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The Siegel Problem

A hyperbolic n-manifold is a complete Riemannian
n-manifold of constant sectional curvature −1.
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n-manifold of constant sectional curvature −1.

The set of all volumes of hyperbolic n-manifolds is a
well-ordered set which is discrete except for n = 3.
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The Siegel Problem

A hyperbolic n-manifold is a complete Riemannian
n-manifold of constant sectional curvature −1.

The set of all volumes of hyperbolic n-manifolds is a
well-ordered set which is discrete except for n = 3.

The n-dimensional manifold Siegel problem:
Determined the minimum possible volume obtained by
an orientable hyperbolic n-manifold.
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The Siegel Problem

A hyperbolic n-manifold is a complete Riemannian
n-manifold of constant sectional curvature −1.

The set of all volumes of hyperbolic n-manifolds is a
well-ordered set which is discrete except for n = 3.

The n-dimensional manifold Siegel problem:
Determined the minimum possible volume obtained by
an orientable hyperbolic n-manifold.

Our solution for n = 6 will be described in this talk.
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The Gauss-Bonnet Theorem

The Euler characteristic χ creates a big difference
between even and odd dimensions.
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The Gauss-Bonnet Theorem

The Euler characteristic χ creates a big difference
between even and odd dimensions.

When n is even and M is a hyperbolic n-manifold, the
Gauss-Bonnet Theorem says that

vol(M) = κnχ(M), with κn = (−2π)
n

2 /(n− 1)!!
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The Gauss-Bonnet Theorem

The Euler characteristic χ creates a big difference
between even and odd dimensions.

When n is even and M is a hyperbolic n-manifold, the
Gauss-Bonnet Theorem says that

vol(M) = κnχ(M), with κn = (−2π)
n

2 /(n− 1)!!

As χ(M) ∈ Z, we get minimum volume if |χ(M)| = 1.
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The Gauss-Bonnet Theorem

The Euler characteristic χ creates a big difference
between even and odd dimensions.

When n is even and M is a hyperbolic n-manifold, the
Gauss-Bonnet Theorem says that

vol(M) = κnχ(M), with κn = (−2π)
n

2 /(n− 1)!!

As χ(M) ∈ Z, we get minimum volume if |χ(M)| = 1.

A compact orientable M satisfies χ(M) ∈ 2Z, so the
minimum volume is most likely achieved by a
noncompact manifold.
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Minimum Volumes

For n = 2, the minimum volume is 2π achieved by the
once-punctured torus and the thrice-punctured sphere.
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Minimum Volumes

For n = 2, the minimum volume is 2π achieved by the
once-punctured torus and the thrice-punctured sphere.

For n = 3, the minimum volume, realized by the Weeks
compact 3-manifold, is

3(23)
3

2 ζk(2)/4π
4 = .942707 · · ·

where ζk is the Dedekind zeta function of the number
field k = Q(θ) and θ satisfies θ3 − θ + 1 = 0.
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Minimum Volumes

For n = 2, the minimum volume is 2π achieved by the
once-punctured torus and the thrice-punctured sphere.

For n = 3, the minimum volume, realized by the Weeks
compact 3-manifold, is

3(23)
3

2 ζk(2)/4π
4 = .942707 · · ·

where ζk is the Dedekind zeta function of the number
field k = Q(θ) and θ satisfies θ3 − θ + 1 = 0.

For n = 4, the minimum volume is 4π2/3, realized by
gluing together the sides of an ideal, regular, hyperbolic
24-cell.
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Minimum Volumes

For n = 2, the minimum volume is 2π achieved by the
once-punctured torus and the thrice-punctured sphere.

For n = 3, the minimum volume, realized by the Weeks
compact 3-manifold, is

3(23)
3

2 ζk(2)/4π
4 = .942707 · · ·

where ζk is the Dedekind zeta function of the number
field k = Q(θ) and θ satisfies θ3 − θ + 1 = 0.

For n = 4, the minimum volume is 4π2/3, realized by
gluing together the sides of an ideal, regular, hyperbolic
24-cell.

For n = 5, the minimum known volume is 7ζ(3)/4 where
ζ is the Riemann zeta function.
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Hyperbolic n-Space

We work in the hyperboloid model of hyperbolic n-space

Hn = {x ∈ Rn+1 : x21+ · · ·+x2n−x2n+1 = −1 and xn+1 > 0}.
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Hyperbolic n-Space

We work in the hyperboloid model of hyperbolic n-space

Hn = {x ∈ Rn+1 : x21+ · · ·+x2n−x2n+1 = −1 and xn+1 > 0}.

