Right-Angled Coxeter Polytopes, Hyperbolic 6-manifolds, and a Problem of Siegel

Brent Everitt, John Ratcliffe, and Steven Tschantz

University of York and Vanderbilt University

The Siegel Problem

- A hyperbolic n-manifold is a complete Riemannian n-manifold of constant sectional curvature -1 .

The Siegel Problem

- A hyperbolic n-manifold is a complete Riemannian n-manifold of constant sectional curvature -1 .
The set of all volumes of hyperbolic n-manifolds is a well-ordered set which is discrete except for $n=3$.

The Siegel Problem

- A hyperbolic n-manifold is a complete Riemannian n-manifold of constant sectional curvature -1 .
- The set of all volumes of hyperbolic n-manifolds is a well-ordered set which is discrete except for $n=3$.
- The n-dimensional manifold Siegel problem: Determined the minimum possible volume obtained by an orientable hyperbolic n-manifold.

The Siegel Problem

- A hyperbolic n-manifold is a complete Riemannian n-manifold of constant sectional curvature -1 .
- The set of all volumes of hyperbolic n-manifolds is a well-ordered set which is discrete except for $n=3$.
- The n-dimensional manifold Siegel problem: Determined the minimum possible volume obtained by an orientable hyperbolic n-manifold.
- Our solution for $n=6$ will be described in this talk.

The Gauss-Bonnet Theorem

The Euler characteristic χ creates a big difference between even and odd dimensions.

The Gauss-Bonnet Theorem

The Euler characteristic χ creates a big difference between even and odd dimensions.

- When n is even and M is a hyperbolic n-manifold, the Gauss-Bonnet Theorem says that

$$
\operatorname{vol}(M)=\kappa_{n} \chi(M), \text { with } \kappa_{n}=(-2 \pi)^{\frac{n}{2}} /(n-1)!!
$$

The Gauss-Bonnet Theorem

The Euler characteristic χ creates a big difference between even and odd dimensions.

- When n is even and M is a hyperbolic n-manifold, the Gauss-Bonnet Theorem says that

$$
\operatorname{vol}(M)=\kappa_{n} \chi(M), \text { with } \kappa_{n}=(-2 \pi)^{\frac{n}{2}} /(n-1)!!
$$

- As $\chi(M) \in \mathbb{Z}$, we get minimum volume if $|\chi(M)|=1$.

The Gauss-Bonnet Theorem

The Euler characteristic χ creates a big difference between even and odd dimensions.

- When n is even and M is a hyperbolic n-manifold, the Gauss-Bonnet Theorem says that

$$
\operatorname{vol}(M)=\kappa_{n} \chi(M), \text { with } \kappa_{n}=(-2 \pi)^{\frac{n}{2}} /(n-1)!!
$$

- As $\chi(M) \in \mathbb{Z}$, we get minimum volume if $|\chi(M)|=1$.
- A compact orientable M satisfies $\chi(M) \in 2 \mathbb{Z}$, so the minimum volume is most likely achieved by a noncompact manifold.

Minimum Volumes

For $n=2$, the minimum volume is 2π achieved by the once-punctured torus and the thrice-punctured sphere.

Minimum Volumes

- For $n=2$, the minimum volume is 2π achieved by the once-punctured torus and the thrice-punctured sphere.
- For $n=3$, the minimum volume, realized by the Weeks compact 3-manifold, is

$$
3(23)^{\frac{3}{2}} \zeta_{k}(2) / 4 \pi^{4}=.942707 \cdots
$$

where ζ_{k} is the Dedekind zeta function of the number field $k=\mathbb{Q}(\theta)$ and θ satisfies $\theta^{3}-\theta+1=0$.

Minimum Volumes

- For $n=2$, the minimum volume is 2π achieved by the once-punctured torus and the thrice-punctured sphere.
- For $n=3$, the minimum volume, realized by the Weeks compact 3-manifold, is

$$
3(23)^{\frac{3}{2}} \zeta_{k}(2) / 4 \pi^{4}=.942707 \cdots
$$

where ζ_{k} is the Dedekind zeta function of the number field $k=\mathbb{Q}(\theta)$ and θ satisfies $\theta^{3}-\theta+1=0$.

