Kalman Filtering and Smoothing for an Advection Equation with Model Error

Andrew M Stuart

University of Warwick Mathematcis Institute and Centre for Scientific Computing

Outline

Forward Model

advection equation on a torus

nverse Problem

lata assimilation Ilowing for model rror ssumptions

erfect Model Scenario

Model Erro

constant velocity difference integrable velocity difference white noise velocity difference

collaboration with

Wonjung Lee, University of Oxford Damon McDougall, University of Warwick

funded by

EPSRC, ERC, ONR, NERC

Outline

Forward Model

advection equation on a torus

nverse Problem

data assimilation allowing for model error assumptions

Perfect Model Scenario

Model Erro

constant velocity difference integrable velocity difference white noise velocity difference

Summary

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 ・ �� ◆

Forward Model

advection equation on a torus

Inverse Problem

data assimilation allowing for model error assumptions

Perfect Model Scenario

Model Error

constant velocity difference integrable velocity difference white noise velocity difference

Summary

Outline

Forward Model

advection equation on a torus

nverse Problem

data assimilation allowing for model error assumptions

Perfect Model Scenario

Model Erro

constant velocity difference integrable velocity difference white noise velocity difference

Summary

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● 臣 ● のへで

advection equation on a torus

We study an advection equation on a torus

$$\partial_t v(x,t) + c \cdot
abla v(x,t) = 0, \quad (x,t) \in \mathbf{T}^2 \times (0,\infty) \qquad (1$$

 $rac{dv}{dt}(t) + \mathcal{L}v(t) = 0,, \quad t \in (0,\infty).$

$$v(\cdot,0) = v_0 = N(\widehat{m}_0,\widehat{\mathcal{C}}_0)$$

•
$$v(x,t) = v_0(x - ct, 0)$$
 solves eq. (1)

• the random field $v(\cdot, t)$ is Gaussian

Outline

Forward Model

advection equation on a torus

verse Problem

data assimilation allowing for model error assumptions

Perfect Model Scenario

Model Error

constant velocity difference integrable velocity difference white noise velocity difference

Summary

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

data assimilation

Suppose we have data at every $t_n = n \times \Delta t$

$$y(x, t_n) = v(x, t_n) + \eta(x, t_n), \text{ or}$$
$$y_n = v_n + \eta_n \text{ where } \eta_n \sim \mathcal{N}(0, \Gamma)$$

then $\mathbb{P}(v_n | Y_n = \{y_1, \cdots, y_n\})$ is obtained using Bayes rule

$$\frac{\mathbb{P}(v_n|Y_n)}{\mathbb{P}(v_n|Y_{n-1})} \propto \mathbb{P}(y_n|v_n)$$

- Gaussianity preserved when conditioned on data Y_n
- Infinite dimensional Kalman filter and smoother
- Filter $\mathbb{P}(v_n|Y_n) = N(\widehat{m}_n, \widehat{C}_n)$
- Smoother $\mathbb{P}(v_0|Y_n) = N(m'_n, C'_n)$
- smoothing is a push forward of filtering under e^{Ltn}

Outline

Forward Mode

advection equation on a torus

Inverse Problem

data assimilation

allowing for model error assumptions

erfect Model Scenario

Model Erro

constant velocity difference integrable velocity difference white noise velocity difference

Summary

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ○○

allowing for model error

Note the statistical model used for v may be different from that which generates the data used. We assume that the data we actually incorporate is not y_n but

$$y_n^{\epsilon} = v_n^{\epsilon} + \eta_n,$$

where

$$\partial_t v^\epsilon(x,t) + c^\epsilon \cdot
abla v^\epsilon(x,t) = 0, \quad (x,t) \in \mathbf{T}^2 imes (0,\infty)
onumber \ rac{dv^\epsilon}{dt}(t) + \mathcal{L}^\epsilon v^\epsilon(t) = 0,, \quad t \in (0,\infty).$$

and our filtering/smoothing yields $\mathbb{P}(\cdot|Y_n^{\epsilon})$, i.e. Y_n^{ϵ} replacing Y_n

Questions:

Let $v_0^{\epsilon} = v_0$ ('true initial condition') and $\delta c = c^{\epsilon} - c$.

- 1. large data limit $\lim_{n\to\infty} \mathbb{P}(\cdot|Y_n)$ when $\delta c = 0$;
- 2. large data limit $\lim_{n\to\infty} \mathbb{P}(\cdot|Y_n^{\epsilon}) =)$ when $0 < |\delta c| \leq 1$?

Outline

Forward Mode

dvection equation on torus

nverse Problem

data assimilation allowing for model error assumptions

Perfect Model Scenario

Model Error

constant velocity difference integrable velocity difference white noise velocity difference

assumptions

For $w \in L^2(\mathbb{T}^2)$ $w = \sum w_k \phi_k, \quad w_k = \langle u, v \rangle$

$$w = \sum_{k} w_k \phi_k, \quad w_k = \langle u, \phi_k \rangle$$

then

$$H^{\ell} = \big\{ w \in L^2(\mathbb{T}^2) \big| \|w\|_{\ell}^2 := \sum_k |k|^{2\ell} |w_k|^2 < \infty \big\}.$$

