Birational geometry and arithmetic

July 2012
Basic questions

Let F be a field and X a smooth projective algebraic variety over F.

Introduction
Let F be a field and X a smooth projective algebraic variety over F. We are interested in rational points $X(F)$. Specifically,

- Existence
- Density
- Distribution with respect to heights
Basic questions

Let F be a field and X a smooth projective algebraic variety over F. We are interested in rational points $X(F)$. Specifically,

- Existence
- Density
- Distribution with respect to heights

Of particular interest are small fields:

$$F = \mathbb{F}_q, \quad \mathbb{Q}, \quad \mathbb{F}_q(t), \quad \mathbb{C}(t), ...$$
Basic questions

Let F be a field and X a smooth projective algebraic variety over F. We are interested in rational points $X(F)$. Specifically,
- Existence
- Density
- Distribution with respect to heights

Of particular interest are small fields:

$$F = \mathbb{F}_q, \quad \mathbb{Q}, \quad \mathbb{F}_q(t), \quad \mathbb{C}(t), \ldots$$

Main idea

Arithmetic properties are governed by global geometric invariants and the properties of the ground field F.

Introduction
Classification schemes

- via dimension: curves, surfaces, ...

- via degree: Fano, general type, intermediate type

- $X \subset P^n$, with $d < n+1$, $d > n+1$ or $d = n+1$ how close to P^n: rational, unirational, rationally connected

In small dimensions some of these notions coincide, e.g., in dimension 2 and over algebraically closed fields of characteristic zero $\text{rational} = \text{unirational} = \text{rationally connected}$

Small degree surfaces (Del Pezzo surfaces) over algebraically closed fields are rational. Cubic surfaces with a rational point are unirational.

A Del Pezzo surface of degree $d = 1$ always has a point. Is it unirational?
Classification schemes

- **via dimension**: curves, surfaces, ...
- **via degree**: Fano, general type, intermediate type
Classification schemes

- **via dimension**: curves, surfaces, ...
- **via degree**: Fano, general type, intermediate type
 \[X_d \subset \mathbb{P}^n, \text{ with } d < n + 1, d > n + 1 \text{ or } d = n + 1 \]
- **how close to \(\mathbb{P}^n \)**: rational, unirational, rationally connected

In small dimensions some of these notions coincide, e.g., in dimension 2 and over algebraically closed fields of characteristic zero rational = unirational = rationally connected.

Small degree surfaces (Del Pezzo surfaces) over algebraically closed fields are rational. Cubic surfaces with a rational point are unirational. A Del Pezzo surface of degree \(d = 1 \) always has a point. Is it unirational?
Classification schemes

- **via dimension:** curves, surfaces, ...
- **via degree:** Fano, general type, intermediate type
 \[X_d \subset \mathbb{P}^n, \text{ with } d < n + 1, d > n + 1 \text{ or } d = n + 1 \]
- **how close to \(\mathbb{P}^n \):** rational, unirational, rationally connected

In small dimensions some of these notions coincide, e.g., in dimension 2 and over algebraically closed fields of characteristic zero

\[\text{rational} = \text{unirational} = \text{rationally connected} \]
Classification schemes

- **via dimension**: curves, surfaces, ...
- **via degree**: Fano, general type, intermediate type
 \[X_d \subset \mathbb{P}^n, \text{ with } d < n + 1, \quad d > n + 1 \text{ or } d = n + 1 \]
- **how close to** \(\mathbb{P}^n \): rational, unirational, rationally connected

In small dimensions some of these notions coincide, e.g., in dimension 2 and over algebraically closed fields of characteristic zero

\text{rational} = \text{unirational} = \text{rationally connected}

Small degree surfaces (Del Pezzo surfaces) over algebraically closed fields are rational. Cubic surfaces with a rational point are unirational.
Classification schemes

- **via dimension:** curves, surfaces, ...
- **via degree:** Fano, general type, intermediate type
 \[X_d \subset \mathbb{P}^n, \text{ with } d < n + 1, \quad d > n + 1 \text{ or } d = n + 1 \]
- **how close to \(\mathbb{P}^n \):** rational, unirational, rationally connected

In small dimensions some of these notions coincide, e.g., in dimension 2 and over algebraically closed fields of characteristic zero

\[\text{rational} = \text{unirational} = \text{rationally connected} \]

Small degree surfaces (Del Pezzo surfaces) over algebraically closed fields are rational. Cubic surfaces with a rational point are unirational. A Del Pezzo surface of degree \(d = 1 \) always has a point. Is it unirational?
Basic invariants

- Picard group $\text{Pic}(X)$, canonical class K_X, cones of ample and effective divisors
Basic invariants

- Picard group $\text{Pic}(X)$, canonical class K_X, cones of ample and effective divisors
- **Fibration structures**: Conic bundles, elliptic fibrations, ...
Basic invariants

- Picard group $\text{Pic}(X)$, canonical class K_X, cones of ample and effective divisors
- **Fibration structures**: Conic bundles, elliptic fibrations, ...

Over nonclosed fields F:

- Forms and Galois cohomology
- Brauer group $\text{Br}(X)$
Basic invariants

- Picard group $\text{Pic}(X)$, canonical class K_X, cones of ample and effective divisors
- **Fibration structures**: Conic bundles, elliptic fibrations, ...

Over nonclosed fields F:

- **Forms and Galois cohomology**
- **Brauer group** $\text{Br}(X)$

In some cases, these are **effectively computable**.
Starting point: Curves over number fields

What do we know about curves over number fields?

- $g = 0$: one can decide when $X(F) \neq \emptyset$ (local-global principle), if $X(F) \neq \emptyset$, then $X(F)$ is infinite and one has a good understanding of how $X(F)$ is distributed.
What do we know about curves over number fields?

- $g = 0$: one can decide when $X(F) \neq \emptyset$ (local-global principle), if $X(F) \neq \emptyset$, then $X(F)$ is infinite and one has a good understanding of how $X(F)$ is distributed.
- $g = 1$: either $X(F) = \emptyset$, or $X(F)$ is finite, or infinite; no effective algorithms to decide, or to describe $X(F)$ (at present).
What do we know about curves over number fields?

- $g = 0$: one can decide when $X(F) \neq \emptyset$ (local-global principle), if $X(F) \neq \emptyset$, then $X(F)$ is infinite and one has a good understanding of how $X(F)$ is distributed.
- $g = 1$: either $X(F) = \emptyset$, or $X(F)$ is finite, or infinite; no effective algorithms to decide, or to describe $X(F)$ (at present).
- $g \geq 2$: $\#X(F) < \infty$, no effective algorithm to determine $X(F)$ (effective Mordell?)
We say that $C \Rightarrow C'$ if there exist an étale cover $\tilde{C} \to C$ and a surjection $\tilde{C} \to C'$.
We say that $C \Rightarrow C'$ if there exist an étale cover $\tilde{C} \to C$ and a surjection $\tilde{C} \to C'$.