- For $n=4$, the minimum volume is $4 \pi^{2} / 3$, realized by gluing together the sides of an ideal, regular, hyperbolic 24-cell.

Minimum Volumes

- For $n=2$, the minimum volume is 2π achieved by the once-punctured torus and the thrice-punctured sphere.
- For $n=3$, the minimum volume, realized by the Weeks compact 3-manifold, is

$$
3(23)^{\frac{3}{2}} \zeta_{k}(2) / 4 \pi^{4}=.942707 \cdots
$$

where ζ_{k} is the Dedekind zeta function of the number field $k=\mathbb{Q}(\theta)$ and θ satisfies $\theta^{3}-\theta+1=0$.

- For $n=4$, the minimum volume is $4 \pi^{2} / 3$, realized by gluing together the sides of an ideal, regular, hyperbolic 24-cell.
- For $n=5$, the minimum known volume is $7 \zeta(3) / 4$ where ζ is the Riemann zeta function.

Hyperbolic n-Space

We work in the hyperboloid model of hyperbolic n-space

$$
H^{n}=\left\{x \in \mathbb{R}^{n+1}: x_{1}^{2}+\cdots+x_{n}^{2}-x_{n+1}^{2}=-1 \text { and } x_{n+1}>0\right\} .
$$

Hyperbolic n-Space

- We work in the hyperboloid model of hyperbolic n-space
$H^{n}=\left\{x \in \mathbb{R}^{n+1}: x_{1}^{2}+\cdots+x_{n}^{2}-x_{n+1}^{2}=-1\right.$ and $\left.x_{n+1}>0\right\}$.
The isometries of H^{n} are represented by the group of positive Lorentzian $(n+1) \times(n+1)$ matrices $P O_{n, 1} \mathbb{R}$.

Hyperbolic n-Space

- We work in the hyperboloid model of hyperbolic n-space
$H^{n}=\left\{x \in \mathbb{R}^{n+1}: x_{1}^{2}+\cdots+x_{n}^{2}-x_{n+1}^{2}=-1\right.$ and $\left.x_{n+1}>0\right\}$.
- The isometries of H^{n} are represented by the group of positive Lorentzian $(n+1) \times(n+1)$ matrices $P O_{n, 1} \mathbb{R}$.
- For $n=2, \ldots, 8$, the subgroup $\Gamma^{n}=P O_{n, 1} \mathbb{Z}$ is a discrete reflection group with fundamental polyhedron a Coxeter simplex Δ^{n} with exactly one ideal vertex.

Hyperbolic n-Space

- We work in the hyperboloid model of hyperbolic n-space
$H^{n}=\left\{x \in \mathbb{R}^{n+1}: x_{1}^{2}+\cdots+x_{n}^{2}-x_{n+1}^{2}=-1\right.$ and $\left.x_{n+1}>0\right\}$.
- The isometries of H^{n} are represented by the group of positive Lorentzian $(n+1) \times(n+1)$ matrices $P O_{n, 1} \mathbb{R}$.
- For $n=2, \ldots, 8$, the subgroup $\Gamma^{n}=P O_{n, 1} \mathbb{Z}$ is a discrete reflection group with fundamental polyhedron a Coxeter simplex Δ^{n} with exactly one ideal vertex.
- A Coxeter diagram for Δ^{n} is given on the next slide.

Coxeter diagrams

Coxeter diagrams

The right-angled polytope P^{n}

- Let Σ^{n} be the subgroup of Γ^{n} generated by the reflections in the sides of Δ^{n} indicated above in red.

The right-angled polytope P^{n}

- Let Σ^{n} be the subgroup of Γ^{n} generated by the reflections in the sides of Δ^{n} indicated above in red.

