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2 CONTENTS

0.1 The cast of characters: polylogarithms

and zeta values

There are many types of polylogarithms. We will not give a general defini-
tion, but mention just some of the most common types.

• Goncharov polylogarithms. For a1, . . . , an, x ∈ C, we define

G(a1, . . . , an;x) =

∫ x

0

dt

t− a1

G(a2, . . . , an; t), (1)

with G(a;x) =
∫ x

0
dt
t−a . The integration contours are taken along some

paths in the complex plane. They are multi-valued functions. We call
n the weight (or transcendentality) of the polylogarithm.

• Multiple polylogarithms defined as power series

Lin1,...,nk
(x1, . . . , xk) =

∑
1≤p1<...<pk

xp11

pn1
1

· · · x
pk
k

pnk
k

. (2)

These power series are convergent in a polydisc |xi| < 1. For Lin1,...,nk
(x1, . . . , xk)

we call k the depth and n1 + · · ·nk the weight.

These polylogarithms can be written in terms of Goncharov polylog-
arithms as

Lin1···nk
(x1, . . . , xk) = (−1)kG

(
0, . . . , 0︸ ︷︷ ︸
nk−1

1

xk
, . . . ,

1

x2 · · · xk
, 0, . . . , 0︸ ︷︷ ︸

n1−1

,
1

x1 · · · xk
; 1
)
.

(3)

• Another notation is

I(a0; a1, . . . , an; an+1) =

∫ an+1

a0

dt

t− an
I(a0; a1, . . . , an−1; t). (4)

Obviously we have

G(a1, . . . , an;x) = I(0; an, . . . , a1;x), (5)

where the a arguments are reversed in the I function with respect to
the G function.

• From these functions we can find particular cases which are simpler.
The “classical” polylogarithms are defined by (and studied by Euler,
Abel, Kummer)

Lin(x) =
∞∑
p=1

xp

pn
. (6)
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0.1. THE CAST OF CHARACTERS: POLYLOGARITHMS AND ZETA
VALUES 3

We also have

Lin(x) = −G
(

0, . . . , 0︸ ︷︷ ︸
n−1

,
1

x
; 1
)

= −
∫ x

0

dt

t
G
(

0, . . . , 0︸ ︷︷ ︸
n−2

,
1

t
; 1
)

=

∫ x

0

dt

t
Lin−1(t).

(7)
The function Li1(x) is just the usual logarithm

Li1(x) = −G
(1

x
; 1
)

= −
∫ 1

0

dt

t− x−1
=

∫ x

0

dt

1− t = − ln(1− x). (8)

• The polylogarithm Lin(z) can be written as

Lin(z) =

∫
0≤1−t1≤t2≤...≤tn≤z

dt1
t1
∧ . . . ∧ dtn

tn
. (9)

Aomoto considered a more general situation. Suppose we have an
n-simplex ∆L defined by a set of hyperplanes (L0, . . . , Ln) and an n-
form ωM with logarithmic poles on a set of hyperplanes (M0, . . . ,Mn).
The Aomoto polylogarithm Λn(L0, . . . , Ln;M0, . . . ,Mn)

Λn(L0, . . . , Ln;M0, . . . ,Mn) =

∫
∆L

ωM . (10)

If we work in projective space and dualize the hyperplanes to points,
then the Aomoto polylogarithm depends on configurations of 2(n+1)
points in CPn−1.

Why are such functions interesting?

• Lin(1) = ζ(n). More generally, Lin1,...,nk
(1, . . . , 1) = ζ(n1, . . . , nk),

where the right hand side is a “multiple zeta value” (or MZV). The
multiple zeta values satisfy interesting algebraic relations. One old
example, found by Euler, is ζ(1, 2) = ζ(3). Such identities are in-
teresting for number theorists. The multiple zeta values are also of
interest to physicists. They appear in the computation of vacuum
diagrams in field theory [REFS] and also in the α′ expansion of string
theory scattering amplitudes [REFS].

• Iterated integrals appear frequently in practice and one can show that
the polylogarithms defined above are universal, in the following sense.
An iterated integral

∫ z
ω1◦· · ·◦ωn of rational 1-forms ωi on a rational

variety X can be written in terms of hyperlogarithms, whose argu-
ments are rational fractions in z (see proposition 18 in ref. [22] for a
more precise statement).
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4 CONTENTS

• Motives, K-theory, etc.

• In physics, polylogarithms appear in several ways. One way they
appear is when computing Feynman integrals.

• Polylogarithms also appear in integrable models. For example, sup-
pose we deform a two-dimensional CFT by a relevant operator. In
some cases we obtain massive two-dimensional field theories with in-
tegrable S matrix. In order to find this S matrix exactly some assump-
tions are made. One way to check them is to use the thermodynamic
Bethe ansatz (TBA), by formulating the theory on a cylinder of radius
r. The ground state energy E(r) can be computed from the knowledge
of the mass spectrum and of the S matrix. In the UV limit r → 0 we
recover the original CFT whose ground state energy behaves like −πc̃

6r
,

where c̃ is the effective central charge. In many cases of interest the
function E(r) can be expressed in terms of dilogarithms in the limit
r → 0 and this yields dilogarithm identities. See refs. [17, 15].

0.2 Iterated integrals

A reference for this section is the paper [5] by K-T Chen.
The simplest iterated integral is in one dimension. We introduce a

notation∫ b

a

f1(t)dt◦· · ·◦fr(t)dt =

∫ b

a

(∫ t

a

f1(u)du ◦ · · · ◦ fr−1(u)du

)
fr(t)dt. (11)

This is a recursive definition.
If α and β are paths (i.e. maps α, β : [0, 1] → X where X is some

manifold), define the product αβ to be the path α followed by the path β.
Also, define the inverse path γ = α−1, by γ(t) = α(1− t).

If w1, . . . , wr are 1-forms on X, then we define the iterated integral on
the path α by ∫

α

w1 ◦ · · · ◦ wr =

∫ 1

0

α∗w1 ◦ · · · ◦ α∗wr, (12)

where α∗wi is the pullback1 of the 1-form wi on the path α.

1If you are not familiar with the notion of pullback, here is the definition. If w =∑
i fidx

i is a 1-form on X, with xi some local coordinates, and α is a map (in our case

α : [0, 1]→ X), then we define the pullback α∗w =
∑

i fi
dxi

dt dt. This is a 1-form on the
interval [0, 1].
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0.2. ITERATED INTEGRALS 5

These iterated integrals have the following properties∫
α

w1 ◦ · · · ◦ wr
∫
α

wr+1 ◦ · · · ◦ wr+s =
∑
σ

∫
α

wσ(1) ◦ · · · ◦ wσ(r+s), (13)

where the sum is over all (r, s) shuffles. The (r, s) shuffles are permutations
σ of r + s letters with σ−1(1) < · · · < σ−1(r) and σ−1(r + 1) < · · · <
σ−1(r + s).

The σ−1 may look strange but they are correct. The shuffle product of
the sets {1, . . . , r} and {r + 1, . . . , r + s} is the set of all permutations of
{1, . . . , r+ s} such that 1, . . . , r and r+ 1, . . . , r+ s always appear ordered.
Then, in eq. (13) wi appears at position σ−1(i) in the right-hand side. This
implies σ−1(1) < · · · < σ−1(r) and σ−1(r + 1) < · · · < σ−1(r + s).

The sum over all the (r, s) shuffles is the shuffle product

(w1 ◦ · · · ◦wr)tt(wr+1 ◦ · · · ◦wr+s) =
∑

σ∈(r,s) shuffles

wσ(1) ◦ · · · ◦wσ(r+s). (14)

We will justify eq. 13 on a two-dimensional case.∫ 1

0

f1(t1)dt1

∫ 1

0

f2(t2)dt2 =

∫
0≤t1<t2≤1

dt1dt2f1(t1)f2(t2)+∫
0≤t2<t1≤1

dt1dt2f1(t1)f2(t2) =

∫
f1(t)dt ◦ f2(t)dt+

∫
f2(t)dt ◦ f1(t)dt.

(15)

This argument can be extended recursively without too much difficulty. The
recursive proof uses the following recursive definition of the shuffle product

(w1◦· · ·◦wr)tt(wr+1◦· · ·◦wr+s) = w1◦((w2◦· · ·◦wr)tt(wr+1◦· · ·◦wr+s))+
wr+1 ◦ ((w1 ◦ · · · ◦ wr)tt(wr+2 ◦ · · · ◦ wr+s)). (16)

With respect to composition of the paths α and β we have the property∫
αβ

w1 · · ·wr =

∫
α

w1 · · ·wr+· · ·
∫
α

w1 · · ·wi
∫
β

wi+1 · · ·wr+· · ·
∫
β

w1 · · ·wr.
(17)

When evaluating the iterated integral on the inverse path we get∫
α−1

w1 · · ·wr = (−1)r
∫
α

wr · · ·w1. (18)
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Suppose we take a path in α in X and we define a functional of the path
α by

F [α] =

∫
α

w1 ◦ · · · ◦ wk. (19)

Then we say that F is independent on the path α if the path can be locally
deformed2 while keeping its end points fixed, without changing the value of
F .3

If we consider the path independent functional F [α] as a function of the
endpoint α(1) ∈ X, then we have

dF [α] = wk

∫
α

w1 ◦ · · · ◦ wk−1, (20)

where wk is evaluated at the endpoint of the path. This is basically the
fundamental theorem of calculus for the case of iterated integrals.

0.3 Transcendental functions. Symbols

Let us now define some transcendental functions as iterated integrals. We
start by giving some examples before giving the general definitions.

The simplest iterated integral we will consider is an integral of a dif-
ferential form w = d ln f(x), where x ∈ X and f(x) is a rational fraction.
For reasons which will become clear later we impose the restriction that
the rational fraction f(x) be a rational fraction with rational coefficients.
This differential form can be trivially integrated and the functions defined
in this way are logarithms with rational fractions as arguments.

The next example is a twice iterated integral4

Li2(z) =

∫ z

0

(∫ t

0

du

1− u

)
dt

t
= −

∫ z

0

dt
ln(1− t)

t
. (21)

2While deforming the path α we avoid crossing any singularities (like poles) that the
differential forms wi may have.

3In more mathematical terms, F is independent on the homotopy class (relative to
the endpoints) of the path α. A relative homotopy class is defined as the equivalence
class of paths related by continuous transformations which keep some part of the manifold
fixed, in this case the endpoints.

4For now you can think about this integral as being taken along the real axis, for
0 < z < 1. Of course, this function can be analytically continued for complex values of
z.
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0.3. TRANSCENDENTAL FUNCTIONS. SYMBOLS 7

This function is called the dilogarithm. It has a regular series expansion
around z = 0, which can be found by using

− ln(1− t) =
∞∑
k=1

tn

n
(22)

and exchanging the order of summation and integration. We get

Li2(z) =
∞∑
k=1

zn

n2
. (23)

Then, we define recursively

Lin(z) =

∫ z

0

dt
Lin−1(t)

t
, (24)

with Li1(z) = − ln(1− z). The differential relation is

z
∂

∂z
Lin(z) = Lin−1(z). (25)

One can show recursively that

Lin(z) =
∞∑
k=1

zk

kn
. (26)

In the notation of sec. 0.2 we have

Lin(z) = −
∫ z

0

d ln(1− t) ◦ d ln t ◦ · · · ◦ d ln t︸ ︷︷ ︸
n−1

, (27)

where the integral is taken along some path from 0 to z.
The knowledge of the differential forms and their ordering is enough

to define a multivalued function, if the integral is independent on small
variations of the path. We will condense this knowledge in an object called
symbol, which is denoted by

S(Lin(z)) = −(1− z)⊗ z ⊗ · · · ⊗ z︸ ︷︷ ︸
n−1

. (28)

Note that the differential forms are ordered as in the iterated integral and
are evaluated at the endpoint of the integration path.

If we have a function written as an iterated integral with differential
forms wi = d ln fi, then the symbol can be written immediately. But if
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8 CONTENTS

we don’t know such a form, then a way to compute the symbol is to use
eq. (20) recursively. Let us see how this works on an example.

Starting from the series expansion

Lia,b(x, y) =
∑

n>m≥1

xn

na
ym

mb
, (29)

we easily obtain

dLia,b(x, y) = d lnxLia−1,b(x, y) + d ln y Lia,b−1(x, y). (30)

We also get

Lia,0(x, y) =
1

1− y (y Lia(x)− Lia(xy)) , Li0,a(x, y) =
x

1− x Lib(xy).

