Non-equilateral deformed triangle groups

James M. Thompson

University of Durham

Geometry and Arithmetic of Lattices
London Mathematical Society - EPSRC Durham symposium 2011

(Deformed) Hyperbolic triangle groups

A hyperbolic triangle group is a faithful and discrete representation of a Coxeter group

$$
\triangle(p, q, r)=\left\langle R_{1}, R_{2}, R_{3} \mid R_{i}^{2},\left(R_{2} R_{3}\right)^{p},\left(R_{3} R_{1}\right)^{q},\left(R_{1} R_{2}\right)^{r}\right\rangle
$$

into $\mathbf{P O}(2,1)$ (when $1 / p+1 / q+1 / r<1$). We identify the generators with reflections in the sides of a hyperbolic triangle with angles $\pi / p, \pi / q$ and π / r. This representation is unique up to conjugation.

(Deformed) Hyperbolic triangle groups

A hyperbolic triangle group is a faithful and discrete representation of a Coxeter group

$$
\triangle(p, q, r)=\left\langle R_{1}, R_{2}, R_{3} \mid R_{i}^{2},\left(R_{2} R_{3}\right)^{p},\left(R_{3} R_{1}\right)^{q},\left(R_{1} R_{2}\right)^{r}\right\rangle
$$

into $\mathbf{P O}(2,1)$ (when $1 / p+1 / q+1 / r<1$). We identify the generators with reflections in the sides of a hyperbolic triangle with angles $\pi / p, \pi / q$ and π / r. This representation is unique up to conjugation.
When we change to the complex hyperbolic plane $\left(\mathbf{H}_{\mathbb{C}}^{2}\right)$ with isometry group $\mathbf{P U}(2,1)$, we find there is a one dimensional family of non-isometric hyperbolic triangles with angles $\pi / p, \pi / q$ and π / r. These correspond to a one dimensional family of non-conjugate representations:

$$
\rho_{t}: \triangle(p, q, r) \rightarrow \mathbf{P U}(2,1)
$$

(These representations are not necessarily discrete nor faithful).

A Representation for a deformed triangle group in $\operatorname{PU}(2,1)$

Representation

For $\rho, \sigma, \tau \in \mathbb{C}$ we define the matrices

$$
\begin{gathered}
R_{1}=\left(\begin{array}{ccc}
1 & \rho & \bar{\tau} \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right), R_{2}=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
\bar{\rho} & 1 & \sigma \\
0 & 0 & -1
\end{array}\right) \\
R_{3}=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
\tau & \bar{\sigma} & 1
\end{array}\right)
\end{gathered}
$$

These preserve the Hermitian form

$$
H=\left(\begin{array}{lll}
2 & \rho & \bar{\tau} \\
\bar{\rho} & 2 & \sigma \\
\tau & \bar{\sigma} & 2
\end{array}\right)
$$

The parameter space of deformed triangle groups

Conjecture / 'working hypothesis'
A discrete deformed triangle group is a lattice if and only if $R_{1} R_{2}$, $R_{2} R_{3}$ and $R_{3} R_{1}$ are non-loxodromic and $R_{1} R_{2} R_{3}$ is (finite order) regular elliptic.

The parameter space of deformed triangle groups

Conjecture / 'working hypothesis'
A discrete deformed triangle group is a lattice if and only if $R_{1} R_{2}$, $R_{2} R_{3}$ and $R_{3} R_{1}$ are non-loxodromic and $R_{1} R_{2} R_{3}$ is (finite order) regular elliptic.

We want ord $\left(R_{2} R_{3}\right)=p, \operatorname{ord}\left(R_{3} R_{1}\right)=q$ and $\operatorname{ord}\left(R_{1} R_{2}\right)=r$. This forces:

$$
|\sigma|=2 \cos (\pi / p), \quad|\tau|=2 \cos (\pi / q), \quad|\rho|=2 \cos (\pi / r)
$$

The parameter space of deformed triangle groups

Conjecture / 'working hypothesis'

A discrete deformed triangle group is a lattice if and only if $R_{1} R_{2}$, $R_{2} R_{3}$ and $R_{3} R_{1}$ are non-loxodromic and $R_{1} R_{2} R_{3}$ is (finite order) regular elliptic.

