Weakly commensurable arithmetic groups and locally symmetric spaces

Andrei S. Rapinchuk

University of Virginia
Durham July 2011

Outline

(1) Weak commensurability

- Definition and motivations
- Basic results
- Arithmetic Groups
- Remarks on nonarithmetic case
(2) Length-commensurable locally symmetric spaces
- Links between length-commensurability and weak commensurability
- Main results
- Applications to isospectral locally symmetric spaces
(3) Proofs
- "Special" elements in Zariski-dense subgroups

References

[1] G. Prasad, A.S. Rapinchuk, Weakly commensurable arithmetic groups and isospectral locally symmetric spaces, Publ. math. IHES 109(2009), 113-184.
[2] —, 一, Local-global principles for embedding of fields with involution into simple algebras with involution, Comment. Math. Helv. 85(2010), 583-645.
[3] — , —, On the fields generated by the length of closed geodesics in locally symmetric spaces, preprint.

SURVEY:

[4] — , —, Number-theoretic techniques in the theory of Lie groups and differential geometry, $4^{\text {th }}$ International Congress of Chinese Mathematicians, AMS/IP Stud. Adv. Math. 48, AMS 2010, pp. 231-250.

Outline

(1) Weak commensurability

- Definition and motivations
- Basic results
- Arithmetic Groups
- Remarks on nonarithmetic case
(2) Length-commensurable locally symmetric spaces
- Links between length-commensurability and weak commensurability
- Main results
- Applications to isospectral locally symmetric spaces
(3) Proofs
- "Special" elements in Zariski-dense subgroups

Definition

Let G_{1} and G_{2} be two semi-simple groups defined over a field F (of characteristic zero).

- Semi-simple $g_{i} \in G_{i}(F)(i=1,2)$ are weakly commensurable if there exist maximal F-tori $T_{i} \subset G_{i}$ such that $g_{i} \in T_{i}(F)$ and for some $\chi_{i} \in X\left(T_{i}\right)$ (defined over $\left.\bar{F}\right)$ we have

$$
\chi_{1}\left(g_{1}\right)=\chi_{2}\left(g_{2}\right) \neq 1
$$

- (Zariski-dense) subgroups $\Gamma_{i} \subset G_{i}(F)$ are weakly commensurable if every semi-simple $\gamma_{1} \in \Gamma_{1}$ of infinite order is weakly commensurable to some semi-simple $\gamma_{2} \in \Gamma_{2}$ of infinite order, and vice versa.

Definition

Let G_{1} and G_{2} be two semi-simple groups defined over a field F (of characteristic zero).

- Semi-simple $g_{i} \in G_{i}(F)(i=1,2)$ are weakly commensurable if there exist maximal F-tori $T_{i} \subset G_{i}$ such that $g_{i} \in T_{i}(F)$ and for some $\chi_{i} \in X\left(T_{i}\right)$ (defined over \bar{F}) we have

$$
\chi_{1}\left(g_{1}\right)=\chi_{2}\left(g_{2}\right) \neq 1
$$

- (Zariski-dense) subgroups $\Gamma_{i} \subset G_{i}(F)$ are weakly commensurable if every semi-simple $\gamma_{1} \in \Gamma_{1}$ of infinite order is weakly commensurable to some semi-simple $\gamma_{2} \in \Gamma_{2}$ of infinite order, and vice versa.

Definition

Let G_{1} and G_{2} be two semi-simple groups defined over a field F (of characteristic zero).

- Semi-simple $g_{i} \in G_{i}(F)(i=1,2)$ are weakly commensurable if there exist maximal F-tori $T_{i} \subset G_{i}$ such that $g_{i} \in T_{i}(F)$ and for some $\chi_{i} \in X\left(T_{i}\right)$ (defined over \bar{F}) we have

$$
\chi_{1}\left(g_{1}\right)=\chi_{2}\left(g_{2}\right) \neq 1
$$

- (Zariski-dense) subgroups $\Gamma_{i} \subset G_{i}(F)$ are weakly commensurable if every semi-simple $\gamma_{1} \in \Gamma_{1}$ of infinite order is weakly commensurable to some semi-simple $\gamma_{2} \in \Gamma_{2}$ of infinite order, and vice versa.

If $T \subset \mathrm{GL}_{n}$ is an F-torus, then given $g \in T(F)$ and $\chi \in X(T)$ we have

$$
\chi(g)=\lambda_{1}^{a_{1}} \cdots \lambda_{n}^{a_{n}}
$$

where $\lambda_{1}, \ldots, \lambda_{n}$ are eigenvalues of g and $a_{1}, \ldots, a_{n} \in \mathbb{Z}$.

- Semi-simple $g_{1} \in G_{1}(F)$ and $g_{2} \in G_{2}(F)$ with eigenvalues

are weakly commensurable if
for some $a_{1}, \ldots a_{n_{1}}$ and $b_{1}, \ldots b_{n_{2}} \in \mathbb{Z}$.

If $T \subset \mathrm{GL}_{n}$ is an F-torus, then given $g \in T(F)$ and $\chi \in X(T)$ we have

$$
\chi(g)=\lambda_{1}^{a_{1}} \cdots \lambda_{n}^{a_{n}}
$$

where $\lambda_{1}, \ldots, \lambda_{n}$ are eigenvalues of g and $a_{1}, \ldots, a_{n} \in \mathbb{Z}$.

Pick matrix realizations $G_{i} \subset \mathrm{GL}_{n_{i}}$ for $i=1,2$.

- Semi-simple $g_{1} \in G_{1}(F)$ and $g_{2} \in G_{2}(F)$ with eigenvalues

are weakly commensurable if
for some $a_{1}, \ldots a_{n_{1}}$ and $b_{1}, \ldots b_{n_{2}} \in \mathbb{Z}$.

If $T \subset \mathrm{GL}_{n}$ is an F-torus, then given $g \in T(F)$ and $\chi \in X(T)$ we have

$$
\chi(g)=\lambda_{1}^{a_{1}} \cdots \lambda_{n}^{a_{n}}
$$

where $\lambda_{1}, \ldots, \lambda_{n}$ are eigenvalues of g and $a_{1}, \ldots, a_{n} \in \mathbb{Z}$.

Pick matrix realizations $G_{i} \subset \mathrm{GL}_{n_{i}}$ for $i=1,2$.

- Semi-simple $g_{1} \in G_{1}(F)$ and $g_{2} \in G_{2}(F)$ with eigenvalues

$$
\lambda_{1}, \ldots, \lambda_{n_{1}} \text { and } \mu_{1}, \ldots, \mu_{n_{2}}
$$

are weakly commensurable if

$$
\lambda_{1}^{a_{1}} \cdots \lambda_{n_{1}}^{a_{n_{1}}}=\mu_{1}^{b_{1}} \cdots \mu_{n_{2}}^{b_{n_{2}}} \neq 1
$$

for some $a_{1}, \ldots a_{n_{1}}$ and $b_{1}, \ldots b_{n_{2}} \in \mathbb{Z}$.

Commensurability vs. Weak Commensurability

MAIN QUESTION: What can one say about Zariski-dense subgroups $\Gamma_{i} \subset G_{i}(F)(i=1,2)$ given that they are weakly commensurable?

Commensurability vs. Weak Commensurability

MAIN QUESTION: What can one say about Zariski-dense subgroups $\Gamma_{i} \subset G_{i}(F)(i=1,2)$ given that they are weakly commensurable?

More specifically, under what conditions are Γ_{1} and Γ_{2} necessarily commensurable?

Commensurability vs. Weak Commensurability

MAIN QUESTION: What can one say about Zariski-dense subgroups $\Gamma_{i} \subset G_{i}(F)(i=1,2)$ given that they are weakly commensurable?

More specifically, under what conditions are Γ_{1} and Γ_{2} necessarily commensurable?

RecALL: subgroups \mathcal{H}_{1} and \mathcal{H}_{2} of a group \mathcal{G} are commensurable if

$$
\left[\mathcal{H}_{i}: \mathcal{H}_{1} \cap \mathcal{H}_{2}\right]<\infty \quad \text { for } i=1,2
$$

Commensurability vs. Weak Commensurability

MAIN QUESTION: What can one say about Zariski-dense subgroups $\Gamma_{i} \subset G_{i}(F)(i=1,2)$ given that they are weakly commensurable?

More specifically, under what conditions are Γ_{1} and Γ_{2} necessarily commensurable?

RECALL: subgroups \mathcal{H}_{1} and \mathcal{H}_{2} of a group \mathcal{G} are commensurable if

$$
\left[\mathcal{H}_{i}: \mathcal{H}_{1} \cap \mathcal{H}_{2}\right]<\infty \quad \text { for } i=1,2
$$

Γ_{1} and Γ_{2} are commensurable up to an F-isomorphism between G_{1} and G_{2} if there exists an F-isomorphism

$$
\sigma: G_{1} \rightarrow G_{2}
$$

such that $\sigma\left(\Gamma_{1}\right)$ and Γ_{2} are commensurable in usual sense.

Algebraic Perspective

GENERAL FRAMEWORK: Characterization of linear groups in terms of spectra of its elements.

Algebraic Perspective

GENERAL FRAMEWORK: Characterization of linear groups in terms of spectra of its elements.

COMPLEX REPRESENTATIONS OF FINITE GROUPS:
Let Γ be a finite group,

$$
\rho_{i}: \Gamma \rightarrow G L_{n_{i}}(\mathbb{C}) \quad(i=1,2)
$$

be representations. Then

$$
\rho_{1} \simeq \rho_{2} \quad \Leftrightarrow \quad \chi_{\rho_{1}}(g)=\chi_{\rho_{2}}(g) \forall g \in \Gamma,
$$

where $\chi_{\rho_{i}}(g)=\operatorname{tr} \rho_{i}(g)=\sum \lambda_{j} \quad\left(\lambda_{1}, \ldots, \lambda_{n_{i}}\right.$ eigenvalues of $\left.\rho_{i}(g)\right)$

Algebraic perspective

- Data afforded by weak commensurability is much more convoluted than data afforded by character of a group representation:
when computing

$$
\chi(g)=\lambda_{1}^{a_{1}} \cdots \lambda_{n}^{a_{n}}
$$

one can use arbitrary integer weights a_{1}, \ldots, a_{n}. So weak commensurability appears to be difficult to analyze.

- Example. Let $\Gamma \subset S L_{n}(\mathbb{C})$ be a neat Zariski-dense subgroup. For $d>0$, let

Then any $\Gamma^{(d)} \subset \Delta \subset \Gamma$ is weakly commensurable to Γ.
So, one needs to limit attention to some special subgroups in order to generate meaningful results.

Algebraic perspective

- Data afforded by weak commensurability is much more convoluted than data afforded by character of a group representation:
when computing

$$
\chi(g)=\lambda_{1}^{a_{1}} \cdots \lambda_{n}^{a_{n}}
$$

one can use arbitrary integer weights a_{1}, \ldots, a_{n}. So weak commensurability appears to be difficult to analyze.

- Example. Let $\Gamma \subset S L_{n}(\mathbb{C})$ be a neat Zariski-dense subgroup. For $d>0$, let

$$
\Gamma^{(d)}=\left\langle\gamma^{d} \mid \gamma \in \Gamma\right\rangle
$$

Then any $\Gamma^{(d)} \subset \Delta \subset \Gamma$ is weakly commensurable to Γ.
So, one needs to limit attention to some special subgroups in order to generate meaningful results.

Geometric perspective

Let M be a Riemannian manifold.
$L(M)$ - (weak) length spectrum (collection of lengths of closed geodesics w/o multiplicities)

- Weak commensurability (of fundamental groups) adequately reflects length-commensurability of locally symmetric space.

Geometric perspective

Let M be a Riemannian manifold.
$L(M)$ - (weak) length spectrum (collection of lengths of closed geodesics w/o multiplicities)

Definition. M_{1} and M_{2} are length-commensurable if

$$
\mathbb{Q} \cdot L\left(M_{1}\right)=\mathbb{Q} \cdot L\left(M_{2}\right)
$$

- Weak commensurability (of fundamental groups) adequately reflects length-commensurability of locally symmetric space.

Geometric perspective

Let M be a Riemannian manifold.
$L(M)$ - (weak) length spectrum (collection of lengths of closed geodesics w/o multiplicities)

Definition. M_{1} and M_{2} are length-commensurable if

$$
\mathbb{Q} \cdot L\left(M_{1}\right)=\mathbb{Q} \cdot L\left(M_{2}\right)
$$

- Weak commensurability (of fundamental groups) adequately reflects length-commensurability of locally symmetric space.

Geometric perspective

Let M be a Riemannian manifold.
$L(M)$ - (weak) length spectrum (collection of lengths of closed geodesics w/o multiplicities)

Definition. M_{1} and M_{2} are length-commensurable if

$$
\mathbb{Q} \cdot L\left(M_{1}\right)=\mathbb{Q} \cdot L\left(M_{2}\right)
$$

- Weak commensurability (of fundamental groups) adequately reflects length-commensurability of locally symmetric space.

We will demonstrate this for Riemann surfaces - for now.

Geometric perspective

- Let $G=S L_{2}$. Corresponding symmetric space: $S O_{2}(\mathbb{R}) \backslash S L_{2}(\mathbb{R})=\mathbb{H} \quad$ (upper half-plane)
- Any Riemann (compact) surface of genus >1 is of the form

$$
M=\mathbb{H} / \Gamma
$$

where $\Gamma \subset S L_{2}(\mathbb{R})$ is a discrete subgroup (with torsion-free image in $P S L_{2}(\mathbb{R})$).