(31)
Using this we find

dLia,1(x, y) = d lnxLia−1,1(x, y)− d ln(1− y) Lia(x)− d ln
y

1− y Lia(xy),

(32)

dLi1,b(x, y) = −d ln(1− x) Lib(xy) + d ln y Li1,b−1(x, y), (33)

dLi1,1(x, y) = −d ln(1− x) Li1(xy)− d ln(1− y) Li1(x)− d ln

(
y

1− y

)
Li1(xy).

(34)

So the symbol is

S(Li1,1(x, y)) = (1−xy)⊗(1−x)+(1−x)⊗(1−y)+(1−xy)⊗
(

y

1− y

)
.

(35)

From the definition, it is clear that the symbols satisfy some properties.
For example, from d ln(xy) = d lnx+ d ln y we find that

· · · ⊗ (xy)⊗ · · · = · · · ⊗ x⊗ · · ·+ · · · ⊗ y ⊗ · · · . (36)

Also, a purely numeric entry c ∈ Q gives zero because d ln c = 0. So we
have

· · · ⊗ c⊗ · · · = 0. (37)

Using these properties, we find

S(Li1,1(x, y)) = (1− xy)⊗ (1− x) + (1− x)⊗ (1− y)+

(1− xy)⊗ y − (1− xy)⊗ (1− y). (38)
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0.4. HOMOTOPY INVARIANCE 9

0.4 Homotopy invariance

Let us start with an integral of a closed one-form w1. Because w1 is closed,
it is locally exact. This implies via Stokes theorem that the integral∫

α

w1 (39)

is independent on small variations of the path α. For example if w1 = dt
1−t ,

then the integral ∫ z

0

dt

1− t = − ln(1− z) (40)

along a path from 0 to z defines a multivalued function. If the integration
path can be deformed without encountering the point 1, then the value of
the integral does not change.

Consider now the case where we have a double iterated integral,

I =

∫
α

w1 ◦ w2, (41)

and define F (z) =
∫ z
w1. Then, the definition of the iterated integral

implies that

I =

∫
α

w1 ◦ w2 =

∫
α

Fw2. (42)

We obtain that I is independent on small variations of the path α is
d(Fw2) = 0. Using dw2 = 0 and dF = w1, we obtain w1 ∧ w2 = 0.
This is an integrability condition.

We can also consider a more general case

I =

∫
α

∑
i,j

wi ◦ wj. (43)

In this case, a similar argument implies the integrability condition
∑

i,j wi∧
wj. As an example, consider the symbol of Li1,1(x, y) in eq. (38). In this
case, we obtain the following expression for the integrability condition(−xdy − ydx

1− xy

)
∧
( −dx

1− x

)
+

( −dx
1− x

)
∧
( −dy

1− y

)
+(−xdy − ydx

1− xy

)
∧
(
dy

y

)
−
(−xdy − ydx

1− xy

)
∧
( −dy

1− y

)
=

dx∧dy
(
− x

(1− xy)(1− x)
+

1

(1− x)(1− y)
− 1

1− xy−
y

(1− xy)(1− y)

)
= 0.

(44)
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We have shown that in this case homotopy invariance holds, but in a non-
trivial way (detailed cancellations between different terms are required).

In general, for an iterated integral

I =

∫
α

w1 ◦ · · · ◦ wr, (45)

the integrability conditions are wi ∧ wi+1 = 0, for i = 1, . . . , r − 1.
The most general case is5

I =

∫
α

∑
i1,...,ir

wi1 ◦ · · · ◦ wir . (46)

How should we think about integrability in this general case? Obviously
the conditions that wil ∧wil+1

= 0 for l = 1, . . . , r− 1 are sufficient but not
necessary. It may happen that wil ∧ wil+1

6= 0 but the remaining wik add
up to zero.

The right way to express the integrability conditions in this case is to
use the notion of symbol again. We have the I is independent on the path
if

r−1∑
l=1

∑
i1,...,ir

wi1 ⊗ · · · ⊗
(
dwil ∧ dwil+1

)
⊗ · · · ⊗ wir = 0. (47)

In order to make this more clear, let us work out an example. We have

dLi2,1(x, y) = d lnxLi1,1(x, y)− d ln(1− y) Li2(x)− d ln

(
y

1− y

)
Li2(xy).

(48)
Using this and the symbol of Li1,1(x, y) already computed we find that

S(Li2,1(x, y)) = (1− xy)⊗ (1− x)⊗ x+ (1− x)⊗ (1− y)⊗ x+

(1− xy)⊗ y ⊗ x− (1− xy)⊗ (1− y)⊗ x+ (1− x)⊗ x⊗ (1− y)+

(1−xy)⊗x⊗y−(1−xy)⊗x⊗(1−y)+(1−xy)⊗y⊗y−(1−xy)⊗y⊗(1−y).
(49)

The check of integrability in the first two entries is very similar to the one
we did for Li1,1(x, y). Therefore we will focus on the last two entries. We

5In fact there are some other slightly more general cases (see [5]), like
∫
w1◦w2+w12,

where w1, w2 and w12 are one-forms. In this case the integrability condition is w1∧w2 +
dw12 = 0. However, we will not consider these cases where we combine iterated integrals
of different lengths.
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0.5. INTEGRATING THE SYMBOL 11

get

(1− xy)⊗
(
dy

y
∧ dx
x
− −dy

1− y ∧
dx

x
+
dx

x
∧ dy
y
− dx

x
∧ −dy

1− y

)
+

(1− x)⊗
( −dy

1− y ∧
dx

x
+
dx

x
∧ −dy

1− y

)
= 0. (50)

So we have shown that the symbol of Li2,1(x, y) is integrable.
If a multivalued function is defined as an iterated integral of length k

with the forms wi = d ln fi, i = 1, . . . , k, then we say that the function
has transcendentality k. There are no nontrivial6 vanishing linear combina-
tions with rational coefficients, of functions of different transcendentality.
In particular, this means that the notion of transcendentality weight is well
defined (if one could write the same function as iterated integrals of differ-
ent lengths, it would not be possible to unambiguously define a notion of
transcendentality weight).

Now we can finally explain the reason for the restriction that the argu-
ments of the transcendental functions be rational functions with rational
coefficients. If we allow e as an argument then we have ln e = 1, where
the right-hand side has transcendentality zero while the left-hand side is a
transcendentality one function, evaluated at a transcendental value.

0.5 Integrating the symbol

We have shown how to compute the symbol of a transcendental function,
but we have not said why this is useful. The symbol is very useful to check
identities between transcendental functions since it reduces the check to
algebraic manipulation.

But suppose we don’t want to check an identity, but we have a com-
plicated combination of transcendental functions (like in refs. [6, 7]) which
we suspect can be simplified. Then we can compute the symbol of this
combination of functions and, if we are lucky, we notice that the symbol
is “simpler” than the original function so it is likely that the result can be
simplified (in other words, it is possible to find a simpler combination of
transcendental functions which has the same symbol).

This is the question we will address in this section: given a symbol,
how do we find the simplest function with that symbol? Before we start

6As an example of trivial relations, we have linear combinations of transcendental
functions of different transcendentality, where the parts with the same transcendentality
cancel among themselves.
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the discussion we should mention that a general answer to this question is
not known. In the cases of transcendentality two and three some powerful
theorems guide us, but for higher transcendentality we will typically only
be able to give partial answers.

Moreover, by using this method we discard some information because
computing the symbol by the method described in sec. 0.3 consists in tak-
ing derivatives. In general, this method will not reproduce terms containing
powers of π or terms proportional to zeta values. Such terms can be found
by other methods (see examples below), like imposing appropriate analytic-
ity constraints or by using a modified version of the symbol which discards
less information (see refs. [4, 8]).

We will organize the discussion according to transcendentality. The
transcendentality one functions are logarithms. They have symbols of
length one which can be straightforwardly integrated.

The symbols of transcendentality two functions can be decomposed in
symmetric and antisymmetric parts. The symmetric part can be integrated
to a product of logarithms while the antisymmetric part, if it satisfies the
integrability constraints, can be integrated to dilogarithms.

More explicitly, for the symmetric part we can use,

x⊗ y + y ⊗ x = S(lnx ln y), x⊗ x = S 1

2
ln2(x). (51)

The antisymmetric part is more complicated. Let us illustrate the procedure
on the example of Li1,1(x, y). Recall that

S(L1,1(x, y)) = (1− xy)⊗ y(1− x)

1− y + (1− x)⊗ (1− y). (52)

The RHS can be rewritten by elementary algebraic manipulations(
1 +

y(1− x)

1− y
)
⊗ y(1− x)

1− y + (1− y)⊗ y

1− y + (1− x)⊗S (1− y) =

S
(
−Li2

(
−y(1− x)

1− y
)
− Li2(y)− 1

2
ln2(1− y) + ln(1− x) ln(1− y)

)
, (53)

where ⊗S is the symmetric tensor product denoted sometimes by �.
So we have shown that the difference ∗ defined below

−Li2

(
−y(1− x)

1− y
)
−Li2(y)− 1

2
ln2(1−y)+ln(1−x) ln(1−y)−Li1,1(x, y) = ∗

(54)
has symbol zero. Since there are no relations between functions of different
transcendentality, this means that ∗ is a linear combination of π × ln and
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π2 terms, with rational coefficients. However, it is easy to show that ∗ has
a regular series expansion around (x, y) = (0, 0) with rational coefficients.
Since ∗ contains π the only way for the equality to hold at the level of
coefficients of the power series is if ∗ = 0. Therefore,

−Li2

(
−y(1− x)

1− y
)
−Li2(y)− 1

2
ln2(1− y) + ln(1−x) ln(1− y) = Li1,1(x, y).

(55)
This is the first nontrivial identity we found using symbols.

Note that the function Li2(x) has a well-defined power series expansion
around x = 0, but its symbol is not antisymmetric. We can define a function
(Rogers L function)

L(x) = Li2(x) +
1

2
ln(x) ln(1− x), (56)

whose symbol is antisymmetric

SL(x) = −1

2
(1− x)⊗ x+

1

2
x⊗ (1− x) ≡ −1

2
(1− x) ∧ x, (57)

but at the cost of not having a well-defined power series around x = 0.
It is a theorem that all the transcendentality two functions can be ex-

pressed as linear combinations over the rational numbers of dilogarithms,
ln× ln, π× ln and π2 terms. Neglecting for now the terms of type π× ln and
π2, we have shown above that the terms with antisymmetric symbol can
be written in terms of Rogers L functions, while the terms with symmetric
symbol can be written as ln× ln.

If we allow ourselves to use the logarithm identities ln(xy) = ln x+ ln y
(which are true up to πi), then a symmetric symbol can be integrated
uniquely in terms of logarithms.

For the dilogarithms the situation is more complicated since they satisfy
some nontrivial identities. The most important among them is the five-term
identity. It has been discovered and rediscovered by many people among
which Spence, Abel, Hill, Kummer, Schaeffer, etc.

We present here this five-term identity in a way which makes its Z5

symmetry manifest. Define a sequence an recursively by 1−an = an−1an+1.
It is easy to show that this recursion relation has a periodicity five (try it!).
A slightly modified version of this recursion is a simple example of cluster
coordinate mutation, which will be discussed in more detail in sec. 0.11.

Now compute the following combination

S
(

5∑
n=1

L(an)

)
=

5∑
n=1

−1

2
(1− an)∧ an = −1

2

5∑
n=1

(an−1an+1)∧ an = 0, (58)
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where L is Rogers function. The left-over “subleading functional transcen-
dental part” can only be a constant, which turns out to be, ζ(2) = π2

6
, so

we get
5∑

n=1

L(an) =
5∑

n=1

(Li2(an) + ln an−1 ln an) =
π2

6
. (59)

In order to get the more familiar form of the five-term identity we set

a1 = x, a2 =
1− x
1− xy , a3 =

1− y
1− xy , a4 = y, a5 = 1− xy. (60)

In fact, all the dilogarithm identities are consequence of the five-term
identity (see ref. [3]).

Before moving on to higher transcendentality, let us recapitulate the
main lessons we learned so far in this section. First, we saw that we can
separate a part of the symbol (the antisymmetric part for transcendental-
ity two) which can not be written as products of lower transcendentality
functions. Second, we showed that, due to dilogarithm identities, there is
no unique canonical way to write a transcendental function. In order to
extend the methods above to higher transcendentality we need to answer
two questions: “What is the higher transcendentality counterpart of anti-
symmetrization?” and “What are the higher transcendentality analogs of
dilogarithms and what are the relations between them?”

