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Hyperbolic equations

Setup of the Runge-Kutta DG schemes

We are interested in solving a hyperbolic conservation law

ut + f(u)x = 0

In 2D it is

ut + f(u)x + g(u)y = 0

and in system cases u is a vector, and the Jacobian f ′(u) is

diagonalizable with real eigenvalues.
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Several properties of the solutions to hyperbolic conservation laws.

• The solution u may become discontinuous regardless of the

smoothness of the initial conditions.

• Weak solutions are not unique. The unique, physically relevant

entropy solution satisfies additional entropy inequalities

U(u)t + F (u)x ≤ 0

in the distribution sense, where U(u) is a convex scalar function of u

and the entropy flux F (u) satisfies F ′(u) = U ′(u)f ′(u).
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To solve the hyperbolic conservation law:

ut + f(u)x = 0, (1)

we multiply the equation with a test function v, integrate over a cell

Ij = [xj− 1

2

, xj+ 1

2

], and integrate by parts:

∫

Ij

utvdx −

∫

Ij

f(u)vxdx + f(uj+ 1

2

)vj+ 1

2

− f(uj− 1

2

)vj− 1

2

= 0
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Now assume both the solution u and the test function v come from a finite

dimensional approximation space Vh, which is usually taken as the space

of piecewise polynomials of degree up to k:

Vh =
{

v : v|Ij
∈ P k(Ij), j = 1, · · · , N

}

However, the boundary terms f(uj+ 1

2

), vj+ 1

2

etc. are not well defined

when u and v are in this space, as they are discontinuous at the cell

interfaces.
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From the conservation and stability (upwinding) considerations, we take

• A single valued monotone numerical flux to replace f(uj+ 1

2

):

f̂j+ 1

2

= f̂(u−
j+ 1

2

, u+
j+ 1

2

)

where f̂(u, u) = f(u) (consistency); f̂(↑, ↓) (monotonicity) and f̂ is

Lipschitz continuous with respect to both arguments.

• Values from inside Ij for the test function v

v−
j+ 1

2

, v+
j− 1

2
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Hence the DG scheme is: find u ∈ Vh such that
∫

Ij

utvdx −

∫

Ij

f(u)vxdx + f̂j+ 1

2

v−
j+ 1

2

− f̂j− 1

2

v+
j− 1

2

= 0 (2)

for all v ∈ Vh.

Notice that, for the piecewise constant k = 0 case, we recover the well

known first order monotone finite volume scheme:

(uj)t +
1

h

(

f̂(uj, uj+1) − f̂(uj−1, uj)
)

= 0.
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Time discretization could be by the TVD Runge-Kutta method (Shu and

Osher, JCP 88). For the semi-discrete scheme:

du

dt
= L(u)

where L(u) is a discretization of the spatial operator, the third order TVD

Runge-Kutta is simply:

u(1) = un + ∆tL(un)

u(2) =
3

4
un +

1

4
u(1) +

1

4
∆tL(u(1))

un+1 =
1

3
un +

2

3
u(2) +

2

3
∆tL(u(2))
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Properties of DG schemes

The DG scheme has the following properties:

• Easy handling of complicated geometry and boundary conditions

(common to all finite element methods). Allowing hanging nodes in the

mesh (more convenient for DG);

• Compact. Communication only with immediate neighbors, regardless

of the order of the scheme;

Division of Applied Mathematics, Brown University



DISCONTINUOUS GALERKIN METHOD

• Explicit. Because of the discontinuous basis, the mass matrix is local

to the cell, resulting in explicit time stepping (no systems to solve);

• Parallel efficiency. Achieves 99% parallel efficiency for static mesh and

over 80% parallel efficiency for dynamic load balancing with adaptive

meshes (Biswas, Devine and Flaherty, APNUM 94; Remacle, Flaherty

and Shephard, SIAM Rev 03); Also friendly to GPU environment

(Klockner, Warburton, Bridge and Hesthaven, JCP10).
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• Provable cell entropy inequality and L2 stability, for arbitrary nonlinear

equations in any spatial dimension and any triangulation, for any

polynomial degrees, without limiters or assumption on solution

regularity (Jiang and Shu, Math. Comp. 94 (scalar case); Hou and Liu,

JSC 07 (symmetric systems)). For U(u) = u2

2
:

d

dt

∫

Ij

U(u)dx + F̂j+1/2 − F̂j−1/2 ≤ 0

Summing over j: d
dt

∫ b

a
u2dx ≤ 0.

This also holds for fully discrete RKDG methods with third order TVD

Runge-Kutta time discretization, for linear equations (Zhang and Shu,

SINUM 10).
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• At least (k + 1
2
)-th order accurate, and often (k + 1)-th order accurate

for smooth solutions when piecewise polynomials of degree k are

used, regardless of the structure of the meshes, for smooth solutions

(Lesaint and Raviart 74; Johnson and Pitkäranta, Math. Comp. 86

(linear steady state); Meng, Shu and Wu, Math. Comp. submitted

(upwind-biased fluxes); Zhang and Shu, SINUM 04 and 06 (RKDG for

nonlinear equations)).

• (2k + 1)-th order superconvergence in negative norm and in strong

L2-norm for post-processed solution for linear and nonlinear

equations with smooth solutions (Cockburn, Luskin, Shu and Süli,

Math. Comp. 03; Ryan, Shu and Atkins, SISC 05; Curtis, Kirby, Ryan

and Shu, SISC 07; Ji, Xu and Ryan, JSC 13).
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• (k + 3/2)-th or (k + 2)-th order superconvergence of the DG solution

to a special projection of the exact solution, and non-growth of the

error in time up to t = O( 1√
h
) or t = O( 1

h
), for linear and nonlinear

hyperbolic and convection diffusion equations (Cheng and Shu, JCP

08; Computers & Structures 09; SINUM 10; Meng, Shu, Zhang and

Wu, SINUM 12 (nonlinear); Yang and Shu, SINUM 12 ((k + 2)-th

order)).
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• Several formulations of DG methods for solving nonlinear

Hamilton-Jacobi equations

ϕt + H(ϕx, ϕy) = 0

– Using the DG method for the system satisfied by

(u, v) = (ϕx, ϕy) (Hu and Shu, SISC 99; Li and Shu, Applied

Mathematics Letters 05; Xiong, Shu and Zhang, IJNAM 13).

