Bernstein－Bezier Techniques in

 High Order Finite Elements
Mark Ainsworth

Division of Applied Mathematics

Brown University
Mark＿Ainsworth＠brown．edu
outline

- Bernstein-Bezier Polynomials
- De Casteljau Algorithm
- Sum-Factorisation and AAD Algorithm
- Bernstein-Bezier Basis for RaviartThomas Elements
- Applications

Nomenclature

$$
\mathcal{I}_{n}=\left\{\boldsymbol{\alpha} \in \mathbb{Z}_{+}^{3}:|\boldsymbol{\alpha}|=n\right\}
$$

'Multi-Indices'
'Domain Points'

$$
\boldsymbol{x}_{\boldsymbol{\alpha}}=\frac{1}{n} \sum_{k=1}^{3} \alpha_{k} \boldsymbol{x}_{k}
$$

國四

Bernstein-Bezier Polynomials

$$
B_{\alpha}^{n}(x)=\binom{n}{\alpha} \lambda^{\alpha}, \quad \alpha \in \mathcal{I}_{n}
$$

$\boldsymbol{\lambda}=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$ barycentric coordinates Non-negative, partition of unity $\sum B_{\alpha}^{n}=1$. Natural identifications: $\quad \alpha \in \mathcal{I}_{n}$

$$
\left.B_{\boldsymbol{\alpha}}^{n}(\boldsymbol{x}) \hookrightarrow \boldsymbol{x}_{\boldsymbol{\alpha}}\right\lrcorner \quad \boldsymbol{\alpha} \in \mathcal{I}_{n}
$$

国四

Bernstein-Bezier Polynomials

Typical degree 3 Bernstein-Bezier Polynomials

Why Bernstein-Bezier?

- Elegant, efficient and stable algorithms. e.g. de Casteljau, ...
- Industry standard for graphics. e.g. psfonts defined as Bezier curves, CAD/CAM packages use Bezier extensively.
- Industry standard for graphics hardware. e.g. OpenGL hardware optimised routines to render Bezier curves and surfaces.

Some Nice Properties of Bernstein Polynomials

$$
\begin{gathered}
\int_{T} B_{\alpha}^{n}(\mathbf{x}) \mathrm{d} \mathbf{x}=\frac{|T|}{\binom{n+d}{d}}, \quad \alpha \in \mathcal{I}_{d}^{n} \\
B_{\alpha}^{m} B_{\beta}^{n}=\frac{\binom{\alpha+\boldsymbol{\alpha}}{\hline}}{\binom{m+n}{m}} B_{\alpha+\boldsymbol{\beta}}^{m+n}, \quad \alpha \in \mathcal{I}_{d}^{m}, \boldsymbol{\beta} \in \mathcal{I}_{d}^{n}
\end{gathered}
$$

De Casteljau Algorithm ($n=1$)

How to evaluate $B B$ poly $(n=1)$ at x ?
\qquad

De Casteljau Algorithm ($n=1$)
Replace coordinates by control points

... simply linear interpolation.

De Casteljau Algorithm $(n=3)$

How to evaluate $B B$ poly $(n=3)$ at x ?

De Casteljau Algorithm ($n=3$)

Introduce (virtual) micro-mesh

De Casteljau Algorithm $(n=3)$

LOCAL linear interpolation (as for $n=1$)

De Casteljau Algorithm $(n=3)$

LOCAL linear interpolation (as for $n=1$)

De Casteljau Algorithm $(n=3)$

Form lattice from "new control points"

De Casteljau Algorithm ($n=3$)

Perform LOCAL linear interpolation again

De Casteljau Algorithm ($n=3$)

Form lattice from "new control points"

De Casteljau Algorithm ($n=3$)

Perform linear interpolation again

De Casteljau Algorithm $(n=3)$

Gives the value of cubic $B B$ poly at x回回

De Casteljau Algorithm ($n=3$)

Stacking the arrays \Rightarrow Pyramid Algorithm (and $\begin{gathered}\text { Book: R. Goldman, Pyramid Algorithms: A } \\ \text { Dynamic Programming Aproach to Curves } \\ \text { and Surfaces for Geometric Modeling. }\end{gathered}$

Question

we consider following simple question: What advantages do Bernstein polynomials offer

Question
we consider following simple question: What advantages do Bernstein polynomials offer (if any)

Question
we consider following simple question: What advantages do Bernstein polynomials offer (if any) for high order FEM?

