Non-equilateral deformed triangle groups

James M. Thompson

University of Durham

Geometry and Arithmetic of Lattices London Mathematical Society - EPSRC Durham symposium 2011

(Deformed) Hyperbolic triangle groups

A hyperbolic triangle group is a faithful and discrete representation of a Coxeter group

 $\triangle(p,q,r) = \langle R_1, R_2, R_3 \mid R_i^2, (R_2R_3)^p, (R_3R_1)^q, (R_1R_2)^r \rangle$

into **PO**(2, 1) (when 1/p + 1/q + 1/r < 1). We identify the generators with reflections in the sides of a hyperbolic triangle with angles π/p , π/q and π/r . This representation is unique up to conjugation.

(Deformed) Hyperbolic triangle groups

A hyperbolic triangle group is a faithful and discrete representation of a Coxeter group

 $\triangle(p,q,r) = \langle R_1, R_2, R_3 \mid R_i^2, (R_2R_3)^p, (R_3R_1)^q, (R_1R_2)^r \rangle$

into **PO**(2,1) (when 1/p + 1/q + 1/r < 1). We identify the generators with reflections in the sides of a hyperbolic triangle with angles π/p , π/q and π/r . This representation is unique up to conjugation.

When we change to the complex hyperbolic plane $(\mathbf{H}_{\mathbb{C}}^2)$ with isometry group $\mathbf{PU}(2,1)$, we find there is a one dimensional family of non-isometric hyperbolic triangles with angles π/p , π/q and π/r . These correspond to a one dimensional family of non-conjugate representations:

 $ho_t: riangle(p,q,r)
ightarrow \mathsf{PU}(2,1)$

(These representations are not necessarily discrete nor faithful).

Representation

For $\rho,\,\sigma,\,\tau\in\mathbb{C}$ we define the matrices

$$R_{1} = \begin{pmatrix} 1 & \rho & \overline{\tau} \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, R_{2} = \begin{pmatrix} -1 & 0 & 0 \\ \overline{\rho} & 1 & \sigma \\ 0 & 0 & -1 \end{pmatrix},$$
$$R_{3} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ \tau & \overline{\sigma} & 1 \end{pmatrix}.$$

These preserve the Hermitian form

$$H = \left(\begin{array}{ccc} 2 & \rho & \overline{\tau} \\ \overline{\rho} & 2 & \sigma \\ \tau & \overline{\sigma} & 2 \end{array}\right)$$

A discrete deformed triangle group is a lattice if and only if R_1R_2 , R_2R_3 and R_3R_1 are non-loxodromic and $R_1R_2R_3$ is (finite order) regular elliptic.

A discrete deformed triangle group is a lattice if and only if R_1R_2 , R_2R_3 and R_3R_1 are non-loxodromic and $R_1R_2R_3$ is (finite order) regular elliptic.

We want $\operatorname{ord}(R_2R_3) = p$, $\operatorname{ord}(R_3R_1) = q$ and $\operatorname{ord}(R_1R_2) = r$. This forces:

$$|\sigma| = 2\cos(\pi/p), \quad |\tau| = 2\cos(\pi/q), \quad |\rho| = 2\cos(\pi/r).$$

A discrete deformed triangle group is a lattice if and only if R_1R_2 , R_2R_3 and R_3R_1 are non-loxodromic and $R_1R_2R_3$ is (finite order) regular elliptic.

We want $\operatorname{ord}(R_2R_3) = p$, $\operatorname{ord}(R_3R_1) = q$ and $\operatorname{ord}(R_1R_2) = r$. This forces:

$$|\sigma| = 2\cos(\pi/p), \quad |\tau| = 2\cos(\pi/q), \quad |\rho| = 2\cos(\pi/r).$$

This accounts for the first 3 parameters. The final parameter is $t = \arg(\rho \sigma \tau) \in [0, \pi]$ (or something equivalent).

