmetric spaces
Links between length-commensurability and weak

commensurability

The proof relies:

in rank one case - on the result of Gel’fond and Schneider (1934):

if α and β are algebraic numbers 6= 0, 1 then
log α

log β
is either rational or

transcendental.

in higher rank case - on the following

Conjecture (Shanuel) If z1, . . . , zn ∈ C are linearly independent over
Q, then the transcendence degree of the field generated by

z1, . . . , zn; ez1 , . . . , ezn

is > n.

(We mostly need that for nonzero algebraic numbers z1, . . . , zn, the logarithms

log z1, . . . , log zn

are algebraically independent over Q once they are linearly independent.)

So, our results for higher rank spaces are conditional.
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Length-commensurable locally symmetric spaces Main results

Theorem 12. Let XΓ1 and XΓ2 be locally symmetric spaces of finite volume.

If they are length-commensurable then

• either G1 and G2 are of the same Killing-Cartan type, or one of them is
of type Bn and the other is of type Cn;

• KΓ1 = KΓ2 .

Theorem 13. Let XΓ1 be an arithmetically defined locally symmetric space.

The set of arithmetically defined locally symmetric spaces XΓ2 which are

length-commensurable to XΓ1 , is a union of finitely many commensurability

classes. It consists of a single commensurability class if G1 and G2 have the

same type different from An, D2n+1 with n > 1 and E6.
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Length-commensurable locally symmetric spaces Main results

Corollary.

1 Let d be even or ≡ 3(mod 4), and let M1 and M2 be arithmetic
quotients of the d-dimensional real hyperbolic space.

If M1 and M2 are not commensurable, then (after a possible
interchange of M1 and M2) there exists λ1 ∈ L(M1) such that

for any λ2 ∈ L(M2), the ratio λ1/λ2 is transcendental over Q

(in particular, M1 and M2 are not length-commensurable.)

2 For any d ≡ 1(mod 4) there exist length-commensurable, but not
commensurable, arithmetic quotients of the real hyperbolic d-space.
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Length-commensurable locally symmetric spaces Main results

Theorem 14. Let XΓ1 and XΓ2 be locally symmetric spaces of finite volume
which are length-commensurable. Assume that one of the spaces is
arithmetically defined. Then

1 the other space is also arithmetically defined;

2 compactness of one of the spaces implies compactness of the other.

• It would be interesting to find a geometric explanation of item 2◦.

• Is 2◦ remains valid without any assumptions on arithmeticity?

RECALL that for any lattice Γ, compactness of XΓ is equivalent to the existence of

nontrivial unipotents in Γ. So, one can ask: Suppose two lattices are weakly

commensurable. Does the existence of nontrivial unipotents in one of them implies their

existence in the other? This question makes sense for arbitrary Zariski-dense subgroups.
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Length-commensurable locally symmetric spaces Applications to isospectral locally symmetric spaces

Two compact Riemannian manifolds are isospectral if they have the
same spectra of the Laplace-Beltrami operator (same eigenvalues and

same multiplicities).

Fact. Let M1 and M2 be two compact locally symmetric spaces.

If M1 and M2 are isospectral then L(M1) = L(M2).

⇒ if XΓ1 and XΓ1 are compact and isospectral then Γ1 and Γ2
are weakly commensurable.

Theorem 15. Let XΓ1 and XΓ2 be isospectral compact locally symmetric
spaces. If Γ1 is arithmetic then Γ2 is also arithmetic.
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Length-commensurable locally symmetric spaces Applications to isospectral locally symmetric spaces

Theorem 16. Assume that XΓ1 and XΓ2 are isospectral compact locally
symmetric spaces, and at least one of the subgroups Γ1 or Γ2 is arithmetic.
Then G1 = G2 =: G. Moreover, unless G is type An, D2n+1 (n > 1) or E6,
the spaces XΓ1 and XΓ2 are commensurable.

It would be interesting to determine if Theorem 16 remains valid
without any assumptions of arithmeticity.
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Proofs “Special” elements in Zariski-dense subgroups

Proofs rely on the existence of “special” elements in Zariski-dense
subgroups.

Question 1: Let G be a compact Lie group, and let Γ ⊂ G be a dense
subgroup.
Does there exist γ ∈ Γ such that 〈γ〉 is a maximal torus of G?

Question 2: Let G be a reductive algebraic group over a field K (of
characteristic zero), and let Γ ⊂ G(K) be a Zariski-dense subgroup.