– Directly solving for ϕ (Cheng and Shu, JCP 07; Bokanowski,

Cheng and Shu, SISC 11; Num. Math. 14; Xiong, Shu and Zhang,

IJNAM 13).

– An LDG method (Yan and Osher, JCP 11; Xiong, Shu and Zhang,

IJNAM 13).
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• Easy h-p adaptivity.

• Stable and convergent DG methods are now available for many

nonlinear PDEs containing higher derivatives: convection diffusion

equations, KdV equations, ...
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Systems and multi-dimensions, unstructured meshes

The RKDG method applies in the same form to hyperbolic systems. The

only difference is that monotone numerical fluxes are replaced by

numerical fluxes based on exact or approximate Riemann solvers

(Godunov, Lax-Friedrichs, HLLC, etc. See Toro, Springer 99). Local

characteristic decomposition is not needed unless a nonlinear limiter is

used.

The RKDG method applies in the same way to multi-dimensional problems

including unstructured meshes. Integration by parts is replaced by

divergence theorem. Numerical fluxes are still one-dimensional in the

normal direction of the cell boundary.
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History and references

Here is a (very incomplete) history of the early study of DG methods for

convection dominated problems:

• 1973: First discontinuous Galerkin method for steady state linear

scalar conservation laws (Reed and Hill).

• 1974: First error estimate (for tensor product mesh) of the

discontinuous Galerkin method of Reed and Hill (Lesaint and Raviart).

• 1986: Error estimates for discontinuous Galerkin method of Reed and

Hill (Johnson and Pitkäranta).

• 1989-1998: Runge-Kutta discontinuous Galerkin method for nonlinear

conservation laws (Cockburn, Shu, ...).
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• 1994: Proof of cell entropy inequality for discontinuous Galerkin

method for nonlinear conservation laws in general multidimensional

triangulations (Jiang and Shu).

• 1997-1998: Discontinuous Galerkin method for convection diffusion

problems (Bassi and Rebay, Cockburn and Shu, Baumann and Oden,

...).

• 2002: Discontinuous Galerkin method for partial differential equations

with third or higher order spatial derivatives (KdV, biharmonic, ...) (Yan

and Shu, Xu and Shu, ...)
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Collected works on the DG methods:

• Discontinuous Galerkin Methods: Theory, Computation and

Applications, B. Cockburn, G. Karniadakis and C.-W. Shu, editors,

Lecture Notes in Computational Science and Engineering, volume 11,

Springer, 2000. (Proceedings of the first DG Conference)

• Journal of Scientific Computing, special issue on DG methods, 2005.

• Computer Methods in Applied Mechanics and Engineering, special

issue on DG methods, 2006.

• Journal of Scientific Computing, special issue on DG methods, 2009.
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• Li, Discontinuous Finite Elements in Fluid Dynamics and Heat

Transfer, Birkhauser 2006.

• Kanschat, Discontinuous Galerkin Methods for Viscous Flow,

Deutscher Universitätsverlag, Wiesbaden 2007.

• Hesthaven and Warburton, Nodal Discontinuous Galerkin Methods,

Springer 2008.

• Rivière, Discontinuous Galerkin Methods for Solving Elliptic and

Parabolic Equations. Theory and Implementation, SIAM 2008.
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• Shu, Discontinuous Galerkin methods: general approach and stability,

in S. Bertoluzza, S. Falletta, G. Russo, and C.-W. Shu, editors,

Numerical Solutions of Partial Differential Equations, pages 149–201.

Birkhäuser 2009.

• Di Pietro and Ern, Mathematical Aspects of Discontinuous Galerkin

Methods, Springer 2012.

• Marica and Zuazua, Symmetric Discontinuous Galerkin Methods for

1-D Waves, Springer 2014.
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Three examples

We show three examples to demonstrate the excellent performance of the

DG method.

The first example is the linear convection equation

ut + ux = 0, or ut + ux + uy = 0,

on the domain (0, 2π) × (0, T ) or (0, 2π)2 × (0, T ) with the

characteristic function of the interval (π
2
, 3π

2
) or the square (π

2
, 3π

2
)2 as

initial condition and periodic boundary conditions.
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Figure 1: Transport equation: Comparison of the exact and the RKDG so-

lutions at T = 100π with second order (P 1, left) and seventh order (P 6,

right) RKDG methods. One dimensional results with 40 cells, exact solution

(solid line) and numerical solution (dashed line and symbols, one point per

cell)
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Figure 2: Transport equation: Comparison of the exact and the RKDG so-

lutions at T = 100π with second order (P 1, left) and seventh order (P 6,

right) RKDG methods. Two dimensional results with 40 × 40 cells.
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The second example is the double Mach reflection problem for the two

dimensional compressible Euler equations.
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Figure 3: Double Mach reflection. ∆x = ∆y = 1
240

. Top: P 1; bottom:

P 2.
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Figure 4: Double Mach reflection. Zoomed-in region. Top: P 2 with ∆x =

∆y = 1
240

; bottom: P 1 with ∆x = ∆y = 1
480

.
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Figure 5: Double Mach reflection. Zoomed-in region. P 2 elements. Top:

∆x = ∆y = 1
240

; bottom: ∆x = ∆y = 1
480

.
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The third example is the flow past a forward-facing step problem for the

two dimensional compressible Euler equations. No special treatment is

performed near the corner singularity.
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Figure 6: Forward facing step. Zoomed-in region. ∆x = ∆y = 1
320

. Left:

P 1 elements; right: P 2 elements.
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Relationship with CPR schemes

The correction procedure via reconstruction (CPR), by Huynh, AIAA

papers 2007-4079, 2009-403; Wang and Gao, JCP 09; and Haga, Gao

and Wang, Math. Model. Nat. Phenom. 11, is an extension of the spectral

finite volume and spectral finite difference methods and can be

summarized as follows.
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We solve

ut + f(u)x = 0

with the same notation as in DG. Ij = [xj−1/2, xj+1/2] contains k + 1

“solution points”

xj−1/2 ≤ xj,0 < xj,1 < ... < xj,k ≤ xj+1/2.

