Right-Angled Coxeter Polytopes, Hyperbolic 6-manifolds, and a Problem of Siegel

Brent Everitt, John Ratcliffe, and Steven Tschantz

University of York and Vanderbilt University

Right-Angled Coxeter Polytopes, Hyperbolic 6-manifolds, and a Problem of Siegel - p. 1/21

A hyperbolic *n*-manifold is a complete Riemannian *n*-manifold of constant sectional curvature -1.

- A hyperbolic *n*-manifold is a complete Riemannian *n*-manifold of constant sectional curvature -1.
- The set of all volumes of hyperbolic *n*-manifolds is a well-ordered set which is discrete except for n = 3.

- A hyperbolic *n*-manifold is a complete Riemannian *n*-manifold of constant sectional curvature -1.
- The set of all volumes of hyperbolic *n*-manifolds is a well-ordered set which is discrete except for n = 3.
- The *n*-dimensional manifold Siegel problem: Determined the minimum possible volume obtained by an orientable hyperbolic *n*-manifold.

- A hyperbolic *n*-manifold is a complete Riemannian *n*-manifold of constant sectional curvature -1.
- The set of all volumes of hyperbolic *n*-manifolds is a well-ordered set which is discrete except for n = 3.
- The *n*-dimensional manifold Siegel problem: Determined the minimum possible volume obtained by an orientable hyperbolic *n*-manifold.
- Our solution for n = 6 will be described in this talk.

• The Euler characteristic χ creates a big difference between even and odd dimensions.

- The Euler characteristic χ creates a big difference between even and odd dimensions.
- When n is even and M is a hyperbolic n-manifold, the Gauss-Bonnet Theorem says that

$$vol(M) = \kappa_n \chi(M)$$
, with $\kappa_n = (-2\pi)^{\frac{n}{2}}/(n-1)!!$

- The Euler characteristic χ creates a big difference between even and odd dimensions.
- When n is even and M is a hyperbolic n-manifold, the Gauss-Bonnet Theorem says that

$$vol(M) = \kappa_n \chi(M)$$
, with $\kappa_n = (-2\pi)^{\frac{n}{2}}/(n-1)!!$

• As $\chi(M) \in \mathbb{Z}$, we get minimum volume if $|\chi(M)| = 1$.

- The Euler characteristic χ creates a big difference between even and odd dimensions.
- When n is even and M is a hyperbolic n-manifold, the Gauss-Bonnet Theorem says that

$$vol(M) = \kappa_n \chi(M)$$
, with $\kappa_n = (-2\pi)^{\frac{n}{2}}/(n-1)!!$

- As $\chi(M) \in \mathbb{Z}$, we get minimum volume if $|\chi(M)| = 1$.
- A compact orientable M satisfies $\chi(M) \in 2\mathbb{Z}$, so the minimum volume is most likely achieved by a noncompact manifold.

• For n = 2, the minimum volume is 2π achieved by the once-punctured torus and the thrice-punctured sphere.

- For n = 2, the minimum volume is 2π achieved by the once-punctured torus and the thrice-punctured sphere.
- For n = 3, the minimum volume, realized by the Weeks compact 3-manifold, is

$$3(23)^{\frac{3}{2}}\zeta_k(2)/4\pi^4 = .942707\cdots$$

where ζ_k is the Dedekind zeta function of the number field $k = \mathbb{Q}(\theta)$ and θ satisfies $\theta^3 - \theta + 1 = 0$.

- For n = 2, the minimum volume is 2π achieved by the once-punctured torus and the thrice-punctured sphere.
- For n = 3, the minimum volume, realized by the Weeks compact 3-manifold, is

$$3(23)^{\frac{3}{2}}\zeta_k(2)/4\pi^4 = .942707\cdots$$

where ζ_k is the Dedekind zeta function of the number field $k = \mathbb{Q}(\theta)$ and θ satisfies $\theta^3 - \theta + 1 = 0$.

• For n = 4, the minimum volume is $4\pi^2/3$, realized by gluing together the sides of an ideal, regular, hyperbolic 24-cell.

- For n = 2, the minimum volume is 2π achieved by the once-punctured torus and the thrice-punctured sphere.
- For n = 3, the minimum volume, realized by the Weeks compact 3-manifold, is

$$3(23)^{\frac{3}{2}}\zeta_k(2)/4\pi^4 = .942707\cdots$$

where ζ_k is the Dedekind zeta function of the number field $k = \mathbb{Q}(\theta)$ and θ satisfies $\theta^3 - \theta + 1 = 0$.