Does there exist a semi-simple γ ∈ Γ such that the Zariski closure 〈γ〉
is a maximal torus of G?

Elements of this kind will be called generic (this notion will be
specialized further later on)
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Proofs “Special” elements in Zariski-dense subgroups

The answer is NO to both questions if G (resp., G) is a torus.

Example 1: Let G = R/Z×R/Z, and let

Γ = (
√

2Z + Z)/Z× (
√

2Z + Z)/Z.

Then Γ is dense in G, but for any

γ =
(√

2m(mod Z) ,
√

2n(mod Z)
)
∈ Γ

we have 〈γ〉 ⊂ {(a(mod Z) , b(mod Z)) | na−mb ≡ 0(mod Z)} ,
so 〈γ〉 6= G.

Example 2: Let G = C× ×C×, and let ε ∈ C× be NOT a root of unity.

Then Γ = 〈ε〉 × 〈ε〉 is Zariski-dense in G, but for any γ = (εm, εn) ∈ Γ,

we have 〈γ〉 ⊂ {(x, y) ∈ G | xn = ym} 6= G.
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Proofs “Special” elements in Zariski-dense subgroups

The answer to both questions is YES if G (resp., G) is semi-simple.

Proofs use p-adic techniques.

Question 1 reduces to Question 2 (b/c in compact groups,
Zariski-dense subgroups are also dense in the usual topology),
so we will focus on Question 2.

Example 3: Let G be a simple Q-group with rkR G = 1.
Then Γ = G(Z) is Zariski-dense. Let T ⊂ G be a maximal Q-torus.

If T has a proper Q-subtorus T′, then

T = T′ · T′′

(almost direct product), so T(Z) is commensurable with T′(Z) · T′′(Z).

Thus, for any γ ∈ T ∩ Γ, we have γn ∈ T′ or T′′, and therefore T 6= 〈γ〉.
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Proofs “Special” elements in Zariski-dense subgroups

In this example, T can only be generated by a single element
γ ∈ T ∩ Γ if it contains NO proper Q-subtori.

Conversely, if T is a Q-torus without proper Q-subtori then any
γ ∈ T(Q) of infinite order generates a Zariski-dense subgroup of T.

Definition. Let T be an algebraic torus defined over a field K. Then T is
(K)-irreducible if it does not any proper K-defined subtori.

Lemma 1. If T is irreducible over K then for any γ ∈ T(K) of infinite order,
〈γ〉 = T.

Thus, a regular semi-simple γ ∈ Γ ⊂ G(K) is “generic” if T = CG(γ)◦

is K-irreducible.
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Definition. Let T be an algebraic torus defined over a field K. Then T is
(K)-irreducible if it does not any proper K-defined subtori.

Lemma 1. If T is irreducible over K then for any γ ∈ T(K) of infinite order,
〈γ〉 = T.

Thus, a regular semi-simple γ ∈ Γ ⊂ G(K) is “generic” if T = CG(γ)◦
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Proofs “Special” elements in Zariski-dense subgroups

Let T be a K-torus.
X(T) - group of characters of T
KT - minimal splitting field of T
GT = Gal(KT/K)
θT : GT → GL(X(T)⊗Z Q)

Lemma 2. T is K-irreducible ⇔ θT is irreducible.

Let T be a maximal K-torus of an absolutely almost simple K-group G.

If Φ = Φ(G, T) is the root system then θ(GT) ⊂ Aut(Φ).

If θT(GT) ⊃ W(Φ) = W(G, T) then T is irreducible

(such tori are called generic).

Thus, an element of infinite order γ ∈ T(K), where T is generic over K,

is generic (as previously defined).
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Proofs “Special” elements in Zariski-dense subgroups

How to construct generic maximal tori?

Let G = SLn/K. Any maximal K-torus T ⊂ G is of the form

T = RE/K(GL1),

where E is an n-dimensional étale K-algebra.

Such T is generic ⇔ E/K is a field extension & Gal(F/K) ' Sn

Construction of extensions with Galois group Sn is well-known

when K is a number field

⇒ G has plenty of generic tori in this case.

Explicit construction can be implemented for other classical types.

Additional problem: embed resulting generic tori into a given group.
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Proofs “Special” elements in Zariski-dense subgroups

GENERAL CASE:

Fact (Voskresenskii) There exists a purely transcendental extension

K = K(x1, . . . , xr) and a K-defined maximal torus T ⊂ G such that

θT (Gal(KT /K)) ⊃ W(G, T ).