Theorem (2001)

- Let C be a hyperelliptic curve over $\overline{\mathbb{F}}_p$ of genus ≥ 2 and let C' be any curve. Then $C \Rightarrow C'$.
We say that $C \Rightarrow C'$ if there exist an étale cover $\tilde{C} \rightarrow C$ and a surjection $\tilde{C} \rightarrow C'$.

Theorem (2001)

- Let C be a hyperelliptic curve over $\overline{\mathbb{F}}_p$ of genus ≥ 2 and let C' be any curve. Then $C \Rightarrow C'$.
- Let C be a hyperelliptic curve over $\overline{\mathbb{Q}}$ of genus ≥ 2 and C_6 the curve $y^2 = x^6 - 1$. Then $C \Rightarrow C_6$.
We say that \(C \Rightarrow C' \) if there exist an étale cover \(\tilde{C} \to C \) and a surjection \(\tilde{C} \to C' \).

Theorem (2001)

- Let \(C \) be a hyperelliptic curve over \(\overline{\mathbb{F}}_p \) of genus \(\geq 2 \) and let \(C' \) be any curve. Then \(C \Rightarrow C' \).
- Let \(C \) be a hyperelliptic curve over \(\overline{\mathbb{Q}} \) of genus \(\geq 2 \) and \(C_6 \) the curve \(y^2 = x^6 - 1 \). Then \(C \Rightarrow C_6 \).

The cover \(\tilde{C} \to C \) is explicit, so that effective Mordell for \(C_6 \) implies effective Mordell for all hyperbolic hyperelliptic curves.
We say that $C \Rightarrow C'$ if there exist an étale cover $\tilde{C} \to C$ and a surjection $\tilde{C} \to C'$.

Theorem (2001)

- Let C be a hyperelliptic curve over \overline{F}_p of genus ≥ 2 and let C' be any curve. Then $C \Rightarrow C'$.
- Let C be a hyperelliptic curve over \overline{Q} of genus ≥ 2 and C_6 the curve $y^2 = x^6 - 1$. Then $C \Rightarrow C_6$.

The cover $\tilde{C} \to C$ is explicit, so that effective Mordell for C_6 implies effective Mordell for all hyperbolic hyperelliptic curves.

Conjecture

If C, C' are curves of genus ≥ 2 over \overline{F}_p or \overline{Q} then $C \Leftrightarrow C'$.
Prototype: hypersurfaces \(X_f \subset \mathbb{P}^n \) over \(\mathbb{Q} \)

Birch 1961

If \(n \gg 2^{\deg(f)} \) and \(X_f \) is smooth then:

- if there are solutions in \(\mathbb{Q}_p \) and in \(\mathbb{R} \) then there are solutions in \(\mathbb{Q} \)
- asymptotic formulas

Introduction: rational points on hypersurfaces
Prototype: hypersurfaces $X_f \subset \mathbb{P}^n$ over \mathbb{Q}

Birch 1961

If $n \gg 2^{\deg(f)}$ and X_f is smooth then:
- if there are solutions in \mathbb{Q}_p and in \mathbb{R} then there are solutions in \mathbb{Q}
- asymptotic formulas

- a positive proportion of hypersurfaces over \mathbb{Q} have no local obstructions (Poonen-Voloch + Katz, 2003)
Prototype: hypersurfaces $X_f \subset \mathbb{P}^n$ over \mathbb{Q}

Birch 1961

If $n \gg 2^{\deg(f)}$ and X_f is smooth then:
- if there are solutions in \mathbb{Q}_p and in \mathbb{R} then there are solutions in \mathbb{Q}
- asymptotic formulas

- a positive proportion of hypersurfaces over \mathbb{Q} have no local obstructions (Poonen-Voloch + Katz, 2003)
- the method works over $\mathbb{F}_q[t]$ as well

Introduction: rational points on hypersurfaces
Heuristic

- Given: \(f \in \mathbb{Z} \left[x_0, \ldots, x_n \right] \) homogeneous of degree \(\deg(f) \).
- We have \(|f(x)| = O(B^{\deg(f)}) \), for \(\|x\| := \max_j(|x_j|) \leq B \).
- May (?) assume that the probability of \(f(x) = 0 \) is \(B^{-\deg(f)} \).
- There are \(B^{n+1} \) “events” with \(\|x\| \leq B \).
- We expect \(B^{n+1-d} \) solutions with \(\|x\| \leq B \).

Hope: reasonable at least when \(n + 1 - d \geq 0 \).
Theorem

If \(\deg(f) \leq n \) then \(X_f(\mathbb{C}(t)) \neq \emptyset \).

Proof: Insert \(x_j = x_j(t) \in \mathbb{C}[t] \), of degree \(e \), into

\[
f = \sum_J f_J x^J = 0, \quad |J| = \deg(f).
\]

This gives a system of \(e \cdot \deg(f) + \text{const} \) equations in \((e + 1)(n + 1)\) variables. This system is solvable for \(e \gg 0 \), provided \(\deg(f) \leq n \).
Existence of rational points

Theorem (Esnault 2001)

Every smooth rationally connected variety over a finite field has a rational point.

Theorem (Graber-Harris-Starr 2001)

Every smooth rationally connected variety over the function field of a curve over an algebraically closed field has a rational point.

Over number fields and higher dimensional function fields, there exist local and global obstructions to the existence of rational points.
Existence of rational points

Theorem (Esnault 2001)

Every smooth rationally connected variety over a finite field has a rational point.

Theorem (Graber-Harris-Starr 2001)

Every smooth rationally connected variety over the function field of a curve over an algebraically closed field has a rational point.
Existence of rational points

Theorem (Esnault 2001)

Every smooth rationally connected variety over a finite field has a rational point.

Theorem (Graber-Harris-Starr 2001)

Every smooth rationally connected variety over the function field of a curve over an algebraically closed field has a rational point.

Over number fields and higher dimensional function fields, there exist local and global obstructions to the existence of rational points.
Hasse principle

<table>
<thead>
<tr>
<th>HP</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X(F_v) \neq \emptyset \quad \forall v \Rightarrow X(F) \neq \emptyset)</td>
</tr>
</tbody>
</table>

Basic examples: Quadrics, hypersurfaces of small degree

Counterexamples:
- Iskovskikh 1971: The conic bundle \(X \to \mathbb{P}^1 \) given by \(x^2 + y^2 = f(t) \), \(f(t) = (t^2 - 2)(3 - t^2) \).
- Cassels, Guy 1966: The cubic surface \(5x^3 + 9y^3 + 10z^3 + 12t^3 = 0 \).