- For n = 4, the minimum volume is $4\pi^2/3$, realized by gluing together the sides of an ideal, regular, hyperbolic 24-cell.
- For n = 5, the minimum known volume is $7\zeta(3)/4$ where ζ is the Riemann zeta function.

We work in the hyperboloid model of hyperbolic n-space

$$H^{n} = \{ x \in \mathbb{R}^{n+1} : x_{1}^{2} + \dots + x_{n}^{2} - x_{n+1}^{2} = -1 \text{ and } x_{n+1} > 0 \}.$$

We work in the hyperboloid model of hyperbolic n-space

$$H^{n} = \{ x \in \mathbb{R}^{n+1} : x_{1}^{2} + \dots + x_{n}^{2} - x_{n+1}^{2} = -1 \text{ and } x_{n+1} > 0 \}.$$

• The isometries of H^n are represented by the group of positive Lorentzian $(n+1) \times (n+1)$ matrices $PO_{n,1}\mathbb{R}$.

We work in the hyperboloid model of hyperbolic n-space

 $H^{n} = \{ x \in \mathbb{R}^{n+1} : x_{1}^{2} + \dots + x_{n}^{2} - x_{n+1}^{2} = -1 \text{ and } x_{n+1} > 0 \}.$

- The isometries of H^n are represented by the group of positive Lorentzian $(n+1) \times (n+1)$ matrices $PO_{n,1}\mathbb{R}$.
- For n = 2, ..., 8, the subgroup $\Gamma^n = PO_{n,1}\mathbb{Z}$ is a discrete reflection group with fundamental polyhedron a Coxeter simplex Δ^n with exactly one ideal vertex.

We work in the hyperboloid model of hyperbolic n-space

 $H^{n} = \{ x \in \mathbb{R}^{n+1} : x_{1}^{2} + \dots + x_{n}^{2} - x_{n+1}^{2} = -1 \text{ and } x_{n+1} > 0 \}.$

- The isometries of H^n are represented by the group of positive Lorentzian $(n+1) \times (n+1)$ matrices $PO_{n,1}\mathbb{R}$.
- For n = 2, ..., 8, the subgroup $\Gamma^n = PO_{n,1}\mathbb{Z}$ is a discrete reflection group with fundamental polyhedron a Coxeter simplex Δ^n with exactly one ideal vertex.
- A Coxeter diagram for Δ^n is given on the next slide.

Coxeter diagrams

Coxeter diagrams

• Let Σ^n be the subgroup of Γ^n generated by the reflections in the sides of Δ^n indicated above in red.

- Let Σ^n be the subgroup of Γ^n generated by the reflections in the sides of Δ^n indicated above in red.
- Then Σ^n is a finite Coxeter group.

- Let Σ^n be the subgroup of Γ^n generated by the reflections in the sides of Δ^n indicated above in red.
- Then Σ^n is a finite Coxeter group.
- Define

$$P^n = \Sigma^n \Delta^n := \bigcup_{\gamma \in \Sigma^n} \gamma(\Delta^n).$$

- Let Σ^n be the subgroup of Γ^n generated by the reflections in the sides of Δ^n indicated above in red.
- Then Σ^n is a finite Coxeter group.

Define

$$P^n = \Sigma^n \Delta^n := \bigcup_{\gamma \in \Sigma^n} \gamma(\Delta^n).$$

• Then P^n is a convex polytope of finite volume with symmetry group Σ^n .

- Let Σ^n be the subgroup of Γ^n generated by the reflections in the sides of Δ^n indicated above in red.
- Then Σ^n is a finite Coxeter group.

Define

$$P^n = \Sigma^n \Delta^n := \bigcup_{\gamma \in \Sigma^n} \gamma(\Delta^n).$$

- Then P^n is a convex polytope of finite volume with symmetry group Σ^n .
- The polytope P^n is right-angled for all n, and each side of P^n is congruent to P^{n-1} for all n > 2.

The Congruence Two Subgroup

• Let Γ_2^n be the congruence two subgroup of $\Gamma^n = PO_{n,1}\mathbb{Z}$, that is, the subgroup of all matrices in Γ^n that are congruent to the identity matrix modulo two.