- Any closed geodesic c in M corresponds to a semi-simple $\gamma \in \Gamma$, i.e. $c=c_{\gamma}$, and has length

$$
\ell\left(c_{\gamma}\right)=\left(1 / n_{\gamma}\right) \cdot \log t_{\gamma}
$$

where t_{γ} is the eigenvalue of $\pm \gamma$ which is >1, n_{γ} is an integer $\geqslant 1$.

Geometric perspective

- Let $G=S L_{2}$. Corresponding symmetric space:

$$
S O_{2}(\mathbb{R}) \backslash S L_{2}(\mathbb{R})=\mathbb{H} \quad \text { (upper half-plane) }
$$

- Any Riemann (compact) surface of genus >1 is of the form

$$
M=\mathbb{H} / \Gamma
$$

where $\Gamma \subset S L_{2}(\mathbb{R})$ is a discrete subgroup (with torsion-free image in $\operatorname{PSL}_{2}(\mathbb{R})$).

- Any closed geodesic c in M corresponds to a semi-simple $\gamma \in \Gamma$, i.e. $c=c_{\gamma}$, and has length
where t_{γ} is the eigenvalue of $\pm \gamma$ which is >1, n_{γ} is an integer $\geqslant 1$.

Geometric perspective

- Let $G=S L_{2}$. Corresponding symmetric space:

$$
S O_{2}(\mathbb{R}) \backslash S L_{2}(\mathbb{R})=\mathbb{H} \quad \text { (upper half-plane) }
$$

- Any Riemann (compact) surface of genus >1 is of the form

$$
M=\mathbb{H} / \Gamma
$$

where $\Gamma \subset S L_{2}(\mathbb{R})$ is a discrete subgroup (with torsion-free image in $P S L_{2}(\mathbb{R})$).

- Any closed geodesic c in M corresponds to a semi-simple $\gamma \in \Gamma$, i.e. $c=c_{\gamma}$, and has length

$$
\ell\left(c_{\gamma}\right)=\left(1 / n_{\gamma}\right) \cdot \log t_{\gamma}
$$

where t_{γ} is the eigenvalue of $\pm \gamma$ which is >1,
n_{γ} is an integer $\geqslant 1$.
NOTE that $\pm \gamma$ is conjugate to $\left(\begin{array}{cc}t_{\gamma} & 0 \\ 0 & t_{\gamma}^{-1}\end{array}\right)$.

Geometric perspective

If $M_{i}=\mathbb{H} / \Gamma_{i}(i=1,2)$ are length-commensurable then:

- for any nontrivial semi-simple $\gamma_{1} \in \Gamma_{1}$ there exists a nontrivial semi-simple $\gamma_{2} \in \Gamma_{2}$ such that

$$
n_{1} \cdot \log t_{\gamma_{1}}=n_{2} \cdot \log t_{\gamma_{2}}
$$

for some integers $n_{1}, n_{2} \geqslant 1$, and vice versa.

So,

$$
\chi_{1}\left(\gamma_{1}\right)=\chi_{2}\left(\gamma_{2}\right) \neq 1
$$

where χ_{i} is the character of the maximal \mathbb{R}-torus $T_{i} \subset \mathrm{SL}_{2}$ corresponding to $\left(\begin{array}{cc}t & 0 \\ 0 & t^{-1}\end{array}\right) \mapsto t^{n_{i}}$.

THUS, Γ_{1} and Γ_{2} are weakly commensurable.

Outline

(1) Weak commensurability

- Definition and motivations
- Basic results
- Arithmetic Groups
- Remarks on nonarithmetic case
(2) Length-commensurable locally symmetric spaces
- Links between length-commensurability and weak commensurability
- Main results
- Applications to isospectral locally symmetric spaces
(3) Proofs
- "Special" elements in Zariski-dense subgroups

Type

In this section, we will discuss two results dealing with weak commensurability of arbitrary finitely generated Zariski-dense subgroups.

In this section, we will discuss two results dealing with weak commensurability of arbitrary finitely generated Zariski-dense subgroups.

The first result shows that weak commensurability "almost" retains information about the type of the ambient algebraic group.

Type

In this section, we will discuss two results dealing with weak commensurability of arbitrary finitely generated Zariski-dense subgroups.

The first result shows that weak commensurability "almost" retains information about the type of the ambient algebraic group.

Theorem 1. Let G_{1} and G_{2} be two connected absolutely almost simple algebraic groups defined over a field F of characteristic zero. If there exist finitely generated Zariski-dense subgroups $\Gamma_{i} \subset G_{i}(F)(i=1,2)$ that are weakly commensurable then either G_{1} and G_{2} have the same Killing-Cartan type, or one of them is of type B_{n} and the other is of type C_{n} for some $n \geqslant 3$.

Type

In this section, we will discuss two results dealing with weak commensurability of arbitrary finitely generated Zariski-dense subgroups.

The first result shows that weak commensurability "almost" retains information about the type of the ambient algebraic group.

Theorem 1. Let G_{1} and G_{2} be two connected absolutely almost simple algebraic groups defined over a field F of characteristic zero. If there exist finitely generated Zariski-dense subgroups $\Gamma_{i} \subset G_{i}(F)(i=1,2)$ that are weakly commensurable then either G_{1} and G_{2} have the same Killing-Cartan type, or one of them is of type B_{n} and the other is of type C_{n} for some $n \geqslant 3$.

NOTE that groups of types B_{n} and C_{n} can indeed contain Zariski-dense weakly commensurable subgroups - more later.

Field of definition

Let

- G be a connected almost simple algebraic group defined over a field F of characteristic zero,
- $\Gamma \subset G(F)$ be a Zariski-dense subgroup.

Field of definition

Let

- G be a connected almost simple algebraic group defined over a field F of characteristic zero,
- $\Gamma \subset G(F)$ be a Zariski-dense subgroup.

Let K_{Γ} denote the subfield of F generated by $\operatorname{Tr} A d \gamma$ for all $\gamma \in \Gamma$.

Field of definition

Let

- G be a connected almost simple algebraic group defined over a field F of characteristic zero,
- $\Gamma \subset G(F)$ be a Zariski-dense subgroup.

Let K_{Γ} denote the subfield of F generated by $\operatorname{Tr} A d \gamma$ for all $\gamma \in \Gamma$.
Then K_{Γ} is the (minimal) field of definition of $\operatorname{Ad} \Gamma$ (E.B. Vinberg).

Field of definition

Let

- G be a connected almost simple algebraic group defined over a field F of characteristic zero,
- $\Gamma \subset G(F)$ be a Zariski-dense subgroup.

Let K_{Γ} denote the subfield of F generated by $\operatorname{Tr} A d \gamma$ for all $\gamma \in \Gamma$.
Then K_{Γ} is the (minimal) field of definition of $\operatorname{Ad} \Gamma$ (E.B. Vinberg).

Theorem 2. Let G_{1} and G_{2} be two connected absolutely almost simple algebraic groups defined over a field F of characteristic zero, and let $\Gamma_{i} \subset G_{i}(F)(i=1,2)$ be finitely generated Zariski-dense subgroups. If Γ_{1} and Γ_{2} are weakly commensurable then $K_{\Gamma_{1}}=K_{\Gamma_{2}}$.

Outline

(1) Weak commensurability

- Definition and motivations
- Basic results
- Arithmetic Groups
- Remarks on nonarithmetic case
(2) Length-commensurable locally symmetric spaces
- Links between length-commensurability and weak commensurability
- Main results
- Applications to isospectral locally symmetric spaces
(3) Proofs
- "Special" elements in Zariski-dense subgroups

Notion of arithmeticity

For a Q-defined algebraic group $G \subset \mathrm{GL}_{n}$, we set

$$
G(\mathbb{Z})=G \cap G L_{n}(\mathbb{Z})
$$

The subgroups of $G(F)$ (where F / \mathbb{Q}) commensurable with $G(\mathbb{Z})$, are called arithmetic.

Notion of arithmeticity

For a Q -defined algebraic group $\mathrm{G} \subset \mathrm{GL}_{n}$, we set

$$
G(\mathbb{Z})=G \cap G L_{n}(\mathbb{Z}) .
$$

The subgroups of $G(F)$ (where F / \mathbb{Q}) commensurable with $G(\mathbb{Z})$, are called arithmetic.

Replace \mathbb{Z} with $\mathbb{Z}[1 / 2]$ (= ring of S-integers $\mathbb{Z}_{S} \subset \mathbb{Q}$ for $S=\left\{v_{\infty}, v_{2}\right\}$). The subgroups of $G(F)$ commensurable with

$$
G\left(\mathbb{Z}_{S}\right)=G \cap G L_{n}\left(\mathbb{Z}_{S}\right)
$$

are called S-arithmetic.

Notion of arithmeticity

For a Q-defined algebraic group $G \subset \mathrm{GL}_{n}$, we set

$$
G(\mathbb{Z})=G \cap G L_{n}(\mathbb{Z}) .
$$

The subgroups of $G(F)$ (where F / \mathbb{Q}) commensurable with $G(\mathbb{Z})$, are called arithmetic.

Replace \mathbb{Z} with $\mathbb{Z}[1 / 2]$ (= ring of S-integers $\mathbb{Z}_{S} \subset \mathbb{Q}$ for $S=\left\{v_{\infty}, v_{2}\right\}$). The subgroups of $G(F)$ commensurable with

$$
G\left(\mathbb{Z}_{S}\right)=G \cap G L_{n}\left(\mathbb{Z}_{S}\right)
$$

are called S-arithmetic.

More generally, given a number field K and a (finite) $S \subset V^{K}$ containing V_{∞}^{K} (archimedean places), one defined the ring of S-integers

$$
\mathcal{O}_{K}(S)=\left\{a \in K^{\times} \mid v(a) \geqslant 0 \text { for all } v \in V^{K} \backslash S\right\} \cup\{0\} .
$$

Notion of arithmeticity

Given a K-defined algebraic group $G \subset \mathrm{GL}_{n}$, we set

$$
G\left(\mathcal{O}_{K}(S)\right)=G \cap G L_{n}\left(\mathcal{O}_{K}(S)\right)
$$

The subgroups of $G(F)$ (where F / K) commensurable with $G\left(\mathcal{O}_{K}(S)\right.$) are called S-arithmetic or (K, S)-arithmetic.

Notion of arithmeticity

Given a K-defined algebraic group $G \subset \mathrm{GL}_{n}$, we set

$$
G\left(\mathcal{O}_{K}(S)\right)=G \cap G L_{n}\left(\mathcal{O}_{K}(S)\right)
$$

The subgroups of $G(F)$ (where F / K) commensurable with $G\left(\mathcal{O}_{K}(S)\right.$) are called S-arithmetic or (K, S)-arithmetic.

What is an arithmetic subgroup of an algebraic group which is NOT defined over a number field?

Notion of arithmeticity

Given a K-defined algebraic group $G \subset \mathrm{GL}_{n}$, we set

$$
G\left(\mathcal{O}_{K}(S)\right)=G \cap G L_{n}\left(\mathcal{O}_{K}(S)\right)
$$

The subgroups of $G(F)$ (where F / K) commensurable with $G\left(\mathcal{O}_{K}(S)\right.$) are called S-arithmetic or (K, S)-arithmetic.

What is an arithmetic subgroup of an algebraic group which is NOT defined over a number field?
E.g.: What is an arithmetic subgroup of $G(\mathbb{R})$ where

$$
G=\mathrm{SO}_{3}(f) \text { and } f=x^{2}+e \cdot y^{2}-\pi \cdot z^{2} ?
$$

Notion of arithmeticity

We define arithmetic subgroups of $G(F)$ in terms of all possible forms of G over subfields of F that are number fields.

Notion of arithmeticity

We define arithmetic subgroups of $G(F)$ in terms of all possible forms of G over subfields of F that are number fields.

In our example, we can consider rational quadratic forms that are \mathbb{R}-equivalent to f, e.g.:

$$
f_{1}=x^{2}+y^{2}-3 z^{2} \text { or } f_{2}=x^{2}+2 y^{2}-7 z^{2} .
$$

Notion of arithmeticity

We define arithmetic subgroups of $G(F)$ in terms of all possible forms of G over subfields of F that are number fields.

In our example, we can consider rational quadratic forms that are \mathbb{R}-equivalent to f, e.g.:

$$
f_{1}=x^{2}+y^{2}-3 z^{2} \text { or } f_{2}=x^{2}+2 y^{2}-7 z^{2} .
$$

Then $\mathrm{SO}_{3}\left(f_{i}\right) \simeq \mathrm{SO}_{3}(f)$ over \mathbb{R}, and

$$
\Gamma_{i}:=\mathrm{SO}_{3}\left(f_{i}\right) \cap G L_{3}(\mathbb{Z})
$$

are arithmetic subgroups of $G(\mathbb{R})$ for $i=1,2$.

Notion of arithmeticity

We define arithmetic subgroups of $G(F)$ in terms of all possible forms of G over subfields of F that are number fields.
In our example, we can consider rational quadratic forms that are \mathbb{R}-equivalent to f, e.g.:

$$
f_{1}=x^{2}+y^{2}-3 z^{2} \text { or } f_{2}=x^{2}+2 y^{2}-7 z^{2} .
$$

Then $\mathrm{SO}_{3}\left(f_{i}\right) \simeq \mathrm{SO}_{3}(f)$ over \mathbb{R}, and

$$
\Gamma_{i}:=\mathrm{SO}_{3}\left(f_{i}\right) \cap G L_{3}(\mathbb{Z})
$$

are arithmetic subgroups of $G(\mathbb{R})$ for $i=1,2$.
One can also consider $K=\mathbb{Q}(\sqrt{2}) \subset \mathbb{R}$ and $f_{3}=x^{2}+y^{2}-\sqrt{2} z^{2}$. Then

$$
\Gamma_{3}=\mathrm{SO}_{3}\left(f_{3}\right) \cap G L_{3}(\mathbb{Z}[\sqrt{2}])
$$

is an arithmetic subgroup of $G(\mathbb{R})$ over K.