The proofs use basic algebraic number theory: quadratic and cubic reciprocity, divisibility of class numbers.
Hasse principle

\[X(F_v) \neq \emptyset \quad \forall v \Rightarrow X(F) \neq \emptyset \]

Basic examples: Quadrics, hypersurfaces of small degree
Hasse principle

HP

\[X(F_v) \neq \emptyset \quad \forall v \Rightarrow X(F) \neq \emptyset \]

Basic examples: Quadrics, hypersurfaces of small degree

Counterexamples:

Iskovskikh 1971: The conic bundle \(X \to \mathbb{P}^1 \) given by

\[x^2 + y^2 = f(t), \quad f(t) = (t^2 - 2)(3 - t^2). \]
Hasse principle

HP

\[X(F_v) \neq \emptyset \quad \forall v \Rightarrow X(F) \neq \emptyset \]

Basic examples: Quadrics, hypersurfaces of small degree

Counterexamples:

Iskovskikh 1971: The conic bundle \(X \to \mathbb{P}^1 \) given by

\[
 x^2 + y^2 = f(t), \quad f(t) = (t^2 - 2)(3 - t^2).
\]

Cassels, Guy 1966: The cubic surface

\[
 5x^3 + 9y^3 + 10z^3 + 12t^3 = 0.
\]
Hasse principle

\[X(F_v) \neq \emptyset \quad \forall v \Rightarrow X(F) \neq \emptyset \]

Basic examples: Quadrics, hypersurfaces of small degree

Counterexamples:

Iskovskikh 1971: The conic bundle \(X \to \mathbb{P}^1 \) given by

\[x^2 + y^2 = f(t), \quad f(t) = (t^2 - 2)(3 - t^2). \]

Cassels, Guy 1966: The cubic surface

\[5x^3 + 9y^3 + 10z^3 + 12t^3 = 0. \]

The proofs use basic algebraic number theory: quadratic and cubic reciprocity, divisibility of class numbers.

Existence of points
We have $X(F) \subset X(A_F) \subseteq X(A_F)^{Br}$, where $X(A_F)^{Br} := \bigcap_{A \in Br(X)} \{ (x_v) \mid \sum_v inv_v(A(x_v)) = 0 \}$.

Manin's formulation gives a more systematic approach to identifying the algebraic structure behind the obstruction.

Existence of points
We have

\[
X(F) \subset X(F) \subseteq X(\mathbb{A}_F)^{Br} \subseteq X(\mathbb{A}_F),
\]

where

\[
X(\mathbb{A}_F)^{Br} := \bigcap_{A \in \text{Br}(X)} \{(x_v)_v \in X(\mathbb{A}_F) \mid \sum_v \text{inv}(A(x_v)) = 0\}.
\]
Brauer-Manin obstruction

\[
\begin{align*}
\text{Br}(X_F) & \longrightarrow \bigoplus_v \text{Br}(X_{F_v}) \\
0 & \longrightarrow \text{Br}(F) \longrightarrow \bigoplus_v \text{Br}(F_v) \stackrel{\sum_v \text{inv}_v}{\longrightarrow} \mathbb{Q}/\mathbb{Z} \longrightarrow 0,
\end{align*}
\]

We have

\[
X(F) \subset X(F) \subset X(\mathbb{A}_F)^{\text{Br}} \subset X(\mathbb{A}_F),
\]

where

\[
X(\mathbb{A}_F)^{\text{Br}} := \bigcap_{A \in \text{Br}(X)} \{(x_v)_v \in X(\mathbb{A}_F) \mid \sum_v \text{inv}(A(x_v)) = 0\}.
\]

Manin’s formulation gives a more systematic approach to identifying the algebraic structure behind the obstruction.
Effectivity of Brauer-Manin obstructions

The obstruction group for geometrically rational surfaces

\[\frac{\text{Br}(X_{\bar{F}})}{\text{Br}(F)} = H^1(\text{Gal}(\bar{F}/F), \text{Pic}(\bar{X})). \]
Effectivity of Brauer-Manin obstructions

The obstruction group for geometrically rational surfaces

\[
\text{Br}(X_F)/\text{Br}(F) = H^1(\text{Gal}(\bar{F}/F), \text{Pic}(\bar{X})).
\]

Kresch-T. 2006

Let \(X \subset \mathbb{P}^n \) be a geometrically rational surface over a number field \(F \). Then there is an effective algorithm to compute \(X(\mathbb{A}_F)^{\text{Br}} \).
Effectivity of Brauer-Manin obstructions

The obstruction group for geometrically rational surfaces

\[\text{Br}(X_F)/\text{Br}(F) = H^1(\text{Gal}(\bar{F}/F), \text{Pic}(\bar{X})). \]

Kresch-T. 2006

Let \(X \subset \mathbb{P}^n \) be a geometrically rational surface over a number field \(F \). Then there is an effective algorithm to compute \(X(\mathbb{A}_F)^{\text{Br}} \).

Kresch-T. 2010

Let \(X \subset \mathbb{P}^n \) be a surface over a number field \(F \). Assume that

- the geometric Picard group of \(X \) is torsion free and is generated by finitely many divisors, each with a given set of defining equations
- \(\text{Br}(X) \) can be bounded effectively.

Then there is an effective algorithm to compute \(X(\mathbb{A}_F)^{\text{Br}} \).
Let X be a K3 surface over a number field F of degree 2. Then there exists an effective algorithm to compute:

- $\text{Pic}(\overline{X})$, together with the Galois action;
Let X be a K3 surface over a number field F of degree 2. Then there exists an effective algorithm to compute:

- $\text{Pic}(\bar{X})$, together with the Galois action;
- $\text{Br}(X)/\text{Br}(F)$ and $X(\mathbb{A}_F)^{\text{Br}}$.
Effectivity of Brauer-Manin obstructions

Hassett-Kresch-T. 2012

Let X be a K3 surface over a number field F of degree 2. Then there exists an effective algorithm to compute:

- $\text{Pic}(\bar{X})$, together with the Galois action;
- $\text{Br}(X)/\text{Br}(F)$ and $X(\mathbb{A}_F)^{\text{Br}}$.

Previously:

- Computation of $\text{Pic}(\bar{X})$ on some Kummer K3 surfaces: Elsenhans, Jahnel, van Luijk
Effectivity of Brauer-Manin obstructions

Hassett-Kresch-T. 2012
Let X be a K3 surface over a number field F of degree 2. Then there exists an effective algorithm to compute:

- $\text{Pic}(\bar{X})$, together with the Galois action;
- $\text{Br}(X)/\text{Br}(F)$ and $X(\mathbb{A}_F)^{\text{Br}}$.