The Congruence Two Subgroup

• Let Γ_2^n be the congruence two subgroup of $\Gamma^n = PO_{n,1}\mathbb{Z}$, that is, the subgroup of all matrices in Γ^n that are congruent to the identity matrix modulo two.

The Congruence Two Subgroup

• Let Γ_2^n be the congruence two subgroup of $\Gamma^n = PO_{n,1}\mathbb{Z}$, that is, the subgroup of all matrices in Γ^n that are congruent to the identity matrix modulo two.

$$\left(\begin{array}{rrrr} -1 & -2 & 2 \\ -2 & -1 & 2 \\ -2 & -2 & 3 \end{array}\right)$$

• The above matrix is in Γ_2^2 and represents the third Coxeter generator of Γ^2 .

Γ_2^n is a right-angled Coxeter group

• Theorem: For n = 2, ..., 7, the congruence two subgroup Γ_2^n of Γ^n is a hyperbolic reflection group with Coxeter polytope the right-angled polytope P^n . Moreover, $\Gamma^n/\Gamma_2^n \cong \Sigma^n$.

Γ_2^n is a right-angled Coxeter group

- Theorem: For n = 2, ..., 7, the congruence two subgroup Γ_2^n of Γ^n is a hyperbolic reflection group with Coxeter polytope the right-angled polytope P^n . Moreover, $\Gamma^n/\Gamma_2^n \cong \Sigma^n$.
- Corollary: For n = 2, ..., 7, every maximal finite subgroup of Γ_2^n is either elementary of order 2^n and conjugate to the stabilizer of an actual vertex of P^n or is elementary of order 2^{n-1} and conjugate to the stabilizer of a line edge of P^n .

The right-angled polytope P⁶

The polytope P⁶ has 72 actual vertices and 27 ideal vertices, 432 ray edges, 216 line edges, 1089 P²-faces, 720 P³-faces, 216 P⁴-faces and 27 sides each congruent to P⁵.

The right-angled polytope P⁶

- The polytope P⁶ has 72 actual vertices and 27 ideal vertices, 432 ray edges, 216 line edges, 1089 P²-faces, 720 P³-faces, 216 P⁴-faces and 27 sides each congruent to P⁵.
- The Euclidean dual of P⁶ is a semi-regular 6-dimensional polytope discovered by Gosset in 1900.

The right-angled polytope P⁶

- The polytope P⁶ has 72 actual vertices and 27 ideal vertices, 432 ray edges, 216 line edges, 1089 P²-faces, 720 P³-faces, 216 P⁴-faces and 27 sides each congruent to P⁵.
- The Euclidean dual of P⁶ is a semi-regular 6-dimensional polytope discovered by Gosset in 1900.
- The Gosset 6-polytope combinatorially parametrizes the arrangement of the 27 straight lines in a general cubic surface.

1-Skeleton of the Gosset 6-Polytope

The volume of P^6

• The Euler characteristic of Γ^6 is -1/414720.

The volume of P^6

- The Euler characteristic of Γ^6 is -1/414720.
- As $\Gamma^6/\Gamma_2^6 \cong \Sigma^6$ a Coxeter group of type E_6 , we have that $[\Gamma^6:\Gamma_2^6] = 51840$.

The volume of P^6

- The Euler characteristic of Γ^6 is -1/414720.
- As $\Gamma^6/\Gamma_2^6 \cong \Sigma^6$ a Coxeter group of type E_6 , we have that $[\Gamma^6:\Gamma_2^6] = 51840$.
- Hence $\chi(\Gamma_2^6) = -51840/414720 = -1/8$.

The volume of P^6

- The Euler characteristic of Γ^6 is -1/414720.
- As $\Gamma^6/\Gamma_2^6 \cong \Sigma^6$ a Coxeter group of type E_6 , we have that $[\Gamma^6:\Gamma_2^6] = 51840$.
- Hence $\chi(\Gamma_2^6) = -51840/414720 = -1/8$.
- By the Gauss-Bonnet theorem, P^6 has volume $\pi^3/15$ which is one-eighth the smallest volume possible for a hyperbolic 6-manifold.