Let us start with the first question. We have presented in sec. 0.2 a
formula for how to take the product of two functions defined by iterated
integrals. This can be particularized to the case of transcendental functions,
as follows. If two functions F and G have symbols a1 ⊗ · · · ⊗ an and
b1 ⊗ · · · ⊗ bm, then the symbol of the product FG is given by the shuffle
product of the symbols

(a1⊗· · ·⊗an)tt(b1⊗· · ·⊗ bm) = a1⊗ ((a2⊗· · ·⊗an)tt(b1⊗· · ·⊗ bm))+

b1 ⊗ ((a1 ⊗ · · · ⊗ an)tt(b2 ⊗ · · · ⊗ bm)). (61)

We define an operation ρ

ρ(a1 ⊗ · · · ⊗ an) = a1 ⊗ ρ(a2 ⊗ · · · ⊗ an)− an ⊗ ρ(a1 ⊗ · · · ⊗ an−1). (62)

This operator annihilates all the shuffle productsProve this!

ρ((a1 ⊗ · · · ⊗ an)tt(b1 ⊗ · · · ⊗ bm)) = 0. (63)

There are other projectors which can be used to extract the different kinds
of products as well (see refs. [23, 9] for more details).
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Still, even after applying the ρ projection the symbol can be too com-
plicated to handle. One idea is to integrate only parts of it. If we pick
appropriate pieces the integrability condition still holds and therefore those
shorter symbols correspond to actual functions. In this way we produce sev-
eral functions (more accurately equivalence classes of functions under the
symbol map) out of a single function. Algebraically this has the structure
of a coproduct.

In the case of Lin(x), this procedure is easy to carry out: we split the
symbol of Lin(x) in two parts, one of length k and the other of length n−k
for k = 0, . . . , n and them we integrate them to functions:

∆ Lin(x) =
n∑
k=0

−[(1− x)⊗ · · · ⊗ x︸ ︷︷ ︸
k

]⊗ [x⊗ · · · ⊗ x︸ ︷︷ ︸
n−k

]

→
n∑
k=0

Lik(x)⊗ lnn−k(x)

(n− k)!
= 1⊗Lin(x)+

n−1∑
k=1

Lik(x)⊗ lnn−k(x)

(n− k)!
+Lin(x)⊗1.

(64)

This procedure can be turned around. We start by defining a “coprod-
uct” on functions (the reason for the quotation marks is that in order to
show that this is a coproduct we need to understand all the algebraic re-
lations between the transcendental function to which it is applied and this
understanding is not available yet). This coproduct is coassociative, and by
applying it n times we obtain the symbol.

In the following we will mostly be interested in yet another coproduct,
called δ which differs from ∆ by neglecting the products and also terms of
type 1⊗ ∗ and ∗ ⊗ 1. The procedure is best described on an example. We
start with the symbol of the Li3(x) function, then we apply the projection
ρ and we split the resulting symbol in pieces of length two at the beginning
and pieces of length one at the end.7 Finally, we apply ρ to each of the two
groups.

Li3(x)
S−→ −(1−x)⊗x⊗x ρ−→ x⊗(1−x)∧x π2,1−−→ [x⊗(1−x)]⊗x−[x⊗x]⊗(1−x)

ρ⊗ρ−−→ [−(1− x) ∧ x]⊗ x = −{x}2 ⊗ x, (65)

where we have used the shorthand notation {x}2 = (1 − x) ∧ x. Also,
we have denoted by π2,1 the operation which groups together the first two

7We could also do a (1, 2) split instead of a (2, 1) split but it turns out that when
applying the operations (ρ⊗ρ)◦π1,2 ◦ρ on a Li3 symbol we obtain zero. Therefore, such
an operation can not detect trilogarithms.
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arguments; this notation is useful for describing the projection ρ⊗ρ, where
the first ρ acts on the first two arguments and the last second ρ acts on the
last argument.

Let us do the same for the Li2,1(x, y) function

Li2,1(x, y)
S−→ (1− xy)⊗ (1− x)⊗ x+ (1− x)⊗ (1− y)⊗ x+

(1− xy)⊗ y ⊗ x− (1− xy)⊗ (1− y)⊗ x+ (1− x)⊗ x⊗ (1− y)+

(1−xy)⊗x⊗y−(1−xy)⊗x⊗(1−y)+(1−xy)⊗y⊗y−(1−xy)⊗y⊗(1−y)
(ρ⊗ρ)◦π2,1◦ρ−−−−−−−→({

−y(1− x)

1− y
}

2
+{y}2

)
⊗x−({x}2+{y}2)⊗(1−xy)+{xy}2⊗y+(−{xy}2+{x}2)⊗(1−y).

(66)

Using the five-term identity

{x}2 +
{ 1− x

1− xy
}

2
+
{ 1− y

1− xy
}

2
+ {y}2 + {1− xy}2 = 0, (67)

and also {1−x}2 = −{x}2 and {x−1}2 = −{x}2 we can rewrite the expres-
sion above as

− {x}2 ⊗ x+ {1− xy}2 ⊗ (1− xy) + {xy}2 ⊗ xy+{x(1− y)

1− xy
}

2
⊗ x(1− y)

1− xy −
{ 1− y

1− xy
}

2
⊗ 1− y

1− xy + {1− y}2 ⊗ (1− y).

(68)

Notice that now we only have terms of type {x}2 ⊗ x which we will denote
by {x}3. We have shown that the same kind of terms arise when applying
this sequence of operations to trilogarithms so we are led to conclude that,
when expressed in terms classical polylogarithms, Li2,1(x, y) contains the
following combination

−Li3(xy)+Li3

(
1− y

1− xy

)
−Li3

(
x(1− y)

1− xy

)
−Li3(1−xy)+Li3(x)−Li3(1−y).

(69)
In fact, this representation is not unique, since under the combined sequence
of operations described above, the following quantity

Li3(z) + Li3(1− z) + Li3(1− z−1) (70)

projects to zero. Indeed, in order to eliminate the possibility of π’s or ζ
values of appearing, it is a good idea to use this identity to replace the Li3’s
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in eq. (69) by Li3 which have a regular power expansion around (x, y) =
(0, 0). After doing this we subtract the symbol of the group of Li3 from the
symbol of Li2,1 and study the remaining part. The remaining functions can
only be of type Li2× ln and ln× ln× ln. They can be easily found and the
full rewriting of Li2,1 is

Li2,1(x, y) = −Li3

(
−(1− x)y

1− y

)
−Li3

(
x(1− y)

1− xy

)
−Li3

(
(1− x)y

1− xy

)
+Li3

(
xy

xy − 1

)
−

Li2(x) log(1−xy)−Li2(y) log(1−x)+Li3(x)+Li3(y)+Li3

(
y

y − 1

)
+

1

6
log3(1−xy)−

1

2
log(1− x) log2(1− xy)− 1

2
log(1− y) log2(1− xy)−

1

2
log(1− x) log2(1− y) + log(1− x) log(1− y) log(1− xy). (71)

This can be cross-checked by computing the power expansion around
(x, y) = (0, 0) and comparing to the one of Li2,1(x, y). It is an example of
how paying attention to the analytic structure of the function under study
helps us fix the terms which can not be obtained from the symbol.

0.6 Coproduct

In sec. 0.5 we hinted that the operation of partial integration has the struc-
ture of a coproduct. However in order for the definition to be consistent
we need to show that it is compatible with the algebraic relations between
the transcendental functions. Since these relations are known only con-
jecturally, the existence of a coproduct is also a conjecture. However, the
functions we discussed can be lifted to motivic versions, I → IM for which
the coproduct can be defined rigorously (see ref. [20]). The coproduct acts
as follows on the functions IM:

∆IM(a0; a1, . . . , an; an+1) =
n∑
k=0

∑
0=i0<···<ik+1=n+1

IM(a0; ai1 , . . . , aik ; an+1)⊗

k∏
p=0

IM(aip ; aip+1, · · · , aip+1−1; aip+1). (72)

This has a nice graphical interpretation which can be explained on an ex-
ample (see fig. 1). We draw a semicircle and arrange the points a0, . . . , an+1

on it such that a0 and an+1 are at the beginning and at the end. Then we
pick k points ai1 , . . . , aik on this semicircle. The first term in the coproduct
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a0

a1

a2

a3

a4

Figure 1: The term IM(a0; a2; a4) ⊗ IM(a0; a1; a2)IM(a2; a3; a4) in the co-
product of IM(a0; a1, a2, a3; a4).

is I(a0; ai1 , . . . , aik ; an+1). In between two of these k points there may be
other points on the semicircle and they form k + 1 strings. The second
term in the coproduct is given by the product of IM’s with these strings as
arguments.

Let us present an example of coproduct computation. Recall that

Li1,1(x, y) = G(y−1, (xy)−1; 1) = I(0; (xy)−1, y−1; 1). (73)

The reduced coproduct ∆′(x) = ∆(x) − 1 ⊗ x − x ⊗ 1 can be found using
the general formula

∆′I(a0; a1, a2; a3) = I(a0; a1; a3)⊗ I(a1; a2; a3) + I(a0; a2; a3)⊗ I(a0; a1; a2).
(74)

We get

∆′ Li1,1(x, y) = ∆′I(0; (xy)−1, y−1; 1) = I(0; (xy)−1; 1)⊗I((xy)−1; y−1; 1)+I(0; y−1; 1)⊗I(0; (xy)−1; y−1).
(75)

Let us compute all the weight one functions I(a; b; c)

I(a; b; c) =

∫ c

a

dt

t− b = ln

(
c− b
a− b

)
. (76)

This is not well-defined if a = b or b = c. If a = c the answer is zero. In
order to get a well-defined result we regularize a→ a+ ε, c→ c+ ε, expand
in powers of ln ε and drop the singular terms in ln ε. Then we have

I(a; b; c)→
∫ c+ε

a+ε

dt

t− b = ln

(
c− b+ ε

a− b+ ε

)
, (77)

so

I(a; b; c) =


ln
(
c−b
a−b
)
, a 6= b, c 6= b,

ln(c− b), a = b, c 6= b,

ln
(

1
a−b
)
, a 6= b, c = b,

ln(1) = 0, a = b = c

. (78)
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Then, we find

∆′ Li1,1(x, y) = ln(1− xy)⊗ ln

(
1− y

1− x−1

)
+ ln(1− y)⊗ ln(1− x). (79)

0.7 Mathematical Preliminaries on

Polylogarithm Functions

In this section we provide some more mathematical details on transcenden-
tal functions and explain how to partially integrate them. We denote by Ln
the abelian group (under addition) of transcendental functions of weight n.
An important character in this story is the Bloch group Bn, also called the
classical polylogarithm group: it is the subgroup of Ln generated by the
classical polylogarithm functions Lin and their products.

We first consider the simplest kind of transcendental function, the loga-
rithm. If we are working modulo 2πi, then we have that ln z+lnw = ln(zw),
for any z, w ∈ C. In order to express this simple functional relation formally,
define Z[C∗] to be the free abelian group generated by {z}, with rational
coefficients and z non-zero complex numbers. Concretely, elements of this
group are {z}+{w} and the group operation is defined in the obvious way.
Then, we can quotient this group by the relations satisfied by the logarithm
to obtain the logarithm group B1,

B1 = Z[C∗]/({z}+ {w} − {zw}). (80)

This group is isomorphic to the multiplicative group of complex numbers,
C×.

The next simplest transcendental functions are the dilogarithms, Li2. It
can be shown that any transcendentality two function can be written as a
linear combination of Li2 functions and products of logarithms.

The dilogarithms satisfy a simple five-term functional relation. One
way to express this functional relation is to consider five points on CP1

with coordinates z1, . . . , z5. From any four such points we can form a cross-
ratio r(z1, . . . , ẑi, . . . z5), where the hatted argument is missing. We use the
definition r(i, j, k, l) =

zijzkl
zjkzli

. Then the five-term identity can be written as

5∑
i=1

(−1)i Li2(r(z1, . . . , ẑi, . . . , z5)) = logs, (81)

where we have denoted by logs the terms which can be written uniquely in
terms of logarithms. There is a theorem (see ref. [3]) that all the relations
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between dilogarithms are consequences of the five-term relations. We can
now define the Bloch group B2 by analogy to the logarithm case. We first
define Z[C] to be the free abelian group generated by {z}2, where z is a
non-zero complex number. Then, we quotient be the five-term relations
and the quotient is denoted by B2

B2 = Z[C]/(five-term relations). (82)

In this case we have a group morphism δ, B2
δ−→ Λ2C∗ which is defined by

δ({z}2) = (1 − z) ∧ z. To check that this is a group morphism we need to
show that δ(five-term relation) = 0 or

5∑
i=1

(−1)i(1− r(z1, . . . , ẑi, . . . , z5)) ∧ r(z1, . . . , ẑi, . . . , z5) = 0, (83)

which can be done by a short computation.
Let us now discuss Li3 functions. There is a theorem stating that all

transcendentality three functions can be written as a linear combination of
Li3 and products of lower transcendentality functions (see ref. [21]).