Then Σ^{n} is a finite Coxeter group.

The right-angled polytope P^{n}

- Let Σ^{n} be the subgroup of Γ^{n} generated by the reflections in the sides of Δ^{n} indicated above in red.
Then Σ^{n} is a finite Coxeter group.
- Define

$$
P^{n}=\Sigma^{n} \Delta^{n}:=\underset{\gamma \in \Sigma^{n}}{\cup} \gamma\left(\Delta^{n}\right) .
$$

The right-angled polytope P^{n}

- Let Σ^{n} be the subgroup of Γ^{n} generated by the reflections in the sides of Δ^{n} indicated above in red.
Then Σ^{n} is a finite Coxeter group.
- Define

$$
P^{n}=\Sigma^{n} \Delta^{n}:=\underset{\gamma \in \Sigma^{n}}{ } \gamma\left(\Delta^{n}\right) .
$$

Then P^{n} is a convex polytope of finite volume with symmetry group Σ^{n}.

The right-angled polytope P^{n}

- Let Σ^{n} be the subgroup of Γ^{n} generated by the reflections in the sides of Δ^{n} indicated above in red.

Then Σ^{n} is a finite Coxeter group.

- Define

$$
P^{n}=\Sigma^{n} \Delta^{n}:=\underset{\gamma \in \Sigma^{n}}{\cup} \gamma\left(\Delta^{n}\right) .
$$

Then P^{n} is a convex polytope of finite volume with symmetry group Σ^{n}.

- The polytope P^{n} is right-angled for all n, and each side of P^{n} is congruent to P^{n-1} for all $n>2$.

The right-angled polytope P^{3}

The Congruence Two Subgroup

- Let Γ_{2}^{n} be the congruence two subgroup of
$\Gamma^{n}=P O_{n, 1} \mathbb{Z}$, that is, the subgroup of all matrices in Γ^{n} that are congruent to the identity matrix modulo two.

The Congruence Two Subgroup

- Let Γ_{2}^{n} be the congruence two subgroup of $\Gamma^{n}=P O_{n, 1} \mathbb{Z}$, that is, the subgroup of all matrices in Γ^{n} that are congruent to the identity matrix modulo two.

$$
\left(\begin{array}{lll}
-1 & -2 & 2 \\
-2 & -1 & 2 \\
-2 & -2 & 3
\end{array}\right)
$$

The Congruence Two Subgroup

- Let Γ_{2}^{n} be the congruence two subgroup of $\Gamma^{n}=P O_{n, 1} \mathbb{Z}$, that is, the subgroup of all matrices in Γ^{n} that are congruent to the identity matrix modulo two.

$$
\left(\begin{array}{lll}
-1 & -2 & 2 \\
-2 & -1 & 2 \\
-2 & -2 & 3
\end{array}\right)
$$

- The above matrix is in Γ_{2}^{2} and represents the third Coxeter generator of Γ^{2}.

Γ_{2}^{n} is a right-angled Coxeter group

- Theorem: For $n=2, \ldots, 7$, the congruence two subgroup Γ_{2}^{n} of Γ^{n} is a hyperbolic reflection group with Coxeter polytope the right-angled polytope P^{n}. Moreover, $\Gamma^{n} / \Gamma_{2}^{n} \cong \Sigma^{n}$.

Γ_{2}^{n} is a right-angled Coxeter group

- Theorem: For $n=2, \ldots, 7$, the congruence two subgroup Γ_{2}^{n} of Γ^{n} is a hyperbolic reflection group with Coxeter polytope the right-angled polytope P^{n}. Moreover, $\Gamma^{n} / \Gamma_{2}^{n} \cong \Sigma^{n}$.
- Corollary: For $n=2, \ldots, 7$, every maximal finite subgroup of Γ_{2}^{n} is either elementary of order 2^{n} and conjugate to the stabilizer of an actual vertex of P^{n} or is elementary of order 2^{n-1} and conjugate to the stabilizer of a line edge of P^{n}.