We want ord $\left(R_{2} R_{3}\right)=p, \operatorname{ord}\left(R_{3} R_{1}\right)=q$ and $\operatorname{ord}\left(R_{1} R_{2}\right)=r$. This forces:

$$
|\sigma|=2 \cos (\pi / p), \quad|\tau|=2 \cos (\pi / q), \quad|\rho|=2 \cos (\pi / r)
$$

This accounts for the first 3 parameters. The final parameter is $t=\arg (\rho \sigma \tau) \in[0, \pi]$ (or something equivalent).

The parameter space of deformed triangle groups

Conjecture / 'working hypothesis'

A discrete deformed triangle group is a lattice if and only if $R_{1} R_{2}$, $R_{2} R_{3}$ and $R_{3} R_{1}$ are non-loxodromic and $R_{1} R_{2} R_{3}$ is (finite order) regular elliptic.

We want ord $\left(R_{2} R_{3}\right)=p, \operatorname{ord}\left(R_{3} R_{1}\right)=q$ and $\operatorname{ord}\left(R_{1} R_{2}\right)=r$. This forces:

$$
|\sigma|=2 \cos (\pi / p), \quad|\tau|=2 \cos (\pi / q), \quad|\rho|=2 \cos (\pi / r)
$$

This accounts for the first 3 parameters. The final parameter is $t=\arg (\rho \sigma \tau) \in[0, \pi]$ (or something equivalent).
The trace of $R_{1} R_{2} R_{3}$ is

$$
1+\rho \sigma \tau-|\rho|^{2}-|\sigma|^{2}-|\tau|^{2}
$$

So $R_{1} R_{2} R_{3}$ is finite order, regular elliptic iff ρ, σ, τ satisfy:

$$
1+\rho \sigma \tau-|\rho|^{2}-|\sigma|^{2}-|\tau|^{2}=e^{A i \pi}+e^{B i \pi}+e^{C i \pi}
$$

for some rational A, B, C

Lattice candidates

It is difficult to find triples ρ, σ, τ arithmetically. A brute force search on a computer yields the following triples:

\mathbf{T}	ρ	σ	τ	$\Gamma(p, q, r ; n)$	$\operatorname{ord}\left(R_{123}\right)$
\mathbf{S}_{1}	$\zeta_{7}+\zeta_{7}^{2}+\zeta_{7}^{4}$	1	1	$\Gamma(3,3,4 ; 4)$	7
\mathbf{S}_{2}	$1+\omega \phi$	1	1	$\Gamma(3,3,4 ; 5)$	5
\mathbf{E}_{1}	$\sqrt{-2}$	1	1	$\Gamma(3,3,4 ; 6)$	8
\mathbf{E}_{2}	$\sqrt{2}$	$-\bar{\omega}$	$\sqrt{2}$	$\Gamma(3,4,4 ; 4)$	6
\mathbf{H}_{1}	$\zeta_{7}+\zeta_{7}^{2}+\zeta_{7}^{4}$	ζ_{7}^{5}	ζ_{7}^{5}	$\Gamma(3,3,4 ; 7)$	42
\mathbf{H}_{2}	$-1-\zeta_{5}^{4}$	ζ_{5}^{2}	ζ_{5}^{2}	$\Gamma(3,3,5 ; 5)$	15

Lattice candidates

It is difficult to find triples ρ, σ, τ arithmetically. A brute force search on a computer yields the following triples:

\mathbf{T}	ρ	σ	τ	$\Gamma(p, q, r ; n)$	$\operatorname{ord}\left(R_{123}\right)$
\mathbf{S}_{1}	$\zeta_{7}+\zeta_{7}^{2}+\zeta_{7}^{4}$	1	1	$\Gamma(3,3,4 ; 4)$	7
\mathbf{S}_{2}	$1+\omega \phi$	1	1	$\Gamma(3,3,4 ; 5)$	5
\mathbf{E}_{1}	$\sqrt{-2}$	1	1	$\Gamma(3,3,4 ; 6)$	8
\mathbf{E}_{2}	$\sqrt{2}$	$-\bar{\omega}$	$\sqrt{2}$	$\Gamma(3,4,4 ; 4)$	6
\mathbf{H}_{1}	$\zeta_{7}+\zeta_{7}^{2}+\zeta_{7}^{4}$	ζ_{7}^{5}	ζ_{7}^{5}	$\Gamma(3,3,4 ; 7)$	42
\mathbf{H}_{2}	$-1-\zeta_{5}^{4}$	ζ_{5}^{2}	ζ_{5}^{2}	$\Gamma(3,3,5 ; 5)$	15

This search produced two 'new' reflection group lattices:
$\Gamma(3,3,4 ; 7)$ and $\Gamma(3,3,5 ; 5)$.

Two new lattices

$\Gamma(3,3,4 ; 7)$ and $\Gamma(3,3,5 ; 5)$ are commensurable with known arithmetic Deligne-Mostow lattices. The groups have the presentations:

$$
\begin{aligned}
& \Gamma(3,3,4 ; 7)=\left\langle R_{1}, R_{2}, R_{3} \left\lvert\, \begin{array}{cc}
R_{i}^{2},\left(R_{2} R_{3}\right)^{3},\left(R_{3} R_{1}\right)^{3},\left(R_{1} R_{2}\right)^{4} \\
\left(R_{1} R_{3} R_{2} R_{3}\right)^{7},\left(R_{1} R_{2} R_{3}\right)^{42}
\end{array}\right.\right\rangle \\
& \Gamma(3,3,5 ; 5)=\left\langle\begin{array}{cc}
R_{1}, R_{2}, R_{3} \mid & \left.\begin{array}{c}
R_{i}^{2},\left(R_{2} R_{3}\right)^{3},\left(R_{3} R_{1}\right)^{3},\left(R_{1} R_{2}\right)^{5} \\
\left(R_{1} R_{3} R_{2} R_{3}\right)^{5},\left(R_{1} R_{2} R_{3}\right)^{15}
\end{array}\right\rangle
\end{array}\right\rangle
\end{aligned}
$$

Two new lattices

$\Gamma(3,3,4 ; 7)$ and $\Gamma(3,3,5 ; 5)$ are commensurable with known arithmetic Deligne-Mostow lattices. The groups have the presentations:

$$
\begin{aligned}
& \Gamma(3,3,4 ; 7)=\left\langle R_{1}, R_{2}, R_{3} \left\lvert\, \begin{array}{c}
R_{i}^{2},\left(R_{2} R_{3}\right)^{3},\left(R_{3} R_{1}\right)^{3},\left(R_{1} R_{2}\right)^{4} \\
\left(R_{1} R_{3} R_{2} R_{3}\right)^{7},\left(R_{1} R_{2} R_{3}\right)^{42}
\end{array}\right.\right\rangle, \\
& \Gamma(3,3,5 ; 5)=\left\langle R_{1}, R_{2}, R_{3} \left\lvert\, \begin{array}{c}
R_{i}^{2}\left(R_{2} R_{3}\right)^{3},\left(R_{3} R_{1}\right)^{3},\left(R_{1} R_{2}\right)^{5} \\
\left(R_{1} R_{3} R_{2} R_{3}\right)^{5},\left(R_{1} R_{2} R_{3}\right)^{15}
\end{array}\right.\right\rangle .
\end{aligned}
$$

The Euler-Poincaré characteristic of the lattices are

$$
\chi(\Gamma(3,3,4 ; 7))=\frac{1}{49} \quad \text { and } \quad \chi(\Gamma(3,3,5 ; 5))=\frac{1}{100} .
$$

