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advection equation on a torus

We study an advection equation on a torus

∂tv(x , t) + c · ∇v(x , t) = 0, (x , t) ∈ T
2 × (0,∞) (1)

dv

dt
(t) + Lv(t) = 0, , t ∈ (0,∞).

◮ v(·, 0) = v0 = N(m̂0, Ĉ0)

◮ v(x , t) = v0(x − ct, 0) solves eq. (1)

◮ the random field v(·, t) is Gaussian
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data assimilation

Suppose we have data at every tn = n × ∆t

y(x , tn) = v(x , tn) + η(x , tn), or

yn = vn + ηn where ηn ∼ N (0, Γ)

then P
(
vn|Yn = {y1, · · · , yn}

)
is obtained using Bayes rule

P(vn|Yn)

P(vn|Yn−1)
∝ P (yn|vn)

◮ Gaussianity preserved when conditioned on data Yn

◮ Infinite dimensional Kalman filter and smoother

◮ Filter P(vn|Yn) = N(m̂n, Ĉn)

◮ Smoother P(v0|Yn) = N(m′
n, C

′
n)

◮ smoothing is a push forward of filtering under eLtn
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allowing for model error

Note the statistical model used for v may be different from that
which generates the data used. We assume that the data we
actually incorporate is not yn but

y ǫ
n = v ǫ

n + ηn,

where

∂tv
ǫ(x , t) + cǫ · ∇v ǫ(x , t) = 0, (x , t) ∈ T

2 × (0,∞)

dv ǫ

dt
(t) + Lǫv ǫ(t) = 0, , t ∈ (0,∞).

and our filtering/smoothing yields P(·|Y ǫ
n ), i.e. Y ǫ

n replacing Yn

Questions:
Let v ǫ

0 = v0 (’true initial condition’) and δc = cǫ − c .

1. large data limit limn→∞ P(·|Yn) when δc = 0;

2. large data limit limn→∞ P(·|Y ǫ
n =) when 0 < |δc | ≪ 1?
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assumptions

◮ {φk} Fourier basis on T2.

◮ Ĉ0φk = λkφk ; Γφk = γkφk .
◮

∑
k |k|

2sγk < ∞; γk/λk = O(|k|β), for some β > 0.
◮ m̂0, u ∈ Hs+β .

For w ∈ L2(T2)

w =
∑

k

wkφk , wk = 〈u, φk〉

then

Hℓ =
{
w ∈ L2(T2)

∣∣ ‖w‖2
ℓ :=

∑

k

|k|2ℓ|wk |
2 < ∞

}
.

Note that
L2(T2) = H0.
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perfect model scenario

Theorem
Let cǫ = c . Then as n → ∞

E‖m̂n − vn‖
2
s = O(n−1)

E‖m′
n − v0‖

2
s = O(n−1)

‖Ĉn‖L(L2,H s) = O(n−1).

TRUTH SMOOTHER

Figure: v0 =
P3

k=1 sin(kx) + cos(ky) and E(v0|Yn) for large n
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constant velocity difference

Theorem
Let cǫ = c + δc . Then as n → ∞

E‖m̂n − e−tnLMv0‖
2
s = O(n−1)

E‖m′
n −Mv0‖

2
s = O(n−1)

where

M =
∑

(k1/p,k2/q)∈Z×Z
(u, φk )φk δc = (p′/p, q′/q)

= (u, φ0) (=
∫
T2 u dxdy = const) δc ∈ R\Q × R\Q

TRUTH IRRATIONAL

Figure: v =
∑3

sin(kx) + cos(ky) and
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integrable velocity difference

Theorem
Let c − cǫ(t) → 0 and

∫ T

0 (c − cǫ(t)) dt = α + O(T−κ). Then as

n → ∞, for φ = min{1, 2κ},

E‖m̂n − vn‖
2
s = O(n−φ)

E‖m′
n − v0,α‖

2
s = O(n−φ)

where
v0,α(·) = v0(· + α)

TRUTH SMOOTHER

Figure: v0 =
P3

k=1 sin(kx) + cos(ky) and E(v0|Yn) for large n
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white noise velocity difference

Theorem
Let cǫ(t) = c + ǫẆ (t). Then as n → ∞

E‖m̂n − 〈u〉‖2
s = O(n−1)

E‖m′
n − 〈u〉‖2

s = O(n−1)

◮ Here 〈·〉 denotes the spatial average.

◮ Similar theorem for different Gaussian perturbations.

◮ Then obtain a different average.
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pictorial overview of theorems

Given v0 =
∑3

k=1 sin(kx) + cos(ky), E(v0|Y ′
n) is depicted for large

n

u δc = (0, 0) δc = (1/2, 1/2)

δc = (1/π, 1/π)
R

∞

0 δc(s)ds = (1/2, 1/2) δc(t) = ǫẆt
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verbal overview of results

◮ We study large data limit of Kalman filter/smoother
in infinite dimensions.

◮ Advection equation on a torus is our forward model.

◮ Posterior consistency in perfect model scenario.

◮ Sensitive dependence on wave velocity difference is
shown in presence of model error.

◮ Limits of large data n → ∞ and small velocity error
ǫ → 0 do not commute.
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◮ “Kalman filtering and smoothing for linear wave
equations with model error”.

◮ Wonjung Lee, Damon McDougall and Andrew
Stuart.

◮ To appear: Inverse Problems.

◮ http : //www .maths.warwick.ac.uk/ ∼ masdr
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