The isometries of Hn are represented by the group of
positive Lorentzian (n+ 1)× (n+ 1) matrices POn,1R.
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Hyperbolic n-Space

We work in the hyperboloid model of hyperbolic n-space

Hn = {x ∈ Rn+1 : x21+ · · ·+x2n−x2n+1 = −1 and xn+1 > 0}.

The isometries of Hn are represented by the group of
positive Lorentzian (n+ 1)× (n+ 1) matrices POn,1R.

For n = 2, . . . , 8, the subgroup Γn = POn,1Z is a discrete
reflection group with fundamental polyhedron a Coxeter
simplex ∆n with exactly one ideal vertex.
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Hyperbolic n-Space

We work in the hyperboloid model of hyperbolic n-space

Hn = {x ∈ Rn+1 : x21+ · · ·+x2n−x2n+1 = −1 and xn+1 > 0}.

The isometries of Hn are represented by the group of
positive Lorentzian (n+ 1)× (n+ 1) matrices POn,1R.

For n = 2, . . . , 8, the subgroup Γn = POn,1Z is a discrete
reflection group with fundamental polyhedron a Coxeter
simplex ∆n with exactly one ideal vertex.

A Coxeter diagram for ∆n is given on the next slide.
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Coxeter diagrams

1 2 3

∞4

n = 2

1 2 3 4

4 4

n = 3

1 2 3 4 n−1 n

n+1

4

4 ≤ n ≤ 8
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Coxeter diagrams

1 2 3

∞4

n = 2

Σ
2

1 2 3 4

4 4

n = 3

Σ
3

1 2 3 4 n−1 n

n+1

4

4 ≤ n ≤ 8
Σ

n
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The right-angled polytope P n

Let Σn be the subgroup of Γn generated by the
reflections in the sides of ∆n indicated above in red.
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The right-angled polytope P n

Let Σn be the subgroup of Γn generated by the
reflections in the sides of ∆n indicated above in red.

Then Σn is a finite Coxeter group.
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The right-angled polytope P n

Let Σn be the subgroup of Γn generated by the
reflections in the sides of ∆n indicated above in red.

Then Σn is a finite Coxeter group.

Define
Pn = Σn∆n := ∪

γ∈Σn

γ(∆n).

Right-Angled Coxeter Polytopes, Hyperbolic 6-manifolds, and a Problem of Siegel – p. 8/21



The right-angled polytope P n

Let Σn be the subgroup of Γn generated by the
reflections in the sides of ∆n indicated above in red.

Then Σn is a finite Coxeter group.

Define
Pn = Σn∆n := ∪

γ∈Σn

γ(∆n).

Then Pn is a convex polytope of finite volume with
symmetry group Σn.
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The right-angled polytope P n

Let Σn be the subgroup of Γn generated by the
reflections in the sides of ∆n indicated above in red.

Then Σn is a finite Coxeter group.

Define
Pn = Σn∆n := ∪

γ∈Σn

γ(∆n).

Then Pn is a convex polytope of finite volume with
symmetry group Σn.

The polytope Pn is right-angled for all n, and each side
of Pn is congruent to Pn−1 for all n > 2.
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The right-angled polytope P 3
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The Congruence Two Subgroup

Let Γn
2 be the congruence two subgroup of

Γn = POn,1Z, that is, the subgroup of all matrices in Γn

that are congruent to the identity matrix modulo two.

Right-Angled Coxeter Polytopes, Hyperbolic 6-manifolds, and a Problem of Siegel – p. 10/21



The Congruence Two Subgroup

Let Γn
2 be the congruence two subgroup of

Γn = POn,1Z, that is, the subgroup of all matrices in Γn

that are congruent to the identity matrix modulo two.







−1 −2 2

−2 −1 2

−2 −2 3
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The Congruence Two Subgroup

Let Γn
2 be the congruence two subgroup of

Γn = POn,1Z, that is, the subgroup of all matrices in Γn

that are congruent to the identity matrix modulo two.







−1 −2 2

−2 −1 2

−2 −2 3







The above matrix is in Γ2
2 and represents the third

Coxeter generator of Γ2.
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Γ
n
2 is a right-angled Coxeter group

Theorem: For n = 2, . . . , 7, the congruence two
subgroup Γn

2 of Γn is a hyperbolic reflection group with
Coxeter polytope the right-angled polytope Pn.
Moreover, Γn/Γn

2
∼= Σn.