The volume of P^6

- The Euler characteristic of Γ^6 is -1/414720.
- As $\Gamma^6/\Gamma_2^6 \cong \Sigma^6$ a Coxeter group of type E_6 , we have that $[\Gamma^6:\Gamma_2^6] = 51840$.
- Hence $\chi(\Gamma_2^6) = -51840/414720 = -1/8$.
- By the Gauss-Bonnet theorem, P^6 has volume $\pi^3/15$ which is one-eighth the smallest volume possible for a hyperbolic 6-manifold.
- We constructed an orientable hyperbolic 6-manifold M of the smallest possible volume $8\pi^3/15$ and $\chi(M) = -1$ by gluing together eight copies of P^6 along there sides.

A torsion-free discrete group

• The 6-manifold M is isometric to the orbit space H^6/Γ of a torsion-free subgroup Γ of Γ^6 of index 414,720.

A torsion-free discrete group

- The 6-manifold M is isometric to the orbit space H^6/Γ of a torsion-free subgroup Γ of Γ^6 of index 414,720.
- The group Γ is generated by $\Gamma \cap \Gamma_2^6$ and the matrix

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & -1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & -1 & 0 & 1 \\ 0 & -1 & 0 & -1 & -1 & 0 & 2 \end{pmatrix}$$
 with det(A) = 1.

• Let K^6 be the group of diagonal 7×7 matrices $diag(\pm 1, \ldots, \pm 1, 1)$.

- Let K^6 be the group of diagonal 7×7 matrices $diag(\pm 1, \ldots, \pm 1, 1)$.
- Then K^6 is an elementary 2-group of order 64.

- Let K^6 be the group of diagonal 7×7 matrices $diag(\pm 1, \ldots, \pm 1, 1)$.
- Then K^6 is an elementary 2-group of order 64.

Define

$$Q^6 = \mathcal{K}^6 P^6 = \bigcup_{k \in \mathcal{K}^6} k P^6.$$

- Let K^6 be the group of diagonal 7×7 matrices $diag(\pm 1, \ldots, \pm 1, 1)$.
- Then K^6 is an elementary 2-group of order 64.

Define

$$Q^6 = \mathcal{K}^6 P^6 = \bigcup_{k \in \mathcal{K}^6} k P^6.$$

• Then Q^6 is a right-angled convex polytope with 252 sides, S_1, \ldots, S_{252} .

- Let K^6 be the group of diagonal 7×7 matrices $diag(\pm 1, \ldots, \pm 1, 1)$.
- Then K^6 is an elementary 2-group of order 64.

Define

$$Q^6 = \mathcal{K}^6 P^6 = \bigcup_{k \in \mathcal{K}^6} k P^6.$$

- Then Q^6 is a right-angled convex polytope with 252 sides, S_1, \ldots, S_{252} .
- The polytope Q^6 is a fundamental polytope for $\Gamma \cap \Gamma_2^6$.

- Let K^6 be the group of diagonal 7×7 matrices $diag(\pm 1, \ldots, \pm 1, 1)$.
- Then K^6 is an elementary 2-group of order 64.

Define

$$Q^6 = \mathcal{K}^6 P^6 = \bigcup_{k \in \mathcal{K}^6} k P^6.$$

- Then Q^6 is a right-angled convex polytope with 252 sides, S_1, \ldots, S_{252} .
- The polytope Q^6 is a fundamental polytope for $\Gamma \cap \Gamma_2^6$.
- The group $\Gamma \cap \Gamma_2^6$ is generated by 252 elements of the form $s_i k_i$ where s_i is the reflection in the *i*th side of Q^6 and $k_i \in K^6$, with $det(k_i) = -1$, and so $s_i k_i$ is orientation preserving for each *i*.

• Every reflection s_i is of the form $\ell_i r_i \ell_i^{-1}$ where $\ell_i \in K^6$ and r_i is the reflection in a side of P^6 .

- Every reflection s_i is of the form $\ell_i r_i \ell_i^{-1}$ where $\ell_i \in K^6$ and r_i is the reflection in a side of P^6 .
- The set of Q^6 side-pairing maps $s_i k_i$ is symmetric with respect to conjugation by K^6 .

- Every reflection s_i is of the form $\ell_i r_i \ell_i^{-1}$ where $\ell_i \in K^6$ and r_i is the reflection in a side of P^6 .
- The set of Q^6 side-pairing maps $s_i k_i$ is symmetric with respect to conjugation by K^6 .
- This easily implies that $\Gamma \cap \Gamma_2^6$ is a normal subgroup of Γ_2^6 and $\Gamma_2^6/(\Gamma \cap \Gamma_2^6) \cong K^6$ with r_i mapping to k_i , since $s_i k_i$ gets killed.