Just like in the previous cases, we first need to find the functional re-
lations satisfied by Li3 functions. The identity satisfied by Li3 is very
similar to the one satisfied by Li2 and can be described in terms of con-
figurations of seven points on CP2. It is convenient to describe each of
these points in terms of their homogeneous vi ∈ C3 coordinates, with
i = 1, . . . , 7. For three such vectors vi, vj, vk we can define a three-bracket
〈·, ·, ·〉 : C3 × C3 × C3 → C by the volume of the parallelepiped generated
by them 〈i, j, k〉 = Vol(vi, vj, vk).

Given six points in CP3, we can form a cross-ratio

r3(1, 2, 3, 4, 5, 6) =
〈124〉〈235〉〈316〉
〈125〉〈236〉〈314〉 . (84)

Such cross-ratios have been introduced and extensively used in ref. [21] and
we also discuss their geometric interpretation in sec. .2. The Li3 functional
relations can be expressed in terms of this cross-ratio as

7∑
i=1

(−1)i Alt6 Li3(r3(1, . . . , î, . . . , 7)) ≈ 0, (85)

where Alt6 mean antisymmetrization in the six points on which r3 depends
and ≈ means that we have omitted the terms which are products of lower
transcendentality functions.
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Now we define

B3 = Z[C]/(seven-term relations). (86)

There is a morphism δ : B3 → B2 ⊗ C∗, δ({x}3) = {x}2 ⊗ x. In order
to show that this morphism is well-defined, we need to show that that δ
annihilates the seven-term relations.

It may seem that we can continue in the same way to higher transcen-
dentality. However, this is not the case. At transcendentality four there are
new functions which can not be expressed in terms of Li4 and products of
lower transcendentality functions. We can define Bn for n ≥ 4 in the same
way as before, but there is a bigger group Ln which is the abelian group
related to weight n polylogs, some of which are not classical polylogs.

We defined Bn to be the abelian groups generated by classical polylogs
and Ln to be the abelian groups of all polylogs of weight n. Now we want to
characterize them. The most mathematically concise way to describe their
(conjectural!) connection is by an exact sequence, which for n = 4 reads

0→ B4 → L4 → Λ2B2 → 0. (87)

An exact sequence is a sequence of maps between spaces such that the
image of a map falls in the kernel of the next one. In the example above,
the first arrow says that B4 maps to L4 injectively, which is obvious since
B4 is contained in L4. The last arrow says that the map L4 → Λ2B2 is
surjective. This is less obvious, but it means that for any element of Λ2B2

one can find a weight four polylog with that Λ2B2 projection.
Finally, the rest of the sequence means that ker(L4 → Λ2B2) = B4.

This means that if a weight four polylog has zero Λ2B2 projection, which
is to say it belongs to ker(L4 → Λ2B2), then it is a classical polylog, and
vice-versa.

Let us explain in more detail how to compute the Λ2B2 component,
following the steps described in sec. 0.5. We start with a length four symbol
and we apply the following sequence of operations

a⊗b⊗c⊗d ρ−→ a⊗b⊗c⊗d−a⊗b⊗d⊗c−a⊗d⊗b⊗c+a⊗d⊗c⊗b−d⊗a⊗b⊗c+d⊗a⊗c⊗b+
d⊗c⊗a⊗b−d⊗c⊗b⊗a π2,2−−→ [a⊗b]⊗[c⊗d]−[a⊗b]⊗[d⊗c]−[a⊗d]⊗[b⊗c]+[a⊗d]⊗[c⊗b]−
[d⊗ a]⊗ [b⊗ c] + [d⊗ a]⊗ [c⊗ b] + [d⊗ c]⊗ [a⊗ b]− [d⊗ c]⊗ [b⊗ a]

ρ⊗ρ−−→
2[a ∧ b]⊗ [c ∧ d]− 2[c ∧ d]⊗ [a ∧ b] = 2[a ∧ b] ∧ [c ∧ d]. (88)

If the symbol a⊗ b⊗ c⊗ d is integrable, then the terms [a ∧ b] and [c ∧ d]
are also integrable to elements of B2 and the full result belongs to the space
Λ2B2.
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It is easy to check that classical four-logarithms, or elements of B4 map
to zero in Λ2B2. Goncharov has conjectured that the converse is also true,
which is a much more nontrivial statement. This conjecture has received a
very nontrivial confirmation in the computations of ref. [23].

So, when we first encounter a transcendentality four function we should
compute its Λ2B2 projection. Then we should compute its B3⊗C∗ projec-
tion by using the same procedure as in eq. (88) except replacing π2,2 by π3,1.
If the Λ2B2 projection is zero, we should be able to reorganize the B3⊗C∗
projection in the same way as we did for the Li2,1 in eq. (68) after which
we will be able to recognize the Li4 appearing in the result. However, if the
Λ2B2 projection is non-zero, we can still compute the B3 ⊗ C∗ but we will
typically not be able to say more. This is the situation we are in for seven-
and higher-point remainder functions (see ref. [18]).

For higher transcendentality there are similar exact sequences. For ex-
ample, at transcendentality five we have (again conjecturally!)

0→ B5 → L5 → B2 ⊗B3 → 0. (89)

For transcendentality six we have a similar exact sequence

0→ B6 → L6 → B3 ∧B3 ⊕B2 ⊗B4 → Λ3B2 → 0. (90)

This is not a short exact sequence anymore so it is a bit harder to extract
information from it.

What is the origin of the particular combinations B3 ∧B3 and B2 ⊗B4

like they appear above? The key is that the sum of all the Ln yields a graded
algebra which we denote by L• and which has a structure of a “motivic Lie
coalgebra”. This means that there is a co-commutator

δ : L• → Λ2L•, (91)

and this can generate the whole structure.

0.8 More details on transcendentality four

In this section we will present more details about the transcendentality
four computations, illustrating the general features on the multiple poly-
logarithms Li2,2, Li1,3 and Li3,1. At transcendentality four we will compute
two pieces of “motivic content”, Λ2B2 and B3⊗C∗. We will also show that
these two parts are not independent but are related by a constraint which
follows from integrability.
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It is not too hard to compute the B3⊗C∗ and Λ2B2 components of these
functions. We find

Li2,2(x, y)
B3⊗C∗
−−−−→

(
2{y}3 − 2{x}3

)
⊗ (xy − 1)+(

{1− xy}3 −
{
x− 1

xy − 1

}
3

+

{
(x− 1)y

xy − 1

}
3

+ {1− x}3 − {y}3

)
⊗ x+({ y − 1

xy − 1

}
3

−
{
x(y − 1)

xy − 1

}
3

+

{
xy

xy − 1

}
3

+ {x}3 − {1− y}3

)
⊗ y,

(92)

Li2,2(x, y)
Λ2B2−−−→ 2{x}2 ∧ {y}2 − 2{x}2 ∧ {xy}2 + 2{y}2 ∧ {xy}2. (93)

We construct a map B3 ⊗ C∗ → B2 ⊗ (Λ2C∗),

{x}3 ⊗ y 7→ {x}2 ⊗ (x ∧ y) (94)

and another map Λ2B2 → B2 ⊗ (Λ2C∗),

{x}2 ∧ {y}2 7→ {x}2 ⊗ ((1− y) ∧ y)− {y}2 ⊗ ((1− x) ∧ x). (95)

It is a good exercise to check that

Li2,2(x, y)
(B2⊗(Λ2C∗))&(B3⊗C∗)−−−−−−−−−−−−−→ {x}2 ⊗ ((1− xy) ∧ xy − (1− y) ∧ y)+

{y}2⊗(−(1−xy)∧xy+(1−x)∧x)+{xy}2⊗(−(1−xy)∧xy+(1−y)∧y).
(96)

This computation uses in an essential way the five-term dilogarithm identity

{x}2 +

{
1− x
1− xy

}
2

+

{
1− y

1− xy

}
2

+ {y}2 − {xy}2 = 0 (97)

and the identities {x}2 = −{1− x}2 = −{x−1}2.
We can also compute the projection Λ2B2 → B2⊗ (Λ2C∗) of Li2,2(x, y).

Doing so, we obtain the same result as for the projection of B3⊗C∗, up to
a multiplicative factor of (−2).

The same can be done for the other transcendentality four functions
Li1,3 and Li3,1. We find

Li1,3(x, y)
B3⊗C∗
−−−−→

(
{x}3 − {y}3

)
⊗ (xy − 1) +

(
{y}3 − {xy}3

)
⊗ (x− 1)+(

{1− xy}3 −
{
x− 1

xy − 1

}
3

+

{
(x− 1)y

xy − 1

}
3

+ {1− x}3 − {y}3

)
⊗ y
(98)

Li1,3(x, y)
Λ2B2−−−→ 2{x}2 ∧ {xy}2 (99)
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Li3,1(x, y)
B3⊗C∗
−−−−→

(
{x}3 − {y}3

)
⊗ (xy − 1) +

(
{y}3 − {xy}3

)
⊗ (x− 1)+(

{1− xy}3 −
{
x− 1

xy − 1

}
3

+

{
(x− 1)y

xy − 1

}
3

+ {1− x}3 − {y}3

)
⊗ y

(100)

Li3,1(x, y)
Λ2B2−−−→ −2{y}2 ∧ {xy}2 (101)

The Λ2B2 and B3 ⊗ C∗ parts are sufficient to determine a transcen-
dentality four function, up to products. If we are given only an element of
{x}2∧{y}2 ∈ Λ2B2 then we can construct an element of B3⊗C∗ compatible
with it (see ref. [19, eq. 27])

1

12

∑
σ,τ

(−1)|σ|+|τ |
{
σ(x)

τ(y)

}
3

⊗ 1− σ(x)

1− τ(y)
, (102)

where we sum over functions σ, τ which act as permutations of arguments
x, x−1, 1− x, (1− x)−1, 1− x−1, (1− x−1)−1 and |σ| is the signature of the
permutation.

0.9 Zeta values

Let us discuss the zeta values, which are easier to understand than poly-
logarithms, but are still pretty mysterious.

The multiple zeta values form a commutative algebra

ζ(m)ζ(n) = ζ(m,n) + ζ(n,m) + ζ(n+m). (103)

We denote by Z the space of Q-linear combinations of zeta values.
We know that

ζ(2n) = (−1)n−1 B2n

2(2n)!
(2π)2n, (104)

where Bn are the Bernoulli numbers,

t

et − 1
=
∞∑
k=0

Bkt
k

k!
. (105)

Therefore, the even zeta values are expressible as powers of π2 with rational
coefficients ζ(2n) ∈ Q[π2] (this is a notation for the ring of polynomials with
coefficients in Q and variable π2).
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Very little is known about the odd zeta values. Apéry showed that
ζ(3) /∈ Q with an elementary but magical proof. The rest is a mystery. We
can’t even prove that ζ(5) is irrational or that π2ζ(3) and ζ(5) are linearly
independent.

In order to describe the relations between the zeta values, we introduce
a free graded Lie algebra F(3, 5, . . . ), generated by elements e2n+1 with
degree −(2n+ 1). Denote by UF(3, 5, . . . ) its universal enveloping algebra
and by UF(3, 5, . . . )∨ the dual of the universal enveloping algebra. Then,
we have the following

Conjecture. The space Z is graded by weight, and Z• = Q[π2]⊕QUF(3, 5, . . . )∨• .

The conjecture can be formulated in terms of primitive elements PZ of
Z, that is elements which can not be written as products of elements of
lower weight. To eliminate them we take the quotient Z/(Z>0 · Z>0)

PZ = Z/(Z>0 · Z>0). (106)

Then the conjecture is equivalent to

PZ = 〈π2〉 ⊕ F(3, 5, . . . )∨, (107)

where 〈π2〉 is the one-dimensional Q vector space generated by π2.
This conjecture implies that all the odd zeta values ζ(2n+1) are linearly

independent (since they have different grading).

0.10 Kinematics

We study scattering amplitudes in N = 4 super-Yang-Mills theory with
SU(N) gauge group in the planar limit. We denote the coupling of the
theory by g and we will be considering the scattering amplitudes in a per-
turbative expansion in g. Consider an n-particle scattering process. The
particle labeled by i is described by its on-shell momentum pi (with p2

i = 0),
its helicity, a gauge algebra generator T ai .