Two new lattices

$\Gamma(3,3,4 ; 7)$ and $\Gamma(3,3,5 ; 5)$ are commensurable with known arithmetic Deligne-Mostow lattices. The groups have the presentations:

$$
\begin{aligned}
& \Gamma(3,3,4 ; 7)=\left\langle\begin{array}{cc}
R_{1}, R_{2}, R_{3} \mid & \left.\begin{array}{c}
R_{i}^{2},\left(R_{2} R_{3}\right)^{3},\left(R_{3} R_{1}\right)^{3},\left(R_{1} R_{2}\right)^{4} \\
\left(R_{1} R_{3} R_{2} R_{3}\right)^{7},\left(R_{1} R_{2} R_{3}\right)^{42}
\end{array}\right\rangle \\
\Gamma(3,3,5 ; 5)=\left\langle\begin{array}{cc}
R_{1}, R_{2}, R_{3} \mid & \left.\begin{array}{c}
R_{i}^{2},\left(R_{2} R_{3}\right)^{3},\left(R_{3} R_{1}\right)^{3},\left(R_{1} R_{2}\right)^{5} \\
\left(R_{1} R_{3} R_{2} R_{3}\right)^{5},\left(R_{1} R_{2} R_{3}\right)^{15}
\end{array}\right\rangle
\end{array}\right\rangle
\end{array} .\right.
\end{aligned}
$$

The Euler-Poincaré characteristic of the lattices are

$$
\chi(\Gamma(3,3,4 ; 7))=\frac{1}{49} \quad \text { and } \quad \chi(\Gamma(3,3,5 ; 5))=\frac{1}{100} .
$$

'Conjecture'

$\Gamma(3,3,4 ; 7), \Gamma(3,3,5 ; 5), \Gamma(4,4,4 ; 5)$ and $\Gamma(5,5,5 ; 5)$ are the only deformed triangle group lattices generated by order 2 reflections.

Idea for a fundamental domain for $\Gamma(3,3,5 ; 5)$

Our fundamental domain for $\Gamma(3,3,5 ; 5)$ will consist of two things:

- A finite order regular elliptic isometry P with fixed point o_{P},
- A carefully constructed codimension 1 polyhedra D whose orbit under P is homeomorphic to a 3-sphere containing o_{p}
The fundamental domain is the geodesic cone over D to op

Idea for a fundamental domain for $\Gamma(3,3,5 ; 5)$

Our fundamental domain for $\Gamma(3,3,5 ; 5)$ will consist of two things:

- A finite order regular elliptic isometry P with fixed point o_{P},
- A carefully constructed codimension 1 polyhedra D whose orbit under P is homeomorphic to a 3 -sphere containing o_{p}
The fundamental domain is the geodesic cone over D to o_{P}

A fundamental domain for $\Gamma(3,3,5 ; 5)$

Our fundamental domain for $\Gamma(3,3,5 ; 5)$ consists of two things:

- A finite order regular elliptic isometry P with fixed point o_{P},
- A carefully constructed codimension 1 polyhedra D whose orbit under P is homeomorphic to a 3 -sphere containing o_{p}
The fundamental domain is the geodesic cone over D to o_{P}

A fundamental domain for $\Gamma(3,3,5 ; 5)$

Our fundamental domain for $\Gamma(3,3,5 ; 5)$ consists of two things:

- A finite order regular elliptic isometry P with fixed point o_{P},
- A carefully constructed codimension 1 polyhedra D whose orbit under P is homeomorphic to a 3 -sphere containing o_{p}
The fundamental domain is the geodesic cone over D to o_{P}

A fundamental domain for $\Gamma(3,3,5 ; 5)$

Our fundamental domain for $\Gamma(3,3,5 ; 5)$ consists of two things:

- A finite order regular elliptic isometry P with fixed point o_{P},
- A carefully constructed codimension 1 polyhedra D whose orbit under P is homeomorphic to a 3 -sphere containing o_{p}
The fundamental domain is the geodesic cone over D to o_{P}

A fundamental domain for $\Gamma(3,3,5 ; 5)$

Our fundamental domain for $\Gamma(3,3,5 ; 5)$ consists of two things:

- A finite order regular elliptic isometry P with fixed point o_{P},
- A carefully constructed codimension 1 polyhedra D whose orbit under P is homeomorphic to a 3 -sphere containing o_{p}
The fundamental domain is the geodesic cone over D to o_{P}

A fundamental domain for $\Gamma(3,3,5 ; 5)$

Our fundamental domain for $\Gamma(3,3,5 ; 5)$ consists of two things:

- A finite order regular elliptic isometry P with fixed point o_{P},
- A carefully constructed codimension 1 polyhedra D whose orbit under P is homeomorphic to a 3 -sphere containing o_{p}
The fundamental domain is the geodesic cone over D to o op

In our case, $P=R_{1} R_{2} R_{3}$ and is D is...