Previously:

- computation of $\text{Pic}(\bar{X})$ on some Kummer K3 surfaces: Elsenhans, Jahnel, van Luijk
- computation of $X(\mathbb{A}_F)^{\text{Br}}$ for some Kummer surfaces (diagonal quartics): Bright, Skorobogatov, Swinnerton-Dyer, Ieronymou, ...
Effectivity of Brauer-Manin obstructions

Hassett-Kresch-T. 2012

Let X be a K3 surface over a number field F of degree 2. Then there exists an effective algorithm to compute:

- $\text{Pic}(\bar{X})$, together with the Galois action;
- $\text{Br}(X)/\text{Br}(F)$ and $X(\mathbb{A}_F)^{\text{Br}}$.

Previously:

- computation of $\text{Pic}(\bar{X})$ on some Kummer K3 surfaces: Elsenhans, Jahnel, van Luijk
- computation of $X(\mathbb{A}_F)^{\text{Br}}$ for some Kummer surfaces (diagonal quartics): Bright, Skorobogatov, Swinnerton-Dyer, Ieronymou, ...
- computations with $\text{Br}(X)[2]$ on general degree two K3 surfaces: Hassett, Varilly-Alvarado
Effectivity of Brauer-Manin obstructions

Let X be a K3 surface over a number field F of degree 2. Then there exists an effective algorithm to compute:

- $\text{Pic}(\bar{X})$, together with the Galois action;
- $\text{Br}(X)/\text{Br}(F)$ and $X(\mathbb{A}_F)^{\text{Br}}$.

Previously:

- Computation of $\text{Pic}(\bar{X})$ on some Kummer K3 surfaces: Elsenhans, Jahnel, van Luijk
- Computation of $X(\mathbb{A}_F)^{\text{Br}}$ for some Kummer surfaces (diagonal quartics): Bright, Skorobogatov, Swinnerton-Dyer, Ieronymou, ...
- Computations with $\text{Br}(X)[2]$ on general degree two K3 surfaces: Hassett, Varilly-Alvarado
- Finiteness of $\text{Br}(X)/\text{Br}(F)$ for all K3 surfaces over number fields (Skorobogatov-Zarhin 2007)

Existence of points
Effectivity of Brauer-Manin obstructions

Main ingredients:
- effective Kuga-Satake correspondence, relies on an effective construction of the Bailey-Borel compactification of the moduli space of polarized K3 surfaces;
Effectivity of Brauer-Manin obstructions

Main ingredients:

- effective Kuga-Satake correspondence, relies on an effective construction of the Bailey-Borel compactification of the moduli space of polarized K3 surfaces;
- the work of Masser-Wüstholz on the effective Tate conjecture for abelian varieties;
Effectivity of Brauer-Manin obstructions

Main ingredients:
- effective Kuga-Satake correspondence, relies on an effective construction of the Bailey-Borel compactification of the moduli space of polarized K3 surfaces;
- the work of Masser-Wüstholz on the effective Tate conjecture for abelian varieties;
- effective GIT, Matsusaka, Hilbert Nullstellensatz, etc.
Let X be a smooth intersection of two quadrics in \mathbb{P}^4 over \mathbb{Q} (a Del Pezzo surface of degree 4).
Computing the obstruction group

Let X be a smooth intersection of two quadrics in \mathbb{P}^4 over \mathbb{Q} (a Del Pezzo surface of degree 4). The Galois action on the 16 lines factors through the Weyl group $W(D_5)$ (a group of order 1920).

Bright, Bruin, Flynn, Logan 2007

- If the degree of the splitting field over \mathbb{Q} is > 96 then

$$H^1(\text{Gal}(\overline{F}/F), \text{Pic}(\overline{X})) = 0.$$
Computing the obstruction group

Let X be a smooth intersection of two quadrics in \mathbb{P}^4 over \mathbb{Q} (a Del Pezzo surface of degree 4). The Galois action on the 16 lines factors through the Weyl group $W(D_5)$ (a group of order 1920).

Bright, Bruin, Flynn, Logan 2007

- If the degree of the splitting field over \mathbb{Q} is > 96 then

 $$H^1(\text{Gal}(\overline{F}/F), \text{Pic}(\overline{X})) = 0.$$

- In all other cases, the obstruction group is either $1, \mathbb{Z}/2\mathbb{Z}$, or $(\mathbb{Z}/2\mathbb{Z})^2$.

Existence of points
Computing the obstruction group

Let X be a smooth intersection of two quadrics in \mathbb{P}^4 over \mathbb{Q} (a Del Pezzo surface of degree 4). The Galois action on the 16 lines factors through the Weyl group $W(D_5)$ (a group of order 1920).

Bright, Bruin, Flynn, Logan 2007

- If the degree of the splitting field over \mathbb{Q} is > 96 then
 \[H^1(\text{Gal}(\bar{F}/F), \text{Pic}(\bar{X})) = 0. \]

- In all other cases, the obstruction group is either
 \[1, \mathbb{Z}/2\mathbb{Z}, \text{ or } (\mathbb{Z}/2\mathbb{Z})^2. \]

- Implement an algorithm to compute the BM obstruction and provide more examples of Iskovskikh type.
Conjecture (Colliot-Thélène–Sansuc 1980)

Let X be a smooth projective rationally-connected surface over a number field F, e.g., an intersection of two quadrics in \mathbb{P}^4 or a cubic in \mathbb{P}^3. Then

$$X(F) = \overline{X(\mathbb{A}_F)^{\text{Br}}}.$$
Uniqueness of the Brauer-Manin obstruction

Conjecture (Colliot-Thélène–Sansuc 1980)

Let X be a smooth projective rationally-connected surface over a number field F, e.g., an intersection of two quadrics in \mathbb{P}^4 or a cubic in \mathbb{P}^3. Then

$$\overline{X(F)} = X(\mathbb{A}_F)^{\text{Br}}.$$

In particular, existence of rational points on rationally-connected surfaces would be decidable.
Uniqueness of the Brauer-Manin obstruction

Conjecture (Colliot-Thélène–Sansuc 1980)

Let X be a smooth projective rationally-connected surface over a number field F, e.g., an intersection of two quadrics in \mathbb{P}^4 or a cubic in \mathbb{P}^3. Then

$$\overline{X(F)} = X(\mathbb{A}_F)^{Br}.$$

In particular, existence of rational points on rationally-connected surfaces would be decidable.

Colliot-Thélène–Sansuc–Swinnerton-Dyer 1987:

Degree 4 Del Pezzo surfaces admitting a conic bundle $X \to \mathbb{P}^1$.