In the planar limit N → ∞, g2N = λ fixed, only single-trace terms
survive in the scattering amplitudes. If we look at one of these single-trace
terms, we see that the scattered particles are cyclically ordered. We can
therefore introduce a dual space with coordinates x such that the momenta
pi are expressed as pi = xi−1 − xi.

The N = 4 super-Yang-Mills theory is superconformal invariant. How-
ever, scattering amplitudes are not well-defined in the absence of a regu-
larization and after regularization some of the superconformal symmetry
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is broken. Besides this superconformal symmetry, the N = 4 super-Yang-
Mills theory also has a surprising dual superconformal symmetry, whose
bosonic subgroup acts the dual coordinates x. In the following we will
mostly be interested in this conformal subgroup of the dual superconformal
group.

The complexified and compactified dual space can be represented as the
G(2, 4) Grassmannian of two-planes in C4 containing the origin. Therefore,
to each point in dual space we can associate a two-plane in C4. Two points
in dual space are light-like separated if their corresponding planes intersect
in a line. If we projectivize this construction, to a line in C4 corresponds a
point in CP3. We can do this for all pairs of points (xi−1, xi) and associate to
each of them a point Zi ∈ CP3. So instead of describing the kinematics by
giving the momenta pi subject to on-shell conditions p2

i = 0 and momentum
conservation

∑n
i=1 pi = 0, we can describe it by giving n points Zi ∈ CP3.

The variables Zi are known as momentum twistors and were introduced
in ref. [24]. Unlike for the variables pi or xi, the momentum twistors are
unconstrained.

The C4 space in which the two-planes are embedded is endowed with
a non-degenerate bilinear form which we will denote by · (Warning! this
C4 space is not the complexified Minkowski space). Given a two-plane
Xi corresponding to a point xi we can construct an orthogonal two-plane
X⊥i and by the same construction as for the momentum twistors Zi we
can construct conjugate momentum twistors Wi. Then, Zi ∈ Xi since
Zi ∈ Xi−1 ∩ Xi and Wi ∈ X⊥i since Wi ∈ X⊥i−1 ∩ X⊥i so we can conclude
that Zi ·Wi = 0. Similarly, Zi−1 ·Wi = Zi+1 ·Wi = 0.

Parity acts as the discrete transformation Zi ↔ Wi. If a quantity f
depends on momentum twistors and is parity invariant, then we must have
that

f(Z1, . . . , Zn) = f(W1, . . . ,Wn). (108)

The complexified dual conformal group acts as SL(4,C) on the mo-
mentum twistors Z → ZM , W → M−1W , where M ∈ SL(4,C). In
order to make SL(4,C) invariants, we can form four-brackets 〈ijkl〉 =
ω(vi, vj, vk, vl), where vi is a vector in C4 corresponding to Zi and ω is
a volume form which is preserved by the action of SL(4,C).

0.11 Introduction to cluster algebras

In this section we present some useful facts about cluster algebras. Cluster
algebras have been introduced in a series of papers [11, 12, 2, 14] by Fomin
and Zelevinsky.
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We can informally define the cluster algebras as follows: they are com-
mutative algebras constructed from distinguished generators (called cluster
variables) which are grouped into non-disjoint sets of constant cardinality
(called clusters), which are constructed recursively by an operation called
mutation from an initial cluster. The number of variables in a cluster is
called the rank of the cluster algebra.

As an example, take the A2 cluster algebra defined by the following
data:

• cluster variables: xm, m ∈ Z

• clusters: {xm, xm+1}

• initial cluster: {x1, x2}

• rank: 2

• exchange relations: xm−1xm+1 = 1 + xm

• mutation: {xm−1, xm} → {xm, xm+1}.

Using the exchange relations we find that

x3 =
1 + x2

x1

, x4 =
1 + x1 + x2

x1x2

, x5 =
1 + x1

x2

, x6 = x1, x7 = x2.

(109)
Therefore, the sequence xm is periodic with period five and the number of
cluster variables is finite.

When expressing the cluster variables xm in terms of (x1, x2), we en-
counter two unexpected features (which also hold true for general cluster
algebras). First, the denominators of the cluster variables are always mono-
mials. In general, we expect the cluster variables to be rational fractions of
the initial cluster variables, but in fact the denominator is always a mono-
mial. This is known under the name of “Laurent phenomenon” (see. [11]).
The second observation is that the numerator is a polynomial with positive
coefficients.

Another example of rank two cluster algebra is the A(b,c) algebra, which
has a different exchange relation

xm−1xm+1 =

{
1 + xbm, m is odd,

1 + xcm, m is even
. (110)

Here b, c are positive integers.
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(b, c) Cartan matrix Lie algebra Dynkin diagram period
(1, 1)

(
2 −1
−1 2

)
A2 �������� �������� 5

(1, 2)
(

2 −1
−2 2

)
C2 �������� ��������ks 7

(1, 3)
(

2 −1
−3 2

)
G2 �������� ��������_jt 8

Table 1: Correspondence between finite cluster algebras and simple Lie
algebras at rank two.

This cluster algebra has generically an infinite number of cluster vari-
ables. It can be shown that it has a finite number of cluster variables if and
only if bc ≤ 3. If we now form the matrices(

2 −b
−c 2

)
, (111)

we notice that the finite cluster algebras correspond to Cartan matrices of
simple Lie algebras (see tab. 1).

Let us now describe the link between quivers and cluster algebras. A
quiver is an oriented graph. In the following we will restrict to connected,
finite quivers without loops (arrows with the same origin and target) and
two-cycles (pairs of arrows going in opposite directions between two ver-
tices).

For a quiver with a given vertex k we define a new quiver obtained by
mutating at vertex k. The new quiver is obtained by applying the following
operations on the initial quiver:

• for each path i→ k → j we add an arrow i→ j

• reverse all the arrows on the edges incident with k

• remove all the two-cycles that may have formed.

The mutation at k is an involution; when applied twice in succession we
obtain the initial cluster.

Each quiver of the restricted type defined above is in one-to-one corre-
spondence with skew-symmetric matrices, once we fix an ordering of the
vertices. The skew-symmetric matrix is defined as

bij = (#arrows i→ j)− (#arrows j → i). (112)
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Since only one of the terms above is nonvanishing, bij = −bji. Under a
mutation at vertex k the matrix b transforms to b′ given by

b′ij =


−bij, if k ∈ {i, j},
bij, if bikbkj ≤ 0,

bij + bikbkj, if bik, bkj > 0,

bij − bikbkj, if bik, bkj < 0

. (113)

If we start with a quiver with n vertices and associate to each vertex i
a variable xi, we can use the skew-symmetric matrix b to define a mutation
relation at the vertex k by

xkx
′
k =

∏
i|bik>0

xbiki +
∏

i|bik<0

x−biki , (114)

with the understanding that an empty product is set to one. The mutation
at k changes xk to x′k defined by eq. (114) and leaves the other cluster
variables unchanged.

The A2 cluster algebra can be expressed by a quiver x1 → x2. Then,
a mutation at x1 replaces it by x′1 = 1+x2

x1
≡ x3 and reverses the arrow. A

mutation at x2 replaces it by x′2 = 1+x1
x2
≡ x5.

The A(b,c) cluster algebras can not be obtained from a quiver as described
above, but they can be obtained from a valued quiver. If we denote by V
the set of vertices and by E the set of edges of a quiver, then a valued quiver
is a quiver together with two functions v : V → N2 and d : E → N such that
for each arrow eij, i→ j we have d(i)v(eij)1 = djv(eij)2, where v(eij)1,2 are
the components of v(eij). The the matrix b is defined as

bij =


0, no arrow between i and j,

v(e)1 e is an arrow between i and j,

−v(e)2 e is an arrow between j and i,

. (115)

Note that in this case the matrix b is not skew-symmetric anymore,
but it is skew-symmetrizable. This means that there is a diagonal matrix
D = diag(d(1), . . . ) such that Db is skew-symmetric. Now the algebra A(b,c)

can be represented by a seed quiver x1
(b,c)−−→ x2. After a mutation at x1 we

obtain the quiver
1+xc2
x1

(c,b)←−− x2, while after a mutation at x2 we obtain the

quiver x1
(c,b)←−− 1+xb1

x2
. This reproduces the exchange rule of the A(b,c) cluster

algebra.
We will be mostly interested in a special class of cluster algebras, named

cluster algebras of geometric type. They are also described by quivers, but
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part of the vertices are special and called frozen vertices. The quiver is
special in that we do not allow arrows between the frozen vertices. Also,
we do not allow mutations in the frozen vertices. The associated variables
to the frozen vertices are called coefficients instead of cluster variables. We
define the principal part of such a quiver to be the quiver obtained by
erasing the frozen vertices and the edges incident with them.

In the case of cluster algebras of geometric type we can define an analog
of the b matrix as well. If the algebra has rank n (n unfrozen vertices)
and m frozen vertices, we can naively define (n + m) × (n + m) matrix b.
However, since there are no links between the frozen vertices this matrix
will have an m×m block filled with zeros. Instead of working with this full
matrix it is more economical to work with a n× (n+m) submatrix of the
full (n+m)× (n+m) matrix.

In the following we will show how cluster variables arise from Grassman-
nians G(k, n) (the Grassmannian G(k, n) is the space of k-planes thought
the origin of Cn). We can associate to each point in G(k, n) an equivalence
class of k×n matrices of maximal rank k (all matrices which differ by a left
action of GL(k) are in the same equivalence class). This parametrization
by k×n matrices arises as follows: a point in G(k, n) is a k-plane in Cn. In
order to describe this k-plane we can arbitrarily pick k independent vectors
in Cn which span the k-plane. Using these k n-vectors we can build a k×n
matrix. However, if we chose another set of vectors which are obtained from
the initial ones by a GL(k) transformation which preserves the k-plane, we
are describing the same point in the Grassmannian. This is why we need
to identify the k × n matrices which differ by a GL(k) action.

Dually, a k× n matrix can be thought of as n ordered points in Ck, the
points having coordinates given by the columns of the matrix. Using the
SL(k) subgroup of GL(k) we can transform these k-vectors by the same
linear transformation. Moreover, by the action of GL(1) = GL(k)/SL(k)
we can rescale all the k-vectors by the same amount so we should more
properly consider them as points in CPk−1 rather than vectors in Ck. We
have therefore related points in the Grassmannian G(k, n) to configurations
of n ordered points in CPk−1.

Given a k× n matrix with k ≤ n we can form
(
n
k

)
minors of type k× k.

They can be labeled by k integers i1, . . . , ik ∈ {1, . . . , n}, corresponding to
the columns of the initial k×n matrix. We will denote the determinants of
these minors by (i1, . . . , ik). These determinants are also known as Plücker
coordinates. They satisfy Plücker relations

(i, j, I)(k, l, I) = (i, k, I)(j, l, I) + (i, l, I)(j, k, I), (116)

where I is a multi-index with k− 2 entries. The Plücker relations define an
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embedding, called Plücker embedding, of the Grassmannian into a projec-
tive space of dimension

(
n
k

)
.

Notice that the Plücker relations in eq. (116) look very similar to the
exchange relations in a cluster algebra (see eq. (114, for example). Indeed,
we will start with cluster whose variables are Plücker coordinates and by
mutation we will generate more complicated cluster coordinates.

0.12 The cluster algebra for G(k, n)

The Grassmannian G(k, n) has a cluster algebra structure which was de-
scribed in ref. [16] (this construction is also reviewed in ref. [25]).

The construction of ref. [16] uses the definition of the Grassmannian
G(k, n) as a coset of SL(n,C) by a parabolic subgroup P . In the basis
of Cn where the first k basis vectors lie in the k-plane which determines a
point of G(k, n), the subgroup P contains all the matrices of SL(n,C) with
a k × (n− k) zero block in the upper-right block.

For our purposes it is sufficient to consider the description of the Grass-
mannian as equivalence classes of k × n matrices, where two matrices are
equivalent if they differ by the left action of a GL(k) matrix. If the leftmost
k × k minor is non-singular, i.e. 〈1, . . . , k〉 6= 0 then, by left multiplication
with an appropriate GL(k) matrix, we can transform it to the identity ma-
trix. After this operation the representative k × n matrix has the form
(1k, Y ), where 1k is the k × k identity matrix and Y is a k × l matrix with
l = n − k. The entries yij, 1 ≤ i ≤ k, 1 ≤ j ≤ l of the matrix Y are
coordinates on the cell of the Grassmannian where 〈1, . . . , k〉 6= 0.