Notion of arithmeticity

We define arithmetic subgroups of $G(F)$ in terms of all possible forms of G over subfields of F that are number fields.
In our example, we can consider rational quadratic forms that are \mathbb{R}-equivalent to f, e.g.:

$$
f_{1}=x^{2}+y^{2}-3 z^{2} \text { or } f_{2}=x^{2}+2 y^{2}-7 z^{2} .
$$

Then $\mathrm{SO}_{3}\left(f_{i}\right) \simeq \mathrm{SO}_{3}(f)$ over \mathbb{R}, and

$$
\Gamma_{i}:=\mathrm{SO}_{3}\left(f_{i}\right) \cap G L_{3}(\mathbb{Z})
$$

are arithmetic subgroups of $G(\mathbb{R})$ for $i=1,2$.
One can also consider $K=\mathbb{Q}(\sqrt{2}) \subset \mathbb{R}$ and $f_{3}=x^{2}+y^{2}-\sqrt{2} z^{2}$. Then

$$
\Gamma_{3}=\mathrm{SO}_{3}\left(f_{3}\right) \cap G L_{3}(\mathbb{Z}[\sqrt{2}])
$$

is an arithmetic subgroup of $G(\mathbb{R})$ over K.
One can further replace integers by S-integers, etc.

Definition of arithmeticity

Definition. Let G be an absolutely almost simple algebraic group over a field F, char $F=0$, and $\pi: G \rightarrow \bar{G}$ be isogeny onto adjoint group.
(1) a number field K with a fixed embedding $K \hookrightarrow F$;a finite set $S \subset V^{K}$ containing V_{∞}^{K};an F / K-form \mathcal{G} of \bar{G}, i.e. $F \mathcal{G} \simeq \bar{G}$ over F.

Definition of arithmeticity

Definition. Let G be an absolutely almost simple algebraic group over a field F, char $F=0$, and $\pi: G \rightarrow \bar{G}$ be isogeny onto adjoint group.

Suppose we are given:a number field K with a fixed embedding $K \hookrightarrow F$;a finite set $S \subset V^{K}$ containing V_{∞}^{K};an F / K-form \mathcal{G} of \bar{G}, i.e. ${ }_{F} \mathcal{G} \simeq \bar{G}$ over F.

Definition of arithmeticity

Definition. Let G be an absolutely almost simple algebraic group over a field F, char $F=0$, and $\pi: G \rightarrow \bar{G}$ be isogeny onto adjoint group.

Suppose we are given:
(1) a number field K with a fixed embedding $K \hookrightarrow F$;
(2) a finite set $S \subset V^{K}$ containing V_{∞}^{K};
(3) an F / K-form \mathcal{G} of \bar{G}, i.e. ${ }_{F} \mathcal{G} \simeq \bar{G}$ over F.

Definition of arithmeticity

Definition. Let G be an absolutely almost simple algebraic group over a field F, char $F=0$, and $\pi: G \rightarrow \bar{G}$ be isogeny onto adjoint group.

Suppose we are given:
(1) a number field K with a fixed embedding $K \hookrightarrow F$;
(2) a finite set $S \subset V^{K}$ containing V_{∞}^{K};
(3) an F / K-form \mathcal{G} of \bar{G}, i.e. $F \mathcal{G} \simeq \bar{G}$ over F.

Definition of arithmeticity

Definition. Let G be an absolutely almost simple algebraic group over a field F, char $F=0$, and $\pi: G \rightarrow \bar{G}$ be isogeny onto adjoint group.

Suppose we are given:
(1) a number field K with a fixed embedding $K \hookrightarrow F$;
(2) a finite set $S \subset V^{K}$ containing V_{∞}^{K};
(3) an F / K-form \mathcal{G} of \bar{G}, i.e. ${ }_{F} \mathcal{G} \simeq \bar{G}$ over F.

Definition of arithmeticity

Definition. Let G be an absolutely almost simple algebraic group over a field F, char $F=0$, and $\pi: G \rightarrow \bar{G}$ be isogeny onto adjoint group.

Suppose we are given:
(1) a number field K with a fixed embedding $K \hookrightarrow F$;
(2) a finite set $S \subset V^{K}$ containing V_{∞}^{K};
(3) an F / K-form \mathcal{G} of \bar{G}, i.e. ${ }_{F} \mathcal{G} \simeq \bar{G}$ over F.

Then subgroups $\Gamma \subset G(F)$ such that $\pi(\Gamma)$ is commensurable with $\mathcal{G}\left(\mathcal{O}_{K}(S)\right)$ are called (\mathcal{G}, K, S)-arithmetic.

Definition of arithmeticity

Definition. Let G be an absolutely almost simple algebraic group over a field F, char $F=0$, and $\pi: G \rightarrow \bar{G}$ be isogeny onto adjoint group.

Suppose we are given:
(1) a number field K with a fixed embedding $K \hookrightarrow F$;
(2) a finite set $S \subset V^{K}$ containing V_{∞}^{K};
(3) an F / K-form \mathcal{G} of \bar{G}, i.e. ${ }_{F} \mathcal{G} \simeq \bar{G}$ over F.

Then subgroups $\Gamma \subset G(F)$ such that $\pi(\Gamma)$ is commensurable with $\mathcal{G}\left(\mathcal{O}_{K}(S)\right)$ are called (\mathcal{G}, K, S)-arithmetic.

Convention: S does not contain nonarchimedean v such that \mathcal{G} is K_{v}-anisotropic.

Definition of arithmeticity

Definition. Let G be an absolutely almost simple algebraic group over a field F, $\operatorname{char} F=0$, and $\pi: G \rightarrow \bar{G}$ be isogeny onto adjoint group.

Suppose we are given:
(1) a number field K with a fixed embedding $K \hookrightarrow F$;
(2) a finite set $S \subset V^{K}$ containing V_{∞}^{K};
(3) an F / K-form \mathcal{G} of \bar{G}, i.e. ${ }_{F} \mathcal{G} \simeq \bar{G}$ over F.

Then subgroups $\Gamma \subset G(F)$ such that $\pi(\Gamma)$ is commensurable with $\mathcal{G}\left(\mathcal{O}_{K}(S)\right)$ are called (\mathcal{G}, K, S)-arithmetic.

Convention: S does not contain nonarchimedean v such that \mathcal{G} is K_{v}-anisotropic.

We do NOT fix an F-isomorphism ${ }_{F} \mathcal{G} \simeq G$ in $n^{\circ} 3$, and by varying it we obtain a class of groups invariant under F-automorphisms.

Proposition. Let G_{1} and G_{2} be connected absolutely almost simple algebraic groups defined over a field F, char $F=0$, and let $\Gamma_{i} \subset G_{i}(F)$ be a Zariskidense $\left(\mathcal{G}_{i}, K_{i}, S_{i}\right)$-arithmetic group $(i=1,2)$.

Then Γ_{1} and Γ_{2} are commensurable up to an F-isomorphism between \bar{G}_{1} and \bar{G}_{2} if and only if

- $K_{1}=K_{2}=: K$;
- $S_{1}=S_{2}$;
- \mathcal{G}_{1} and \mathcal{G}_{2} are K-isomorphic.

Proposition. Let G_{1} and G_{2} be connected absolutely almost simple algebraic groups defined over a field F, char $F=0$, and let $\Gamma_{i} \subset G_{i}(F)$ be a Zariskidense $\left(\mathcal{G}_{i}, K_{i}, S_{i}\right)$-arithmetic group $(i=1,2)$.
Then Γ_{1} and Γ_{2} are commensurable up to an F-isomorphism between \bar{G}_{1} and \bar{G}_{2} if and only if

- $K_{1}=K_{2}=: K$;
- $S_{1}=S_{2}$;
- \mathcal{G}_{1} and \mathcal{G}_{2} are K-isomorphic.

In the above example, Γ_{1}, Γ_{2} and Γ_{3} are pairwise noncommensurable.

Proposition. Let G_{1} and G_{2} be connected absolutely almost simple algebraic groups defined over a field F, char $F=0$, and let $\Gamma_{i} \subset G_{i}(F)$ be a Zariskidense $\left(\mathcal{G}_{i}, K_{i}, S_{i}\right)$-arithmetic group $(i=1,2)$.
Then Γ_{1} and Γ_{2} are commensurable up to an F-isomorphism between \bar{G}_{1} and \bar{G}_{2} if and only if

- $K_{1}=K_{2}=: K$;
- $S_{1}=S_{2}$;
- \mathcal{G}_{1} and \mathcal{G}_{2} are K-isomorphic.

In the above example, Γ_{1}, Γ_{2} and Γ_{3} are pairwise noncommensurable.

- Γ_{1} and Γ_{2} are NOT commensurable b / c the corresponding Q-forms $\mathcal{G}_{1}=\mathrm{SO}_{3}\left(f_{1}\right)$ and $\mathcal{G}_{2}=\mathrm{SO}_{3}\left(f_{2}\right)$ are NOT isomorphic over \mathbb{Q}.

Proposition. Let G_{1} and G_{2} be connected absolutely almost simple algebraic groups defined over a field F, char $F=0$, and let $\Gamma_{i} \subset G_{i}(F)$ be a Zariskidense $\left(\mathcal{G}_{i}, K_{i}, S_{i}\right)$-arithmetic group $(i=1,2)$.
Then Γ_{1} and Γ_{2} are commensurable up to an F-isomorphism between \bar{G}_{1} and \bar{G}_{2} if and only if

- $K_{1}=K_{2}=: K$;
- $S_{1}=S_{2}$;
- \mathcal{G}_{1} and \mathcal{G}_{2} are K-isomorphic.

In the above example, Γ_{1}, Γ_{2} and Γ_{3} are pairwise noncommensurable.

- Γ_{1} and Γ_{2} are NOT commensurable b / c the corresponding Q-forms $\mathcal{G}_{1}=\mathrm{SO}_{3}\left(f_{1}\right)$ and $\mathcal{G}_{2}=\mathrm{SO}_{3}\left(f_{2}\right)$ are NOT isomorphic over \mathbb{Q}.
- Γ_{3} is NOT commensurable with either Γ_{1} or $\Gamma_{2} \mathrm{~b} / \mathrm{c}$ they have different fields of definition: $\mathbb{Q}(\sqrt{2})$ for Γ_{3}, and \mathbb{Q} for Γ_{1} and Γ_{2}.

Theorem 3. Let G_{1} and G_{2} be two connected absolutely almost simple algebraic groups defined over a field F of characteristic zero. If Zariski-dense $\left(\mathcal{G}_{i}, K_{i}, S_{i}\right)$-arithmetic $\Gamma_{i} \subset G_{i}(F)$ are weakly commensurable for $i=1,2$, then $K_{1}=K_{2}$ and $S_{1}=S_{2}$.

Theorem 3. Let G_{1} and G_{2} be two connected absolutely almost simple algebraic groups defined over a field F of characteristic zero.

If Zariski-dense $\left(\mathcal{G}_{i}, K_{i}, S_{i}\right)$-arithmetic $\Gamma_{i} \subset G_{i}(F)$ are weakly commensurable for $i=1,2$, then $K_{1}=K_{2}$ and $S_{1}=S_{2}$.

The forms \mathcal{G}_{1} and \mathcal{G}_{2} may NOT be K-isomorphic in general, but we have the following.

Theorem 4. Let G_{1} and G_{2} be two connected absolutely almost simple algebraic groups defined over a field F of characteristic zero, of the same type different from $A_{n}, D_{2 n+1}$ with $n>1$, and E_{6}, and let $\Gamma_{i} \subset G_{i}(F)$ be a (\mathcal{G}_{i}, K, S)-arithmetic subgroup.

If Γ_{1} and Γ_{2} are weakly commensurable then $\mathcal{G}_{1} \simeq \mathcal{G}_{2}$ over K, and hence Γ_{1} and Γ_{2} are commensurable up to an F-isomorphism between \bar{G}_{1} and \bar{G}_{2}.

Theorem 3. Let G_{1} and G_{2} be two connected absolutely almost simple algebraic groups defined over a field F of characteristic zero.

If Zariski-dense $\left(\mathcal{G}_{i}, K_{i}, S_{i}\right)$-arithmetic $\Gamma_{i} \subset G_{i}(F)$ are weakly commensurable for $i=1,2$, then $K_{1}=K_{2}$ and $S_{1}=S_{2}$.

The forms \mathcal{G}_{1} and \mathcal{G}_{2} may nOT be K-isomorphic in general, but we have the following.

Theorem 4. Let G_{1} and G_{2} be two connected absolutely almost simple algebraic groups defined over a field F of characteristic zero, of the same type different from $A_{n}, D_{2 n+1}$ with $n>1$, and E_{6}, and let $\Gamma_{i} \subset G_{i}(F)$ be a (\mathcal{G}_{i}, K, S)-arithmetic subgroup.

If Γ_{1} and Γ_{2} are weakly commensurable then $\mathcal{G}_{1} \simeq \mathcal{G}_{2}$ over K, and hence Γ_{1} and Γ_{2} are commensurable up to an F-isomorphism between \bar{G}_{1} and \bar{G}_{2}.
[1] - groups of type $\neq D_{2 n} ; \quad$ [2] - groups of type $D_{2 n}$ other than D_{4};
Skip Garibaldi - type D_{4} and alternative proof for all $D_{2 n}$.