The computational degrees of freedom are uj,i, which approximate the

exact solution at the solution points u(xj,i, t) for i = 0, 1, ..., k and all

cells Ij .
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• Given uj,i, obtain an interpolation polynomial uj(x) of degree at most

k which satisfies uj(xj,i) = uj,i.

• Obtain the “discontinuous flux function” fj(x), which is an

interpolation polynomial of degree at most k which satisfies

fj(xj,i) = f(uj,i).

• Compute the left and right limits of the discontinuous interpolation

polynomials at xj+1/2, namely u−
j+1/2 = uj(xj+1/2) and

u+
j+1/2 = uj+1(xj+1/2), then form a numerical flux using any

monotone flux (approximate Riemann solver)

f̂j+1/2 = f̂(u−
j+1/2, u

+
j+1/2).
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• Form a “continuous flux function” Fj(x), which is a polynomial of

degree at most k + 1, satisfying Fj(xj−1/2) = f̂j−1/2 and

Fj(xj+1/2) = f̂j+1/2, and is a good approximation of the

discontinuous flux function fj(x) inside cell Ij .
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One way to form Fj(x) is by

Fj(x) = fj(x) + (f̂j−1/2 − fj(xj−1/2))gℓ(x)

+(f̂j+1/2 − fj(xj+1/2))gr(x)

where the left correction function gℓ(x) is a polynomial of degree at

most k + 1 which satisfies

gℓ(xj−1/2) = 1, gℓ(xj+1/2) = 0,

and likewise the right correction function gr(x) is a polynomial of

degree at most k + 1 which satisfies

gr(xj−1/2) = 0, gr(xj+1/2) = 1.
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• The evolution of the computational degrees of freedom is thus simply

d

dt
uj,i = −(Fj)x(xj,i), i = 0, ..., k, ∀j

Notice that there are still k − 1 degrees of freedom in the design of each

of the left and right correction functions gℓ(x) and gr(x). It can be shown

that a particular choice of gℓ(x) and gr(x) will lead to the fact that the

CPR scheme thus constructed is exactly equivalent to the DG scheme for

the linear case f(u) = au. Therefore, even for the nonlinear case, the

CPR scheme can be considered as equivalent to the DG scheme with a

suitable numerical quadrature.
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Selected issues of current interest

Limiters

The RKDG schemes for conservation laws are energy stable (L2 stable).

However, for solving problems with strong discontinuities, the DG solution

may generate spurious numerical oscillations. In practice, especially for

nonlinear problems containing strong shocks, we often need to apply

nonlinear limiters to control these oscillations. Most of the limiters studied

in the literature come from the methodologies of finite volume high

resolution schemes.
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A limiter can be considered as a post-processor of the computed DG

solution. In any cell which is deemed to contain a possible discontinuity

(the so-called troubled cells), the DG polynomial is replaced by a new

polynomial of the same degree, while maintaining the original cell average

for conservation.
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Some commonly used limiters:

• The total variation diminishing (TVD) limiters (Harten, JCP 83).

– The new polynomial is less oscillatory than the old one.

– If the solution in this cell happens to be smooth but is near an

extrema, then the new polynomial may degenerate to first order

accuracy.

– The limiter is reasonably easy to implement on structured meshes

but more difficult to implement on unstructured meshes. It does not

involve any user-tuned parameters.

– The limited scheme is TVDM (total variation diminishing in the

means)
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• The total variation bounded (TVB) limiters (Shu, Math Comp 87).

– The new polynomial is less oscillatory than the old one.

– If the solution in this cell happens to be smooth, then the limiter

does not take effect and hence the new polynomial is the same as

the old polynomial with of course the same high order accuracy.

– The limiter is reasonably easy to implement on structured meshes

but more difficult to implement on unstructured meshes. It does

involve a user-tuned parameter M which is related to the second

derivative of the solution at smooth extrema.

– The limited scheme is TVB (total variation bounded).
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• The moment-based limiters (Biswas et al. Appl. Num. Math. 94;

Burbeau et al. JCP 01)

– The new polynomial is less oscillatory than the old one.

– If the solution in this cell happens to be smooth, the limiter could

still degenerate the accuracy to first order.

– The limiter is reasonably easy to implement on structured meshes

but more difficult to implement on unstructured meshes. It does not

involve any user-tuned parameters.

– The limited scheme cannot be proved to be total variation stable.
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• WENO (weighted essentially non-oscillatory) limiters (Qiu and Shu,

JCP 03; SISC 05; Computers & Fluids 05; Zhu, Qiu, Shu and

Dumbser, JCP 08; Zhu and Qiu, JCP 12. Zhong and Shu, JCP 13;

Zhu, Zhong, Shu and Qiu, JCP 13). They have also been extended to

CPR schemes (Du, Shu and Zhang, Appl. Num. Math., to appear).

– The new polynomial is less oscillatory than the old one.

– If the solution in this cell happens to be smooth, the limiter will

maintain the original high order of accuracy.

– The most recent WENO limiter of Zhong et al. is very easy to

implement, especially on unstructured meshes. It does not involve

any user-tuned parameters.