A fundamental domain for $\Gamma(3,3,5 ; 5)$

Higher order reflections

A representation for a triangle group generated by higher order reflections is:

Representation

Let $\rho, \sigma, \tau \in \mathbb{C}$ and $\psi=2 \pi / p$,

$$
\begin{gathered}
R_{1}=e^{-i \psi / 3}\left(\begin{array}{ccc}
e^{i \psi} & \rho & -\bar{\tau} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad R_{2}=e^{-i \psi / 3}\left(\begin{array}{ccc}
1 & 0 & 0 \\
-e^{i \psi} \bar{\rho} & e^{i \psi} & \sigma \\
0 & 0 & 1
\end{array}\right), \\
R_{3}=e^{-i \psi / 3}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
e^{i \psi} \tau & -e^{i \psi} \bar{\sigma} & e^{i \psi}
\end{array}\right) . \\
H=\left(\begin{array}{ccc}
2-2 \operatorname{Re}\left(e^{i \psi}\right) & \rho\left(e^{-i \psi}-1\right) & \bar{\tau}\left(1-e^{-i \psi}\right) \\
\bar{\rho}\left(e^{i \psi}-1\right) & 2-2 \operatorname{Re}\left(e^{i \psi}\right) & \sigma\left(e^{-i \psi}-1\right) \\
\tau\left(1-e^{i \psi}\right) & \bar{\sigma}\left(e^{i \psi}-1\right) & 2-2 \operatorname{Re}\left(e^{i \psi}\right)
\end{array}\right)
\end{gathered}
$$

Higher order reflections

We are still interested in groups where $R_{1} R_{2} R_{3}$ is finite order regular elliptic.

Higher order reflections

We are still interested in groups where $R_{1} R_{2} R_{3}$ is finite order regular elliptic.
$R_{1} R_{2} R_{3}=\left(\begin{array}{ccc}1-|\rho|^{2}-|\tau|^{2}+\rho \sigma \tau & \rho\left(1-|\sigma|^{2}\right)+\overline{\sigma \tau} & \sigma \rho-\bar{\tau} \\ \bar{\rho}+\tau & 1-|\sigma|^{2} & \sigma \\ \tau & \bar{\sigma} & 1\end{array}\right)$

Higher order reflections

We are still interested in groups where $R_{1} R_{2} R_{3}$ is finite order regular elliptic.
$R_{1} R_{2} R_{3}=\left(\begin{array}{ccc}1-|\rho|^{2}-|\tau|^{2}+\rho \sigma \tau & \rho\left(1-|\sigma|^{2}\right)+\overline{\sigma \tau} & \sigma \rho-\bar{\tau} \\ \bar{\rho}+\tau & 1-|\sigma|^{2} & \sigma \\ \tau & \bar{\sigma} & 1\end{array}\right)$
The $e^{i \psi}$ s terms cancel out.

Higher order reflections

We are still interested in groups where $R_{1} R_{2} R_{3}$ is finite order regular elliptic.

$$
R_{1} R_{2} R_{3}=\left(\begin{array}{ccc}
1-|\rho|^{2}-|\tau|^{2}+\rho \sigma \tau & \rho\left(1-|\sigma|^{2}\right)+\overline{\sigma \tau} & \sigma \rho-\bar{\tau} \\
\bar{\rho}+\tau & 1-|\sigma|^{2} & \sigma \\
\tau & \bar{\sigma} & 1
\end{array}\right)
$$

The $e^{i \psi}$ s terms cancel out.
Choose a triple ρ, σ, τ. The word $R_{1} R_{2} R_{3}$ is regular elliptic in a higher order deformed triangle group iff it is regular elliptic in the group generated by order 2 reflections. Similarly, $R_{i} R_{j}$ will be non-loxodromic in the higher order reflection group iff and only if $R_{i} R_{j}$ are non-loxodromic in the order 2 case.