- Every reflection s_i is of the form $\ell_i r_i \ell_i^{-1}$ where $\ell_i \in K^6$ and r_i is the reflection in a side of P^6 .
- The set of Q^6 side-pairing maps $s_i k_i$ is symmetric with respect to conjugation by K^6 .
- This easily implies that $\Gamma \cap \Gamma_2^6$ is a normal subgroup of Γ_2^6 and $\Gamma_2^6/(\Gamma \cap \Gamma_2^6) \cong K^6$ with r_i mapping to k_i , since $s_i k_i$ gets killed.
- The group $\Gamma \cap \Gamma_2^6$ is torsion-free because each maximal finite subgroup of Γ_2^6 maps isomorphically into K^6 under the isomorphism $\Gamma_2^6/(\Gamma \cap \Gamma_2^6) \cong K^6$.

• The group Γ_2^6 is a right-angled Coxeter group generated by the reflections r_1, \ldots, r_{27} in the 27 sides of P^6 .

- The group Γ_2^6 is a right-angled Coxeter group generated by the reflections r_1, \ldots, r_{27} in the 27 sides of P^6 .
- Hence $(\Gamma_2^6)_{ab} = \Gamma_2^6 / [\Gamma_2^6, \Gamma_2^6]$ is an elementary 2-group with basis the images of r_1, \ldots, r_{27} .

- The group Γ_2^6 is a right-angled Coxeter group generated by the reflections r_1, \ldots, r_{27} in the 27 sides of P^6 .
- Hence $(\Gamma_2^6)_{ab} = \Gamma_2^6 / [\Gamma_2^6, \Gamma_2^6]$ is an elementary 2-group with basis the images of r_1, \ldots, r_{27} .
- The matrix A acts by conjugation on $(\Gamma_2^6)_{ab}$ by permuting the basis elements by a permutation of $\{1, \ldots, 27\}$ of order 8.

- The group Γ_2^6 is a right-angled Coxeter group generated by the reflections r_1, \ldots, r_{27} in the 27 sides of P^6 .
- Hence $(\Gamma_2^6)_{ab} = \Gamma_2^6 / [\Gamma_2^6, \Gamma_2^6]$ is an elementary 2-group with basis the images of r_1, \ldots, r_{27} .
- The matrix A acts by conjugation on $(\Gamma_2^6)_{ab}$ by permuting the basis elements by a permutation of $\{1, \ldots, 27\}$ of order 8.
- The matrix A normalizes $\Gamma \cap \Gamma_2^6$, since A leaves the subgroup $(\Gamma \cap \Gamma_2^6)/[\Gamma_2^6, \Gamma_2^6]$ invariant.

- The group Γ_2^6 is a right-angled Coxeter group generated by the reflections r_1, \ldots, r_{27} in the 27 sides of P^6 .
- Hence $(\Gamma_2^6)_{ab} = \Gamma_2^6 / [\Gamma_2^6, \Gamma_2^6]$ is an elementary 2-group with basis the images of r_1, \ldots, r_{27} .
- The matrix A acts by conjugation on $(\Gamma_2^6)_{ab}$ by permuting the basis elements by a permutation of $\{1, \ldots, 27\}$ of order 8.
- The matrix A normalizes $\Gamma \cap \Gamma_2^6$, since A leaves the subgroup $(\Gamma \cap \Gamma_2^6)/[\Gamma_2^6, \Gamma_2^6]$ invariant.
- The quotient $\Gamma/(\Gamma \cap \Gamma_2^6)$ is a cyclic group of order 8, since *A* projects to a matrix \overline{A} in Σ^6 of order 8.

• The group Γ can only have 2-torsion, since $\Gamma \cap \Gamma_2^6$ is torsion-free and $\Gamma/\Gamma \cap \Gamma_2^6$ has order 8.

- The group Γ can only have 2-torsion, since $\Gamma \cap \Gamma_2^6$ is torsion-free and $\Gamma/\Gamma \cap \Gamma_2^6$ has order 8.
- Let g be an element of Γ of order 2. Then $g = hA^4$ for some element h of $\Gamma \cap \Gamma_2^6$.