Theorem 5. (Garibaldi-R.) Let G_{1} and G_{2} be connected absolutely almost simple groups of types B_{n} and $C_{n}(n \geqslant 3)$ respectively, defined over a field F of characteristic zero, and let $\Gamma_{i} \subset G_{i}(F)$ be a Zariski-dense $\left(\mathcal{G}_{i}, K, S\right)$ arithmetic subgroup.
Then Γ_{1} and Γ_{2} are weakly commensurable if and only if

- $\mathrm{rk}_{K_{v}} \mathcal{G}_{1}=\mathrm{rk}_{K_{v}} \mathcal{G}_{2}=0$ or n for all $v \in V_{\infty}^{K}$;
$\bullet \mathrm{rk}_{K_{v}} \mathcal{G}_{1}=\mathrm{rk}_{K_{v}} \mathcal{G}_{2}=n$ for all $v \in V^{K} \backslash V_{\infty}^{K}$.

Theorem 5. (Garibaldi-R.) Let G_{1} and G_{2} be connected absolutely almost simple groups of types B_{n} and $C_{n}(n \geqslant 3)$ respectively, defined over a field F of characteristic zero, and let $\Gamma_{i} \subset G_{i}(F)$ be a Zariski-dense $\left(\mathcal{G}_{i}, K, S\right)$ arithmetic subgroup.
Then Γ_{1} and Γ_{2} are weakly commensurable if and only if
$\bullet \mathrm{rk}_{K_{v}} \mathcal{G}_{1}=\mathrm{rk}_{K_{v}} \mathcal{G}_{2}=0$ or n for all $v \in V_{\infty}^{K}$;
$\bullet \mathrm{rk}_{K_{v}} \mathcal{G}_{1}=\mathrm{rk}_{K_{v}} \mathcal{G}_{2}=n$ for all $v \in V^{K} \backslash V_{\infty}^{K}$.

Theorem 6. Let G_{1} and G_{2} be two connected absolutely almost simple groups defined over a field F of characteristic zero, and let $\Gamma_{1} \subset G_{1}(F)$ be a Zariski-dense (K, S)-arithmetic subgroup.

Then the set of Zariski-dense (K, S)-arithmetic subgroups $\Gamma_{2} \subset G_{2}(F)$ which are weakly commensurable to Γ_{1}, is a union of finitely many commensurability classes.

Theorem 7. Let G_{1} and G_{2} be two connected absolutely almost simple algebraic groups defined over a field F of characteristic zero, and let $\Gamma_{i} \subset G_{i}(F)$ be a Zariski-dense $\left(\mathcal{G}_{i}, K, S\right)$-arithmetic subgroup for $i=1,2$.

If Γ_{1} and Γ_{2} are weakly commensurable then $\mathrm{rk}_{K} \mathcal{G}_{1}=\mathrm{rk}_{K} \mathcal{G}_{2}$; in particular, if \mathcal{G}_{1} is K-isotropic then so is \mathcal{G}_{2}.

Theorem 7. Let G_{1} and G_{2} be two connected absolutely almost simple algebraic groups defined over a field F of characteristic zero, and let $\Gamma_{i} \subset G_{i}(F)$ be a Zariski-dense $\left(\mathcal{G}_{i}, K, S\right)$-arithmetic subgroup for $i=1,2$.

If Γ_{1} and Γ_{2} are weakly commensurable then $\mathrm{rk}_{K} \mathcal{G}_{1}=\mathrm{rk}_{K} \mathcal{G}_{2}$; in particular, if \mathcal{G}_{1} is K-isotropic then so is \mathcal{G}_{2}.

Theorem 8. Let G_{1} and G_{2} be two connected absolutely almost simple algebraic groups defined over a nondiscrete locally compact field F of characteristic zero, and let $\Gamma_{i} \subset G_{i}(F)$ be a Zariski-dense lattice for $i=1,2$. Assume that Γ_{1} is a (K, S)-arithmetic subgroup of $G_{1}(F)$.

If Γ_{1} and Γ_{2} are weakly commensurable, then Γ_{2} is a (K, S)-arithmetic subgroup of $G_{2}(F)$.

Outline

(1) Weak commensurability

- Definition and motivations
- Basic results
- Arithmetic Groups
- Remarks on nonarithmetic case
(2) Length-commensurable locally symmetric spaces
- Links between length-commensurability and weak commensurability
- Main results
- Applications to isospectral locally symmetric spaces
(3) Proofs
- "Special" elements in Zariski-dense subgroups

Two aspects:

(1) Given a Zariski-dense subgroup $\Gamma_{1} \subset G_{1}(F)$ with $K_{\Gamma_{1}}=: K$, determine possible K-groups \mathcal{G}_{2} for which there exists a Zariski-dense subgroup $\Gamma_{2} \subset \mathcal{G}_{2}(K)$ which is weakly commensurable to Γ_{1};

- For a given K-group \mathcal{G}_{2}, determine possible $\Gamma_{2} \subset \mathcal{G}_{2}(K)$ which are weakly commensurable to Γ_{1}.

Two aspects:
(1) Given a Zariski-dense subgroup $\Gamma_{1} \subset G_{1}(F)$ with $K_{\Gamma_{1}}=: K$, determine possible K-groups \mathcal{G}_{2} for which there exists a Zariski-dense subgroup $\Gamma_{2} \subset \mathcal{G}_{2}(K)$ which is weakly commensurable to Γ_{1};
(3) For a given K-group \mathcal{G}_{2}, determine possible $\Gamma_{2} \subset \mathcal{G}_{2}(K)$ which are weakly commensurable to Γ_{1}.

Two aspects:
(1) Given a Zariski-dense subgroup $\Gamma_{1} \subset G_{1}(F)$ with $K_{\Gamma_{1}}=: K$, determine possible K-groups \mathcal{G}_{2} for which there exists a Zariski-dense subgroup $\Gamma_{2} \subset \mathcal{G}_{2}(K)$ which is weakly commensurable to Γ_{1};
(2) For a given K-group \mathcal{G}_{2}, determine possible $\Gamma_{2} \subset \mathcal{G}_{2}(K)$ which are weakly commensurable to Γ_{1}.

Two aspects:
(1) Given a Zariski-dense subgroup $\Gamma_{1} \subset G_{1}(F)$ with $K_{\Gamma_{1}}=: K$, determine possible K-groups \mathcal{G}_{2} for which there exists a Zariski-dense subgroup $\Gamma_{2} \subset \mathcal{G}_{2}(K)$ which is weakly commensurable to Γ_{1};
(2) For a given K-group \mathcal{G}_{2}, determine possible $\Gamma_{2} \subset \mathcal{G}_{2}(K)$ which are weakly commensurable to Γ_{1}.

Item 1° is closely related to the following classical question:
To what extent is an absolutely almost simple algebraic K-group G is determined by the set of isomorphism classes of its maximal K-tori?

Two aspects:
(1) Given a Zariski-dense subgroup $\Gamma_{1} \subset G_{1}(F)$ with $K_{\Gamma_{1}}=: K$, determine possible K-groups \mathcal{G}_{2} for which there exists a Zariski-dense subgroup $\Gamma_{2} \subset \mathcal{G}_{2}(K)$ which is weakly commensurable to Γ_{1};
(2) For a given K-group \mathcal{G}_{2}, determine possible $\Gamma_{2} \subset \mathcal{G}_{2}(K)$ which are weakly commensurable to Γ_{1}.

Item 1° is closely related to the following classical question:
To what extent is an absolutely almost simple algebraic K-group G is determined by the set of isomorphism classes of its maximal K-tori?
(Our results solve this problem for a number field K.)
(*) Let D_{1} and D_{2} be quaternion division algebras over a field K (char $K \neq 2$). Assume that D_{1} and D_{2} have same maximal subfields. Are D_{1} and D_{2} necessarily isomorphic?
(*) Let D_{1} and D_{2} be quaternion division algebras over a field K (char $K \neq 2$). Assume that D_{1} and D_{2} have same maximal subfields. Are D_{1} and D_{2} necessarily isomorphic?

Geometric connection:

Let

$$
M=\mathbb{H} / \Gamma
$$

be a (compact) Riemann surface, $\Gamma \subset S L_{2}(\mathbb{R})$ a discrete subgroup.
$(*)$ Let D_{1} and D_{2} be quaternion division algebras over a field K (char $K \neq 2$). Assume that D_{1} and D_{2} have same maximal subfields. Are D_{1} and D_{2} necessarily isomorphic?

Geometric connection:
Let

$$
M=\mathbb{H} / \Gamma
$$

be a (compact) Riemann surface, $\Gamma \subset S L_{2}(\mathbb{R})$ a discrete subgroup.
Associated Q-subalgebra

$$
D=\mathbb{Q}[\Gamma] \subset M_{2}(\mathbb{R})
$$

is a quaternion algebra with center

$$
K=\mathbb{Q}(\operatorname{tr} \gamma \mid \gamma \in \Gamma) \quad \text { (trace field). }
$$

$(*)$ Let D_{1} and D_{2} be quaternion division algebras over a field K (char $K \neq 2$). Assume that D_{1} and D_{2} have same maximal subfields. Are D_{1} and D_{2} necessarily isomorphic?

Geometric connection:

Let

$$
M=\mathbb{H} / \Gamma
$$

be a (compact) Riemann surface, $\Gamma \subset S L_{2}(\mathbb{R})$ a discrete subgroup.
Associated Q-subalgebra

$$
D=\mathbb{Q}[\Gamma] \subset M_{2}(\mathbb{R})
$$

is a quaternion algebra with center

$$
K=\mathbb{Q}(\operatorname{tr} \gamma \mid \gamma \in \Gamma) \quad \text { (trace field) }
$$

(.. well, one usually considers $\mathbb{Q}\left[\Gamma^{(2)}\right]$ where $\Gamma^{(2)} \subset \Gamma$ is generated by squares ...)

Let $M_{i}=\mathbb{H} / \Gamma_{i} \quad(i=1,2)$ be Riemann surfaces, and let D_{i} be the quaternion algebra associated with Γ_{i}.

Let $M_{i}=\mathbb{H} / \Gamma_{i} \quad(i=1,2)$ be Riemann surfaces, and let D_{i} be the quaternion algebra associated with Γ_{i}.

Suppose that M_{1} and M_{2} are length-commensurable.

Let $M_{i}=\mathbb{H} / \Gamma_{i} \quad(i=1,2)$ be Riemann surfaces, and let D_{i} be the quaternion algebra associated with Γ_{i}.

Suppose that M_{1} and M_{2} are length-commensurable.
Then

$$
Z\left(D_{1}\right)=Z\left(D_{2}\right)=: K
$$

and for any semi-simple $\gamma_{1} \in \Gamma_{1}$ there exists a semi-simple $\gamma_{2} \in \Gamma_{2}$ s.t.
γ_{1}^{m} and γ_{2}^{n} are conjugate in $S L_{2}(\mathbb{R})$ for some $m, n \geqslant 1$.
$\Rightarrow K\left[\gamma_{1}^{m}\right] \subset D_{1}$ and $K\left[\gamma_{2}^{n}\right] \subset D_{2}$ are isomorphic.

Let $M_{i}=\mathbb{H} / \Gamma_{i} \quad(i=1,2)$ be Riemann surfaces, and let D_{i} be the quaternion algebra associated with Γ_{i}.

Suppose that M_{1} and M_{2} are length-commensurable.
Then

$$
Z\left(D_{1}\right)=Z\left(D_{2}\right)=: K
$$

and for any semi-simple $\gamma_{1} \in \Gamma_{1}$ there exists a semi-simple $\gamma_{2} \in \Gamma_{2}$ s.t.
γ_{1}^{m} and γ_{2}^{n} are conjugate in $S L_{2}(\mathbb{R})$ for some $m, n \geqslant 1$.
$\Rightarrow K\left[\gamma_{1}^{m}\right] \subset D_{1}$ and $K\left[\gamma_{2}^{n}\right] \subset D_{2}$ are isomorphic.

Thus, length-commensurability of M_{1} and M_{2} implies that D_{1} and D_{2} have the same isomorphism classes of étale subalgebras that intersect Γ_{1} and Γ_{2}, respectively.

On the other hand,

$\Gamma_{1} \& \Gamma_{2}$ commensurable $\Rightarrow D_{1} \simeq D_{2}$.

On the other hand,
$\Gamma_{1} \& \Gamma_{2}$ commensurable $\Rightarrow D_{1} \simeq D_{2}$.

So, analysis of length-commensurability for Riemann surfaces leads to questions like $(*)$ for quaternion algebras.

On the other hand,

$$
\Gamma_{1} \& \Gamma_{2} \text { commensurable } \Rightarrow D_{1} \simeq D_{2}
$$

So, analysis of length-commensurability for Riemann surfaces leads to questions like $(*)$ for quaternion algebras.
(*) has affirmative answer over number fields \Rightarrow
$L\left(M_{1}\right)=L\left(M_{2}\right)$ for arithmetically defined Riemann surfaces $M_{1} \& M_{2}$ implies that M_{1} and M_{2} are commensurable (A. Reid).

On the other hand,

$$
\Gamma_{1} \& \Gamma_{2} \text { commensurable } \Rightarrow D_{1} \simeq D_{2}
$$

So, analysis of length-commensurability for Riemann surfaces leads to questions like $(*)$ for quaternion algebras.
(*) has affirmative answer over number fields \Rightarrow
$L\left(M_{1}\right)=L\left(M_{2}\right)$ for arithmetically defined Riemann surfaces $M_{1} \& M_{2}$ implies that M_{1} and M_{2} are commensurable (A. Reid).
(*) can have negative answer over "large" fields (Rost, Wadsworth, Schacher ...), but remains widely open over finitely generated fields.

In [1], we asked ($*$) for $K=\mathbb{Q}(x)$.

In [1], we asked $(*)$ for $K=\mathbb{Q}(x)$.