Higher order reflections

Recall, the values of ρ, σ, τ satisfying the conditions are:

\mathbf{T}	ρ	σ	τ	$\operatorname{ord}\left(R_{123}\right)$
\mathbf{S}_{1}	$\zeta_{7}+\zeta_{7}^{2}+\zeta_{7}^{4}$	1	1	7
\mathbf{S}_{2}	$1+\omega \phi$	1	1	5
\mathbf{E}_{1}	$\sqrt{-2}$	1	1	8
\mathbf{E}_{2}	$\sqrt{2}$	$-\bar{\omega}$	$\sqrt{2}$	6
\mathbf{H}_{1}	$\zeta_{7}+\zeta_{7}^{2}+\zeta_{7}^{4}$	ζ_{7}^{5}	ζ_{7}^{5}	42
\mathbf{H}_{2}	$-1-\zeta_{5}^{4}$	ζ_{5}^{2}	ζ_{5}^{2}	15

For each of these triples we have a new infinite family of groups, $\Gamma\left(\frac{2 \pi}{p}, \mathbf{T}\right)$. However all but finitely many of the groups are non-discrete.

Higher order reflections:New lattices

Using Martin Deraux's computer program the following 14+2 groups appear to be lattices:

p	\mathbf{T}	$\mathrm{~A} / \mathrm{NA}$?	compact?
2	\mathbf{H}_{1}	A	C
2	\mathbf{H}_{2}	A	C
3	\mathbf{S}_{2}	A	C
3	\mathbf{E}_{1}	NA	NC
3	\mathbf{H}_{2}	NA	C
4	\mathbf{S}_{2}	NA	NC
4	\mathbf{E}_{1}	NA	NC
4	\mathbf{E}_{2}	NA	NC
5	\mathbf{S}_{2}	NA	C
5	\mathbf{H}_{2}	NA	C
5	$\overline{\mathbf{H}}_{2}$	NA	C
6	\mathbf{E}_{1}	NA	C
6	\mathbf{E}_{2}	A	C
7	\mathbf{H}_{1}	A	C
10	\mathbf{H}_{2}	A	C
12	\mathbf{E}_{2}	A	C

Fundamental domains for $\Gamma\left(\frac{2 \pi}{p}, \boldsymbol{H}_{2}\right)$

Fundamental domains for $\Gamma\left(\frac{2 \pi}{p}, \boldsymbol{H}_{2}\right)$

Fundamental domains for $\Gamma\left(\frac{2 \pi}{p}, \boldsymbol{H}_{2}\right)$

Fundamental domains for $\Gamma\left(\frac{2 \pi}{p}, \boldsymbol{H}_{2}\right)$

$\Gamma\left(\frac{2 \pi}{p}, \boldsymbol{H}_{2}\right)$

Presentations

Common relations:

$$
\begin{gathered}
1^{p}, 2^{p}, 3^{p}, 131=313,232=313,21212=12121, \\
(123)^{15},(1(23 \overline{2}))^{5 / 2}=((23 \overline{2}) 1)^{5 / 2}
\end{gathered}
$$

Extra relations:

- $p=2$: no extra relations.
- $p=3:(\overline{2} 12123123)^{15}$.
- $p=5:(12)^{10},(1(23 \overline{2}))^{10},(\overline{2} 12123123)^{10}$.
- $p=10:(13)^{15},(23)^{15},(12)^{5},(1(23 \overline{2}))^{5},(\overline{2} 12123123)^{10}$.

Euler-Poincaré characteristics

$$
p=2, \chi=\frac{1}{100} ; p=3, \chi=\frac{26}{75} ; p=5, \chi=\frac{73}{100} ; p=10, \chi=\frac{13}{100} .
$$