– The limited scheme cannot be proved to be total variation stable.
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Bound-preserving high order accuracy limiter

For the scalar conservation laws

ut + ▽ · F(u) = 0, u(x, 0) = u0(x), (3)

An important property of the entropy solution (which may be

discontinuous) is that it satisfies a strict maximum principle: If

M = max
x

u0(x), m = min
x

u0(x), (4)

then u(x, t) ∈ [m,M ] for any x and t.
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For nonlinear systems, the bound to maintain would be physically relevant,

for example the positivity of density and pressure for compressible gas

dynamics, the positivity of water height for shallow water equations, the

positivity of probability density functions, etc.

It is a challenge to design simple limiters which can maintain these bounds

numerically while still keeping the original high order accuracy of the DG

scheme. I will provide more details on recent developments in this area in

my talk later in this conference.
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Error estimates for discontinuous solutions

While there are many results on convergence and error estimates for DG

methods with smooth solutions, the study for discontinuous solutions is

more challenging.

• Johnson et al CMAME 84; Johnson and Pitkäranta Math Comp 86;

Johnson et al Math Comp 87: error estimates for piecewise linear

streamline diffusion and DG methods for stationary (or space-time)

linear hyperbolic equations. Pollution region around discontinuity:

O(h1/2 log(1/h)).

Division of Applied Mathematics, Brown University



DISCONTINUOUS GALERKIN METHOD

• Cockburn and Guzmán SINUM 08: RKDG2 (second order in space

and time) for linear hyperbolic equations. Pollution region around

discontinuity: O(h1/2 log(1/h)) on the downwind side and

O(h2/3 log(1/h)) on the upwind side.

• Zhang and Shu, Num Math 14: RKDG3 scheme with arbitrary

polynomial degree k ≥ 1 in space and third order TVD Runge-Kutta

in time, on arbitrary quasi-uniform mesh.
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Theorem: Assume the CFL number λ := |β|∆t/hmin is small

enough, there holds

‖u(tN ) − uN
h ‖L2(R\RT ) ≤ M(hk+1 + ∆t3), (5)

where M > 0 is independent of h and ∆t, but may depend on the

final time T , the norm of the exact solution in smooth regions, and the

jump at the discontinuity point. Here RT is the pollution region at the

final time T , given by

RT = (βT−C
√

Tβν−1h1/2 log(1/h), βT+C
√

Tβν−1h1/2 log(1/h))

(6)

where C > 0 is independent of ν = hmin/hmax, λ, β, h,∆t and T .
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Note: Pollution region around discontinuity: O(h1/2 log(1/h)) on

both sides of the discontinuity. This is numerically verified to be sharp

for at least k = 2 and k = 3 (spatially third and fourth order

accuracy).
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DG method for front propagation with obstacles

We consider the following equation

min(ut + H(x,∇u), u − g(x)) = 0, x ∈ Rd, t > 0, (7)

together with an initial condition. Here g(x) is the “obstacle function”, and

(7) is referred as the “obstacle equation”.

It was remarked in (Bokanowski, Forcadel and Zidani, SIAM J. Control

Opt. 10) that (7) could be used to code the reachable sets of optimal

control problems by using u as a level set function. It can be used to

recover various objects such as the minimal time function.
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In (Bokanowski, Cheng and Shu, Num Math 14), we propose fully discrete

and explicit RKDG methods for (7).

Compared to traditional finite element methods for such problems, the DG

scheme proposed does not require solving a nonlinear equation at each

time step. Rather, the obstacles are incorporated by a simple projection

step given explicitly through a comparison with the obstacle functions at

Gaussian quadrature points.

We derive stability estimates for these fully discrete schemes, in the

particular case where H(x,∇u) is linear in ∇u (although the equation is

nonlinear because of the obstacle term). Convergence with error

estimates is proved in (Bokanowski, Cheng and Shu, Math Comp

submitted).
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Example 1.

We consider

f(t, x, y) := sign

(

T

2
− t

)





−2π y

2π x



max(1 − ‖x‖2, 0).

where ‖x‖2 :=
√

x2 + y2 and with a Lipschitz continuous initial data ϕ:

ϕ0(x, y) = min(max(y,−1), 1). (8)

The function ϕ0 has a 0-level set which is the x axis. In this example the

front evolves up to time t = T/2 then it comes back to the initial data at

time t = T . T/2 represents the number of turns.

Computations have been done up to time T = 10.
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Figure 7: Example 1. Plots at times t = 1 and t = 3 with P 4 and 24× 24

mesh cells.
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Figure 8: Example 1. Plots at times t = 5 and t = 10 (return to initial

data), with P 4 and 24 × 24 mesh cells.
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Example 2.

In this example we consider an initial data

u0(x, y) := ‖(x, y) − (1, 0)‖∞ − 0.5, an obstacle coded by

g(x, y) := 0.5 − ‖(x, y) − (0, 0.5)‖∞, and the problem

min(ut + max (0, 2π(−y, x) · ∇u) , u − g(x, y)) = 0, t > 0, (x, y)

u(0, x, y) = u0(x, y), (x, y) ∈ Ω,

The domain is Ω := [−2, 2]2. Thus we want to compute the backward

reachable set associated to the dynamics f(x, y) = −2π(−y, x) and

the target T = {(x, y), u0(x, y) ≤ 0}, together with an obstacle or

forbidden zone represented by {(x, y), g(x, y) ≥ 0}.
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Figure 9: Example 2. Plots at times t ∈ {0, 0.25, 0.5, 0.75}, with Q2

and 80 × 80 mesh cells.
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Figure 10: Example 2 (continued)
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Convection-diffusion equations

A bad scheme

A naive generalization of the DG method to a PDE containing higher order

spatial derivatives could have disastrous results.