A discrete deformed triangle group is a lattice if and only if R_1R_2 , R_2R_3 and R_3R_1 are non-loxodromic and $R_1R_2R_3$ is (finite order) regular elliptic.

We want $\operatorname{ord}(R_2R_3) = p$, $\operatorname{ord}(R_3R_1) = q$ and $\operatorname{ord}(R_1R_2) = r$. This forces:

$$|\sigma|=2\cos(\pi/p), \quad |\tau|=2\cos(\pi/q), \quad |
ho|=2\cos(\pi/r).$$

This accounts for the first 3 parameters. The final parameter is $t = \arg(\rho \sigma \tau) \in [0, \pi]$ (or something equivalent). The trace of $R_1 R_2 R_3$ is

$$1 + \rho \sigma \tau - |\rho|^2 - |\sigma|^2 - |\tau|^2.$$

So $R_1 R_2 R_3$ is finite order, regular elliptic iff ρ , σ , τ satisfy: $1 + \rho \sigma \tau - |\rho|^2 - |\sigma|^2 - |\tau|^2 = e^{Ai\pi} + e^{Bi\pi} + e^{Ci\pi}$.

for some rational A, B, C

It is difficult to find triples ρ , σ , τ arithmetically. A brute force search on a computer yields the following triples:

Т	ρ	σ	au	$\Gamma(p,q,r;n)$	$\operatorname{ord}(R_{123})$
S ₁	$\zeta_7 + \zeta_7^2 + \zeta_7^4$	1	1	Γ(3, 3, 4; 4)	7
S ₂	$1+\omega\phi$	1	1	Г(3, 3, 4; 5)	5
E ₁	$\sqrt{-2}$	1	1	Г(3, 3, 4; 6)	8
E ₂	$\sqrt{2}$	$-\overline{\omega}$	$\sqrt{2}$	Γ(3, 4, 4; 4)	6
H_1	$\zeta_7 + \zeta_7^2 + \zeta_7^4$	ζ_7^5	ζ_7^5	Г(3, 3, 4; 7)	42
H ₂	$-1-\zeta_5^4$	ζ_5^2	ζ_5^2	Γ(3, 3, 5; 5)	15

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

It is difficult to find triples ρ , σ , τ arithmetically. A brute force search on a computer yields the following triples:

Т	ρ	σ	au	$\Gamma(p,q,r;n)$	$\operatorname{ord}(R_{123})$
\mathbf{S}_1	$\zeta_7 + \zeta_7^2 + \zeta_7^4$	1	1	Γ(3, 3, 4; 4)	7
S ₂	$1+\omega\phi$	1	1	Γ(3, 3, 4; 5)	5
\mathbf{E}_1	$\sqrt{-2}$	1	1	Γ(3, 3, 4; 6)	8
E ₂	$\sqrt{2}$	$-\overline{\omega}$	$\sqrt{2}$	Γ(3, 4, 4; 4)	6
H_1	$\zeta_7 + \zeta_7^2 + \zeta_7^4$	ζ_7^5	ζ_7^5	Γ(3, 3, 4; 7)	42
H ₂	$-1-\zeta_5^4$	ζ_5^2	ζ_5^2	Γ(3, 3, 5; 5)	15

This search produced two 'new' reflection group lattices: $\Gamma(3, 3, 4; 7)$ and $\Gamma(3, 3, 5; 5)$.