Right-Angled Coxeter Polytopes, Hyperbolic 6-manifolds, and a Problem of Siegel – p. 11/21



Γ
n
2 is a right-angled Coxeter group

Theorem: For n = 2, . . . , 7, the congruence two
subgroup Γn

2 of Γn is a hyperbolic reflection group with
Coxeter polytope the right-angled polytope Pn.
Moreover, Γn/Γn

2
∼= Σn.

Corollary: For n = 2, . . . , 7, every maximal finite
subgroup of Γn

2 is either elementary of order 2n and
conjugate to the stabilizer of an actual vertex of Pn or is
elementary of order 2n−1 and conjugate to the stabilizer
of a line edge of Pn.
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The right-angled polytope P 6

The polytope P 6 has 72 actual vertices and 27 ideal
vertices, 432 ray edges, 216 line edges, 1089 P 2-faces,
720 P 3-faces, 216 P 4-faces and 27 sides each
congruent to P 5.
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The right-angled polytope P 6

The polytope P 6 has 72 actual vertices and 27 ideal
vertices, 432 ray edges, 216 line edges, 1089 P 2-faces,
720 P 3-faces, 216 P 4-faces and 27 sides each
congruent to P 5.

The Euclidean dual of P 6 is a semi-regular
6-dimensional polytope discovered by Gosset in 1900.
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The right-angled polytope P 6

The polytope P 6 has 72 actual vertices and 27 ideal
vertices, 432 ray edges, 216 line edges, 1089 P 2-faces,
720 P 3-faces, 216 P 4-faces and 27 sides each
congruent to P 5.

The Euclidean dual of P 6 is a semi-regular
6-dimensional polytope discovered by Gosset in 1900.

The Gosset 6-polytope combinatorially parametrizes
the arrangement of the 27 straight lines in a general
cubic surface.
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1-Skeleton of the Gosset 6-Polytope
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The volume of P 6

The Euler characteristic of Γ6 is −1/414720.
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The volume of P 6

The Euler characteristic of Γ6 is −1/414720.

As Γ6/Γ6
2
∼= Σ6 a Coxeter group of type E6, we have that

[Γ6 : Γ6
2] = 51840.
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The volume of P 6

The Euler characteristic of Γ6 is −1/414720.

As Γ6/Γ6
2
∼= Σ6 a Coxeter group of type E6, we have that

[Γ6 : Γ6
2] = 51840.

Hence χ(Γ6
2) = −51840/414720 = −1/8.
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The volume of P 6

The Euler characteristic of Γ6 is −1/414720.

As Γ6/Γ6
2
∼= Σ6 a Coxeter group of type E6, we have that

[Γ6 : Γ6
2] = 51840.

Hence χ(Γ6
2) = −51840/414720 = −1/8.

By the Gauss-Bonnet theorem, P 6 has volume π3/15
which is one-eighth the smallest volume possible for a
hyperbolic 6-manifold.
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The volume of P 6

The Euler characteristic of Γ6 is −1/414720.

As Γ6/Γ6
2
∼= Σ6 a Coxeter group of type E6, we have that

[Γ6 : Γ6
2] = 51840.

Hence χ(Γ6
2) = −51840/414720 = −1/8.

By the Gauss-Bonnet theorem, P 6 has volume π3/15
which is one-eighth the smallest volume possible for a
hyperbolic 6-manifold.

We constructed an orientable hyperbolic 6-manifold M

of the smallest possible volume 8π3/15 and χ(M) = −1

by gluing together eight copies of P 6 along there sides.
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A torsion-free discrete group

The 6-manifold M is isometric to the orbit space H6/Γ

of a torsion-free subgroup Γ of Γ6 of index 414, 720.

Right-Angled Coxeter Polytopes, Hyperbolic 6-manifolds, and a Problem of Siegel – p. 15/21



A torsion-free discrete group

The 6-manifold M is isometric to the orbit space H6/Γ

of a torsion-free subgroup Γ of Γ6 of index 414, 720.

The group Γ is generated by Γ ∩ Γ6
2 and the matrix

A =

























1 0 0 0 0 0 0

0 1 0 0 1 0 −1

0 0 0 0 0 1 0

0 −1 0 −1 0 0 1

0 0 1 0 0 0 0

0 0 0 −1 −1 0 1

0 −1 0 −1 −1 0 2

























with det(A) = 1.
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The right-angled polytope Q6

Let K6 be the group of diagonal 7× 7 matrices
diag(±1, . . . ,±1, 1).
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The right-angled polytope Q6

Let K6 be the group of diagonal 7× 7 matrices
diag(±1, . . . ,±1, 1).

Then K6 is an elementary 2-group of order 64.
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The right-angled polytope Q6

Let K6 be the group of diagonal 7× 7 matrices
diag(±1, . . . ,±1, 1).