Consider, as a simple example, the heat equation

ut − uxx = 0 (9)

for x ∈ [0,2π] with periodic boundary conditions and with an initial

condition u(x, 0) = sin(x).
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A straightforward generalization of the DG method from the hyperbolic

equation ut + f(u)x = 0 is to write down the same scheme and replace

f(u) by −ux everywhere: find u ∈ Vh such that, for all test functions

v ∈ Vh,
∫

Ij

utvdx +

∫

Ij

uxvxdx − ûxj+ 1

2

v−
j+ 1

2

+ ûxj− 1

2

v+
j− 1

2

= 0 (10)

Lacking an upwinding consideration for the choice of the flux ûx and

considering that diffusion is isotropic, a natural choice for the flux could be

the central flux

ûxj+ 1

2

=
1

2

(

(ux)
−
j+ 1

2

+ (ux)
+
j+ 1

2

)

However the result is horrible!
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Table 1: L2 and L∞ errors and orders of accuracy for the “inconsistent”

discontinuous Galerkin method (10) applied to the heat equation (9) with

an initial condition u(x, 0) = sin(x), t = 0.8. Third order Runge-Kutta in

time.

k = 1 k = 2

∆x L2 error order L∞ error order L2 error order L∞ error order

2π/20 1.78E-01 — 2.58E-01 — 1.85E-01 — 2.72E-01 —

2π/40 1.76E-01 0.016 2.50E-01 0.025 1.78E-01 0.049 2.55E-01 0.089

2π/80 1.75E-01 0.004 2.48E-01 0.012 1.77E-01 0.013 2.51E-01 0.025

2π/160 1.75E-01 0.001 2.48E-01 0.003 1.76E-01 0.003 2.50E-01 0.007
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k=1, t=0.8, solid line: exact solution;
dashed line / squares: numerical solution
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Figure 11: The “inconsistent” discontinuous Galerkin method (10) applied

to the heat equation (9) with an initial condition u(x, 0) = sin(x). t =

0.8. 160 cells. Third order Runge-Kutta in time. Solid line: the exact

solution; Dashed line and squares symbols: the computed solution at the

cell centers. Left: k = 1; Right: k = 2.
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It is proven in Zhang and Shu, M 3AS 03, that this ”inconsistent” DG

method for the heat equation is actually

• consistent with the heat equation,

• but (very weakly) unstable.
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LDG method for convection diffusion equations

A good DG method for the heat equation: the local DG (LDG) method

(Bassi and Rebay, JCP 97; Cockburn and Shu, SINUM 98): rewrite the

heat equation as

ut − qx = 0, q − ux = 0, (11)
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and formally write out the DG scheme as: find u, q ∈ Vh such that, for all

test functions v, w ∈ Vh,
∫

Ij

utvdx +

∫

Ij

qvxdx − q̂j+ 1

2

v−
j+ 1

2

+ q̂j− 1

2

v+
j− 1

2

= 0 (12)

∫

Ij

qwdx +

∫

Ij

uwxdx − ûj+ 1

2

w−
j+ 1

2

+ ûj− 1

2

w+
j− 1

2

= 0,

q can be locally (within cell Ij) solved and eliminated, hence local DG.
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A key ingredient of the design of the LDG method is the choice of the

numerical fluxes û and q̂ (remember: no upwinding principle for guidance).

The best choice for the numerical fluxes is the following alternating flux

ûj+ 1

2

= u−
j+ 1

2

, q̂j+ 1

2

= q+
j+ 1

2

. (13)

The other way around also works

ûj+ 1

2

= u+
j+ 1

2

, q̂j+ 1

2

= q−
j+ 1

2

.
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We then have

• L2 stability

• optimal convergence of O(hk+1) in L2 for P k elements
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Table 2: L2 and L∞ errors and orders of accuracy for the LDG applied to

the heat equation.

k = 1 k = 2

∆x L2 error order L∞ error order L2 error order L∞ error order

2π/20, u 1.92E-03 — 7.34E-03 — 4.87E-05 — 2.30E-04 —

2π/20, q 1.93E-03 — 7.33E-03 — 4.87E-05 — 2.30E-04 —

2π/40, u 4.81E-04 2.00 1.84E-03 1.99 6.08E-06 3.00 2.90E-05 2.99

2π/40, q 4.81E-04 2.00 1.84E-03 1.99 6.08E-06 3.00 2.90E-05 2.99

2π/80, u 1.20E-04 2.00 4.62E-04 2.00 7.60E-07 3.00 3.63E-06 3.00

2π/80, q 1.20E-04 2.00 4.62E-04 2.00 7.60E-07 3.00 3.63E-06 3.00

2π/160, u 3.00E-05 2.00 1.15E-04 2.00 9.50E-08 3.00 4.53E-07 3.00

2π/160, q 3.00E-05 2.00 1.15E-04 2.00 9.50E-08 3.00 4.53E-07 3.00
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The conclusions are valid for general nonlinear multi-dimensional

convection diffusion equations

ut +
d
∑

i=1

fi(u)xi
−

d
∑

i=1

d
∑

j=1

(aij(u)uxj
)xi

= 0, (14)

where aij(u) are entries of a symmetric and semi-positive definite matrix,

Cockburn and Shu, SINUM 98; Xu and Shu, CMAME 07; Shu, Birkhäuser

09.
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Other types of DG methods for diffusion equations

• Internal penalty DG methods: symmetric internal penalty

discontinuous Galerkin (SIPG) method (Wheeler, SINUM 78; Arnold,

SINUM 82); non-symmetric internal penalty discontinuous Galerkin

(NIPG) method (Baumann and Oden, CMAME 99; Oden, Babuvska

and Baumann, JCP 98)

• HDG method (attend the lectures by Professor Cockburn!)

• Direct discontinuous Galerkin (DDG) methods of Liu and Yan, SINUM

09, CiCP 10.