Existence of points
Uniqueness of the Brauer-Manin obstruction

Conjecture (Colliot-Thélène–Sansuc 1980)

Let X be a smooth projective rationally-connected surface over a number field F, e.g., an intersection of two quadrics in \mathbb{P}^4 or a cubic in \mathbb{P}^3. Then

$$\overline{X(F)} = X(\mathbb{A}_F)^{Br}.$$

In particular, existence of rational points on rationally-connected surfaces would be decidable.

Colliot-Thélène–Sansuc–Swinnerton-Dyer 1987:
Degree 4 Del Pezzo surfaces admitting a conic bundle $X \to \mathbb{P}^1$. The conjecture is open for general degree 4 Del Pezzo surfaces.
Do we believe this conjecture?

Recall that a general Del Pezzo surface X has points locally, and that

$$\text{Br}(X)/\text{Br}(F) = 1.$$
Recall that a general Del Pezzo surface X has points locally, and that \[\text{Br}(X)/\text{Br}(F) = 1. \]

The Galois group action on the exceptional curves has to be small to allow an obstruction; this is counterintuitive.
Do we believe this conjecture?

Recall that a general Del Pezzo surface X has points locally, and that

$$\text{Br}(X)/\text{Br}(F) = 1.$$

The Galois group action on the exceptional curves has to be small to allow an obstruction; this is counterintuitive.

Elsenhans–Jahnel 2007: Thousands of examples of cubic surfaces over \mathbb{Q} with different Galois actions, the conjecture holds in all cases.
Del Pezzo surfaces over $\mathbb{F}_q(t)$

Theorem (Hassett-T. 2011)

Let k be a finite field with at least $2^2 \cdot 17^4$ elements and X a general Del Pezzo surface of degree 4 over $F = k(t)$ such that its integral model

$$\mathcal{X} \to \mathbb{P}^1$$

is a complete intersection in $\mathbb{P}^1 \times \mathbb{P}^4$ of two general forms of bi-degree $(1, 2)$. Then $X(F) \neq \emptyset$.

Existence of points
Del Pezzo surfaces over $\mathbb{F}_q(t)$

Theorem (Hassett-T. 2011)

Let k be a finite field with at least $2^2 \cdot 17^4$ elements and X a general Del Pezzo surface of degree 4 over $F = k(t)$ such that its integral model

$$\mathcal{X} \to \mathbb{P}^1$$

is a complete intersection in $\mathbb{P}^1 \times \mathbb{P}^4$ of two general forms of bi-degree $(1, 2)$. Then $X(F) \neq \emptyset$.

The idea of proof will follow....
Potential density: Zariski density after a finite extension of the field.

Let $X \subset \mathbb{P}^1 \times \mathbb{P}^3$ be a general hypersurface of bidegree $(1, 4)$. Then the K3 surface fibration $X \to \mathbb{P}^1$ has a Zariski dense set of sections, i.e., such K3 surfaces over $\mathbb{F} = \mathbb{C}(t)$ have Zariski dense rational points; more generally, this holds for general pencils of K3 surfaces of degree ≤ 18 (Hassett-T. 2008).

Same holds, if $X \subset \mathbb{P}^1 \times \mathbb{P}^3$ is given by a general form of bidegree $(2, 4)$ (Zhiyuan Li 2011).
K3 surfaces

Potential density: Zariski density after a finite extension of the field.

Bogomolov-T. 1999

If X is a K3 surface which is either elliptic or has infinite automorphisms then potential density holds for X.
K3 surfaces

Potential density: Zariski density after a finite extension of the field.

Bogomolov-T. 1999

If X is a K3 surface which is either elliptic or has infinite automorphisms then potential density holds for X.

What about general K3 surfaces, i.e., those with Picard rank one?
Potential density: Zariski density after a finite extension of the field.

Bogomolov-T. 1999
If X is a K3 surface which is either elliptic or has infinite automorphisms then potential density holds for X.

What about general K3 surfaces, i.e., those with Picard rank one?

- Let $\mathcal{X} \subset \mathbb{P}^1 \times \mathbb{P}^3$ be a general hypersurface of bidegree $(1, 4)$. Then the K3 surface fibration $\mathcal{X} \to \mathbb{P}^1$ has a Zariski dense set of sections, i.e., such K3 surfaces over $F = \mathbb{C}(t)$ have Zariski dense rational points; more generally, this holds for general pencils of K3 surfaces of degree ≤ 18 (Hassett-T. 2008)
K3 surfaces

Potential density: Zariski density after a finite extension of the field.

Bogomolov-T. 1999

If X is a K3 surface which is either elliptic or has infinite automorphisms then potential density holds for X.

What about general K3 surfaces, i.e., those with Picard rank one?

- Let $\mathcal{X} \subset \mathbb{P}^1 \times \mathbb{P}^3$ be a general hypersurface of bidegree $(1, 4)$. Then the K3 surface fibration $\mathcal{X} \to \mathbb{P}^1$ has a Zariski dense set of sections, i.e., such K3 surfaces over $F = \mathbb{C}(t)$ have Zariski dense rational points; more generally, this holds for general pencils of K3 surfaces of degree ≤ 18 (Hassett-T. 2008)
- Same holds, if $\mathcal{X} \subset \mathbb{P}^1 \times \mathbb{P}^3$ is given by a general form of bidegree $(2, 4)$ (Zhiyuan Li 2011)
Potential density holds for:

- all smooth Fano threefolds, with the possible exception of $W_2 \xrightarrow{2:1} \mathbb{P}^3$, ramified in a degree 6 surface S_6 (Harris-T. 1998, Bogomolov-T. 1998)

varieties of lines on general cubic fourfolds (Amerik-Voisin 2008, Amerik-Bogomolov-Rovinski)

varieties of lines of some special cubic fourfolds, i.e., those not containing a plane and admitting a hyperplane section with 6 ordinary double points in general linear position (Hassett-T. 2008)
Potential density holds for:

- all smooth Fano threefolds, with the possible exception of $W_2 \xrightarrow{2:1} \mathbb{P}^3$, ramified in a degree 6 surface S_6 (Harris-T. 1998, Bogomolov-T. 1998)
- W_2, provided S_6 is singular; similar results in dimension 4 (Chelsov-Park 2004, Cheltsov 2004)
Potential density holds for:

- all smooth Fano threefolds, with the possible exception of \(W_2 \to \mathbb{P}^3 \), ramified in a degree 6 surface \(S_6 \) (Harris-T. 1998, Bogomolov-T. 1998)
- \(W_2 \), provided \(S_6 \) is singular; similar results in dimension 4 (Chelsov-Park 2004, Cheltsov 2004)
- varieties of lines on general cubic fourfolds (Amerik-Voisin 2008, Amerik-Bogomolov-Rovinski)
Higher dimensions

Potential density holds for:

- all smooth Fano threefolds, with the possible exception of $W_2 \xrightarrow{2:1} \mathbb{P}^3$, ramified in a degree 6 surface S_6 (Harris-T. 1998, Bogomolov-T. 1998)
- W_2, provided S_6 is singular; similar results in dimension 4 (Chelsov-Park 2004, Cheltsov 2004)
- varieties of lines on general cubic fourfolds (Amerik-Voisin 2008, Amerik-Bogomolov-Rovinski)
- varieties of lines of some special cubic fourfolds, i.e., those not containing a plane and admitting a hyperplane section with 6 ordinary double points in general linear position (Hassett-T. 2008)
Counting rational points

Counting problems depend on:

- a projective embedding $X \hookrightarrow \mathbb{P}^n$;
- a choice of $X^\circ \subset X$;
- a choice of a height function $H : \mathbb{P}^n(F) \to \mathbb{R}_{>0}$.
Counting rational points

Counting problems depend on:

- a projective embedding \(X \hookrightarrow \mathbb{P}^n \);
- a choice of \(X^\circ \subset X \);
- a choice of a height function \(H : \mathbb{P}^n(F) \to \mathbb{R}_{>0} \).

Main problem

\[
N(X^\circ(F), B) = \# \{ x \in X^\circ(F) \mid H(x) \leq B \} \sim c \cdot B^a \log(B)^{b-1}
\]
The geometric framework

Conjecture (Manin 1989)

Let $X \subset \mathbb{P}^n$ be a smooth projective Fano variety over a number field F, in its anticanonical embedding.
The geometric framework

Conjecture (Manin 1989)

Let $X \subset \mathbb{P}^n$ be a smooth projective Fano variety over a number field F, in its anticanonical embedding. Then there exists a Zariski open subset $X^\circ \subset X$ such that

$$N(X^\circ(F), B) \sim c \cdot B \log(B)^{b-1}, \quad B \to \infty,$$

where $b = \text{rk Pic}(X)$.
The geometric framework

Conjecture (Manin 1989)

Let $X \subset \mathbb{P}^n$ be a smooth projective Fano variety over a number field F, in its anticanonical embedding. Then there exists a Zariski open subset $X^\circ \subset X$ such that

$$N(X^\circ(F), B) \sim c \cdot B \log(B)^{b-1}, \quad B \to \infty,$$

where $b = \text{rk} \text{Pic}(X)$.

We do not know, in general, whether or not $X(F)$ is Zariski dense, even after a finite extension of F. Potential density of rational points has been proved for some families of Fano varieties, but is still open, e.g., for hypersurfaces $X_d \subset \mathbb{P}^d$, with $d \geq 5$.

Counting points
Let $F = \mathbb{F}_q(B)$ be a global function field and X/F a smooth Fano variety. Let

$$\pi : \mathcal{X} \rightarrow B$$

be a model. A point $x \in X(F)$ gives rise to a section \tilde{x} of π. Let \mathcal{L} be a very ample line bundle on \mathcal{X}. The height zeta function takes the form

$$Z(s) = \sum_{\tilde{x}} q^{-(\mathcal{L},\tilde{x})s}$$

$$= \sum_d \mathcal{M}_d(\mathbb{F}_q) q^{-ds},$$

where $d = (\mathcal{L}, \tilde{x})$ and \mathcal{M}_d is the space of sections of degree d.

Counting points
The dimension of \mathcal{M}_d can be estimated, provided \tilde{x} is unobstructed:

$$\dim \mathcal{M}_d \sim (-K_X, \tilde{x}), \quad \tilde{x} \in \mathcal{M}_d.$$
The dimension of \mathcal{M}_d can be estimated, provided \tilde{x} is unobstructed:

$$\dim \mathcal{M}_d \sim (-K_X, \tilde{x}), \quad \tilde{x} \in \mathcal{M}_d.$$

Heuristic assumption:

$$\mathcal{M}_d(\mathbb{F}_q) = q^{\dim(\mathcal{M}_d)}$$

leads to a modified zeta function

$$Z_{\text{mod}}(s) = \sum q^{-(-\mathcal{L}, \tilde{x})s + (-K_X, \tilde{x})},$$

its analytic properties are governed by the ratio of the linear forms

$$(-K_X, \cdot) \quad \text{and} \quad (\mathcal{L}, \cdot)$$
The Batyrev–Manin conjecture

\[N(X^\circ, \mathcal{L}, B) = c \cdot B^{a(\mathcal{L})} \cdot \log(B)^{b(\mathcal{L}) - 1}(1 + o(1)), \quad B \to \infty \]
The Batyrev–Manin conjecture

\[N(X^\circ, \mathcal{L}, B) = c \cdot B^{a(L)} \cdot \log(B)^{b(L)-1}(1 + o(1)), \quad B \to \infty \]

- \(a(L) = \inf \{ a \mid a[L] + [K_X] \in \Lambda_{\text{eff}}(X) \} \),
The Batyrev–Manin conjecture

\[N(X^\circ, \mathcal{L}, B) = c \cdot B^{a(L)} \cdot \log(B)^{b(L) - 1}(1 + o(1)), \quad B \to \infty \]

- \(a(L) = \inf\{ a \mid a[\mathcal{L}] + [K_X] \in \Lambda_{\text{eff}}(X)\}\),
- \(b(L) = \text{codimension of the face of } \Lambda_{\text{eff}}(X) \text{ containing } a(L)[\mathcal{L}] + [K_X]\),
- \(c(-K_X) = \alpha(X) \cdot \beta(X) \cdot \tau(K_X)\), the "volume" of the effective cone,
- \(c(L) = \sum y c(L|X^y)\), where \(X \to Y\) is a "Mori fiber space" – \(L\)-primitive fibrations of Batyrev–T.

Counting points
The Batyrev–Manin conjecture

\[N(X^\circ, \mathcal{L}, B) = c \cdot B^{a(L)} \cdot \log(B)^{b(L)-1}(1 + o(1)), \quad B \to \infty \]

- \(a(L) = \inf \{ a \mid a[L] + [K_X] \in \Lambda_{\text{eff}}(X) \}\),
- \(b(L) = \text{codimension of the face of } \Lambda_{\text{eff}}(X) \text{ containing } a(L)[L] + [K_X]\),
- \(c(-K_X) = \alpha(X) \cdot \beta(X) \cdot \tau(K_X) \) – "volume" of the effective cone, nontrivial part of the Brauer group \(\text{Br}(X)/\text{Br}(F)\), Peyre’s Tamagawa type number,
The Batyrev–Manin conjecture

\[N(X^\circ, \mathcal{L}, B) = c \cdot B^{a(L)} \cdot \log(B)^{b(L)-1}(1 + o(1)), \quad B \to \infty \]