Then K6 is an elementary 2-group of order 64.

Define
Q6 = K6P 6 = ∪

k∈K6

kP 6.
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The right-angled polytope Q6

Let K6 be the group of diagonal 7× 7 matrices
diag(±1, . . . ,±1, 1).

Then K6 is an elementary 2-group of order 64.

Define
Q6 = K6P 6 = ∪

k∈K6

kP 6.

Then Q6 is a right-angled convex polytope with 252
sides, S1, . . . , S252.

Right-Angled Coxeter Polytopes, Hyperbolic 6-manifolds, and a Problem of Siegel – p. 16/21



The right-angled polytope Q6

Let K6 be the group of diagonal 7× 7 matrices
diag(±1, . . . ,±1, 1).

Then K6 is an elementary 2-group of order 64.

Define
Q6 = K6P 6 = ∪

k∈K6

kP 6.

Then Q6 is a right-angled convex polytope with 252
sides, S1, . . . , S252.

The polytope Q6 is a fundamental polytope for Γ ∩ Γ6
2.
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The right-angled polytope Q6

Let K6 be the group of diagonal 7× 7 matrices
diag(±1, . . . ,±1, 1).

Then K6 is an elementary 2-group of order 64.

Define
Q6 = K6P 6 = ∪

k∈K6

kP 6.

Then Q6 is a right-angled convex polytope with 252
sides, S1, . . . , S252.

The polytope Q6 is a fundamental polytope for Γ ∩ Γ6
2.

The group Γ ∩ Γ6
2 is generated by 252 elements of the

form siki where si is the reflection in the ith side of Q6

and ki ∈ K6, with det(ki) = −1, and so siki is orientation
preserving for each i.
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The group Γ ∩ Γ
6
2 is torsion-free

Every reflection si is of the form ℓiriℓ
−1

i where ℓi ∈ K6

and ri is the reflection in a side of P 6.
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The group Γ ∩ Γ
6
2 is torsion-free

Every reflection si is of the form ℓiriℓ
−1

i where ℓi ∈ K6

and ri is the reflection in a side of P 6.

The set of Q6 side-pairing maps siki is symmetric with
respect to conjugation by K6.
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The group Γ ∩ Γ
6
2 is torsion-free

Every reflection si is of the form ℓiriℓ
−1

i where ℓi ∈ K6

and ri is the reflection in a side of P 6.

The set of Q6 side-pairing maps siki is symmetric with
respect to conjugation by K6.

This easily implies that Γ ∩ Γ6
2 is a normal subgroup of

Γ6
2 and Γ6

2/(Γ ∩ Γ6
2)

∼= K6 with ri mapping to ki, since siki
gets killed.
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The group Γ ∩ Γ
6
2 is torsion-free

Every reflection si is of the form ℓiriℓ
−1

i where ℓi ∈ K6

and ri is the reflection in a side of P 6.

The set of Q6 side-pairing maps siki is symmetric with
respect to conjugation by K6.

This easily implies that Γ ∩ Γ6
2 is a normal subgroup of

Γ6
2 and Γ6

2/(Γ ∩ Γ6
2)

∼= K6 with ri mapping to ki, since siki
gets killed.

The group Γ ∩ Γ6
2 is torsion-free because each maximal

finite subgroup of Γ6
2 maps isomorphically into K6 under

the isomorphism Γ6
2/(Γ ∩ Γ6

2)
∼= K6.
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The matrix A normalizes Γ ∩ Γ
6
2

The group Γ6
2 is a right-angled Coxeter group generated

by the reflections r1, . . . , r27 in the 27 sides of P 6.
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The matrix A normalizes Γ ∩ Γ
6
2

The group Γ6
2 is a right-angled Coxeter group generated

by the reflections r1, . . . , r27 in the 27 sides of P 6.

Hence (Γ6
2)ab = Γ6

2/[Γ
6
2,Γ

6
2] is an elementary 2-group

with basis the images of r1, . . . , r27.
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The matrix A normalizes Γ ∩ Γ
6
2

The group Γ6
2 is a right-angled Coxeter group generated

by the reflections r1, . . . , r27 in the 27 sides of P 6.

Hence (Γ6
2)ab = Γ6

2/[Γ
6
2,Γ

6
2] is an elementary 2-group

with basis the images of r1, . . . , r27.

The matrix A acts by conjugation on (Γ6
2)ab by permuting

the basis elements by a permutation of {1, . . . , 27} of
order 8.
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The matrix A normalizes Γ ∩ Γ
6
2

The group Γ6
2 is a right-angled Coxeter group generated

by the reflections r1, . . . , r27 in the 27 sides of P 6.