• Ultra weak discontinuous Galerkin methods (Cheng and Shu, Math

Comp 08).
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Selected issues of current interest

Multiscale DG method

We aim for obtaining small errors ||u − uh|| in a strong norm (typically L2

norm) where the exact solution u has a small scale ε and the mesh size

h ≫ ε.

• The idea is to use suitable multiscale basis specific to the application

in the DG method. Such basis should have explicit expressions if at all

possible, in order to reduce computational cost

• Advantage: The DG method is quite flexible in its local approximation

space (for each cell), as there is no continuity requirement at the cell

boundary
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• Advantage: Stability properties for DG methods usually only depend

on the choice of the numerical fluxes, not the local approximation

spaces

• Challenge: We must carefully analyze the errors associated with these

discontinuities across element interfaces, to obtain convergence and

(high order) error estimates

Division of Applied Mathematics, Brown University



DISCONTINUOUS GALERKIN METHOD

• Semiconductor devices: Schrödinger-Poisson system: Wang and Shu,

JSC 09 (one-dimensional case). Two-dimensional work is ongoing

research.

• Elliptic equations with oscillatory coefficients: Yuan and Shu, Int. J.

Num. Meth Fluids 08; Wang, Guzmán and Shu, Int. J. Num. Anal.

Mod. 11; Zhang, Wang, Guzmán and Shu, JSC to appear. Can

handle the case of curvilinear unidirectional rough coefficients.
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Energy conserving LDG methods for second order wave equatio ns

We consider the second order wave equation

utt = ∇ · (a2(x)∇u), x ∈ Ω, t ∈ [0, T ], (15)

where a(x) > 0 and can be discontinuous, subject to the initial conditions

u(x, 0) = u0(x), ut(x, 0) = v0(x). (16)
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This equation can be converted to a standard first order hyperbolic system.

DG scheme for such a system can be designed based on the standard

upwind numerical flux. This DG scheme has the following features:

• It is energy dissipative: the total energy decays with time.

• It is optimal (k + 1)-th order convergent with piecewise polynomials of

degree k.

For nonlinear problems with discontinuous solutions, upwinding and its

numerical dissipation are good to use. The resulting scheme is not only

optimal convergent for smooth solutions but also stable for discontinuous

solutions, with the capability of confining the errors in a small

neighborhood of the discontinuity.
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On the other hand, if we use a central numerical flux, then the resulting

DG scheme has the following features:

• It is energy conserving: the total energy is constant in time.

• It is sub-optimal k-th order convergent with piecewise polynomials of

degree k for some k.

Besides its sub-optimal convergence rate, the DG scheme with central flux

is also very oscillatory when the solution becomes discontinuous.
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However, if the exact solution is smooth and we would like to simulate the

wave propagation over a long time period, then energy conserved

numerical methods have advantages. We will show numerical evidence

later. For first order hyperbolic systems, it is difficult to obtain DG schemes

which are energy conservative and also optimal order convergent. Chung

and Engquist (SINUM 06; SINUM 09) have proposed an optimal, energy

conserving DG method for the first order wave equation using staggered

grids.

On the other hand, we can directly approximate the second order wave

equation by an LDG method. We prove that such LDG method is both

energy conservative and optimal L2 convergent (Xing, Chou and Shu,

Inverse Problems and Imaging 13; Chou, Shu and Xing, JCP 14).

Division of Applied Mathematics, Brown University



DISCONTINUOUS GALERKIN METHOD

We numerically investigate the long time evolution of the L2 error of the

LDG method, in comparison with an IPDG method (Grote et al, SINUM

06) which conserves a specifically defined energy but not the usual

energy. We consider again the wave equation

utt = uxx, x ∈ [0, 2π]

with a periodic boundary condition u(0, t) = u(2π, t) for all t ≥ 0, and

initial conditions u(x, 0) = esin x, ut(x, 0) = esinx cos x. This problem

has the exact solution u = esin (x−t).
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The LDG and IPDG methods are implemented with a uniform mesh with

N cells, and the leap-frog time discretization, with ∆t = 0.6h2. In order

to examine the potential shape difference resulted from long time

integration, both methods are run until T = 1000, with finite element

spaces P 2 and P 3, and N = 40, 80, respectively.

In Fig. 12, the time evolution of L2 errors of both schemes are shown. The

L2 errors of both schemes grow in a linear fashion, but the slope for IPDG

method is much larger than that for LDG method, which almost stays as

constant and is close to zero. The errors are plotted in log scale for easy

visualization. From the figure, one can see that for LDG method, the level

of the errors are reduced by refining the mesh from N = 40 to N = 80,

but the mesh refinement does not substantially reduce the errors of IPDG

method due to the rapid growth.
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Figure 12: Time history until T = 1000 of the L2 error of the numerical

approximations obtained from the LDG and IPDG methods with k = 2, 3

and a uniform mesh with 40 cells. The L2 error on y-axis are presented in

log scale.
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Figure 13: Time history until T = 1000 of the L2 error of the numerical

approximations obtained from the LDG and IPDG methods with k = 2, 3

and a uniform mesh with 80 cells. The L2 error on y-axis are presented in

log scale.
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It can be observed from Fig. 12 that, up to T = 1000, the L2 error of

IPDG method is greater than 10−1, and this large error can easily be

visualized by directly comparing the solutions of both methods. Fig. 14

displays the exact solution (red), the solution of LDG method (green) and

the solution of IPDG method (blue) at T = 1000, for spaces P 2 and P 3

with N = 40. It can be seen that solution of LDG method overlaps with

the exact solution, while the solution of IPDG method preserves the shape

but has a phase shift.
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Figure 14: Numerical approximations of the wave equation using LDG and