D. SALTMAN gave affirmative answer.

In [1], we asked $(*)$ for $K=\mathbb{Q}(x)$.
D. SALTMAN gave affirmative answer.

GARIBALDI-SALTMAN proved $(*)$ for $K=k(x)$ where k is any number field (and also in some other cases).

In [1], we asked $(*)$ for $K=\mathbb{Q}(x)$.
D. SALTMAN gave affirmative answer.

GARIBALDI-SALTMAN proved $(*)$ for $K=k(x)$ where k is any number field (and also in some other cases).

Theorem 9. (A.R., I.R.) If (*) holds over K then it also holds over the field of rational functions $K(x)$.

In [1], we asked $(*)$ for $K=\mathbb{Q}(x)$.
D. SALTMAN gave affirmative answer.

GARIBALDI-SALTMAN proved $(*)$ for $K=k(x)$ where k is any number field (and also in some other cases).

Theorem 9. (A.R., I.R.) If (*) holds over K then it also holds over the field of rational functions $K(x)$.

Definition. Let D be a finite-dimensional central division algebra / K. The genus of D is

$$
\begin{aligned}
& \operatorname{gen}(D)=\left\{\left[D^{\prime}\right] \in \operatorname{Br}(K) \mid D^{\prime}\right. \text { division algebra with } \\
& \\
& \text { same maximal subfields as } D\} .
\end{aligned}
$$

Question A: When does gen (D) consist of a single class?

Is this the case for quaternions?

Question A: When does gen (D) consist of a single class?
Is this the case for quaternions?

Question B: When is gen (D) finite?

Question A: When does gen (D) consist of a single class? Is this the case for quaternions?

Question B: When is gen (D) finite?

Question A is meaningful only for algebras D of exponent 2 . Indeed, $D^{\text {op }}$ has the same maximal subfields as D. But if $D \simeq D^{\text {op }}$ then $[D] \in \operatorname{Br}(K)$ has exponent 2.

Question A: When does gen (D) consist of a single class? Is this the case for quaternions?

Question B: When is gen (D) finite?

Question A is meaningful only for algebras D of exponent 2 . Indeed, $D^{\text {op }}$ has the same maximal subfields as D. But if $D \simeq D^{\text {op }}$ then $[D] \in \operatorname{Br}(K)$ has exponent 2.

Question B makes sense for division algebras of any degree.

Question A: When does gen (D) consist of a single class?
Is this the case for quaternions?

Question B: When is gen (D) finite?

Question A is meaningful only for algebras D of exponent 2 . Indeed, D^{op} has the same maximal subfields as D. But if $D \simeq D^{\mathrm{op}}$ then $[D] \in \operatorname{Br}(K)$ has exponent 2.

Question B makes sense for division algebras of any degree.

Both questions have the affirmative answer over number fields.

Theorem 10. (Chernousov $+\mathrm{R}^{2}$) Let K be a field of characteristic $\neq 2$. If K satisfies the following property
(•) Any two finite-dimensional central division K-algebras D_{1} and D_{2} of exponent two that have the same maximal subfields are necessarily isomorphic,
then the field of rational functions $K(x)$ also has (\bullet).

Theorem 10. (Chernousov $+\mathrm{R}^{2}$) Let K be a field of characteristic $\neq 2$. If K satisfies the following property
(•) Any two finite-dimensional central division K-algebras D_{1} and D_{2} of exponent two that have the same maximal subfields are necessarily isomorphic,
then the field of rational functions $K(x)$ also has (\bullet).

Theorem 11. $\left(\mathrm{C}+\mathrm{R}^{2}\right)$ Let K be a finitely generated field, and let D be a central division algebra / K of degree n which is prime to char K. Then $\operatorname{gen}(D)$ is finite.

Conjecture. Let G_{1}, G_{2} be absolutely simple algebraic groups over a field F, char $F=0$, let $\Gamma_{1} \subset G_{1}(F)$ be a finitely generated Zariski-dense subgroup. Set $K=K_{\Gamma_{1}}$.

Then there exist a finite collection $\mathcal{G}_{2}^{(1)}, \ldots, \mathcal{G}_{2}^{(r)}$ of F / K-forms of G_{2} such that if $\Gamma_{2} \subset G_{2}(F)$ is a Zariski-dense subgroup weakly commensurable to Γ_{1} then Γ_{2} is contained (up to an F-automorphism of G_{2}) in one of the $\mathcal{G}_{2}^{(i)}(K)$'s.

Conjecture. Let G_{1}, G_{2} be absolutely simple algebraic groups over a field F, char $F=0$, let $\Gamma_{1} \subset G_{1}(F)$ be a finitely generated Zariski-dense subgroup. Set $K=K_{\Gamma_{1}}$.

Then there exist a finite collection $\mathcal{G}_{2}^{(1)}, \ldots, \mathcal{G}_{2}^{(r)}$ of F / K-forms of G_{2} such that if $\Gamma_{2} \subset G_{2}(F)$ is a Zariski-dense subgroup weakly commensurable to Γ_{1} then Γ_{2} is contained (up to an F-automorphism of G_{2}) in one of the $\mathcal{G}_{2}^{(i)}(K)$'s.

Question: When can one take $r=1$?

Outline

(1) Weak commensurability

- Definition and motivations
- Basic results
- Arithmetic Groups
- Remarks on nonarithmetic case
(2) Length-commensurable locally symmetric spaces
- Links between length-commensurability and weak commensurability
- Main results
- Applications to isospectral locally symmetric spaces
(3) Proofs
- "Special" elements in Zariski-dense subgroups

Notations

- G a connected absolutely (almost) simple algebraic group $/ \mathbb{R}$; $\mathcal{G}=G(\mathbb{R})$
- \mathcal{K} a maximal compact subgroup of \mathcal{G}; $\mathfrak{X}=\mathcal{K} \backslash \mathcal{G}$ associated symmetric space, $\quad \mathrm{rk} \mathfrak{X}=\mathrm{rk}_{\mathbb{R}} G$
- Γ a discrete torsion-free subgroup of $\mathcal{G}, \mathfrak{X}_{\Gamma}=\mathfrak{X} / \Gamma$
- \mathfrak{X}_{Γ} is arithmetically defined if Γ is arithmetic (for $S=V_{\infty}^{K}$) as defined earlier

Notations

- G a connected absolutely (almost) simple algebraic group $/ \mathbb{R}$; $\mathcal{G}=G(\mathbb{R})$
- \mathcal{K} a maximal compact subgroup of \mathcal{G}; $\mathfrak{X}=\mathcal{K} \backslash \mathcal{G}$ associated symmetric space, $\quad \mathrm{rk} \mathfrak{X}=\mathrm{rk}_{\mathbb{R}} G$
- Γ a discrete torsion-free subgroup of $\mathcal{G}, \mathfrak{X}_{\Gamma}=\mathfrak{X} / \Gamma$
- \mathfrak{X}_{Γ} is arithmetically defined if Γ is arithmetic (for $S=V_{\infty}^{K}$) as defined earlier

Notations

- G a connected absolutely (almost) simple algebraic group $/ \mathbb{R}$; $\mathcal{G}=G(\mathbb{R})$
- \mathcal{K} a maximal compact subgroup of \mathcal{G};
$\mathfrak{X}=\mathcal{K} \backslash \mathcal{G}$ associated symmetric space, $\quad \mathrm{rk} \mathfrak{X}=\mathrm{rk}_{\mathbb{R}} G$
- Γ a discrete torsion-free subgroup of $\mathcal{G}, \mathfrak{X}_{\Gamma}=\mathfrak{X} / \Gamma$
- \mathfrak{X}_{Γ} is arithmetically defined if Γ is arithmetic (for $S=V_{\infty}^{K}$) as defined earlier

Notations

- G a connected absolutely (almost) simple algebraic group $/ \mathbb{R}$; $\mathcal{G}=G(\mathbb{R})$
- \mathcal{K} a maximal compact subgroup of \mathcal{G}; $\mathfrak{X}=\mathcal{K} \backslash \mathcal{G}$ associated symmetric space, $\quad \mathrm{rk} \mathfrak{X}=\mathrm{rk}_{\mathbb{R}} G$
- Γ a discrete torsion-free subgroup of $\mathcal{G}, \mathfrak{X}_{\Gamma}=\mathfrak{X} / \Gamma$
- \mathfrak{X}_{Γ} is arithmetically defined if Γ is arithmetic (for $S=V_{\infty}^{K}$) as defined earlier

Notations

- G a connected absolutely (almost) simple algebraic group $/ \mathbb{R}$; $\mathcal{G}=G(\mathbb{R})$
- \mathcal{K} a maximal compact subgroup of \mathcal{G}; $\mathfrak{X}=\mathcal{K} \backslash \mathcal{G}$ associated symmetric space, $\quad \mathrm{rk} \mathfrak{X}=\mathrm{rk}_{\mathbb{R}} G$
- Γ a discrete torsion-free subgroup of $\mathcal{G}, \mathfrak{X}_{\Gamma}=\mathfrak{X} / \Gamma$
- \mathfrak{X}_{Γ} is arithmetically defined if Γ is arithmetic (for $S=V_{\infty}^{K}$) as defined earlier

Given $G_{1}, G_{2}, \quad \Gamma_{i} \subset \mathcal{G}_{i}:=G_{i}(\mathbb{R})$ etc. as above, we will denote the corresponding locally symmetric spaces by $\mathfrak{X}_{\Gamma_{i}}$.

Two Riemannian manifolds M_{1} and M_{2} are:

- commensurable if they have a common finite-sheeted cover;
> - length-commensurable if $\mathbb{Q} \cdot L\left(M_{1}\right)=\mathbb{Q} \cdot L\left(M_{2}\right)$, where $L\left(M_{i}\right)$ is the set of lengths of all closed geodesics in M_{i}.

Two Riemannian manifolds M_{1} and M_{2} are:

- commensurable if they have a common finite-sheeted cover;
- length-commensurable if $\mathbb{Q} \cdot L\left(M_{1}\right)=\mathbb{Q} \cdot L\left(M_{2}\right)$, where $L\left(M_{i}\right)$ is the set of lengths of all closed geodesics in M_{i}.

Two Riemannian manifolds M_{1} and M_{2} are:

- commensurable if they have a common finite-sheeted cover;
- length-commensurable if $\mathbb{Q} \cdot L\left(M_{1}\right)=\mathbb{Q} \cdot L\left(M_{2}\right)$, where $L\left(M_{i}\right)$ is the set of lengths of all closed geodesics in M_{i}.

Two Riemannian manifolds M_{1} and M_{2} are:

- commensurable if they have a common finite-sheeted cover;
- length-commensurable if $\mathbb{Q} \cdot L\left(M_{1}\right)=\mathbb{Q} \cdot L\left(M_{2}\right)$, where $L\left(M_{i}\right)$ is the set of lengths of all closed geodesics in M_{i}.

Question: When does length-commensurability imply commensurability?

Two Riemannian manifolds M_{1} and M_{2} are:

- commensurable if they have a common finite-sheeted cover;
- length-commensurable if $\mathbb{Q} \cdot L\left(M_{1}\right)=\mathbb{Q} \cdot L\left(M_{2}\right)$, where $L\left(M_{i}\right)$ is the set of lengths of all closed geodesics in M_{i}.

Question: When does length-commensurability imply commensurability?
$\mathfrak{X}_{\Gamma_{1}}$ and $\mathfrak{X}_{\Gamma_{2}}$ are commensurable $\Leftrightarrow \Gamma_{1}$ and Γ_{2} are commensurable up to an isomorphism between \bar{G}_{1} and \bar{G}_{2}.

Two Riemannian manifolds M_{1} and M_{2} are:

- commensurable if they have a common finite-sheeted cover;
- length-commensurable if $\mathbb{Q} \cdot L\left(M_{1}\right)=\mathbb{Q} \cdot L\left(M_{2}\right)$, where $L\left(M_{i}\right)$ is the set of lengths of all closed geodesics in M_{i}.

Question: When does length-commensurability imply commensurability?
$\mathfrak{X}_{\Gamma_{1}}$ and $\mathfrak{X}_{\Gamma_{2}}$ are commensurable $\Leftrightarrow \Gamma_{1}$ and Γ_{2} are commensurable up to an isomorphism between \bar{G}_{1} and \bar{G}_{2}.

Fact. Assume that $\mathfrak{X}_{\Gamma_{1}}$ and $\mathfrak{X}_{\Gamma_{2}}$ are of finite volume.
If $\mathfrak{X}_{\Gamma_{1}}$ and $\mathfrak{X}_{\Gamma_{2}}$ are length-commensurable then (under minor technical assumptions) Γ_{1} and Γ_{2} are weakly commensurable.

The proof relies:

- in rank one case - on the result of Gel'fond and Schneider (1934):
if α and β are algebraic numbers $\neq 0,1$ then $\frac{\log \alpha}{\log \beta}$ is either rational or transcendental.
- in higher rank case - on the following Conjecture (Shanuel) If $z_{1}, \ldots, z_{n} \in \mathbb{C}$ are linearly independent over Q, then the transcendence degree of the field generated by

is $\geqslant n$.

The proof relies:

- in rank one case - on the result of Gel'fond and Schneider (1934):
if α and β are algebraic numbers $\neq 0,1$ then $\frac{\log \alpha}{\log \beta}$ is either rational or transcendental.
- in higher rank case - on the following

Conjecture (Shanuel) If $z_{1}, \ldots, z_{n} \in \mathbb{C}$ are linearly independent over Q, then the transcendence degree of the field generated by

The proof relies:

- in rank one case - on the result of Gel'fond and Schneider (1934):
if α and β are algebraic numbers $\neq 0,1$ then $\frac{\log \alpha}{\log \beta}$ is either rational or transcendental.
- in higher rank case - on the following

Conjecture (Shanuel) If $z_{1}, \ldots, z_{n} \in \mathbb{C}$ are linearly independent over Q, then the transcendence degree of the field generated by

$$
z_{1}, \ldots, z_{n} ; e^{z_{1}}, \ldots, e^{z_{n}}
$$

$i s \geqslant n$.