- The group Γ can only have 2-torsion, since $\Gamma \cap \Gamma_2^6$ is torsion-free and $\Gamma/\Gamma \cap \Gamma_2^6$ has order 8.
- Let g be an element of Γ of order 2. Then $g = hA^4$ for some element h of $\Gamma \cap \Gamma_2^6$.
- Now $A = r_2 \overline{A}$ where $r_2 = \text{diag}(1, -1, 1, 1, 1, 1, 1)$.

- The group Γ can only have 2-torsion, since $\Gamma \cap \Gamma_2^6$ is torsion-free and $\Gamma/\Gamma \cap \Gamma_2^6$ has order 8.
- Let g be an element of Γ of order 2. Then $g = hA^4$ for some element h of $\Gamma \cap \Gamma_2^6$.
- Now $A = r_2 \overline{A}$ where $r_2 = \text{diag}(1, -1, 1, 1, 1, 1, 1)$.
- Rewriting the equation $1 = (hA^4)(hA^4)$ in terms of \overline{A} leads to a linear equation

$$(I + \overline{A}_*^4)(v) = v_9 + v_{11} + v_{12} + v_{14} + v_{20} + v_{21}.$$

in the $\mathbb{Z}/2$ -vector space $(\Gamma \cap \Gamma_2^6)/[\Gamma_2^6, \Gamma_2^6]$ with basis v_7, \ldots, v_{27} which has no solution. Here v_i is the image of the Q^6 side-pairing map $r_i k_i$. Hence Γ is torsion-free.

As $\chi(\Gamma_2^6) = -1/8$ and $\Gamma_2^6/(\Gamma \cap \Gamma_2^6)$ has order 64, we have that

$$\chi(\Gamma \cap \Gamma_2^6) = -64/8 = -8.$$

• As $\chi(\Gamma_2^6) = -1/8$ and $\Gamma_2^6/(\Gamma \cap \Gamma_2^6)$ has order 64, we have that

 $\chi(\Gamma \cap \Gamma_2^6) = -64/8 = -8.$

• As $\Gamma/\Gamma \cap \Gamma_2^6$ has order 8, we have that

$$\chi(\Gamma) = -8/8 = -1.$$

• As $\chi(\Gamma_2^6) = -1/8$ and $\Gamma_2^6/(\Gamma \cap \Gamma_2^6)$ has order 64, we have that

 $\chi(\Gamma \cap \Gamma_2^6) = -64/8 = -8.$

• As $\Gamma/\Gamma \cap \Gamma_2^6$ has order 8, we have that

 $\chi(\Gamma) = -8/8 = -1.$

• The orientable hyperbolic manifold $M = H^6/\Gamma$ has the smallest possible volume $8\pi^3/15$ by the Gauss-Bonnet Theorem.

• As $\chi(\Gamma_2^6) = -1/8$ and $\Gamma_2^6/(\Gamma \cap \Gamma_2^6)$ has order 64, we have that

 $\chi(\Gamma \cap \Gamma_2^6) = -64/8 = -8.$

• As $\Gamma/\Gamma \cap \Gamma_2^6$ has order 8, we have that

 $\chi(\Gamma) = -8/8 = -1.$

- The orientable hyperbolic manifold $M = H^6/\Gamma$ has the smallest possible volume $8\pi^3/15$ by the Gauss-Bonnet Theorem.
- The manifold M is noncompact with five cusps.

• As $\chi(\Gamma_2^6) = -1/8$ and $\Gamma_2^6/(\Gamma \cap \Gamma_2^6)$ has order 64, we have that

 $\chi(\Gamma \cap \Gamma_2^6) = -64/8 = -8.$

• As $\Gamma/\Gamma \cap \Gamma_2^6$ has order 8, we have that

 $\chi(\Gamma) = -8/8 = -1.$

- The orientable hyperbolic manifold $M = H^6/\Gamma$ has the smallest possible volume $8\pi^3/15$ by the Gauss-Bonnet Theorem.
- The manifold M is noncompact with five cusps.
- $H_1(M) \cong (\mathbb{Z}/2)^4 \oplus \mathbb{Z}/8.$

References

The details for this talk are available in our preprint that can be downloaded from lanl.arXiv.org.

References

- The details for this talk are available in our preprint that can be downloaded from lanl.arXiv.org.
- The preprint version of this talk will appear in Mathematische Annalen.