IPDG methods. Comparison is made at T = 1000 with k = 2, 3 and

N = 40.
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Higher order PDEs

LDG method for KdV equations

Now, the Korteweg-de Vries (KdV) equation:

ut + (αu + βu2)x + σuxxx = 0

More generally, in 1D:

ut + f(u)x + (r′(u)g(r(u)x)x)x = 0

and in multi dimensions:

ut +
d
∑

i=1

fi(u)xi
+

d
∑

i=1

(

r′i(u)
d
∑

j=1

gij(ri(u)xi
)xj

)

xi

= 0
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A “preview”: simple equation

ut + uxxx = 0

Again rewrite into a first order system

ut + px = 0, p − qx = 0, q − ux = 0.
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Then again formally use the DG method: find u, p, q ∈ Vh such that, for

all test functions v, w, z ∈ Vh,
∫

Ij

utvdx −

∫

Ij

pvxdx + p̂j+ 1

2

v−
j+ 1

2

− p̂j− 1

2

v+
j− 1

2

= 0,

∫

Ij

pwdx +

∫

Ij

qwxdx − q̂j+ 1

2

w−
j+ 1

2

+ q̂j− 1

2

w+
j− 1

2

= 0,

∫

Ij

qzdx +

∫

Ij

uzxdx − ûj+ 1

2

z−
j+ 1

2

+ ûj− 1

2

z+
j− 1

2

= 0.
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Again, a key ingredient of the design of the LDG method is the choice of

the numerical fluxes û, q̂ and p̂ (now, upwinding principle partially

available, after all, the solution with the initial condition sin(x) is

sin(x + t), hence the wind blows from right to left).

The following choice of alternating + upwinding

p̂j+ 1

2

= p+
j+ 1

2

, q̂j+ 1

2

= q+
j+ 1

2

, ûj+ 1

2

= u−
j+ 1

2

,

would guarantee stability. The choice is not unique:

p̂j+ 1

2

= p−
j+ 1

2

, q̂j+ 1

2

= q+
j+ 1

2

, ûj+ 1

2

= u+
j+ 1

2

,

would also work.
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Table 3: ut + uxxx = 0. u(x, 0) = sin(x).

k N=10 N=20 N=40 N=80

error error order error order error order

0 L2 2.2534E-01 1.2042E-01 0.91 6.2185E-02 0.95 3.1582E-02 0.98

L∞ 4.3137E-01 2.1977E-01 0.97 1.1082E-01 0.98 5.5376E-02 1.00

1 L2 1.7150E-02 4.2865E-03 2.00 1.0716E-03 2.00 2.6792E-04 1.99

L∞ 5.8467E-02 1.5757E-02 1.89 4.0487E-03 1.96 1.0210E-03 1.99

2 L2 8.5803E-04 1.0823E-04 2.98 1.3559E-05 2.99 1.6958E-06 3.00

L∞ 4.0673E-03 5.1029E-04 2.99 6.4490E-05 2.98 8.0722E-06 3.00

3 L2 3.3463E-05 2.1035E-06 3.99 1.3166E-07 3.99 8.2365E-09 3.99

L∞ 1.8185E-04 1.1157E-05 3.97 7.2362E-07 3.99 4.5593E-08 3.99
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Optimal in L2 error estimates for not only u but also its derivatives can be

proved. Xu and Shu, SINUM 2012.

The scheme can be designed for the general nonlinear case along the

same lines.

For the general multi-dimensional nonlinear case

ut +

d
∑

i=1

fi(u)xi
+

d
∑

i=1

(

r′i(u)

d
∑

j=1

gij(ri(u)xi
)xj

)

xi

= 0

We can prove cell entropy inequality and L2 stability. Yan and Shu,

SINUM 02.
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For the two dimensional KdV equation

ut + f(u)x + g(u)y + uxxx + uyyy = 0,

and the Zakharov-Kuznetsov (ZK) equation

ut + (3u2)x + uxxx + uxyy = 0,

We can prove error estimates of O(hk+1/2) in L2 for P k elements in 1D

and for Qk elements in 2D, and of O(hk) for P k elements in 2D. Yan and

Shu, SINUM 02 (1D linear) and Xu and Shu, CMAME 07.
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Numerical example: zero dispersion limit of conservation laws.

Solutions of the KdV equation with small dispersion coefficient

ut +

(

u2

2

)

x

+ ǫuxxx = 0. (17)

with an initial condition

u(x, 0) = 2 + 0.5 sin(2πx) (18)

for x ∈ [0, 1] and periodic boundary conditions,

ǫ = 10−4, 10−5, 10−6 and 10−7.
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Figure 15: Zero dispersion limit of conservation laws. P 2 elements at t =

0.5. Left: ǫ = 10−4 with 300 cells; right: ǫ = 10−5 with 300 cells.
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Figure 16: Zero dispersion limit of conservation laws. P 2 elements at t =

0.5. Left: ǫ = 10−6 with 800 cells; right: ǫ = 10−7 with 1700 cells.
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LDG methods for other diffusive equations

• The bi-harmonic type equation

ut +
d
∑

i=1

fi(u)xi
+

d
∑

i=1

(ai(uxi
)uxixi

)xixi
= 0 (19)

We can prove a cell entropy inequality and L2 stability Yan and Shu,

JSC 02 for the general nonlinear problem and an optimal L2 error

estimates Dong and Shu, SINUM 09 for the linear biharmonic and

linearized Cahn-Hilliard equations.

Both the schemes and the analysis can be generalized to higher even

order diffusive PDEs, e.g. the error estimate in Dong and Shu, SINUM

09 is given also for higher even order linear diffusive PDEs.

Division of Applied Mathematics, Brown University



DISCONTINUOUS GALERKIN METHOD

• The Kuramoto-Sivashinsky type equations

ut+f(u)x−(a(u)ux)x+(r′(u)g(r(u)x)x)x+(s(ux)uxx)xx = 0,

(20)

We prove a cell entropy inequality and L2 stability in Xu and Shu,

CMAME 06.