- \(a(L) = \inf \{ a \mid a[L] + [K_X] \in \Lambda_{\text{eff}}(X) \} \),
- \(b(L) = \) codimension of the face of \(\Lambda_{\text{eff}}(X) \) containing \(a(L)[L] + [K_X] \),
- \(c(-K_X) = \alpha(X) \cdot \beta(X) \cdot \tau(K_X) \) – “volume” of the effective cone, nontrivial part of the Brauer group \(\text{Br}(X)/\text{Br}(F) \), Peyre’s Tamagawa type number,
- \(c(\mathcal{L}) = \sum_y c(\mathcal{L}|_{X_y}) \), where \(X \to Y \) is a “Mori fiber space” – \(\mathcal{L} \)-primitive fibrations of Batyrev–T.
G. Segal 1979

\[\text{Cont}_d(S^2, \mathbb{P}^n(\mathbb{C})) \sim \text{Hol}_d(S^2, \mathbb{P}^n(\mathbb{C})), \quad d \to \infty \]
G. Segal 1979

- \(\text{Cont}_d(\mathbb{S}^2, \mathbb{P}^n(\mathbb{C})) \sim \text{Hol}_d(\mathbb{S}^2, \mathbb{P}^n(\mathbb{C})), \ d \to \infty \) (isomorphism of \(\pi_i \), for \(i \leq d \)).
G. Segal 1979

- $\text{Cont}_d(S^2, \mathbb{P}^n(\mathbb{C})) \sim \text{Hol}_d(S^2, \mathbb{P}^n(\mathbb{C})), \ d \to \infty$ (isomorphism of π_i, for $i \leq d$).
- $H_*(\text{Hol}_d(S^2, \mathbb{P}^n(\mathbb{C})))$ stabilizes, for $d \to \infty$.

This was generalized to Grassmannians and toric varieties as target spaces by Kirwan 1986, Guest 1994, and others.

Justification
G. Segal 1979

- \(\text{Cont}_d(S^2, \mathbb{P}^n(\mathbb{C})) \sim \text{Hol}_d(S^2, \mathbb{P}^n(\mathbb{C})), \ d \to \infty \) (isomorphism of \(\pi_i \), for \(i \leq d \)).
- \(H_*(\text{Hol}_d(S^2, \mathbb{P}^n(\mathbb{C}))) \) stabilizes, for \(d \to \infty \).

This was generalized to Grassmannians and toric varieties as target spaces by Kirwan 1986, Guest 1994, and others.
Justification

G. Segal 1979

- \(\text{Cont}_d(S^2, \mathbb{P}^n(C)) \sim \text{Hol}_d(S^2, \mathbb{P}^n(C)), \ d \to \infty \) (isomorphism of \(\pi_i \), for \(i \leq d \)).
- \(H_*(\text{Hol}_d(S^2, \mathbb{P}^n(C))) \) stabilizes, for \(d \to \infty \).

This was generalized to Grassmannians and toric varieties as target spaces by Kirwan 1986, Guest 1994, and others.

Basic idea

\(\mathcal{M}_d(\mathbb{F}_q) \sim q^{\dim(M_d)}, \ for \ d \to \infty, \) provided the homology stabilizes.
Effective stabilization of homology of Hurwitz spaces

There exist A, B, D such that

$$\dim H_d(Hur_G^C, n) = \dim H_d(Hur_G^C, n+D),$$

for $n \geq Ad + B$.

This has applications to Cohen–Lenstra heuristics over function fields of curves.
Effective stabilization of homology of Hurwitz spaces

There exist A, B, D such that

$$\dim H_d(Hur^c_G, n) = \dim H_d(Hur^c_G, n + D),$$

for $n \geq Ad + B$.

This has applications to Cohen–Lenstra heuristics over function fields of curves.
There exist A, B, D such that
\[\dim H_d(Hur_G^n) = \dim H_d(Hur_G^{n+D}), \]
for $n \geq Ad + B$.

This has applications to Cohen–Lenstra heuristics over function fields of curves.

Applications in the context of height zeta functions?
Results over \mathbb{Q}

Extensive numerical computations confirming Manin’s conjecture, and its refinements, for Del Pezzo surfaces, hypersurfaces of small degree in dimension 3 and 4.
Extensive numerical computations confirming Manin’s conjecture, and its refinements, for Del Pezzo surfaces, hypersurfaces of small degree in dimension 3 and 4.

Many recent theoretical results on asymptotics of points of bounded height on cubic surfaces and other Del Pezzo surfaces, via (uni)versal torsors (Browning, de la Breteche, Derenthal, Heath-Brown, Peyre, Salberger, Wooley, ...).
Extensive numerical computations confirming Manin’s conjecture, and its refinements, for Del Pezzo surfaces, hypersurfaces of small degree in dimension 3 and 4.

Many recent theoretical results on asymptotics of points of bounded height on cubic surfaces and other Del Pezzo surfaces, via (uni)versal torsors (Browning, de la Breteche, Derenthal, Heath-Brown, Peyre, Salberger, Wooley, ...)

Caution: counterexamples to Manin’s conjecture for cubic surface bundles over \mathbb{P}^1 (Batyrev-T. 1996). These are compactifications of affine spaces.

Counting points
Legendre: If \(ax^2 + by^2 = cz^2 \) is solvable mod \(p \), for all \(p \), then it is solvable in \(\mathbb{Z} \).
Legendre: If $ax^2 + by^2 = cz^2$ is solvable mod p, for all p, then it is solvable in \mathbb{Z}. Moreover, the height of the smallest solution is bounded by \sqrt{abc}.

Counting points
Points of smallest height

Legendre: If \(ax^2 + by^2 = cz^2 \) is solvable mod \(p \), for all \(p \), then it is solvable in \(\mathbb{Z} \). Moreover, the height of the smallest solution is bounded by \(\sqrt{abc} \).

An *effective* bound on the error term in the circle method (or in the other asymptotic results) also gives an effective bound on \(H_{\min} \), the height of smallest solutions.
Legendre: If $ax^2 + by^2 = cz^2$ is solvable mod p, for all p, then it is solvable in \mathbb{Z}. Moreover, the height of the smallest solution is bounded by \sqrt{abc}.

An effective bound on the error term in the circle method (or in the other asymptotic results) also gives an effective bound on H_{min}, the height of smallest solutions.

In particular, Manin’s and Peyre’s conjecture suggest that

$$H_{\text{min}} \leq \frac{1}{\tau}$$
Points of smallest height

There are extensive numerical data for smallest points on Del Pezzo surfaces, Fano threefolds. E.g.,

Elsenhans-Jahnel 2010
How are all of these related? (Hassett-T.)