The right-angled polytope P^{6}

The polytope P^{6} has 72 actual vertices and 27 ideal vertices, 432 ray edges, 216 line edges, $1089 P^{2}$-faces, $720 P^{3}$-faces, $216 P^{4}$-faces and 27 sides each congruent to P^{5}.

The right-angled polytope P^{6}

The polytope P^{6} has 72 actual vertices and 27 ideal vertices, 432 ray edges, 216 line edges, $1089 P^{2}$-faces, $720 P^{3}$-faces, $216 P^{4}$-faces and 27 sides each congruent to P^{5}.

- The Euclidean dual of P^{6} is a semi-regular 6-dimensional polytope discovered by Gosset in 1900.

The right-angled polytope P^{6}

- The polytope P^{6} has 72 actual vertices and 27 ideal vertices, 432 ray edges, 216 line edges, $1089 P^{2}$-faces, $720 P^{3}$-faces, $216 P^{4}$-faces and 27 sides each congruent to P^{5}.
- The Euclidean dual of P^{6} is a semi-regular 6-dimensional polytope discovered by Gosset in 1900.
- The Gosset 6-polytope combinatorially parametrizes the arrangement of the 27 straight lines in a general cubic surface.

1-Skeleton of the Gosset 6-Polytope

The volume of P^{6}

The Euler characteristic of Γ^{6} is $-1 / 414720$.

The volume of P^{6}

The Euler characteristic of Γ^{6} is $-1 / 414720$.
As $\Gamma^{6} / \Gamma_{2}^{6} \cong \Sigma^{6}$ a Coxeter group of type E_{6}, we have that $\left[\Gamma^{6}: \Gamma_{2}^{6}\right]=51840$.

The volume of P^{6}

The Euler characteristic of Γ^{6} is $-1 / 414720$.

- As $\Gamma^{6} / \Gamma_{2}^{6} \cong \Sigma^{6}$ a Coxeter group of type E_{6}, we have that $\left[\Gamma^{6}: \Gamma_{2}^{6}\right]=51840$.
- Hence $\chi\left(\Gamma_{2}^{6}\right)=-51840 / 414720=-1 / 8$.

The volume of P^{6}

The Euler characteristic of Γ^{6} is $-1 / 414720$.

- As $\Gamma^{6} / \Gamma_{2}^{6} \cong \Sigma^{6}$ a Coxeter group of type E_{6}, we have that $\left[\Gamma^{6}: \Gamma_{2}^{6}\right]=51840$.
- Hence $\chi\left(\Gamma_{2}^{6}\right)=-51840 / 414720=-1 / 8$.
- By the Gauss-Bonnet theorem, P^{6} has volume $\pi^{3} / 15$ which is one-eighth the smallest volume possible for a hyperbolic 6-manifold.

The volume of P^{6}

- The Euler characteristic of Γ^{6} is $-1 / 414720$.
- As $\Gamma^{6} / \Gamma_{2}^{6} \cong \Sigma^{6}$ a Coxeter group of type E_{6}, we have that $\left[\Gamma^{6}: \Gamma_{2}^{6}\right]=51840$.
- Hence $\chi\left(\Gamma_{2}^{6}\right)=-51840 / 414720=-1 / 8$.
- By the Gauss-Bonnet theorem, P^{6} has volume $\pi^{3} / 15$ which is one-eighth the smallest volume possible for a hyperbolic 6-manifold.
- We constructed an orientable hyperbolic 6-manifold M of the smallest possible volume $8 \pi^{3} / 15$ and $\chi(M)=-1$ by gluing together eight copies of P^{6} along there sides.

A torsion-free discrete group

The 6-manifold M is isometric to the orbit space H^{6} / Γ of a torsion-free subgroup Γ of Γ^{6} of index 414, 720 .

A torsion-free discrete group

The 6-manifold M is isometric to the orbit space H^{6} / Γ of a torsion-free subgroup Γ of Γ^{6} of index 414, 720 .