Now we define a matrix Fij for 1 ≤ i ≤ k, 1 ≤ j ≤ l, which is the biggest
square matrix which fits inside Y and whose lower-left corner is at position
(i, j) inside Y . Then we define l(i, j) = min(i− 1, n− j − k) and

fij = (−1)(k−i)(l(i,j)−1) detFij. (117)

Let us express fij in terms of k-brackets. There are two cases to consider:
i ≤ l− j + 1 and i > l− j + 1. By adding rows and columns to the matrix
Fij to make it a k × k matrix, we find

fij =

{ 〈i+1,...,k,k+j,...,i+j+k−1〉
〈1,...,k〉 , i ≤ l − j + 1,

〈1,...,i+j−l−1,i+1,...,k,k+j,...,n〉
〈1,...,k〉 , i > l − j + 1

. (118)

In the definition of fij we have divided by 〈1, . . . , k〉 so that the expression
derived above holds even when 〈1, . . . , k〉 6= 1.
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According to ref. [16], the initial quiver for the G(k, n) cluster algebra
is given by8

f1l · · · f13 f12 f11

f2l · · · f23 f22 f21

...
...

...
...

...

fkl · · · fk3 fk2 fk1

//

��

__??????????????????

// //

��

__?????????????????

//

��

__????????????????

//

��

// //

��

__??????????????????

//

��

__??????????????????

�� ��

__?????????????????

__????????????????? ��

(119)

In order to obtain the quivers in sec. 0.11, we need to make one last
change to the quiver above. We rescale all the coordinates, frozen and
unfrozen, by 〈1, . . . , k〉. This produces a frozen variable 〈1, . . . , k〉 which
connects to the node labeled by f1l by an ingoing arrow. After this modi-
fication all the unfrozen vertices of the initial quiver have an equal number
of ingoing and outgoing arrows.

Let us start with some simple examples. For four points in CP1 the
quiver diagram has one central node connected to four external nodes (these
external nodes are the frozen variables).9 The central node has two arrows

8Here we are presented a flipped version of the quiver and with the arrows reversed
with respect to the quivers of refs. [16, 25].

9See ref. [16] for the construction of Grassmannian cluster algebras. The quivers
diagrams we present below are derived in this reference.



P
re

li
m

in
ar

y
ve

rs
io

n
J
u
ly

10
,

20
13

0.12. THE CLUSTER ALGEBRA FOR G(K,N) 33

coming in and two arrows going out.

13

34

23

12

14
��

oo
OO

// 24

34

23

12

14

OO

//

��

oo

(120)

The cluster coordinates we have used so far are called A coordinates.
They have the drawback that they are not invariant under rescaling of coor-
dinates. We can define scaling invariant quantities (called an X-coordinate)
associated to any unfrozen node by taking the ratio of the product of A co-
ordinates which can be reached by going against the arrows coming in by
the product of A coordinates which can be reached by following the arrows
going out. A mutation reverses the arrows and therefore transforms the X
coordinate to its inverse. As an example, the X coordinates for the central
vertex in eq. (120) are (12)(34)

(14)(23)
and (14)(23)

(12)(34)
, respectively.

Before moving on, let us make a useful observation. A point in the Grass-
mannian G(k, n) is a k-plane through the origin of Cn which can equally be
described by an orthogonal n−k-plane through the origin of Cn. This corre-
spondence is one-to-one so we are led to conclude that G(k, n) = G(n−k, n).
In terms of configurations of points this means that the configurations of n
ordered points in CPk−1 are the same as configurations of n ordered points
in CPn−k−1. Therefore we can restrict to k ≤ n

2
without loss of generality.

According to the discussion in the previous paragraph, we don’t need
to go further than CP1 for n = 4. Now let us move on to five points. Just
like for four points, we only need to study configurations in CP1. Thinking
about the Plücker identities (or using the results of ref. [16]), we see that
we can start with a cluster whose quiver diagram looks like below.

13 14 15

453423

12

//
__??????????��

��?
??

//
__??????????��

(121)

Then we can do a mutation on the node (14), for example. After this
we obtain a similar quiver diagram where the frozen vertex (15) is special
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instead of (34). Just like in the four-point case the arrows containing the
mutated node get reversed and the link between (13) and (34) gets deleted
and replaced with a link (13) → (15). It is easy to see that by mutating
one gets the five similar quivers and nothing more.

By the duality explained above, the same kind of quiver is associated to
configurations of five points in CP2, we just need to replace the labels by
their complement as 12 =⇒ 345, 23 =⇒ 145, etc.

The principal part of the quiver in the case of configurations of four
points in CP1 is just one vertex, the central one. This is the Dynkin diagram
of the A1 Lie algebra.10 The principal part of the quiver for configurations
of five points in CP1 is the same as the Dynkin diagram of A2 Lie algebra.
This cluster algebra is in fact the same as the A2 algebra we defined at
the beginning of this section and the appearance of the A2 Dynkin diagram
provides the motivation for the name. The An cluster algebras appear in
describing the configurations of n+ 3 points in CP1.

More exotic cases appear for six points in CP2, where we obtain a D4

Dynkin diagram. We can start with an initial quiver at the left below and
mutate at vertex 124 to obtain the principal part of the quiver shown at
right, which is the same as the Dynkin diagram of D4.

124

134

234 345

145

125 126

156

456

123

��

__???????????

//
��?

??
??

??
??

?

��

__??????????

//

��

��
//

__??????????

//
__??????????

•

• •

•OO

��?
??

??
??

??
??

oo

(122)

For seven points in CP2 we present below the initial quiver. After a
sequence of mutations at vertices 126, 467, 367, 236, 267, 126, 467, 126, 346
we obtain the E6 quiver in the right part of the figure below.

10This is the simplest possible cluster algebra, but it is a bit too simple which is why
we have not used it for illustration purposes. It has two clusters of one element each,
{x} and {x−1}. Under mutations we have the transformation x→ x−1.
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An Bn, Cn Dn E6 E7 E8 F4 G2
1

n+2

(
2n+2
n+1

) (
2n
n

)
3n−2
n

(
2n−2
n−1

)
833 4160 25080 105 8

Table 2: The number of clusters for cluster algebras of finite type.

267 367 467 567

456

345234

346236

123

126

127

167

//
__???????????��

��?
??

??
??

??
?

//
__???????????��

//
__??????????

��
//

__??????????��

__??????????

//

��

//
__??????????��

•

•

•• • •oo
��

// //oo

(123)
Finally, for eight points in CP2 the principal part of the quiver can be

brought into the form of an E8 Dynkin diagram by a sequence of mutations
(see ref. [26] for more details).

In ref. [12], Fomin and Zelevinsky showed that a cluster is of finite type
(i.e. it has a finite number of cluster variables), if the principal part of its
quiver can be made to be a Dynkin diagram after a sequence of mutations.
Further, if the principal part of the quiver contains a subgraph which is an
affine Dynkin diagram, then the cluster algebra is of infinite type. We have
seen above that cluster algebras arising from G(2, n) and G(3, 6), G(3, 7)
and G(3, 8) are of finite type. In ref. [26], Scott has shown that all the other
G(k, n) with 2 ≤ k ≤ n

2
are of infinite type.

This has striking implications for scattering amplitudes in N = 4 super-
Yang-Mills theory. There, the relevant Grassmannian is G(4, n), for n ≥ 6.
If n = 6 we obtain G(4, 6) = G(2, 6) which is of finite type. If n = 7 we
obtain G(4, 7) = G(3, 7) which is again of finite type. However, starting at
eight-point the cluster algebras are not of finite type anymore. In table. 2
we list the number of clusters for different cluster algebras of finite type
(see ref. [13])

A natural question is what kind of A coordinates appear for the simplest
cluster algebra of infinite type which is physically relevant, i.e. G(4, 8). Be-
sides the usual Plücker determinants, we also find more complicated quan-
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tities like

〈12(345) ∩ (678)〉 ≡ 〈1345〉〈2678〉 − 〈2345〉〈1678〉. (124)

The notation with ∩ emphasizes the following geometrical fact: the compos-
ite bracket 〈12(345) ∩ (678)〉 vanishes whenever the projective line (345) ∩
(678) obtained by intersecting two projective planes (345) and (678) and the
points 1 and 2 lie in the same projective plane. Another type of composite
bracket which appears is

〈12(345) ∩ (567)〉, (125)

which already appears for seven-point when expressed in CP3 language.
This ∩ notation has been introduced in ref. [1].

However, since the number of possible A coordinates is infinite, we are
bound to find more and more complicated expressions. One miraculous
feature of the mutations is that the denominator can always be canceled by
the numerator, after using Plücker identities. Therefore, the A coordinates
always seem to be polynomials in the Plücker coordinates. This is an analog
of the Laurent phenomenon, but this time we obtain polynomials. As anIs this a theorem?

A conjecture? example which appears for G(4, 8), we have the following identity

〈1237〉〈1245〉〈1678〉+ 〈1278〉〈45(671) ∩ (123)〉
〈1267〉 = 〈45(781) ∩ (123)〉. (126)

Here the left-hand side is the expression obtained following a mutation,
while the right-hand side is the expression where the denominator has been
canceled.

Even more complicated A coordinates can be generated. As an example,
we also find

− 〈(123) ∩ (345), (567) ∩ (781)〉. (127)

This vanishes when the lines (123)∩ (345) and (567)∩ (781) intersect. This
is equivalent to saying that the lines (345)∩(567) and (781)∩(123) intersect.
Finally, an even more complicated A coordinate reads

〈1246〉〈1256〉〈1378〉〈3457〉 − 〈1246〉〈1257〉〈1378〉〈3456〉−
〈1246〉〈1278〉〈1356〉〈3457〉+ 〈1278〉〈1257〉〈1346〉〈3456〉+

〈1236〉〈1278〉〈1457〉〈3456〉. (128)

Its geometrical interpretation is obscure.
In principle all these A coordinates can appear in the symbol of the

eight-point remainder or ratio functions. Nevertheless, at low loop orders
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only a small number of A coordinates appears. It would be interesting to
investigate when and if such more complicated entries appear in the symbol.

Notice that the seeds we have been using break the cyclic symmetry
of the configuration of points. In order to see that the cyclic symmetry
is preserved we need to show that by mutations one can reach another
quiver whose labels are permuted by one unit. For the case of G(3, 7)
described above, this can not be done in fewer than six mutations, since all
the unfrozen A coordinates need to change. Indeed it is not hard to show
that after mutating in the vertices which are initially labeled by (126),
(267), (236), (367), (346) and (467), we obtain the cluster with the vertex
labels shifted by one (123)→ (234), etc. This proves the cyclic symmetry.

0.13 Poisson brackets

One can define a Poisson bracket on the cluster X coordinates. It is enough
to define the Poisson bracket between the X coordinates in a given cluster.
It is defined as

{Xi, Xj} = bijXiXj, (129)

where bij = −bji is the b matrix of the cluster. It is not hard to check that
under mutations we obtain

{X ′i, X ′j} = b′ijX
′
iX
′
j, (130)

where X ′i and b′ij are obtained from Xi and bij, respectively. Therefore the
Poisson structure is preserved by mutations.

The Poisson structure is easiest to understand for G(2, n) cluster alge-
bras (see ref. [10] for a discussion). To a configuration of n points in CP1

with a cyclic ordering we associate a convex polygon. Each of the vertices
of this polygon corresponds to one of the n points.

Then consider a complete triangulation of the polygon. Each of the
n−3 diagonals in this triangulation determines a quadrilateral and therefore
four points in CP1. Suppose a diagonal E determines a quadrilateral with
vertices i, j, k, l where the ordering is the same as the ordering of the initial
polygon. Using these four points we can form a cross-ratio r(i, j, k, l) =
zijzkl
zjkzil

. We have r(i, j, k, l) = r(k, l, i, j) which implies that the cross-ratio

is uniquely determined by the diagonal E and we don’t have to chose an
orientation.

If we flip the diagonal E then the initial cross-ratio goes to its inverse,
but the cross-ratios corresponding to neighboring quadrilaterals change in
a more complicated way. In fact, they transform in the same way as cluster
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X coordinates, if the matrix bij is defined as follows. Two diagonals E and
F in a given triangulation are called adjacent if they are the sides of one
of the triangles of the triangulation. If the diagonals are adjacent we set
bEF = 1 if the diagonal E comes before F when listing the diagonals at
the common vertex in clockwise order. Otherwise we set bEF = −1. If two
diagonals E and F are not adjacent we set εEF = 0.