The proof relies:

- in rank one case - on the result of Gel'fond and Schneider (1934):
if α and β are algebraic numbers $\neq 0,1$ then $\frac{\log \alpha}{\log \beta}$ is either rational or transcendental.
- in higher rank case - on the following

Conjecture (Shanuel) If $z_{1}, \ldots, z_{n} \in \mathbb{C}$ are linearly independent over
Q, then the transcendence degree of the field generated by

$$
z_{1}, \ldots, z_{n} ; e^{z_{1}}, \ldots, e^{z_{n}}
$$

is $\geqslant n$.
(We mostly need that for nonzero algebraic numbers z_{1}, \ldots, z_{n}, the logarithms

$$
\log z_{1}, \ldots, \log z_{n}
$$

are algebraically independent over Q once they are linearly independent.)

The proof relies:

- in rank one case - on the result of Gel'fond and Schneider (1934):
if α and β are algebraic numbers $\neq 0,1$ then $\frac{\log \alpha}{\log \beta}$ is either rational or transcendental.
- in higher rank case - on the following

Conjecture (Shanuel) If $z_{1}, \ldots, z_{n} \in \mathbb{C}$ are linearly independent over
Q, then the transcendence degree of the field generated by

$$
z_{1}, \ldots, z_{n} ; e^{z_{1}}, \ldots, e^{z_{n}}
$$

is $\geqslant n$.
(We mostly need that for nonzero algebraic numbers z_{1}, \ldots, z_{n}, the logarithms

$$
\log z_{1}, \ldots, \log z_{n}
$$

are algebraically independent over Q once they are linearly independent.)

So, our results for higher rank spaces are conditional.

Outline

(1) Weak commensurability

- Definition and motivations
- Basic results
- Arithmetic Groups
- Remarks on nonarithmetic case
(2) Length-commensurable locally symmetric spaces
- Links between length-commensurability and weak commensurability
- Main results
- Applications to isospectral locally symmetric spaces
(3) Proofs
- "Special" elements in Zariski-dense subgroups

Theorem 12. Let $\mathfrak{X}_{\Gamma_{1}}$ and $\mathfrak{X}_{\Gamma_{2}}$ be locally symmetric spaces of finite volume. If they are length-commensurable then

- either G_{1} and G_{2} are of the same Killing-Cartan type, or one of them is of type B_{n} and the other is of type C_{n};
- $K_{\Gamma_{1}}=K_{\Gamma_{2}}$.

Theorem 12. Let $\mathfrak{X}_{\Gamma_{1}}$ and $\mathfrak{X}_{\Gamma_{2}}$ be locally symmetric spaces of finite volume. If they are length-commensurable then

- either G_{1} and G_{2} are of the same Killing-Cartan type, or one of them is of type B_{n} and the other is of type C_{n};
- $K_{\Gamma_{1}}=K_{\Gamma_{2}}$.

Theorem 13. Let $\mathfrak{X}_{\Gamma_{1}}$ be an arithmetically defined locally symmetric space. The set of arithmetically defined locally symmetric spaces $\mathfrak{X}_{\Gamma_{2}}$ which are length-commensurable to $\mathfrak{X}_{\Gamma_{1}}$, is a union of finitely many commensurability classes. It consists of a single commensurability class if G_{1} and G_{2} have the same type different from $A_{n}, D_{2 n+1}$ with $n>1$ and E_{6}.

Corollary.

(1) Let d be even or $\equiv 3(\bmod 4)$, and let M_{1} and M_{2} be arithmetic quotients of the d-dimensional real hyperbolic space.

If M_{1} and M_{2} are not commensurable, then (after a possible interchange of M_{1} and M_{2}) there exists $\lambda_{1} \in L\left(M_{1}\right)$ such that for any $\lambda_{2} \in L\left(M_{2}\right)$, the ratio $\lambda_{1} / \lambda_{2}$ is transcendental over \mathbb{Q} (in particular, M_{1} and M_{2} are not length-commensurable.)
\square commensurable, arithmetic quotients of the real hyperbolic d-space.

Corollary.

(1) Let d be even or $\equiv 3(\bmod 4)$, and let M_{1} and M_{2} be arithmetic quotients of the d-dimensional real hyperbolic space. If M_{1} and M_{2} are not commensurable, then (after a possible interchange of M_{1} and M_{2}) there exists $\lambda_{1} \in L\left(M_{1}\right)$ such that for any $\lambda_{2} \in L\left(M_{2}\right)$, the ratio $\lambda_{1} / \lambda_{2}$ is transcendental over \mathbb{Q} (in particular, M_{1} and M_{2} are not length-commensurable.)
(2) For any $d \equiv 1(\bmod 4)$ there exist length-commensurable, but not commensurable, arithmetic quotients of the real hyperbolic d-space.

Theorem 14. Let $\mathfrak{X}_{\Gamma_{1}}$ and $\mathfrak{X}_{\Gamma_{2}}$ be locally symmetric spaces of finite volume which are length-commensurable. Assume that one of the spaces is arithmetically defined. Then
(1) the other space is also arithmetically defined;
(2) compactness of one of the spaces implies compactness of the other.

Theorem 14. Let $\mathfrak{X}_{\Gamma_{1}}$ and $\mathfrak{X}_{\Gamma_{2}}$ be locally symmetric spaces of finite volume which are length-commensurable. Assume that one of the spaces is arithmetically defined. Then
(1) the other space is also arithmetically defined;
(2) compactness of one of the spaces implies compactness of the other.

- It would be interesting to find a geometric explanation of item 2°.

Theorem 14. Let $\mathfrak{X}_{\Gamma_{1}}$ and $\mathfrak{X}_{\Gamma_{2}}$ be locally symmetric spaces of finite volume which are length-commensurable. Assume that one of the spaces is arithmetically defined. Then
(1) the other space is also arithmetically defined;
(2) compactness of one of the spaces implies compactness of the other.

- It would be interesting to find a geometric explanation of item 2°.
- Is 2° remains valid without any assumptions on arithmeticity?

Theorem 14. Let $\mathfrak{X}_{\Gamma_{1}}$ and $\mathfrak{X}_{\Gamma_{2}}$ be locally symmetric spaces of finite volume which are length-commensurable. Assume that one of the spaces is arithmetically defined. Then
(1) the other space is also arithmetically defined;
(2) compactness of one of the spaces implies compactness of the other.

- It would be interesting to find a geometric explanation of item 2°.
- Is 2° remains valid without any assumptions on arithmeticity?

RECALL that for any lattice Γ, compactness of \mathfrak{X}_{Γ} is equivalent to the existence of nontrivial unipotents in Γ. So, one can ask: Suppose two lattices are weakly commensurable. Does the existence of nontrivial unipotents in one of them implies their existence in the other? This question makes sense for arbitrary Zariski-dense subgroups.

Outline

(1) Weak commensurability

- Definition and motivations
- Basic results
- Arithmetic Groups
- Remarks on nonarithmetic case
(2) Length-commensurable locally symmetric spaces
- Links between length-commensurability and weak commensurability
- Main results
- Applications to isospectral locally symmetric spaces
(3) Proofs
- "Special" elements in Zariski-dense subgroups

Two compact Riemannian manifolds are isospectral if they have the same spectra of the Laplace-Beltrami operator (same eigenvalues and same multiplicities).

Two compact Riemannian manifolds are isospectral if they have the same spectra of the Laplace-Beltrami operator (same eigenvalues and same multiplicities).

Fact. Let M_{1} and M_{2} be two compact locally symmetric spaces.
If M_{1} and M_{2} are isospectral then $L\left(M_{1}\right)=L\left(M_{2}\right)$.

Two compact Riemannian manifolds are isospectral if they have the same spectra of the Laplace-Beltrami operator (same eigenvalues and same multiplicities).

Fact. Let M_{1} and M_{2} be two compact locally symmetric spaces.
If M_{1} and M_{2} are isospectral then $L\left(M_{1}\right)=L\left(M_{2}\right)$.
\Rightarrow if $\mathfrak{X}_{\Gamma_{1}}$ and $\mathfrak{X}_{\Gamma_{1}}$ are compact and isospectral then Γ_{1} and Γ_{2} are weakly commensurable.

Two compact Riemannian manifolds are isospectral if they have the same spectra of the Laplace-Beltrami operator (same eigenvalues and same multiplicities).

Fact. Let M_{1} and M_{2} be two compact locally symmetric spaces.
If M_{1} and M_{2} are isospectral then $L\left(M_{1}\right)=L\left(M_{2}\right)$.
\Rightarrow if $\mathfrak{X}_{\Gamma_{1}}$ and $\mathfrak{X}_{\Gamma_{1}}$ are compact and isospectral then Γ_{1} and Γ_{2} are weakly commensurable.

Theorem 15. Let $\mathfrak{X}_{\Gamma_{1}}$ and $\mathfrak{X}_{\Gamma_{2}}$ be isospectral compact locally symmetric spaces. If Γ_{1} is arithmetic then Γ_{2} is also arithmetic.

Theorem 16. Assume that $\mathfrak{X}_{\Gamma_{1}}$ and $\mathfrak{X}_{\Gamma_{2}}$ are isospectral compact locally symmetric spaces, and at least one of the subgroups Γ_{1} or Γ_{2} is arithmetic. Then $G_{1}=G_{2}=: G$. Moreover, unless G is type $A_{n}, D_{2 n+1}(n>1)$ or E_{6}, the spaces $\mathfrak{X}_{\Gamma_{1}}$ and $\mathfrak{X}_{\Gamma_{2}}$ are commensurable.

Theorem 16. Assume that $\mathfrak{X}_{\Gamma_{1}}$ and $\mathfrak{X}_{\Gamma_{2}}$ are isospectral compact locally symmetric spaces, and at least one of the subgroups Γ_{1} or Γ_{2} is arithmetic. Then $G_{1}=G_{2}=$: G. Moreover, unless G is type $A_{n}, D_{2 n+1}(n>1)$ or E_{6}, the spaces $\mathfrak{X}_{\Gamma_{1}}$ and $\mathfrak{X}_{\Gamma_{2}}$ are commensurable.

It would be interesting to determine if Theorem 16 remains valid without any assumptions of arithmeticity.

Outline

(1) Weak commensurability

- Definition and motivations
- Basic results
- Arithmetic Groups
- Remarks on nonarithmetic case
(2) Length-commensurable locally symmetric spaces
- Links between length-commensurability and weak commensurability
- Main results
- Applications to isospectral locally symmetric spaces
(3) Proofs
- "Special" elements in Zariski-dense subgroups

Proofs rely on the existence of "special" elements in Zariski-dense subgroups.

Proofs rely on the existence of "special" elements in Zariski-dense subgroups.

Question 1: Let \mathcal{G} be a compact Lie group, and let $\Gamma \subset \mathcal{G}$ be a dense subgroup.
Does there exist $\gamma \in \Gamma$ such that $\overline{\langle\gamma\rangle}$ is a maximal torus of \mathcal{G} ?

Proofs rely on the existence of "special" elements in Zariski-dense subgroups.

Question 1: Let \mathcal{G} be a compact Lie group, and let $\Gamma \subset \mathcal{G}$ be a dense subgroup. Does there exist $\gamma \in \Gamma$ such that $\overline{\langle\gamma\rangle}$ is a maximal torus of \mathcal{G} ?

Question 2: Let G be a reductive algebraic group over a field K (of characteristic zero), and let $\Gamma \subset G(K)$ be a Zariski-dense subgroup. Does there exist a semi-simple $\gamma \in \Gamma$ such that the Zariski closure $\overline{\langle\gamma\rangle}$ is a maximal torus of G ?

Proofs rely on the existence of "special" elements in Zariski-dense subgroups.

Question 1: Let \mathcal{G} be a compact Lie group, and let $\Gamma \subset \mathcal{G}$ be a dense subgroup. Does there exist $\gamma \in \Gamma$ such that $\overline{\langle\gamma\rangle}$ is a maximal torus of \mathcal{G} ?

Question 2: Let G be a reductive algebraic group over a field K (of characteristic zero), and let $\Gamma \subset G(K)$ be a Zariski-dense subgroup. Does there exist a semi-simple $\gamma \in \Gamma$ such that the Zariski closure $\overline{\langle\gamma\rangle}$ is a maximal torus of G ?

Elements of this kind will be called generic (this notion will be specialized further later on)

The answer is No to both questions if \mathcal{G} (resp., G) is a torus.

The answer is No to both questions if \mathcal{G} (resp., G) is a torus.

Example 1: Let $\mathcal{G}=\mathbb{R} / \mathbb{Z} \times \mathbb{R} / \mathbb{Z}$, and let

$$
\Gamma=(\sqrt{2} \mathbb{Z}+\mathbb{Z}) / \mathbb{Z} \times(\sqrt{2} \mathbb{Z}+\mathbb{Z}) / \mathbb{Z}
$$

Then Γ is dense in \mathcal{G}, but for any

$$
\gamma=(\sqrt{2} m(\bmod \mathbb{Z}), \sqrt{2} n(\bmod \mathbb{Z})) \in \Gamma
$$

we have $\overline{\langle\gamma\rangle} \subset\{(a(\bmod \mathbb{Z}), b(\bmod \mathbb{Z})) \mid n a-m b \equiv 0(\bmod \mathbb{Z})\}$, so $\overline{\langle\gamma\rangle} \neq \mathcal{G}$.