The group Γ is generated by $\Gamma \cap \Gamma_{2}^{6}$ and the matrix

$$
A=\left(\begin{array}{rrrrrrr}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & -1 & 0 & -1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & -1 & 0 & 1 \\
0 & -1 & 0 & -1 & -1 & 0 & 2
\end{array}\right) \quad \text { with } \operatorname{det}(A)=1
$$

The right-angled polytope Q^{6}

- Let K^{6} be the group of diagonal 7×7 matrices
$\operatorname{diag}(\pm 1, \ldots, \pm 1,1)$.

The right-angled polytope Q^{6}

- Let K^{6} be the group of diagonal 7×7 matrices
$\operatorname{diag}(\pm 1, \ldots, \pm 1,1)$.
- Then K^{6} is an elementary 2-group of order 64.

The right-angled polytope Q^{6}

- Let K^{6} be the group of diagonal 7×7 matrices
$\operatorname{diag}(\pm 1, \ldots, \pm 1,1)$.
- Then K^{6} is an elementary 2-group of order 64.
- Define

$$
Q^{6}=\mathrm{K}^{6} P^{6}=\underset{k \in \mathrm{~K}^{6}}{\cup} k P^{6} .
$$

The right-angled polytope Q^{6}

- Let K^{6} be the group of diagonal 7×7 matrices $\operatorname{diag}(\pm 1, \ldots, \pm 1,1)$.
- Then K^{6} is an elementary 2-group of order 64.
- Define

$$
Q^{6}=\mathrm{K}^{6} P^{6}=\underset{k \in \mathrm{~K}^{6}}{\cup} k P^{6} .
$$

Then Q^{6} is a right-angled convex polytope with 252 sides, S_{1}, \ldots, S_{252}.

The right-angled polytope Q^{6}

- Let K^{6} be the group of diagonal 7×7 matrices $\operatorname{diag}(\pm 1, \ldots, \pm 1,1)$.
- Then K^{6} is an elementary 2-group of order 64.
- Define

$$
Q^{6}=\mathrm{K}^{6} P^{6}=\underset{k \in \mathrm{~K}^{6}}{\cup} k P^{6} .
$$

- Then Q^{6} is a right-angled convex polytope with 252 sides, S_{1}, \ldots, S_{252}.
The polytope Q^{6} is a fundamental polytope for $\Gamma \cap \Gamma_{2}^{6}$.

The right-angled polytope Q^{6}

- Let K^{6} be the group of diagonal 7×7 matrices $\operatorname{diag}(\pm 1, \ldots, \pm 1,1)$.
- Then K^{6} is an elementary 2-group of order 64.
- Define

$$
Q^{6}=\mathrm{K}^{6} P^{6}=\underset{k \in \mathrm{~K}^{6}}{\cup} k P^{6} .
$$

- Then Q^{6} is a right-angled convex polytope with 252 sides, S_{1}, \ldots, S_{252}.
The polytope Q^{6} is a fundamental polytope for $\Gamma \cap \Gamma_{2}^{6}$.
The group $\Gamma \cap \Gamma_{2}^{6}$ is generated by 252 elements of the form $s_{i} k_{i}$ where s_{i} is the reflection in the i th side of Q^{6} and $k_{i} \in \mathrm{~K}^{6}$, with $\operatorname{det}\left(k_{i}\right)=-1$, and so $s_{i} k_{i}$ is orientation preserving for each i.

The group $\Gamma \cap \Gamma_{2}^{6}$ is torsion-free

Every reflection s_{i} is of the form $\ell_{i} r_{i} \ell_{i}^{-1}$ where $\ell_{i} \in \mathrm{~K}^{6}$ and r_{i} is the reflection in a side of P^{6}.

The group $\Gamma \cap \Gamma_{2}^{6}$ is torsion-free

- Every reflection s_{i} is of the form $\ell_{i} r_{i} \ell_{i}^{-1}$ where $\ell_{i} \in \mathrm{~K}^{6}$ and r_{i} is the reflection in a side of P^{6}.
The set of Q^{6} side-pairing maps $s_{i} k_{i}$ is symmetric with respect to conjugation by K^{6}.