 $\Gamma(3, 3, 4; 7)$ and $\Gamma(3, 3, 5; 5)$ are commensurable with known arithmetic Deligne-Mostow lattices. The groups have the presentations:

$$\Gamma(3,3,4;7) = \left\langle R_1, R_2, R_3 \mid \begin{array}{c} R_i^2, (R_2R_3)^3, (R_3R_1)^3, (R_1R_2)^4 \\ (R_1R_3R_2R_3)^7, (R_1R_2R_3)^{42} \end{array} \right\rangle,$$

$$\Gamma(3,3,5;5) = \left\langle R_1, R_2, R_3 \mid \begin{array}{c} R_i^2, (R_2R_3)^3, (R_3R_1)^3, (R_1R_2)^5 \\ (R_1R_3R_2R_3)^5, (R_1R_2R_3)^{15} \end{array} \right\rangle.$$

 $\Gamma(3, 3, 4; 7)$ and $\Gamma(3, 3, 5; 5)$ are commensurable with known arithmetic Deligne-Mostow lattices. The groups have the presentations:

$$\Gamma(3,3,4;7) = \left\langle R_1, R_2, R_3 \mid \begin{array}{c} R_i^2, (R_2R_3)^3, (R_3R_1)^3, (R_1R_2)^4 \\ (R_1R_3R_2R_3)^7, (R_1R_2R_3)^{42} \end{array} \right\rangle,$$

$$\Gamma(3,3,5;5) = \left\langle R_1, R_2, R_3 \mid \begin{array}{c} R_i^2, (R_2R_3)^3, (R_3R_1)^3, (R_1R_2)^5 \\ (R_1R_3R_2R_3)^5, (R_1R_2R_3)^{15} \end{array} \right\rangle.$$

- ロ ト - 4 回 ト - 4 □ - 4

The Euler-Poincaré characteristic of the lattices are $\chi(\Gamma(3,3,4;7)) = \frac{1}{49}$ and $\chi(\Gamma(3,3,5;5)) = \frac{1}{100}$. $\Gamma(3, 3, 4; 7)$ and $\Gamma(3, 3, 5; 5)$ are commensurable with known arithmetic Deligne-Mostow lattices. The groups have the presentations:

$$\begin{split} & \Gamma(3,3,4;7) = \left\langle R_1, R_2, R_3 \mid \begin{array}{c} R_i^2, (R_2R_3)^3, (R_3R_1)^3, (R_1R_2)^4 \\ (R_1R_3R_2R_3)^7, (R_1R_2R_3)^{42} \end{array} \right\rangle, \\ & \Gamma(3,3,5;5) = \left\langle R_1, R_2, R_3 \mid \begin{array}{c} R_i^2, (R_2R_3)^3, (R_3R_1)^3, (R_1R_2)^5 \\ (R_1R_3R_2R_3)^5, (R_1R_2R_3)^{15} \end{array} \right\rangle. \end{split}$$

The Euler-Poincaré characteristic of the lattices are $\chi(\Gamma(3,3,4;7)) = \frac{1}{49}$ and $\chi(\Gamma(3,3,5;5)) = \frac{1}{100}$.

'Conjecture'

 $\Gamma(3, 3, 4; 7)$, $\Gamma(3, 3, 5; 5)$, $\Gamma(4, 4, 4; 5)$ and $\Gamma(5, 5, 5; 5)$ are the only deformed triangle group lattices generated by order 2 reflections.

Idea for a fundamental domain for $\Gamma(3, 3, 5; 5)$

Our fundamental domain for $\Gamma(3, 3, 5; 5)$ will consist of two things:

- A finite order regular elliptic isometry P with fixed point o_P ,
- A carefully constructed codimension 1 polyhedra *D* whose orbit under *P* is homeomorphic to a 3-sphere containing *o_p*

Idea for a fundamental domain for $\Gamma(3, 3, 5; 5)$

Our fundamental domain for $\Gamma(3, 3, 5; 5)$ will consist of two things:

- A finite order regular elliptic isometry P with fixed point o_P ,
- A carefully constructed codimension 1 polyhedra D whose orbit under P is homeomorphic to a 3-sphere containing o_p
- The fundamental domain is the geodesic cone over D to o_P

Our fundamental domain for $\Gamma(3, 3, 5; 5)$ consists of two things:

- A finite order regular elliptic isometry P with fixed point o_P ,
- A carefully constructed codimension 1 polyhedra D whose orbit under P is homeomorphic to a 3-sphere containing o_p