Note that

$$L^2(\mathbb{T}^2) = H^0.$$

Outline

Forward Model

advection equation on a torus

nverse Problem

data assimilation allowing for model error

assumptions

Perfect Model Scenario

Model Error

constant velocity difference integrable velocity difference white noise velocity

perfect model scenario

Theorem Let $c^{\epsilon} = c$. Then as $n \to \infty$

$$\mathbb{E} \|\widehat{m}_n - v_n\|_s^2 = \mathcal{O}(n^{-1})$$

$$\mathbb{E} \|m'_n - v_0\|_s^2 = \mathcal{O}(n^{-1})$$

$$\|\widehat{C}_n\|_{\mathcal{L}(L^2, H^s)} = \mathcal{O}(n^{-1}).$$

TRUTH

Figure: $v_0 = \sum_{k=1}^{3} \sin(kx) + \cos(ky)$ and $\mathbb{E}(v_0|Y_n)$ for large n

Outline

Forward Mode

advection equation on a torus

nverse Problem

data assimilation allowing for model error assumptions

Perfect Model Scenario

Model Erro

constant velocity difference integrable velocity difference

white noise velocity difference

Summary

SMOOTHER

constant velocity difference

Theorem Let $c^{\epsilon} = c + \delta c$. Then as $n \to \infty$ $\mathbb{E} \| \widehat{m}_n - e^{-t_n \mathcal{L}} \mathcal{M} v_0 \|_s^2 = \mathcal{O}(n^{-1})$ $\mathbb{E} \| m'_n - \mathcal{M} v_0 \|_s^2 = \mathcal{O}(n^{-1})$

$$\begin{array}{l} \text{where} \\ \mathcal{M} = \sum_{(k_1/p, k_2/q) \in \mathbb{Z} \times \mathbb{Z}} (u, \phi_k) \phi_k \\ = (u, \phi_0) \left(= \int_{\mathbb{T}^2} u \, dx dy = \text{const} \right) \qquad \delta c \in \mathbb{R} \backslash \mathbb{Q} \times \mathbb{R} \\ \end{array}$$

Outline

Forward Mode

advection equation on a torus

nverse Problem

data assimilation allowing for model error assumptions

Perfect Model Scenario

Model Erro

constant velocity difference

integrable velocity difference white poice velocity

difference

Summary

(q) ∖©

integrable velocity difference

Theorem
Let
$$c - c^{\epsilon}(t) \to 0$$
 and $\int_{0}^{T} (c - c^{\epsilon}(t)) dt = \alpha + \mathcal{O}(T^{-\kappa})$. Then as
 $n \to \infty$, for $\phi = \min\{1, 2\kappa\}$,
 $\mathbb{E} \|\widehat{m}_{n} - v_{n}\|_{s}^{2} = \mathcal{O}(n^{-\phi})$
 $\mathbb{E} \|m'_{n} - v_{0,\alpha}\|_{s}^{2} = \mathcal{O}(n^{-\phi})$
where
 $v_{0,\alpha}(\cdot) = v_{0}(\cdot + \alpha)$

Figure: $v_0 = \sum_{k=1}^3 \sin(kx) + \cos(ky)$ and $\mathbb{E}(\overline{v_0}|Y_n)$ for large $n \in \mathbb{C} \setminus \mathbb{C}$

Outline

Forward Model

advection equation on a torus

nverse Problem

data assimilation allowing for model error assumptions

Perfect Model Scenario

Model Error

constant velocity difference

integrable velocity difference

white noise velocity difference

white noise velocity difference

Theorem Let $c^{\epsilon}(t) = c + \epsilon \dot{W}(t)$. Then as $n \to \infty$ $\mathbb{E} \| \widehat{m}_n - \langle u \rangle \|_s^2 = \mathcal{O}(n^{-1})$ $\mathbb{E} \| m'_n - \langle u \rangle \|_s^2 = \mathcal{O}(n^{-1})$

- Here $\langle \cdot \rangle$ denotes the spatial average.
- Similar theorem for different Gaussian perturbations.
- Then obtain a different average.

Outline

Forward Model

advection equation on a torus

nverse Problem

data assimilation allowing for model error assumptions

Perfect Model Scenario

Model Erro

constant velocity difference

difference

white noise velocity difference

Summary

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q (?)

pictorial overview of theorems

Given $v_0 = \sum_{k=1}^{3} \sin(kx) + \cos(ky)$, $\mathbb{E}(v_0|Y'_p)$ is depicted for large n

verbal overview of results

- We study large data limit of Kalman filter/smoother in infinite dimensions.
- Advection equation on a torus is our forward model.
- Posterior consistency in perfect model scenario.
- Sensitive dependence on wave velocity difference is shown in presence of model error.
- Limits of large data $n \to \infty$ and small velocity error $\epsilon \to 0$ do not commute.

Outline

Forward Model

dvection equation on torus

nverse Problem

lata assimilation Ilowing for model rror ssumptions

erfect Model Scenario

Model Error

constant velocity difference integrable velocity difference white noise velocity difference

Summary

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

reference

- "Kalman filtering and smoothing for linear wave equations with model error".
- Wonjung Lee, Damon McDougall and Andrew Stuart.
- ► To appear: INVERSE PROBLEMS.
- ▶ http://www.maths.warwick.ac.uk/ ~ masdr

Outline

Forward Model

dvection equation on torus

nverse Problem

lata assimilation Illowing for model error Issumptions

erfect Model Scenario

Model Error

constant velocity difference integrable velocity difference white noise velocity difference

Summary

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●