The group $\Gamma \cap \Gamma_{2}^{6}$ is torsion-free

- Every reflection s_{i} is of the form $\ell_{i} r_{i} \ell_{i}^{-1}$ where $\ell_{i} \in \mathrm{~K}^{6}$ and r_{i} is the reflection in a side of P^{6}.
- The set of Q^{6} side-pairing maps $s_{i} k_{i}$ is symmetric with respect to conjugation by K^{6}.
- This easily implies that $\Gamma \cap \Gamma_{2}^{6}$ is a normal subgroup of Γ_{2}^{6} and $\Gamma_{2}^{6} /\left(\Gamma \cap \Gamma_{2}^{6}\right) \cong \mathrm{K}^{6}$ with r_{i} mapping to k_{i}, since $s_{i} k_{i}$ gets killed.

The group $\Gamma \cap \Gamma_{2}^{6}$ is torsion-free

- Every reflection s_{i} is of the form $\ell_{i} r_{i} \ell_{i}^{-1}$ where $\ell_{i} \in \mathrm{~K}^{6}$ and r_{i} is the reflection in a side of P^{6}.
- The set of Q^{6} side-pairing maps $s_{i} k_{i}$ is symmetric with respect to conjugation by K^{6}.
- This easily implies that $\Gamma \cap \Gamma_{2}^{6}$ is a normal subgroup of Γ_{2}^{6} and $\Gamma_{2}^{6} /\left(\Gamma \cap \Gamma_{2}^{6}\right) \cong \mathrm{K}^{6}$ with r_{i} mapping to k_{i}, since $s_{i} k_{i}$ gets killed.
- The group $\Gamma \cap \Gamma_{2}^{6}$ is torsion-free because each maximal finite subgroup of Γ_{2}^{6} maps isomorphically into K^{6} under the isomorphism $\Gamma_{2}^{6} /\left(\Gamma \cap \Gamma_{2}^{6}\right) \cong \mathrm{K}^{6}$.

The matrix A normalizes $\Gamma \cap \Gamma_{2}^{6}$

- The group Γ_{2}^{6} is a right-angled Coxeter group generated by the reflections r_{1}, \ldots, r_{27} in the 27 sides of P^{6}.

The matrix A normalizes $\Gamma \cap \Gamma_{2}^{6}$

- The group Γ_{2}^{6} is a right-angled Coxeter group generated by the reflections r_{1}, \ldots, r_{27} in the 27 sides of P^{6}.
- Hence $\left(\Gamma_{2}^{6}\right)_{a b}=\Gamma_{2}^{6} /\left[\Gamma_{2}^{6}, \Gamma_{2}^{6}\right]$ is an elementary 2-group with basis the images of r_{1}, \ldots, r_{27}.

The matrix A normalizes $\Gamma \cap \Gamma_{2}^{6}$

- The group Γ_{2}^{6} is a right-angled Coxeter group generated by the reflections r_{1}, \ldots, r_{27} in the 27 sides of P^{6}.
- Hence $\left(\Gamma_{2}^{6}\right)_{a b}=\Gamma_{2}^{6} /\left[\Gamma_{2}^{6}, \Gamma_{2}^{6}\right]$ is an elementary 2-group with basis the images of r_{1}, \ldots, r_{27}.
- The matrix A acts by conjugation on $\left(\Gamma_{2}^{6}\right)_{a b}$ by permuting the basis elements by a permutation of $\{1, \ldots, 27\}$ of order 8.