The answer is No to both questions if \mathcal{G} (resp., G) is a torus.

Example 1: Let $\mathcal{G}=\mathbb{R} / \mathbb{Z} \times \mathbb{R} / \mathbb{Z}$, and let

$$
\Gamma=(\sqrt{2} \mathbb{Z}+\mathbb{Z}) / \mathbb{Z} \times(\sqrt{2} \mathbb{Z}+\mathbb{Z}) / \mathbb{Z}
$$

Then Γ is dense in \mathcal{G}, but for any

$$
\gamma=(\sqrt{2} m(\bmod \mathbb{Z}), \sqrt{2} n(\bmod \mathbb{Z})) \in \Gamma
$$

we have $\overline{\langle\gamma\rangle} \subset\{(a(\bmod \mathbb{Z}), b(\bmod \mathbb{Z})) \mid n a-m b \equiv 0(\bmod \mathbb{Z})\}$, so $\overline{\langle\gamma\rangle} \neq \mathcal{G}$.

Example 2: Let $G=\mathbb{C}^{\times} \times \mathbb{C}^{\times}$, and let $\varepsilon \in \mathbb{C}^{\times}$be NOT a root of unity. Then $\Gamma=\langle\varepsilon\rangle \times\langle\varepsilon\rangle$ is Zariski-dense in G, but for any $\gamma=\left(\varepsilon^{m}, \varepsilon^{n}\right) \in \Gamma$, we have $\overline{\langle\gamma\rangle} \subset\left\{(x, y) \in G \mid x^{n}=y^{m}\right\} \neq G$.

The answer to both questions is YES if \mathcal{G} (resp., G) is semi-simple.

The answer to both questions is YES if \mathcal{G} (resp., G) is semi-simple.
Proofs use p-adic techniques.

The answer to both questions is YES if \mathcal{G} (resp., G) is semi-simple.
Proofs use p-adic techniques.
Question 1 reduces to Question 2 (b/c in compact groups, Zariski-dense subgroups are also dense in the usual topology), so we will focus on Question 2.

The answer to both questions is YES if \mathcal{G} (resp., G) is semi-simple.
Proofs use p-adic techniques.
Question 1 reduces to Question 2 (b/c in compact groups, Zariski-dense subgroups are also dense in the usual topology), so we will focus on Question 2.

Example 3: Let G be a simple \mathbb{Q}-group with $\mathrm{rk}_{\mathbb{R}} G=1$. Then $\Gamma=G(\mathbb{Z})$ is Zariski-dense. Let $T \subset G$ be a maximal Q-torus.

The answer to both questions is YES if \mathcal{G} (resp., G) is semi-simple.
Proofs use p-adic techniques.
Question 1 reduces to Question 2 (b/c in compact groups, Zariski-dense subgroups are also dense in the usual topology), so we will focus on Question 2.

Example 3: Let G be a simple \mathbb{Q}-group with $\mathrm{rk}_{\mathbb{R}} G=1$. Then $\Gamma=G(\mathbb{Z})$ is Zariski-dense. Let $T \subset G$ be a maximal Q-torus. If T has a proper Q-subtorus T^{\prime}, then

$$
T=T^{\prime} \cdot T^{\prime \prime}
$$

(almost direct product), so $T(\mathbb{Z})$ is commensurable with $T^{\prime}(\mathbb{Z}) \cdot T^{\prime \prime}(\mathbb{Z})$.

The answer to both questions is YES if \mathcal{G} (resp., G) is semi-simple.
Proofs use p-adic techniques.
Question 1 reduces to Question 2 (b/c in compact groups, Zariski-dense subgroups are also dense in the usual topology), so we will focus on Question 2.

Example 3: Let G be a simple \mathbb{Q}-group with $\mathrm{rk}_{\mathbb{R}} G=1$. Then $\Gamma=G(\mathbb{Z})$ is Zariski-dense. Let $T \subset G$ be a maximal Q-torus. If T has a proper Q-subtorus T^{\prime}, then

$$
T=T^{\prime} \cdot T^{\prime \prime}
$$

(almost direct product), so $T(\mathbb{Z})$ is commensurable with $T^{\prime}(\mathbb{Z}) \cdot T^{\prime \prime}(\mathbb{Z})$.
Thus, for any $\gamma \in T \cap \Gamma$, we have $\gamma^{n} \in T^{\prime}$ or $T^{\prime \prime}$, and therefore $T \neq \overline{\langle\gamma\rangle}$.

In this example, T can only be generated by a single element $\gamma \in T \cap \Gamma$ if it contains NO proper Q-subtori.

In this example, T can only be generated by a single element $\gamma \in T \cap \Gamma$ if it contains No proper Q-subtori.

Conversely, if T is a Q -torus without proper Q -subtori then any $\gamma \in T(\mathrm{Q})$ of infinite order generates a Zariski-dense subgroup of T.

In this example, T can only be generated by a single element $\gamma \in T \cap \Gamma$ if it contains No proper Q-subtori.

Conversely, if T is a Q -torus without proper Q -subtori then any $\gamma \in T(\mathrm{Q})$ of infinite order generates a Zariski-dense subgroup of T.

Definition. Let T be an algebraic torus defined over a field K. Then T is (K)-irreducible if it does not any proper K-defined subtori.

In this example, T can only be generated by a single element $\gamma \in T \cap \Gamma$ if it contains NO proper Q-subtori.

Conversely, if T is a Q-torus without proper Q-subtori then any $\gamma \in T(\mathbf{Q})$ of infinite order generates a Zariski-dense subgroup of T.

Definition. Let T be an algebraic torus defined over a field K. Then T is (K)-irreducible if it does not any proper K-defined subtori.

Lemma 1. If T is irreducible over K then for any $\gamma \in T(K)$ of infinite order, $\overline{\langle\gamma\rangle}=T$.

In this example, T can only be generated by a single element $\gamma \in T \cap \Gamma$ if it contains No proper Q-subtori.

Conversely, if T is a Q -torus without proper Q -subtori then any $\gamma \in T(\mathbb{Q})$ of infinite order generates a Zariski-dense subgroup of T.

Definition. Let T be an algebraic torus defined over a field K. Then T is (K)-irreducible if it does not any proper K-defined subtori.

Lemma 1. If T is irreducible over K then for any $\gamma \in T(K)$ of infinite order, $\langle\gamma\rangle=T$.

Thus, a regular semi-simple $\gamma \in \Gamma \subset G(K)$ is "generic" if $T=C_{G}(\gamma)^{\circ}$ is K -irreducible.

Let T be a K-torus.

- X (T) - group of characters of T
- K_{T} - minimal splitting field of T
- $\mathcal{G}_{T}=\operatorname{Gal}\left(K_{T} / K\right)$
- $\theta_{T}: \mathcal{G}_{T} \rightarrow \mathrm{GL}\left(X(T) \otimes_{\mathbb{Z}} \mathbb{Q}\right)$

Let T be a K-torus.

- X (T) - group of characters of T
- K_{T} - minimal splitting field of T
- $\mathcal{G}_{T}=\operatorname{Gal}\left(K_{T} / K\right)$
- $\theta_{T}: \mathcal{G}_{T} \rightarrow \mathrm{GL}\left(X(T) \otimes_{\mathbb{Z}} \mathbb{Q}\right)$

Lemma 2. T is K-irreducible $\Leftrightarrow \theta_{T}$ is irreducible.

Let T be a K-torus.

- X (T) - group of characters of T
- K_{T} - minimal splitting field of T
- $\mathcal{G}_{T}=\operatorname{Gal}\left(K_{T} / K\right)$
- $\theta_{T}: \mathcal{G}_{T} \rightarrow \mathrm{GL}\left(X(T) \otimes_{\mathbb{Z}} \mathbb{Q}\right)$

Lemma 2. T is K-irreducible $\Leftrightarrow \theta_{T}$ is irreducible.
Let T be a maximal K-torus of an absolutely almost simple K-group G.
If $\Phi=\Phi(G, T)$ is the root system then $\theta\left(\mathcal{G}_{T}\right) \subset \operatorname{Aut}(\Phi)$.

Let T be a K-torus.

- X (T) - group of characters of T
- K_{T} - minimal splitting field of T
- $\mathcal{G}_{T}=\operatorname{Gal}\left(K_{T} / K\right)$
- $\theta_{T}: \mathcal{G}_{T} \rightarrow \mathrm{GL}\left(X(T) \otimes_{\mathbb{Z}} \mathbb{Q}\right)$

Lemma 2. T is K-irreducible $\Leftrightarrow \theta_{T}$ is irreducible.
Let T be a maximal K-torus of an absolutely almost simple K-group G. If $\Phi=\Phi(G, T)$ is the root system then $\theta\left(\mathcal{G}_{T}\right) \subset \operatorname{Aut}(\Phi)$.

If $\theta_{T}\left(\mathcal{G}_{T}\right) \supset W(\Phi)=W(G, T)$ then T is irreducible
(such tori are called generic).

Let T be a K-torus.

- $X(T)$ - group of characters of T
- K_{T} - minimal splitting field of T
- $\mathcal{G}_{T}=\operatorname{Gal}\left(K_{T} / K\right)$
- $\theta_{T}: \mathcal{G}_{T} \rightarrow \mathrm{GL}\left(X(T) \otimes_{\mathbb{Z}} \mathbb{Q}\right)$

Lemma 2. T is K-irreducible $\Leftrightarrow \theta_{T}$ is irreducible.
Let T be a maximal K-torus of an absolutely almost simple K-group G.
If $\Phi=\Phi(G, T)$ is the root system then $\theta\left(\mathcal{G}_{T}\right) \subset \operatorname{Aut}(\Phi)$.
If $\theta_{T}\left(\mathcal{G}_{T}\right) \supset W(\Phi)=W(G, T)$ then T is irreducible
(such tori are called generic).
Thus, an element of infinite order $\gamma \in T(K)$, where T is generic over K, is generic (as previously defined).

How to construct generic maximal tori?

How to construct generic maximal tori?

Let $G=\mathrm{SL}_{n} / K$. Any maximal K-torus $T \subset G$ is of the form

$$
T=R_{E / K}\left(\mathrm{GL}_{1}\right)
$$

where E is an n-dimensional étale K-algebra.

How to construct generic maximal tori?

Let $G=\mathrm{SL}_{n} / K$. Any maximal K-torus $T \subset G$ is of the form

$$
T=R_{E / K}\left(\mathrm{GL}_{1}\right)
$$

where E is an n-dimensional étale K-algebra.

Such T is generic $\Leftrightarrow E / K$ is a field extension $\& \operatorname{Gal}(F / K) \simeq S_{n}$

How to construct generic maximal tori?

Let $G=\mathrm{SL}_{n} / K$. Any maximal K-torus $T \subset G$ is of the form

$$
T=R_{E / K}\left(\mathrm{GL}_{1}\right)
$$

where E is an n-dimensional étale K-algebra.

Such T is generic $\Leftrightarrow E / K$ is a field extension $\& \operatorname{Gal}(F / K) \simeq S_{n}$

Construction of extensions with Galois group S_{n} is well-known when K is a number field
$\Rightarrow G$ has plenty of generic tori in this case.

How to construct generic maximal tori?

Let $G=\mathrm{SL}_{n} / K$. Any maximal K-torus $T \subset G$ is of the form

$$
T=R_{E / K}\left(\mathrm{GL}_{1}\right)
$$

where E is an n-dimensional étale K-algebra.

Such T is generic $\Leftrightarrow E / K$ is a field extension $\& \operatorname{Gal}(F / K) \simeq S_{n}$

Construction of extensions with Galois group S_{n} is well-known when K is a number field
$\Rightarrow G$ has plenty of generic tori in this case.

Explicit construction can be implemented for other classical types.
Additional problem: embed resulting generic tori into a given group.

GENERAL CASE:

Fact (Voskresenskii) There exists a purely transcendental extension $\mathcal{K}=K\left(x_{1}, \ldots, x_{r}\right)$ and a \mathcal{K}-defined maximal torus $\mathcal{T} \subset G$ such that $\theta_{\mathcal{T}}\left(\operatorname{Gal}\left(\mathcal{K}_{\mathcal{T}} / \mathcal{K}\right)\right) \supset W(G, \mathcal{T})$.

GENERAL CASE:
Fact (Voskresenskii) There exists a purely transcendental extension
$\mathcal{K}=K\left(x_{1}, \ldots, x_{r}\right)$ and a \mathcal{K}-defined maximal torus $\mathcal{T} \subset G$ such that

$$
\theta_{\mathcal{T}}\left(\operatorname{Gal}\left(\mathcal{K}_{\mathcal{T}} / \mathcal{K}\right)\right) \supset W(G, \mathcal{T})
$$

If K is a number field (or, more generally, a finitely generated field) then one can use Hilbert's Irreducibility Theorem to specialize parameters and get "many" maximal K-tori $T \subset G$ such that

$$
\theta_{T}\left(\operatorname{Gal}\left(K_{T} / K\right)\right) \supset W(G, T) .
$$

GENERAL CASE:
Fact (Voskresenskii) There exists a purely transcendental extension $\mathcal{K}=K\left(x_{1}, \ldots, x_{r}\right)$ and a \mathcal{K}-defined maximal torus $\mathcal{T} \subset G$ such that

$$
\theta_{\mathcal{T}}\left(\operatorname{Gal}\left(\mathcal{K}_{\mathcal{T}} / \mathcal{K}\right)\right) \supset W(G, \mathcal{T}) .
$$

If K is a number field (or, more generally, a finitely generated field) then one can use Hilbert's Irreducibility Theorem to specialize parameters and get "many" maximal K-tori $T \subset G$ such that

$$
\theta_{T}\left(\operatorname{Gal}\left(K_{T} / K\right)\right) \supset W(G, T) .
$$

For K a number field, one can construct such generic tori with prescribed local behavior at finitely many places. Then, if Γ is S-arithmetic, one can find generic tori containing $\gamma \in \Gamma$ of infinite order.