Our fundamental domain for $\Gamma(3, 3, 5; 5)$ consists of two things:

- A finite order regular elliptic isometry P with fixed point o_P ,
- A carefully constructed codimension 1 polyhedra D whose orbit under P is homeomorphic to a 3-sphere containing o_p

Our fundamental domain for $\Gamma(3, 3, 5; 5)$ consists of two things:

- A finite order regular elliptic isometry P with fixed point o_P ,
- A carefully constructed codimension 1 polyhedra D whose orbit under P is homeomorphic to a 3-sphere containing o_p

Our fundamental domain for $\Gamma(3, 3, 5; 5)$ consists of two things:

- A finite order regular elliptic isometry P with fixed point o_P ,
- A carefully constructed codimension 1 polyhedra D whose orbit under P is homeomorphic to a 3-sphere containing o_p

Our fundamental domain for $\Gamma(3, 3, 5; 5)$ consists of two things:

- A finite order regular elliptic isometry P with fixed point o_P ,
- A carefully constructed codimension 1 polyhedra *D* whose orbit under *P* is homeomorphic to a 3-sphere containing *o_p*

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The fundamental domain is the geodesic cone over D to o_P

In our case, $P = R_1 R_2 R_3$ and is D is...

Sac

Higher order reflections

A representation for a triangle group generated by higher order reflections is:

Representation

Let
$$ho$$
, σ , $au \in \mathbb{C}$ and $\psi = 2\pi/p$,

$$\begin{split} R_1 &= e^{-i\psi/3} \left(\begin{array}{cc} e^{i\psi} & \rho & -\overline{\tau} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right), \quad R_2 &= e^{-i\psi/3} \left(\begin{array}{cc} 1 & 0 & 0 \\ -e^{i\psi}\overline{\rho} & e^{i\psi} & \sigma \\ 0 & 0 & 1 \end{array} \right), \\ R_3 &= e^{-i\psi/3} \left(\begin{array}{cc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ e^{i\psi}\tau & -e^{i\psi}\overline{\sigma} & e^{i\psi} \end{array} \right). \\ H &= \left(\begin{array}{cc} 2 - 2\mathrm{Re}\left(e^{i\psi}\right) & \rho(e^{-i\psi} - 1) & \overline{\tau}(1 - e^{-i\psi}) \\ \overline{\rho}(e^{i\psi} - 1) & 2 - 2\mathrm{Re}\left(e^{i\psi}\right) & \sigma(e^{-i\psi} - 1) \\ \tau(1 - e^{i\psi}) & \overline{\sigma}(e^{i\psi} - 1) & 2 - 2\mathrm{Re}\left(e^{i\psi}\right) \end{array} \right) \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$R_1 R_2 R_3 = \begin{pmatrix} 1 - |\rho|^2 - |\tau|^2 + \rho \sigma \tau & \rho (1 - |\sigma|^2) + \overline{\sigma} \overline{\tau} & \sigma \rho - \overline{\tau} \\ \overline{\rho} + \tau & 1 - |\sigma|^2 & \sigma \\ \tau & \overline{\sigma} & 1 \end{pmatrix}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$R_1 R_2 R_3 = \begin{pmatrix} 1 - |\rho|^2 - |\tau|^2 + \rho \sigma \tau & \rho (1 - |\sigma|^2) + \overline{\sigma} \overline{\tau} & \sigma \rho - \overline{\tau} \\ \overline{\rho} + \tau & 1 - |\sigma|^2 & \sigma \\ \tau & \overline{\sigma} & 1 \end{pmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The $e^{i\psi}$ s terms cancel out.

$$R_1 R_2 R_3 = \begin{pmatrix} 1 - |\rho|^2 - |\tau|^2 + \rho \sigma \tau & \rho (1 - |\sigma|^2) + \overline{\sigma} \overline{\tau} & \sigma \rho - \overline{\tau} \\ \overline{\rho} + \tau & 1 - |\sigma|^2 & \sigma \\ \tau & \overline{\sigma} & 1 \end{pmatrix}$$

The $e^{i\psi}$ s terms cancel out.