The matrix A normalizes $\Gamma \cap \Gamma_{2}^{6}$

- The group Γ_{2}^{6} is a right-angled Coxeter group generated by the reflections r_{1}, \ldots, r_{27} in the 27 sides of P^{6}.
- Hence $\left(\Gamma_{2}^{6}\right)_{a b}=\Gamma_{2}^{6} /\left[\Gamma_{2}^{6}, \Gamma_{2}^{6}\right]$ is an elementary 2-group with basis the images of r_{1}, \ldots, r_{27}.
- The matrix A acts by conjugation on $\left(\Gamma_{2}^{6}\right)_{a b}$ by permuting the basis elements by a permutation of $\{1, \ldots, 27\}$ of order 8.
- The matrix A normalizes $\Gamma \cap \Gamma_{2}^{6}$, since A leaves the subgroup $\left(\Gamma \cap \Gamma_{2}^{6}\right) /\left[\Gamma_{2}^{6}, \Gamma_{2}^{6}\right]$ invariant.

The matrix A normalizes $\Gamma \cap \Gamma_{2}^{6}$

- The group Γ_{2}^{6} is a right-angled Coxeter group generated by the reflections r_{1}, \ldots, r_{27} in the 27 sides of P^{6}.
- Hence $\left(\Gamma_{2}^{6}\right)_{a b}=\Gamma_{2}^{6} /\left[\Gamma_{2}^{6}, \Gamma_{2}^{6}\right]$ is an elementary 2-group with basis the images of r_{1}, \ldots, r_{27}.
- The matrix A acts by conjugation on $\left(\Gamma_{2}^{6}\right)_{a b}$ by permuting the basis elements by a permutation of $\{1, \ldots, 27\}$ of order 8.
- The matrix A normalizes $\Gamma \cap \Gamma_{2}^{6}$, since A leaves the subgroup $\left(\Gamma \cap \Gamma_{2}^{6}\right) /\left[\Gamma_{2}^{6}, \Gamma_{2}^{6}\right]$ invariant.
- The quotient $\Gamma /\left(\Gamma \cap \Gamma_{2}^{6}\right)$ is a cyclic group of order 8 , since A projects to a matrix \bar{A} in Σ^{6} of order 8.

The group Γ is torsion-free

The group Γ can only have 2-torsion, since $\Gamma \cap \Gamma_{2}^{6}$ is torsion-free and $\Gamma / \Gamma \cap \Gamma_{2}^{6}$ has order 8.

The group Γ is torsion-free

The group Γ can only have 2-torsion, since $\Gamma \cap \Gamma_{2}^{6}$ is torsion-free and $\Gamma / \Gamma \cap \Gamma_{2}^{6}$ has order 8.

- Let g be an element of Γ of order 2. Then $g=h A^{4}$ for some element h of $\Gamma \cap \Gamma_{2}^{6}$.

The group Γ is torsion-free

The group Γ can only have 2-torsion, since $\Gamma \cap \Gamma_{2}^{6}$ is torsion-free and $\Gamma / \Gamma \cap \Gamma_{2}^{6}$ has order 8.

- Let g be an element of Γ of order 2. Then $g=h A^{4}$ for some element h of $\Gamma \cap \Gamma_{2}^{6}$.
- Now $A=r_{2} \bar{A}$ where $r_{2}=\operatorname{diag}(1,-1,1,1,1,1,1)$.

The group Γ is torsion-free

- The group Γ can only have 2-torsion, since $\Gamma \cap \Gamma_{2}^{6}$ is torsion-free and $\Gamma / \Gamma \cap \Gamma_{2}^{6}$ has order 8.
- Let g be an element of Γ of order 2. Then $g=h A^{4}$ for some element h of $\Gamma \cap \Gamma_{2}^{6}$.
Now $A=r_{2} \bar{A}$ where $r_{2}=\operatorname{diag}(1,-1,1,1,1,1,1)$.
- Rewriting the equation $1=\left(h A^{4}\right)\left(h A^{4}\right)$ in terms of \bar{A} leads to a linear equation

$$
\left(I+\bar{A}_{*}^{4}\right)(v)=v_{9}+v_{11}+v_{12}+v_{14}+v_{20}+v_{21} .
$$

in the $\mathbb{Z} / 2$-vector space $\left(\Gamma \cap \Gamma_{2}^{6}\right) /\left[\Gamma_{2}^{6}, \Gamma_{2}^{6}\right]$ with basis v_{7}, \ldots, v_{27} which has no solution. Here v_{i} is the image of the Q^{6} side-pairing map $r_{i} k_{i}$. Hence Γ is torsion-free.