Hence (Γ6
2)ab = Γ6

2/[Γ
6
2,Γ

6
2] is an elementary 2-group

with basis the images of r1, . . . , r27.

The matrix A acts by conjugation on (Γ6
2)ab by permuting

the basis elements by a permutation of {1, . . . , 27} of
order 8.

The matrix A normalizes Γ ∩ Γ6
2, since A leaves the

subgroup (Γ ∩ Γ6
2)/[Γ

6
2,Γ

6
2] invariant.
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The matrix A normalizes Γ ∩ Γ
6
2

The group Γ6
2 is a right-angled Coxeter group generated

by the reflections r1, . . . , r27 in the 27 sides of P 6.

Hence (Γ6
2)ab = Γ6

2/[Γ
6
2,Γ

6
2] is an elementary 2-group

with basis the images of r1, . . . , r27.

The matrix A acts by conjugation on (Γ6
2)ab by permuting

the basis elements by a permutation of {1, . . . , 27} of
order 8.

The matrix A normalizes Γ ∩ Γ6
2, since A leaves the

subgroup (Γ ∩ Γ6
2)/[Γ

6
2,Γ

6
2] invariant.

The quotient Γ/(Γ ∩ Γ6
2) is a cyclic group of order 8,

since A projects to a matrix A in Σ6 of order 8.
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The group Γ is torsion-free

The group Γ can only have 2-torsion, since Γ ∩ Γ6
2 is

torsion-free and Γ/Γ ∩ Γ6
2 has order 8.
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The group Γ is torsion-free

The group Γ can only have 2-torsion, since Γ ∩ Γ6
2 is

torsion-free and Γ/Γ ∩ Γ6
2 has order 8.

Let g be an element of Γ of order 2. Then g = hA4 for
some element h of Γ ∩ Γ6

2.
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The group Γ is torsion-free

The group Γ can only have 2-torsion, since Γ ∩ Γ6
2 is

torsion-free and Γ/Γ ∩ Γ6
2 has order 8.

Let g be an element of Γ of order 2. Then g = hA4 for
some element h of Γ ∩ Γ6

2.

Now A = r2A where r2 = diag(1,−1, 1, 1, 1, 1, 1).
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The group Γ is torsion-free

The group Γ can only have 2-torsion, since Γ ∩ Γ6
2 is

torsion-free and Γ/Γ ∩ Γ6
2 has order 8.

Let g be an element of Γ of order 2. Then g = hA4 for
some element h of Γ ∩ Γ6

2.

Now A = r2A where r2 = diag(1,−1, 1, 1, 1, 1, 1).

Rewriting the equation 1 = (hA4)(hA4) in terms of A
leads to a linear equation

(I + A
4

∗
)(v) = v9 + v11 + v12 + v14 + v20 + v21.

in the Z/2 -vector space (Γ ∩ Γ6
2)/[Γ

6
2,Γ

6
2] with basis

v7, . . . , v27 which has no solution. Here vi is the image of
the Q6 side-pairing map riki. Hence Γ is torsion-free.
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H6/Γ has minimum volume

As χ(Γ6
2) = −1/8 and Γ6

2/(Γ ∩ Γ6
2) has order 64, we have

that
χ(Γ ∩ Γ6

2) = −64/8 = −8.
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2) has order 64, we have

that
χ(Γ ∩ Γ6

2) = −64/8 = −8.

As Γ/Γ ∩ Γ6
2 has order 8, we have that

χ(Γ) = −8/8 = −1.

The orientable hyperbolic manifold M = H6/Γ has the
smallest possible volume 8π3/15 by the Gauss-Bonnet
Theorem.
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χ(Γ) = −8/8 = −1.

The orientable hyperbolic manifold M = H6/Γ has the
smallest possible volume 8π3/15 by the Gauss-Bonnet
Theorem.

The manifold M is noncompact with five cusps.
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H6/Γ has minimum volume

As χ(Γ6
2) = −1/8 and Γ6

2/(Γ ∩ Γ6
2) has order 64, we have

that
χ(Γ ∩ Γ6

2) = −64/8 = −8.

As Γ/Γ ∩ Γ6
2 has order 8, we have that

χ(Γ) = −8/8 = −1.

The orientable hyperbolic manifold M = H6/Γ has the
smallest possible volume 8π3/15 by the Gauss-Bonnet
Theorem.

The manifold M is noncompact with five cusps.

H1(M) ∼= (Z/2)4 ⊕ Z/8.
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