Choose a triple ρ , σ , τ . The word $R_1R_2R_3$ is regular elliptic in a higher order deformed triangle group iff it is regular elliptic in the group generated by order 2 reflections. Similarly, R_iR_j will be non-loxodromic in the higher order reflection group iff and only if R_iR_j are non-loxodromic in the order 2 case. Recall, the values of ρ , σ , τ satisfying the conditions are:

Т	ρ	σ	au	$\operatorname{ord}(R_{123})$
S ₁	$\zeta_7 + \zeta_7^2 + \zeta_7^4$	1	1	7
S ₂	$1+\omega\phi$	1	1	5
E ₁	$\sqrt{-2}$	1	1	8
E ₂	$\sqrt{2}$	$-\overline{\omega}$	$\sqrt{2}$	6
H_1	$\zeta_7 + \zeta_7^2 + \zeta_7^4$	ζ_7^5	ζ_7^5	42
H ₂	$-1-\zeta_5^4$	ζ_5^2	ζ_5^2	15

For each of these triples we have a new infinite family of groups, $\Gamma\left(\frac{2\pi}{p},\mathbf{T}\right)$. However all but finitely many of the groups are non-discrete.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Higher order reflections:New lattices

Using Martin Deraux's computer program the following 14+2 groups appear to be lattices:

р	Т	A/NA?	compact?
2	H_1	A	С
2	H_2	A	C
3	S ₂	A	C
3	\mathbf{E}_1	NA	NC
3	H_2	NA	C
4	S ₂	NA	NC
4	\mathbf{E}_1	NA	NC
4	\mathbf{E}_2	NA	NC
5	S ₂	NA	C
5	H_2	NA	C
5	$\overline{\mathbf{H}}_2$	NA	C
6	\mathbf{E}_1	NA	C
6	\mathbf{E}_2	A	C
7	$\overline{\mathbf{H}}_1$	A	С
10	H_2	A	С
12	E ₂	A	C

Fundamental domains for $\Gamma\left(\frac{2\pi}{p},\mathbf{H}_{2}\right)$

Fundamental domains for $\Gamma\left(\frac{2\pi}{p},\mathbf{H}_{2}\right)$

SQC.

Fundamental domains for $\Gamma\left(\frac{2\pi}{p},\mathbf{H}_2\right)$

Fundamental domains for $\Gamma\left(\frac{2\pi}{p},\mathbf{H}_2\right)$

▲ロト ▲圖ト ▲ヨト ▲ヨト 三ヨー のへで

$\Gamma\left(\frac{2\pi}{p},\mathbf{H}_{2}\right)$

Presentations

Common relations:

$$\begin{split} 1^{p}, 2^{p}, 3^{p}, 131 &= 313, 232 = 313, 21212 = 12121, \\ (123)^{15}, (1(23\overline{2}))^{5/2} &= ((23\overline{2})1)^{5/2} \end{split}$$

Extra relations:

•
$$p = 2$$
: no extra relations.

•
$$p = 3$$
: $(\overline{2}12123123)^{15}$

- p = 5: $(12)^{10}$, $(1(23\overline{2}))^{10}$, $(\overline{2}12123123)^{10}$.
- p = 10: $(13)^{15}$, $(23)^{15}$, $(12)^5$, $(1(23\overline{2}))^5$, $(\overline{2}12123123)^{10}$.

Euler-Poincaré characteristics

$$p = 2, \ \chi = \frac{1}{100}; \ p = 3, \ \chi = \frac{26}{75}; \ p = 5, \ \chi = \frac{73}{100}; \ p = 10, \ \chi = \frac{13}{100}.$$