H^{6} / Γ has minimum volume

As $\chi\left(\Gamma_{2}^{6}\right)=-1 / 8$ and $\Gamma_{2}^{6} /\left(\Gamma \cap \Gamma_{2}^{6}\right)$ has order 64, we have that

$$
\chi\left(\Gamma \cap \Gamma_{2}^{6}\right)=-64 / 8=-8 .
$$

H^{6} / Γ has minimum volume

As $\chi\left(\Gamma_{2}^{6}\right)=-1 / 8$ and $\Gamma_{2}^{6} /\left(\Gamma \cap \Gamma_{2}^{6}\right)$ has order 64, we have that

$$
\chi\left(\Gamma \cap \Gamma_{2}^{6}\right)=-64 / 8=-8 .
$$

- As $\Gamma / \Gamma \cap \Gamma_{2}^{6}$ has order 8, we have that

$$
\chi(\Gamma)=-8 / 8=-1 .
$$

H^{6} / Γ has minimum volume

- As $\chi\left(\Gamma_{2}^{6}\right)=-1 / 8$ and $\Gamma_{2}^{6} /\left(\Gamma \cap \Gamma_{2}^{6}\right)$ has order 64 , we have that

$$
\chi\left(\Gamma \cap \Gamma_{2}^{6}\right)=-64 / 8=-8 .
$$

- As $\Gamma / \Gamma \cap \Gamma_{2}^{6}$ has order 8, we have that

$$
\chi(\Gamma)=-8 / 8=-1 .
$$

The orientable hyperbolic manifold $M=H^{6} / \Gamma$ has the smallest possible volume $8 \pi^{3} / 15$ by the Gauss-Bonnet Theorem.

H^{6} / Γ has minimum volume

- As $\chi\left(\Gamma_{2}^{6}\right)=-1 / 8$ and $\Gamma_{2}^{6} /\left(\Gamma \cap \Gamma_{2}^{6}\right)$ has order 64 , we have that

$$
\chi\left(\Gamma \cap \Gamma_{2}^{6}\right)=-64 / 8=-8 .
$$

- As $\Gamma / \Gamma \cap \Gamma_{2}^{6}$ has order 8 , we have that

$$
\chi(\Gamma)=-8 / 8=-1 .
$$

- The orientable hyperbolic manifold $M=H^{6} / \Gamma$ has the smallest possible volume $8 \pi^{3} / 15$ by the Gauss-Bonnet Theorem.
- The manifold M is noncompact with five cusps.

H^{6} / Γ has minimum volume

- As $\chi\left(\Gamma_{2}^{6}\right)=-1 / 8$ and $\Gamma_{2}^{6} /\left(\Gamma \cap \Gamma_{2}^{6}\right)$ has order 64 , we have that

$$
\chi\left(\Gamma \cap \Gamma_{2}^{6}\right)=-64 / 8=-8 .
$$

- As $\Gamma / \Gamma \cap \Gamma_{2}^{6}$ has order 8 , we have that

$$
\chi(\Gamma)=-8 / 8=-1 .
$$

The orientable hyperbolic manifold $M=H^{6} / \Gamma$ has the smallest possible volume $8 \pi^{3} / 15$ by the Gauss-Bonnet Theorem.

- The manifold M is noncompact with five cusps.
- $H_{1}(M) \cong(\mathbb{Z} / 2)^{4} \oplus \mathbb{Z} / 8$.

References

The details for this talk are available in our preprint that can be downloaded from lanl.arXiv.org.

References

The details for this talk are available in our preprint that can be downloaded from lanl.arXiv.org.
The preprint version of this talk will appear in Mathematische Annalen.