Generic tori constructed by this method may not contain elements $\gamma \in \Gamma$ of infinite order if Γ is not S-arithmetic.
(Our work was motivated by a question asked by Abels-MargulisSoifer in connection with the Auslander conjecture, in the context of nonarithmetic groups.)

Generic tori constructed by this method may not contain elements $\gamma \in \Gamma$ of infinite order if Γ is not S-arithmetic.
(Our work was motivated by a question asked by Abels-MargulisSoifer in connection with the Auslander conjecture, in the context of nonarithmetic groups.)

Definition. Let G be a semi-simple real algebraic group. An element $\gamma \in G(\mathbb{R})$ is \mathbb{R}-regular if the number of eigenvalues of $\operatorname{Ad} \gamma$, counted with multiplicities, of modulus 1 , is minimal possible.

Generic tori constructed by this method may not contain elements $\gamma \in \Gamma$ of infinite order if Γ is not S-arithmetic.
(Our work was motivated by a question asked by Abels-MargulisSoifer in connection with the Auslander conjecture, in the context of nonarithmetic groups.)

Definition. Let G be a semi-simple real algebraic group. An element $\gamma \in G(\mathbb{R})$ is \mathbb{R}-regular if the number of eigenvalues of $\operatorname{Ad} \gamma$, counted with multiplicities, of modulus 1 , is minimal possible.

Theorem 17. Let G be a connected semi-simple real algebraic group. Then any Zariski-dense subsemigroup $\Gamma \subset G(\mathbb{R})$ contain a regular \mathbb{R}-regular γ such that $\langle\gamma\rangle$ is Zariski-dense in $T=C_{G}(\gamma)^{\circ}$.

Theorem 18. Let G be a semi-simple algebraic group over a field K of characteristic zero, and let $\Gamma \subset G(K)$ be a Zariski-dense subgroup. Then there exists a regular semi-simple $\gamma \in \Gamma$ such that $\langle\gamma\rangle$ is Zariski-dense in $T=C_{G}(\gamma)^{\circ}$.

Theorem 18. Let G be a semi-simple algebraic group over a field K of characteristic zero, and let $\Gamma \subset G(K)$ be a Zariski-dense subgroup. Then there exists a regular semi-simple $\gamma \in \Gamma$ such that $\langle\gamma\rangle$ is Zariski-dense in $T=C_{G}(\gamma)^{\circ}$.

SKETCH OF PROOF for G almost absolutely simple simply connected.

Theorem 18. Let G be a semi-simple algebraic group over a field K of characteristic zero, and let $\Gamma \subset G(K)$ be a Zariski-dense subgroup. Then there exists a regular semi-simple $\gamma \in \Gamma$ such that $\langle\gamma\rangle$ is Zariski-dense in $T=C_{G}(\gamma)^{\circ}$.

SKETCH OF PROOF for G almost absolutely simple simply connected.
Can assume
(1) Γ is finitely generated;
(2) $\Gamma \subset G(R)$ where R is a finitely generated subring of K;
(3) K is finitely generated.

Theorem 18. Let G be a semi-simple algebraic group over a field K of characteristic zero, and let $\Gamma \subset G(K)$ be a Zariski-dense subgroup. Then there exists a regular semi-simple $\gamma \in \Gamma$ such that $\langle\gamma\rangle$ is Zariski-dense in $T=C_{G}(\gamma)^{\circ}$.

SKETCH OF PROOF for G almost absolutely simple simply connected.
Can assume
(1) Γ is finitely generated;
(2) $\Gamma \subset G(R)$ where R is a finitely generated subring of K;
(3) K is finitely generated.

We want to construct a regular semi-simple $\gamma \in \Gamma$ of infinite order such that $T=C_{G}(\gamma)^{\circ}$ is generic over K.

Proposition. Let K be a finitely generated field, and $R \subset K$ be a finitely generated ring. There exists an infinite set of primes Π such that for each $p \in \Pi$ there exists an embedding $\varepsilon: K \hookrightarrow \mathbb{Q}_{p}$ such that $\varepsilon_{p}(R) \subset \mathbb{Z}_{p}$.

Proposition. Let K be a finitely generated field, and $R \subset K$ be a finitely generated ring. There exists an infinite set of primes Π such that for each $p \in \Pi$ there exists an embedding $\varepsilon: K \hookrightarrow \mathbb{Q}_{p}$ such that $\varepsilon_{p}(R) \subset \mathbb{Z}_{p}$.

Observe that given maximal tori T_{1}, T_{2} of G, the Weyl groups $W\left(G, T_{1}\right)$ and $W\left(G, T_{2}\right)$ are identified canonically, up to an inner automorphism; in particular, the conjugacy classes are identified canonically.

Proposition. Let K be a finitely generated field, and $R \subset K$ be a finitely generated ring. There exists an infinite set of primes Π such that for each $p \in \Pi$ there exists an embedding $\varepsilon: K \hookrightarrow \mathbb{Q}_{p}$ such that $\varepsilon_{p}(R) \subset \mathbb{Z}_{p}$.

Observe that given maximal tori T_{1}, T_{2} of G, the Weyl groups $W\left(G, T_{1}\right)$ and $W\left(G, T_{2}\right)$ are identified canonically, up to an inner automorphism; in particular, the conjugacy classes are identified canonically.

- Pick a maximal K-torus $T_{0} \subset G$ and fix a conjugacy class C in $W\left(G, T_{0}\right)$.
- Pick an embedding $\varepsilon_{p}: K \hookrightarrow \mathbb{Q}_{p}$ such that $\varepsilon_{p}(R) \subset \mathbb{Z}_{p}$, and T_{0} is

Proposition. Let K be a finitely generated field, and $R \subset K$ be a finitely generated ring. There exists an infinite set of primes Π such that for each $p \in \Pi$ there exists an embedding $\varepsilon: K \hookrightarrow \mathbb{Q}_{p}$ such that $\varepsilon_{p}(R) \subset \mathbb{Z}_{p}$.

Observe that given maximal tori T_{1}, T_{2} of G, the Weyl groups $W\left(G, T_{1}\right)$ and $W\left(G, T_{2}\right)$ are identified canonically, up to an inner automorphism; in particular, the conjugacy classes are identified canonically.

- Pick a maximal K-torus $T_{0} \subset G$ and fix a conjugacy class C in $W\left(G, T_{0}\right)$.
- Pick an embedding $\varepsilon_{p}: K \hookrightarrow \mathbb{Q}_{p}$ such that $\varepsilon_{p}(R) \subset \mathbb{Z}_{p}$, and T_{0} is split over Q_{p}.

Using Galois cohomology, we find an open $\Omega_{p}(C) \subset G\left(Q_{p}\right)$ satisfying

- $\Omega_{p}(C)$ consists of regular semi-simple elements and intersects every open subgroup of $G\left(Q_{p}\right)$;
- for $\omega \in \Omega_{p}(C)$ and $T_{\omega}=C_{G}(\omega)^{\circ}$, we have

$$
\theta_{T_{\omega}}\left(\operatorname{Gal}\left(K_{T_{\omega}} / Q_{p}\right)\right) \cap C \neq \varnothing
$$

(in terms of the canonical identification $W\left(G, T_{\omega}\right) \simeq W\left(G, T_{0}\right)$)

Using Galois cohomology, we find an open $\Omega_{p}(C) \subset G\left(\mathbb{Q}_{p}\right)$ satisfying

- $\Omega_{p}(C)$ consists of regular semi-simple elements and intersects every open subgroup of $G\left(Q_{p}\right)$;
- for $\omega \in \Omega_{p}(C)$ and $T_{\omega}=C_{G}(\omega)^{\circ}$, we have

$$
\theta_{T_{\omega}}\left(\operatorname{Gal}\left(K_{T_{\omega}} / \mathbb{Q}_{p}\right)\right) \cap C \neq \varnothing
$$

(in terms of the canonical identification $W\left(G, T_{\omega}\right) \simeq W\left(G, T_{0}\right)$)

Let C_{1}, \ldots, C_{r} be all conjugacy classes of $W\left(G, T_{0}\right)$.

Using Galois cohomology, we find an open $\Omega_{p}(C) \subset G\left(\mathbb{Q}_{p}\right)$ satisfying

- $\Omega_{p}(C)$ consists of regular semi-simple elements and intersects every open subgroup of $G\left(Q_{p}\right)$;
- for $\omega \in \Omega_{p}(C)$ and $T_{\omega}=C_{G}(\omega)^{\circ}$, we have

$$
\theta_{T_{\omega}}\left(\operatorname{Gal}\left(K_{T_{\omega}} / \mathbb{Q}_{p}\right)\right) \cap C \neq \varnothing
$$

(in terms of the canonical identification $W\left(G, T_{\omega}\right) \simeq W\left(G, T_{0}\right)$)

Let C_{1}, \ldots, C_{r} be all conjugacy classes of $W\left(G, T_{0}\right)$.

Pick r primes $p_{1}, \ldots, p_{r} \in \Pi$, and consider $\Omega_{p_{i}}\left(C_{i}\right) \subset G\left(\mathbb{Q}_{p_{i}}\right)$.
One shows that

$$
\Omega:=\bigcap_{i=1}^{r}\left(\Gamma \cap \Omega_{p_{i}}\left(C_{i}\right)\right) \neq \varnothing
$$

and any $\gamma \in \Omega$ is generic.

Some other applications of p-adic embeddings:

- (Platonov) Let $\pi: \tilde{G} \rightarrow G$ be a nontrivial isogeny of semi-simple groups over a finitely generated field K. Then $\pi(\tilde{G}(K)) \neq G(K)$.
(R.) Let Γ be a group with bounded generation, i.e.

$$
\Gamma=\left\langle\gamma_{1}\right\rangle \cdots\left\langle\gamma_{d}\right\rangle \quad \text { for some } \quad \gamma_{1}, \ldots, \gamma_{d} \in \Gamma .
$$

Assume that any subgroup of finite index $\Gamma_{1} \subset \Gamma$ has finite abelianization $\Gamma_{1}^{a b}=\Gamma_{1} /\left\lceil\Gamma_{1}, \Gamma_{1}\right\rceil$. Then there are only finitely many inequivalent irreducible representations $\rho: \Gamma \rightarrow G L_{n}(\mathbb{C})$.

- (Prasad-R.) Let G be an absolutely almost simple algebraic group over a field K of characteristic zero.

If $N \subset G(K)$ is a noncentral subnormal subgroup then
N is not finitely generated.

Some other applications of p-adic embeddings:

- (Platonov) Let $\pi: \tilde{G} \rightarrow G$ be a nontrivial isogeny of semi-simple groups over a finitely generated field K. Then $\pi(\tilde{G}(K)) \neq G(K)$.
- (R.) Let Γ be a group with bounded generation, i.e.

Assume that any subgroup of finite index $\Gamma_{1} \subset \Gamma$ has finite abelianization $\Gamma_{1}^{a b}=\Gamma_{1} /\left[\Gamma_{1}, \Gamma_{1}\right]$. Then there are only finitely many inequivalent irreducible representations $\rho: \Gamma \rightarrow G L_{n}(\mathbb{C})$.

- (Prasad-R.) Let G be an absolutely almost simple algebraic group over a field K of characteristic zero. If $N \subset G(K)$ is a noncentral subnormal subgroup then

Some other applications of p-adic embeddings:

- (Platonov) Let $\pi: \tilde{G} \rightarrow G$ be a nontrivial isogeny of semi-simple groups over a finitely generated field K. Then $\pi(\tilde{G}(K)) \neq G(K)$.
- (R.) Let Γ be a group with bounded generation, i.e.

$$
\Gamma=\left\langle\gamma_{1}\right\rangle \cdots\left\langle\gamma_{d}\right\rangle \quad \text { for some } \quad \gamma_{1}, \ldots, \gamma_{d} \in \Gamma .
$$

Assume that any subgroup of finite index $\Gamma_{1} \subset \Gamma$ has finite abelianization $\Gamma_{1}^{a b}=\Gamma_{1} /\left[\Gamma_{1}, \Gamma_{1}\right]$. Then there are only finitely many inequivalent irreducible representations $\rho: \Gamma \rightarrow G L_{n}(\mathbb{C})$. over a field K of characteristic zero.

Some other applications of p-adic embeddings:

- (Platonov) Let $\pi: \tilde{G} \rightarrow G$ be a nontrivial isogeny of semi-simple groups over a finitely generated field K. Then $\pi(\tilde{G}(K)) \neq G(K)$.
- (R.) Let Γ be a group with bounded generation, i.e.

$$
\Gamma=\left\langle\gamma_{1}\right\rangle \cdots\left\langle\gamma_{d}\right\rangle \quad \text { for some } \quad \gamma_{1}, \ldots, \gamma_{d} \in \Gamma .
$$

Assume that any subgroup of finite index $\Gamma_{1} \subset \Gamma$ has finite abelianization $\Gamma_{1}^{a b}=\Gamma_{1} /\left[\Gamma_{1}, \Gamma_{1}\right]$. Then there are only finitely many inequivalent irreducible representations $\rho: \Gamma \rightarrow G L_{n}(\mathbb{C})$.

- (Prasad-R.) Let G be an absolutely almost simple algebraic group over a field K of characteristic zero.
If $N \subset G(K)$ is a noncentral subnormal subgroup then N is not finitely generated.