As an example we can consider a pentagon triangulated by diagonals
a which joins vertices 1 and 4 and diagonal b joining vertices 1 and 3.
Initially we have the cross-ratios Xa = r(1, 3, 4, 5), Xb = r(1, 2, 3, 4). Now
perform the mutation corresponding to flipping the diagonal b. After the
flip the diagonal b joins vertices 2 and 4 and the new cross-ratios are X ′a =
r(1, 2, 4, 5) and X ′b = r(2, 3, 4, 1). It is easy to show that

X ′a = Xa(1 +X−1
b )−1, X ′b = X−1

b . (131)

This corresponds to εab = 1 (before the mutation).
Consider the Λ2B2 projection of the seven-point remainder function. In

CP2 language it is given by

−
{
− 〈2× 3, 4× 6, 7× 1〉

〈167〉〈234〉
}

2
∧
{
− 〈7× 1, 2× 3, 4× 5〉

〈127〉〈345〉
}

2

−
{
− 〈2× 3, 4× 6, 7× 1〉

〈167〉〈234〉
}

2
∧
{
− 〈234〉〈456〉
〈246〉〈345〉

}
2

−
{
− 〈2× 3, 4× 6, 7× 1〉

〈167〉〈234〉
}

2
∧
{
− 〈146〉〈567〉
〈167〉〈456〉

}
2

−
{
− 〈2× 3, 4× 6, 7× 1〉

〈167〉〈234〉
}

2
∧
{
− 〈5× 6, 7× 1, 2× 3〉

〈123〉〈567〉
}

2

+
{
−〈137〉〈467〉
〈167〉〈347〉

}
2
∧
{
−〈123〉〈347〉
〈137〉〈234〉

}
2
−
{
−〈137〉〈467〉
〈167〉〈347〉

}
2
∧
{
−〈347〉〈456〉
〈345〉〈467〉

}
2

+ cyclic permutations of 1, 2, . . . , 7. (132)

We can show that for every term {−x}2 ∧ {−y}2 ∈ Λ2B2 listed above
we can find at least one cluster such that both x and y belong to it. This
means that their Poisson bracket is simple.11 In fact, we find that these
Poisson brackets are zero. In order to prove this, for every pair (x, y) we
need to exhibit a quiver graph which contains them and which is such that
there are no arrows between x and y.

11The Poisson bracket between cluster coordinates can become complicated. As an
example, consider the A2 cluster algebra. There, we have {x1, x2} = x1x2. The Poisson
bracket between coordinates in different clusters can be computed more easily than for
G(k, n) and even then we obtain more complicated quantities.
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.1 Glossary of mathematical notions

The source for the Lie algebra constructions discussed in this section is
ref. [27]. In the following we will work over some base field K.

Definition .1.1 (Lie algebra homomorphism). A map φ : L→ L′, between
two Lie algebras L, L′ is a Lie algebra homomorphism if it is linear and
φ([x, y]) = [φ(x), φ(y)]′ for all x, y ∈ L. Note that the bracket [·, ·] is
computed in L while the bracket [·, ·]′ is computed in L′.

Definition .1.2 (Universal enveloping algebra). Given a Lie algebra L, the
universal enveloping algebra U(L) is an associative algebra with unit such
that:

1. there exists a map ε : L → U(L) which is a Lie algebra homomor-
phism. The condition that ε is a Lie algebra homomorphism reads
ε([x, y]) = φ(x)φ(y)− φ(y)φ(x).

2. if A is any associative algebra with unit and α : L→ A is a Lie algebra
homomorphism, then there is a unique homomorphism β : U(L)→ A
of associative algebras such that α = β ◦ ε.

Definition .1.3 (Tensor product of algebras). If A, B are algebras (over
the same field) then they are also vector spaces and we can form their tensor
product A ⊗ B as vector fields. This tensor product can be made into an
algebra by defining a product by

(a⊗ b)(c⊗ d) = (ac)⊗ (bd), (133)

for a, c ∈ A and b, d ∈ B and extending it to the whole A⊗B by linearity.
If A,B are associative then A⊗B is associative. If A,B have units 1A and
1B, then A⊗B has unit 1A ⊗ 1B.

Definition .1.4 (Tensor algebra). If V is a vector space over a field K,
we define T nV = V ⊗ · · · ⊗ V︸ ︷︷ ︸

n

, with T 0V = K. The tensor algebra of V ,

denoted by TV , is
TV = ⊕∞n=0T

nV. (134)

Definition .1.5 (Universal enveloping algebra, alternative definition). The
universal enveloping algebra U(L) of the Lie algebra L can be defined as
a coset, as follows. Let I be the two-sided ideal of the tensor algebra TL
generated by the elements x ⊗ y − y ⊗ x − [x, y], for x, y ∈ L. Then the
universal enveloping algebra U(L) of L is defined as

U(L) = TL/I. (135)
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Lemma .1.1. If L,L′ are two Lie algebras and φ : L → L′ is a Lie alge-
bra homomorphism, then φ induces an associative algebra homomorphism
U(L) → U(L′). Similarly, if L is a Lie algebra and A is an algebra and
φ : L → A is a Lie algebra homomorphism, then φ induces an associative
algebra homomorphism U(L)→ A.

Theorem .1.1. If L,L′ are Lie algebras, then we have the following iso-
morphism of universal enveloping algebras

U(L⊕ L′) ∼= U(L)⊗ U(L′). (136)

Proof. We will establish an isomorphism between U(L ⊕ L′) and U(L) ⊗
U(L′).

Recall that we have ε : L→ U(L) and ε′ : L→ U(L′), which embed the
Lie algebras L, L′ in their universal enveloping algebra. We also denote by
ε the map ε : L→ U(L⊕ L′) and by ε′ the map ε′ : L′ → U(L⊕ L′). From
lemma .1.1, we see that they induce homomorphisms χ : U(L)→ U(L⊕L′),
χ′ : U(L′)→ U(L⊕ L′).

Since [x, x′] = 0 for x ∈ L and x′ ∈ L′, we get that χ(u)χ′(u′) =
χ′(u′)χ(u) for any u ∈ U(L), u′ ∈ U(L′). Therefore, the product χ(u)χ′(u′)
is commutative and non-ambiguous. We define a map

ψ : U(L)⊗ U(L′)→ U(L⊕ L′), ψ(u⊗ u′) = χ(u)χ′(u′), (137)

for all u ∈ L, u′ ∈ L′ and then extend it to the whole L⊗ L′ by linearity.
We have a homomorphism L ⊕ L′ → U(L) ⊗ U(L′) defined by x →

ε(π(x))⊗ 1 + 1⊗ ε′(π′(x)), where π is the projection on L and π′ is the pro-
jection on L′. This is a Lie algebra homomorphism and, by the lemma .1.1
induces a homomorphism φ : U(L⊕ L′)→ U(L)⊗ U(L′).

It remains to show that φ and χ are inverse of one another.

Let L be a Lie algebra over a field K. The map L → U(L) ⊗ U(L),
x 7→ x⊗ 1 + 1⊗ x defines a Lie algebra homomorphism. By lemma .1.1 it
induces an associative algebra homomorphism ∆ : U(L) → U(L) ⊗ U(L).
Define ε : U(L)→ K by ε(1) = 1 and ε(x) = 0 for x ∈ L and extend as an
algebra homomorphism.

We have

(ε⊗ Id) ◦ (x⊗ 1 + 1⊗ x) = 1⊗ x, x ∈ L. (138)

Since K⊗L ∼= L we can identify 1⊗x with x, so (ε⊗∆)◦∆ : U(L)→ U(L)
is the identity. The same holds for (Id⊗ε) ◦∆.
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Definition .1.6 (Coalgebra). Let C be a vector space over a field K. A
map ∆ : C → C ⊗ C called comultiplication and a map ε : C → K called
counit satisfying (ε⊗ Id) ◦∆ = Id = (Id⊗ε) ◦∆, is called a coalgebra.

Definition .1.7 (Bialgebra). If C is an algebra and a coalgebra and ∆, ε
are algebra homomorphisms, then C is a bialgebra.

Definition .1.8 (Coassociativity). A comultiplication ∆ is coassociative if
(∆⊗ Id) ◦∆ = (Id⊗∆) ◦∆.

Example of coassociative comultiplication. Take x such that ∆(x) =
x⊗ 1 + 1⊗ x. Then,

(∆⊗ 1) ◦∆(x) = (∆⊗ 1)(x⊗ 1 + 1⊗ x) = ∆(x)⊗ 1 + ∆(1)⊗ x =

x⊗ 1⊗ 1 + 1⊗ x⊗ 1 + 1⊗ 1⊗ x = (1⊗∆) ◦∆(x), (139)

where we have used ∆(1) = 1⊗ 1, which follows form the condition that ∆
is an algebra homomorphism.

Definition .1.9 (Graded Lie algebra). Let L be a Lie algebra over the field
K and U(L) its universal enveloping algebra, ε : L → U(L). Define Un(L)
to be the subspace of U(L) generated by products of at most n elements of
L. Then we have

U0(L) = K, U1(L) = K⊕ ε(L), (140)

U0(L) ⊂ U1(L) · · ·Un(L) ⊂ · · · , (141)

Um(L) · Un(L) ⊂ Un+m(L). (142)

We define

grn U(L) = Un(L)/Un−1(L), grU(L) = ⊕n grn U(L). (143)

The multiplication on grU(L) is induced by the multiplication on U(L).

If x, y ∈ L, then ε(x), ε(y) ∈ U(L) and we have ε(x)ε(y) − ε(x)ε(y) =
ε([x, y]) ∈ U1L. In gr2 U(L) the RHS of the previous equation vanishes
which implies that the gr2 is commutative. The same holds for higher
grading so grU(L) is a commutative algebra.

Definition .1.10 (Primitive element). Given a bialgebra L, an element
x ∈ L is called primitive if ∆(x) = x⊗ 1 + 1⊗ x.

Lemma .1.2. Let L be a Lie algebra with comultiplication ∆ : U(L) →
U(L) ⊗ U(L) such that ∆(x) = x ⊗ 1 + 1 ⊗ x if x ∈ L. If x ∈ U(L) is
primitive, then x ∈ L.
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Let X be a set. We set X1 := X. Then X2 consists of all expressions ab
with a, b ∈ X1, so X2 = X1 ×X2. We define

Xn =
∐

p+q=n

Xp ×Xq. (144)

Set MX =
∐∞

n=1Xn. An element w ∈ Mx is called a non-associative word.
Multiplication on MX is concatenation of non-associative words.

We define AX to be the vector space of finite formal linear combinations
of elements of MX . The multiplication on MX extends by bilinearity to
make AX into an algebra.

Definition .1.11. Let I ⊂ AX be the two-sided ideal generated by aa and
by (ab)c+ (bc)a+ (ca)b, for a, b, c ∈ AX . We set

LX = AX/I (145)

and call LX the free Lie algebra of X.

Lemma .1.3. The ideal I defined above is graded, that is for a ∈ I and a
decomposition a =

∑
an into homogeneous components an, then an ∈ I for

all an in the decomposition of a. Since the ideal I is graded, the quotient
LX = AX/I is a graded algebra as well.

Definition .1.12 (Nilpotent Lie algebra). A lie algebra L is nilpotent if
the series L, [L,L], [[L,L], L], etc. becomes zero eventually. The reason for
the name is that, given a ∈ L, the linear operator ada is nilpotent.

Definition .1.13 (Direct Limit). Let Ai be a family of algebraic objects
(groups, rings, modules, algebras) indexed by an ordered set I. Let φij :
Ai → Aj be homomorphisms defined for all i ≤ j, with the properties that
φii = Id |Ai

, and φik = φij ◦ φjk for all i ≤ j ≤ k. We define the direct limit
lim−→Ai of the Ai as the disjoint union of Ai modulo an equivalence relation
∼,

lim−→
i∈I

Ai =
⊔
i

Ai
/
∼ . (146)

The equivalence relation ∼ is defined by taking, for any xi ∈ Ai, xi ∼ φij(xi)
(xi is equivalent to all its images under the maps φij).

Definition .1.14 (Directed partially ordered set). A directed partially or-
dered set I us a set with a partial order ≤ such that for any i, j ∈ I, there
exists k ∈ I such that i ≤ k and j ≤ k.



P
re

li
m

in
ar

y
ve

rs
io

n
J
u
ly

10
,

20
13

.2. ELEMENTS OF PROJECTIVE GEOMETRY 43

a

b

c

d

O

α β
γ

δ

ρ

Figure 2: The cross-ratio of four lines in CP2.

Definition .1.15 (Inverse Limit). Let Ai be a family of algebraic objects
(groups, rings, modules, algebras) indexed by a directed partially ordered
set I. Let φij : Aj → Ai be homomorphisms defined for all i ≤ j, with the
properties that φii = Id |Ai

, and φik = φij ◦ φjk for all i ≤ j ≤ k. Then the
inverse limit is

lim←−
i∈I

Ai =
{
~a ∈

∏
i∈I

Ai

∣∣∣ ai = φij(aj), ∀i ≤ j, i, j ∈ I
}

(147)

Definition .1.16 (Pro-nilpotent). An algebra A is called pronilpotent if it
can be written as an inverse limit of nilpotent algebras.