If K is a number field (or, more generally, a finitely generated field)

then one can use Hilbert’s Irreducibility Theorem to specialize

parameters and get “many” maximal K-tori T ⊂ G such that

θT(Gal(KT/K)) ⊃ W(G, T).

For K a number field, one can construct such generic tori with

prescribed local behavior at finitely many places.

Then, if Γ is S-arithmetic, one can find generic tori containing

γ ∈ Γ of infinite order.
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Proofs “Special” elements in Zariski-dense subgroups

Generic tori constructed by this method may not contain elements
γ ∈ Γ of infinite order if Γ is not S-arithmetic.

(Our work was motivated by a question asked by Abels-Margulis-
Soifer in connection with the Auslander conjecture, in the context
of nonarithmetic groups.)

Definition. Let G be a semi-simple real algebraic group.
An element γ ∈ G(R) is R-regular if the number of eigenvalues of Ad γ,
counted with multiplicities, of modulus 1, is minimal possible.

Theorem 17. Let G be a connected semi-simple real algebraic group. Then
any Zariski-dense subsemigroup Γ ⊂ G(R) contain a regular R-regular γ

such that 〈γ〉 is Zariski-dense in T = CG(γ)◦.
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Proofs “Special” elements in Zariski-dense subgroups

Theorem 18. Let G be a semi-simple algebraic group over a field K of
characteristic zero, and let Γ ⊂ G(K) be a Zariski-dense subgroup.

Then there exists a regular semi-simple γ ∈ Γ such that 〈γ〉 is
Zariski-dense in T = CG(γ)◦.

SKETCH OF PROOF for G almost absolutely simple simply connected.

Can assume

1 Γ is finitely generated;

2 Γ ⊂ G(R) where R is a finitely generated subring of K;

3 K is finitely generated.

We want to construct a regular semi-simple γ ∈ Γ of infinite order
such that T = CG(γ)◦ is generic over K.
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Proofs “Special” elements in Zariski-dense subgroups

Proposition. Let K be a finitely generated field, and R ⊂ K be a finitely
generated ring. There exists an infinite set of primes Π such that for each
p ∈ Π there exists an embedding ε : K ↪→ Qp such that εp(R) ⊂ Zp.

Observe that given maximal tori T1, T2 of G, the Weyl groups W(G, T1)
and W(G, T2) are identified canonically, up to an inner automorphism;
in particular, the conjugacy classes are identified canonically.

Pick a maximal K-torus T0 ⊂ G and fix a conjugacy class C in
W(G, T0).

Pick an embedding εp : K ↪→ Qp such that εp(R) ⊂ Zp, and T0 is
split over Qp.
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Proofs “Special” elements in Zariski-dense subgroups

Using Galois cohomology, we find an open Ωp(C) ⊂ G(Qp) satisfying

Ωp(C) consists of regular semi-simple elements and intersects
every open subgroup of G(Qp);

for ω ∈ Ωp(C) and Tω = CG(ω)◦, we have

θTω (Gal(KTω /Qp)) ∩ C 6= ∅

(in terms of the canonical identification W(G, Tω) ' W(G, T0))

Let C1, . . . , Cr be all conjugacy classes of W(G, T0).

Pick r primes p1, . . . , pr ∈ Π, and consider Ωpi(Ci) ⊂ G(Qpi).

One shows that

Ω :=
r⋂

i=1

(Γ ∩Ωpi(Ci)) 6= ∅,

and any γ ∈ Ω is generic. �
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Proofs “Special” elements in Zariski-dense subgroups

Some other applications of p-adic embeddings:

(Platonov) Let π : G̃ → G be a nontrivial isogeny of semi-simple
groups over a finitely generated field K. Then π(G̃(K)) 6= G(K).

(R.) Let Γ be a group with bounded generation, i.e.

Γ = 〈γ1〉 · · · 〈γd〉 for some γ1, . . . , γd ∈ Γ.

Assume that any subgroup of finite index Γ1 ⊂ Γ has finite
abelianization Γab

1 = Γ1/[Γ1, Γ1]. Then there are only finitely many
inequivalent irreducible representations ρ : Γ → GLn(C).

(Prasad-R.) Let G be an absolutely almost simple algebraic group
over a field K of characteristic zero.

If N ⊂ G(K) is a noncentral subnormal subgroup then
N is not finitely generated.
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