Let X be a Del Pezzo surface over $F = \mathbb{F}_q(t)$ and

$$
\pi : X \to \mathbb{P}^1.
$$

its integral model. Fix a height, and consider the spaces \mathcal{M}_d of sections of π of height d (degree of the section).
How are all of these related? (Hassett-T.)

Let X be a Del Pezzo surface over $F = \mathbb{F}_q(t)$ and

$$\pi : X \to \mathbb{P}^1.$$

its integral model. Fix a height, and consider the spaces \mathcal{M}_d of sections of π of height d (degree of the section).

Ideal scenario

- \mathcal{M}_d are geometrically irreducible, for $d \gg 0$
How are all of these related? (Hassett-T.)

Let X be a Del Pezzo surface over $F = \mathbb{F}_q(t)$ and

$$
\pi : \mathcal{X} \to \mathbb{P}^1.
$$

its integral model. Fix a height, and consider the spaces \mathcal{M}_d of sections of π of height d (degree of the section).

Ideal scenario

- \mathcal{M}_d are geometrically irreducible, for $d \gg 0$
- \mathcal{M}_d dominate the intermediate Jacobian $IJ(\mathcal{X})$ of \mathcal{X}
Let X be a Del Pezzo surface over $F = \mathbb{F}_q(t)$ and

$$
\pi : \mathcal{X} \to \mathbb{P}^1.
$$

its integral model. Fix a height, and consider the spaces \mathcal{M}_d of sections of π of height d (degree of the section).

Ideal scenario

- \mathcal{M}_d are geometrically irreducible, for $d \gg 0$
- \mathcal{M}_d dominate the intermediate Jacobian $IJ(\mathcal{X})$ of \mathcal{X}
- there is a critical d_0, related to the height of \mathcal{X}, such that \mathcal{M}_{d_0} is either birational to $IJ(\mathcal{X})$ or to a \mathbb{P}^1-bundle over $IJ(\mathcal{X})$
Let X be a Del Pezzo surface over $F = \mathbb{F}_q(t)$ and

$$\pi : X \to \mathbb{P}^1.$$

its integral model. Fix a height, and consider the spaces M_d of sections of π of height d (degree of the section).

Ideal scenario

- M_d are geometrically irreducible, for $d \gg 0$
- M_d dominate the intermediate Jacobian $IJ(X)$ of X
- there is a critical d_0, related to the height of X, such that M_{d_0} is either birational to $IJ(X)$ or to a \mathbb{P}^1-bundle over $IJ(X)$
- for $d \geq d_0$, M_d fibers over $IJ(X)$, with general fiber a rationally connected variety
We consider fibrations

\[\pi : \mathcal{X} \to \mathbb{P}^1, \]

with general fiber a degree-four Del Pezzo surface and with square-free discriminant. In this situation, we have an embedding

\[\mathcal{X} \subset \mathbb{P}(\pi_\ast \omega_{\pi}^{-1}). \]
Del Pezzo surfaces over $\mathbb{F}_q(t)$

We consider fibrations

$$\pi : \mathcal{X} \to \mathbb{P}^1,$$

with general fiber a degree-four Del Pezzo surface and with square-free discriminant. In this situation, we have an embedding

$$\mathcal{X} \subset \mathbb{P}(\pi_*\omega_{\pi}^{-1}).$$

We have

$$\pi_*\omega_{\pi}^{-1} = \bigoplus_{i=1}^5 \mathcal{O}_{\mathbb{P}^1}(-a_i),$$

with

$$a_1 \leq a_2 \leq a_3 \leq a_4 \leq a_5,$$

occurring cases are discussed by Shramov (2006), in his investigations of rationality properties of such fibrations.
Del Pezzo surfaces over $\mathbb{F}_q(t)$

We assume that $\pi_*\omega^{-1}_\pi$ is generic, i.e., $a_5 - a_1 \leq 1$; we can realize

$$X \subset \mathbb{P}^1 \times \mathbb{P}^d, \quad d = 4, 5, \ldots, 8,$$

as a complete intersection.
Del Pezzo surfaces over $\mathbb{F}_q(t)$

We assume that $\pi_* \omega_{\pi}^{-1}$ is \textit{generic}, i.e., $a_5 - a_1 \leq 1$; we can realize

$$\mathcal{X} \subset \mathbb{P}^1 \times \mathbb{P}^d, \quad d = 4, 5, \ldots, 8,$$

as a complete intersection.

\textbf{Theorem (Hassett-T. 2011)}

Let k be a finite field with at least $2^2 \cdot 17^4$ elements and X a general Del Pezzo surface of degree 4 over $F = k(t)$ such that its integral model

$$\mathcal{X} \rightarrow \mathbb{P}^1$$

is a complete intersection in $\mathbb{P}^1 \times \mathbb{P}^4$ of two general forms of bi-degree $(1, 2)$. Then $X(F) \neq \emptyset$.

\textit{Counting points}
Idea of proof

Write $\mathcal{X} \subset \mathbb{P}^1 \times \mathbb{P}^4$ as a complete intersection

$$P_1 s + Q_1 t = P_2 s + Q_2 t = 0,$$

where P_i, Q_i are quadrics in \mathbb{P}^4.
Idea of proof

Write $\mathcal{X} \subset \mathbb{P}^1 \times \mathbb{P}^4$ as a complete intersection

$$P_1 s + Q_1 t = P_2 s + Q_2 t = 0,$$

where P_i, Q_i are quadrics in \mathbb{P}^4. The projection

$$\pi : \mathcal{X} \to \mathbb{P}^1$$

has 16 constant sections corresponding to solutions y_1, \ldots, y_{16} of

$$P_1 = Q_1 = P_2 = Q_2 = 0.$$
Idea of proof

Projection onto the second factor gives a (nonrational) singular quartic threefold \mathcal{Y}:

$$P_1 Q_2 - Q_1 P_2 = 0,$$

with nodes at y_1, \ldots, y_{16}.
Idea of proof

Projection onto the second factor gives a (nonrational) singular quartic threefold \mathcal{Y}:

$$P_1 Q_2 - Q_1 P_2 = 0,$$

with nodes at y_1, \ldots, y_{16}. The projection $\mathcal{X} \to \mathcal{Y}$ is a small resolution of the singularities of \mathcal{Y}.

Counting points
Idea of proof

Projection onto the *second factor* gives a (nonrational) *singular quartic threefold* \mathcal{Y}:

$$P_1 Q_2 - Q_1 P_2 = 0,$$

with nodes at y_1, \ldots, y_{16}. The projection $\mathcal{X} \to \mathcal{Y}$ is a small resolution of the singularities of \mathcal{Y}. We analyse *lines* in the smooth locus of \mathcal{Y}.

Main observation

There exists an *irreducible* curve (of genus 289) of lines $l \subset \mathcal{Y}$, giving sections of π.

Counting points