.2 Elements of projective geometry

The simplest type of cross-ratio is the cross-ratio of four points (a, b, c, d) in
CP1. If the points have have coordinates (za, zb, zc, zd), then their cross-ratio
is

r(a, b, c, d) =
zabzcd
zbczda

. (148)

In the following we will try to reduce more complicated situations to con-
figurations of four points on a projective line.

By duality, a point in CP2 is in correspondence with a line in CP2.
Therefore, we can talk about the cross-ratio of four lines in CP2 (see fig. 2).

The cross-ratios of four lines (α, β, γ, δ) can be related to the cross-ratio
of four points by taking an arbitrary line ρ and computing the intersection
points a = ρ∩α, b = ρ∩β, c = ρ∩γ, d = ρ∩δ. Then, the cross-ratio of the
points (a, b, c, d) on ρ is independent on ρ and is equal to the cross-ratio of
the lines (α, β, γ, δ)

r(α, β, γ, δ) = r(a, b, c, d). (149)
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a

b

c

d

O

A
B

C
D

Figure 3: The cross-ratio of four lines determined by their common inter-
section point O and another point on each on of them.

If the lines are defined by pairs of points α = (OA), β = (OB), γ =
(OC), δ = (OD), as in fig. 3, then the cross-ratio of the four lines is

r(α, β, γ, δ) = r(a, b, c, d) = (O|A,B,C,D) ≡ 〈OAB〉〈OCD〉〈OBC〉〈ODA〉 , (150)

where 〈XY Z〉 is proportional to the oriented area of the triangle ∆(X, Y, Z).
If the four points A, B, C, D do not belong to a line we can’t generically

define their cross-ratio. However, given a conic C such that A, B, C, D
belong12 to C, then we can define their cross-ratio as follows: pick a point
X on the conic C. Then, by Chasles’ theorem the cross-ratio of the lines
(XA), (XB), (XC) and (XD) is independent on the point X and is defined
to be the cross-ratio of the points A, B, C, D (with respect to the conic C).
See fig. 4.

Let us now discuss the triple ratio of six points in CP2 which was in-
troduced by Goncharov. We take the six points to be A, B, C, X, Y , Z.
Numerically, this triple ratio is given by

r3(A,B,C;X, Y, Z) =
〈ABX〉〈BCY 〉〈CAZ〉
〈ABY 〉〈BCZ〉〈CAX〉 . (151)

It turns out that this ratio has several geometrical interpretations. Con-
sider first the situation in fig. 5. There, we have four lines which are
dashed and blue: α = (CB), β = (Cb), γ = (Cc), δ = (Cd), where
b = (AX)∩ (BY ), c = A and d = (CZ)∩ (AX). Their cross-ratio, obtained
by intersecting with the line (AX), is given by

r(α, β, γ, δ) = r(a, b, c, d) = (C|B, (AX) ∩ (BY ), A, Z). (152)

12Any conic is determined by five points. Given four points there is an infinity of
conics which contain them.
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A

B

C

D

X

C

Figure 4: The cross-ratio of points A, B, C, D with respect to the conic C.

A = cX

B

Y

C

Z

a b d

Figure 5: Triple ratio, expressed as a cross-ratio of points on the line (AX).

But, instead of considering the intersections of the lines (α, β, γ, δ) with
the line (AX) as above, we can consider the intersection with the line (BY ).
The intersection points are

a′ = α ∩ (BY ) = B, (153)

b′ = β ∩ (BY ) = b = (AX) ∩ (BY ), (154)

c′ = γ ∩ (BY ) = (CA) ∩ (BY ), (155)

d′ = δ ∩ (BY ) = (CZ) ∩ (BY ). (156)

The corresponding figure is fig. 6. If we denote by α′ = (AB), β′ = (AX),
γ′ = (AC), δ′ = (Ad′), we have

r(a, b, c, d) = r(α, β, γ, δ) = r(a′, b′, c′, d′) =

= r(α′, β′, γ′, δ′) = (A|B,X,C, (BY ) ∩ (CZ)). (157)

Now we can repeat the previous procedure. We compute the cross-ratio
r(α′, β′, γ′, δ′) by considering the intersection with (CZ). The intersection
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AX

B = a′

Y

C

Z

b′

d′

c′

Figure 6: Triple ratio, expressed as a cross-ratio of points on the line (BY ).

points are

a′′ = α′ ∩ (CZ) = (AB) ∩ (CZ), (158)

b′′ = β′ ∩ (CZ) = (AX) ∩ (CZ), (159)

c′′ = γ′ ∩ (CZ) = C, (160)

d′′ = δ′ ∩ (CZ) = (BY ) ∩ (CZ). (161)

See fig. 7 for a geometrical representation. If we define the lines α′′ = (BA),
β′′ = (Bb′′), γ′′ = (BC), δ′′ = (Bd′′), we have

(B|A, (CZ)∩(AX), C, Y ) = r(α′′, β′′, γ′′, δ′′) = r(a′′, b′′, c′′, d′′) = r(α′, β′, γ′, δ′).
(162)

We have therefore shown that

(A|B,X,C, (BY )∩(CZ)) = (B|A, (CZ)∩(AX), C, Y ) = (C|B, (AX)∩(BY ), A, Z).
(163)

Notice that this is also implied by the symmetry r3(A,B,C;X, Y, Z) =
r3(B,C,A;Y, Z,X).

Let us now show that the invariant (A|B,X,C, (BY ) ∩ (CZ)) has the
same zeros and poles as r3(A,B,C;X, Y, Z). Form the definition, we know
that (A|B,X,C, (BY ) ∩ (CZ)) vanishes when 〈ABX〉 = 0 or 〈AC(BY ) ∩
(CZ)〉 = 0. The second three-bracket vanishes if 〈BCY 〉 = 0 or 〈CAZ〉 = 0.
In the first case B,C, Y are collinear and therefore (BY ) ∩ (CZ) = C so
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AX

B

Y

C = c′′

Z

a′′

b′′

d′′

Figure 7: Triple ratio, expressed as a cross-ratio of points on the line (CZ).

we have 〈AC(BY ) ∩ (CZ)〉 = 〈ACC〉 = 0. In the second case, when
〈CAZ〉 = 0 we have that A ∈ (CZ), C ∈ (CZ) and P ≡ (BY ) ∩ (CZ) ∈
(CZ). Since all the entries of the three-bracket are collinear, we find that
〈AC(BY ) ∩ (CZ)〉 = 0. We have shown that (A|B,X,C, (BY ) ∩ (CZ))
vanishes if 〈ABX〉 = 0 or 〈BCY 〉 = 0 or 〈CAZ〉 = 0 which is the same as
the numerator of r3(A,B,C;X, Y, Z). In order to find the poles we reason
in the same way.

Notice that in fig. 5, we have five points (a, b,X, c, d) on the line (AX).
From five points (z1, . . . , z5) in CP1 we can produce a dilogarithm identity

5∑
i=1

(−1)i{r(z1, . . . , ẑi, . . . , z5)}2 = 0. (164)

This motivates us to find the expressions in terms of three-brackets for the
other cross-ratios that can be constructed from these five points on (AX)
(see fig. 5):

r(b,X,A, d) =
〈BXY 〉〈ACZ〉

〈A×X,B × Y,C × Z〉 , (165)

r(a,X,A, d) = (C|B,X,A, Z), (166)

r(a, b, A, d) = r3(A,B,C;X, Y, Z), (167)

r(a, b,X, d) = r3(X,B,C;A, Y, Z), (168)

r(a, b,X,A) = (B|C, Y,X,A). (169)
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This provides a geometric proof for the following dilogarithm identity

−
{ 〈BXY 〉〈ACZ〉
〈A×X,B × Y,C × Z〉

}
2

+

{〈CBX〉〈CAZ〉
〈CXA〉〈CZB〉

}
2

−
{〈ABX〉〈BCY 〉〈CAZ〉
〈ABY 〉〈BCZ〉〈CAX〉

}
2

+

{〈XBA〉〈BCY 〉〈CXZ〉
〈XBY 〉〈BCZ〉〈CXA〉

}
2

−
{〈BCY 〉〈BXA〉
〈BYX〉〈BAC〉

}
2

= 0. (170)

This kind of identities are useful to check that the B2 ∧ C∗ projection
of the 40-term trilogarithm identity is zero. For example, one of the dilog-
arithm identities which is useful is

−
{
− 〈123〉〈456〉
〈1× 2, 3× 4, 5× 6〉

}
2

−
{
−〈125〉〈134〉
〈123〉〈145〉

}
2

−
{
−〈123〉〈156〉〈345〉
〈125〉〈134〉〈356〉

}
2

+{
−〈124〉〈156〉〈345〉
〈125〉〈134〉〈456〉

}
2

−
{
−〈156〉〈345〉
〈135〉〈456〉

}
2

= 0, (171)

can be interpreted geometrically as five points (3, 4, (15)∩(34), (12)∩(34), (34)∩
(56)) on the line (34).

{
− 〈156〉〈234〉
〈1× 2, 3× 4, 5× 6〉

}
2

−
{
−〈136〉〈234〉
〈123〉〈346〉

}
2

−
{
−〈156〉〈236〉
〈126〉〈356〉

}
2

+

{
−〈123〉〈156〉〈346〉
〈126〉〈134〉〈356〉

}
2

−
{
−〈123〉〈256〉〈346〉
〈126〉〈234〉〈356〉

}
2

= 0 (172)

can be interpreted geometrically as five points (1, 2, (12)∩(34), (12)∩(36), (12)∩
(56)) on the line (12).

−
{
− 〈156〉〈234〉
〈1× 2, 3× 4, 5× 6〉

}
2

+

{
−〈145〉〈234〉
〈124〉〈345〉

}
2

+

{
−〈156〉〈245〉
〈125〉〈456〉

}
2

−{
−〈124〉〈156〉〈345〉
〈125〉〈134〉〈456〉

}
2

+

{
−〈124〉〈256〉〈345〉
〈125〉〈234〉〈456〉

}
2

= 0 (173)

can be interpreted geometrically as five points (1, 2, (12)∩(34), (12)∩(45), (12)∩
(56)) on the line (12).

{
− 〈123〉〈456〉
〈1× 2, 3× 4, 5× 6〉

}
2

+

{
−〈125〉〈234〉
〈123〉〈245〉

}
2

+

{
−〈123〉〈256〉〈345〉
〈125〉〈234〉〈356〉

}
2

−{
−〈124〉〈256〉〈345〉
〈125〉〈234〉〈456〉

}
2

+

{
−〈256〉〈345〉
〈235〉〈456〉

}
2

= 0, (174)
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can be interpreted geometrically as five points (3, 4, (12)∩(34), (25)∩(34), (34)∩
(56)) on the line (34).

The identities above are the identities needed to show the vanishing
of terms of type ∗ ⊗ 〈123〉 in the projection to B2 ⊗ C∗ of the 40-term
trilogarithm identity. For the terms of type ∗ ⊗ 〈124〉 the same identities
are sufficient, but there is another, simpler identity too, written below

−
{
−〈126〉〈145〉
〈124〉〈156〉

}
2

+

{
−〈126〉〈245〉
〈124〉〈256〉

}
2

−
{
−〈146〉〈245〉
〈124〉〈456〉

}
2

+{
−〈156〉〈245〉
〈125〉〈456〉

}
2

−
{
−〈156〉〈246〉
〈126〉〈456〉

}
2

= 0. (175)

This identity is special because it does not depend on point 3 at all. It
can be more geometrically written as

{(1|2654)}2 + {(2|1456)}2 + {(4|1652)}2 + {(5|1246)}2 + {(6|1542)}2 = 0.
(176)

Curiously, this simple-looking identity has a slightly more obscure geo-
metrical interpretation. Through the five points 1, 2, 4, 5, 6 passes a unique
conic C. The cross-ratio (1|2654) is the cross-ratio of the points (2, 6, 5, 4)
with respect to the conic C. But we can pick another point X ∈ C and we
have, by Chasles’ theorem, that (X|2654) = (1|2654). Then the previous
identity becomes

−{(X|2456)}2+{(X|1456)}2−{(X|1256)}2+{(X|1246)}2−{(X|1245)}2 = 0,
(177)

which is the usual form of the dilogarithm identity, where the cross-ratios
are cross-ratios of the lines (X1), (X2), (X4), (X5), (X6).
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