• Device simulation models in semi-conductor device simulations:

drift-diffusion, hydrodynamic, energy transport, high field, kinetic and

Boltzmann-Poisson models, formulations of DG-LDG schemes and

error estimates. Liu and Shu, JCE 04; ANM 07; Sci in China 10;

Cheng, Gamba, Majorana and Shu, JCE 08; CMAME 09.
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• Cahn-Hilliard equation

ut = ∇ ·
(

b(u)∇
(

−γ∆u + Ψ′(u)
)

)

, (21)

and the Cahn-Hilliard system

ut = ∇ · (B(u)∇ω), ω = −γ∆u + DΨ(u), (22)

where {DΨ(u)}l = ∂Ψ(u)
∂ul

and γ is a positive constant. We design

LDG methods and prove the energy stability for the general nonlinear

case in Xia, Xu and Shu, JCP 07; CiCP 09.
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• The surface diffusion equation

ut + ∇ ·

(

Q

(

I −
∇u ⊗∇u

Q2

)

∇H

)

= 0 (23)

where

Q =
√

1 + |∇u|2, H = ∇ ·

(

∇u

Q

)

(24)

and the Willmore flow

ut + Q∇ ·

(

1

Q

(

I −
∇u ⊗∇u

Q2

)

∇(QH)

)

−
1

2
Q∇ ·

(

H2

Q
∇u

)

= 0

(25)

We develop LDG methods and prove their energy stability in Xu and

Shu, JSC 09.
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LDG methods for other dispersive wave equations

• The partial differential equations with five derivatives

Ut +
d
∑

i=1

fi(U)xi
+

d
∑

i=1

gi(Uxixi
)xixixi

= 0 (26)

We can prove a cell entropy inequality and L2 stability, Yan and Shu,

JSC 02.

Division of Applied Mathematics, Brown University



DISCONTINUOUS GALERKIN METHOD

• The K(m,n) equation

ut + (um)x + (un)xxx = 0,

with compactons solutions. We obtain a Ln+1 stable LDG scheme for

the K(n, n) equation with odd n, and a linearly stable LDG scheme

for other cases, Levy, Shu and Yan, JCP 04.

• The KdV-Burgers type (KdVB) equations

ut + f(u)x − (a(u)ux)x + (r′(u)g(r(u)x)x)x = 0 (27)

We prove a cell entropy inequality and L2 stability, and obtain L2 error

estimate of O(hk+1/2) for the linearized version in Xu and Shu, JCM

04.
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• The fifth-order KdV type equations

ut +f(u)x +(r′(u)g(r(u)x)x)x +(s′(u)h(s(u)xx)xx)x = 0 (28)

We prove a cell entropy inequality and L2 stability in Xu and Shu, JCM

04.

• The fifth-order fully nonlinear K(n, n, n) equations

ut + (un)x + (un)xxx + (un)xxxxx = 0 (29)

We prove Ln+1 stability for odd n in Xu and Shu, JCM 04.

Division of Applied Mathematics, Brown University



DISCONTINUOUS GALERKIN METHOD

• The generalized nonlinear Schrödinger (NLS) equation

i ut + ∆u + f(|u|2)u = 0, (30)

and the coupled nonlinear Schrödinger equation






i ut + i αux + uxx + β u + κv + f(|u|2, |v|2)u = 0

i vt − i αvx + vxx − β u + κv + g(|u|2, |v|2)v = 0
(31)

We prove a cell entropy inequality and L2 stability, and obtain L2 error

estimate of O(hk+1/2) for the linearized version in Xu and Shu, JCP

05.
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• The Ito-type coupled KdV equations

ut + αuux + βvvx + γuxxx = 0,

vt + β(uv)x = 0,

We prove a cell entropy inequality and L2 stability in Xu and Shu,

CMAME 06.

• The Kadomtsev-Petviashvili (KP) equation

(ut + 6uux + uxxx)x + 3σ2uyy = 0, (32)

where σ2 = −1 (KP-I) or σ2 = 1 (KP-II). We design an LDG method

and prove the L2 stability in Xu and Shu, Physica D 05.
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• The Zakharov-Kuznetsov (ZK) equation

ut + (3u2)x + uxxx + uxyy = 0. (33)

We prove the L2 stability in Xu and Shu, Physica D 05.

• The Camassa-Holm (CH) equation

ut − uxxt + 2κux + 3uux = 2uxuxx + uuxxx, (34)

where κ is a constant. We prove the L2 stability and provide L2 error

estimates for the LDG method in Xu and Shu, SINUM 08.
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• The Hunter-Saxton (HS) equation

uxxt + 2uxuxx + uuxxx = 0, (35)

its regularization with viscosity

uxxt + 2uxuxx + uuxxx − ε1uxxxx = 0, (36)

and its regularization with dispersion

uxxt + 2uxuxx + uuxxx − ε2uxxxxx = 0, (37)

where ε1 ≥ 0 and ε2 are small constants. We design LDG methods

and prove the energy stability in Xu and Shu, SISC 08; JCM 10.
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• The generalized Zakharov system:

iEt + ∆E − Nf(|E|2)E + g(|E|2)E = 0,

ǫ2Ntt − ∆(N + F (|E|2)) = 0,

which is originally introduced to describe the Langmuir turbulence in a

plasma. We prove two energy conservations for the LDG method in

Xia, Xu and Shu, JCP 10.
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• The Degasperis-Procesi (DP) equation

ut − utxx + 4f(u)x = f(u)xxx, (38)

where f(u) = 1
2
u2. The solution may be discontinuous regardless of

smoothness of the initial conditions. We develop LDG methods and

prove L2 stability for the general polynomial spaces and total variation

stability for P 0 elements Xu and Shu, CiCP 11.
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The End

THANK YOU!
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