Question
we consider following simple question: What advantages do Bernstein polynomials offer (if any) for high order FEM?
Question motivated by:

- almost ubiquitous use of Bernstein polys in CAGD community
- ... and in spline literature.
- Similar philosophy to IGA (Hughes et al.)

Bernstein-Bezier H^{1} FEM

Previous work on using Bernstein-Bezier basis Awanou (PhD Thesis), Arnold et al. (2009), ... BUT don't take advantage of special properties of BB (could equally well used Lagrange basis).
work seeking to exploit properties of $B B$:

* R.C. Kirby, Numer. Math., (2011). Constant data, affine simplices in 2D/3D.
* Ainsworth, Andriamaro \& Davydov, SIAM J. Sci. Comp., (2011). Variable data, curvilinear elements, non-linear problems, simplices, prisms, bricks, ..., any dimension.四目) BROWN

Duffy Transformation

Define $\mathbf{x}:[0,1]^{d} \rightarrow T=\operatorname{conv}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathrm{d}+1}\right)$ by rule

$$
\mathbf{x}(\mathbf{t})=\sum_{k=1}^{d+1} \lambda_{k} \mathbf{x}_{k}
$$

where

$$
\lambda_{1}=t_{1}, \lambda_{2}=t_{2}\left(1-\lambda_{1}\right), \ldots, \lambda_{d}=t_{d}\left(1-\lambda_{1}-\cdots-\lambda_{d-1}\right)
$$

Stroud Conical Quadrature Rule

Duffy transformation gives

$\int_{T} f(\mathbf{x}) \mathrm{d} \mathbf{x}=$

$$
d!|T| \int_{0}^{1} \mathrm{~d} t_{1}\left(1-t_{1}\right)^{d-1} \int_{0}^{1} \mathrm{~d} t_{2}\left(1-t_{2}\right)^{d-2} \cdots \int_{0}^{1} \mathrm{~d} t_{d}(f \circ \mathbf{x})(\mathbf{t}) .
$$

Approximate integral over t _ k variable by
Gauss-Jacobi rule:

$$
\int_{0}^{1}(1-s)^{d-k} g(s) \mathrm{d} s \approx \sum_{j=1}^{q} \omega_{j}^{(d-k)} g\left(\xi_{j}^{(d-k)}\right)
$$

回四

Stroud Conical Quadrature Rule

Gives

$$
\int_{T} f(\mathbf{x}) \mathrm{d} \mathbf{x} \approx d!|T| \sum_{i_{1}=1}^{q} \omega_{i_{1}}^{(d-1)} \sum_{\substack{i_{2}=1 \\ \text { "Stroud conical quadrature" }}}^{q} \omega_{i_{2}}^{(d-2)} \cdots \sum_{i_{d}=1}^{q} \omega_{i_{d}}^{(0)} f\left(\mathbf{x}_{i_{1}, i_{2}, \ldots, i_{d}}\right) .
$$

- positive quadrature weights
- quadrature nodes on T

$$
\begin{aligned}
\mathbf{x}_{i_{1}, i_{2}, \ldots, i_{d}}=\mathbf{x}\left(\xi_{i_{1}}^{(d-1)}, \xi_{i_{2}}^{(d-2)}\right. & \left.\ldots, \xi_{i_{d}}^{(0)}\right) \\
& 1 \leq i_{1}, i_{2}, \ldots, i_{d} \leq q
\end{aligned}
$$

国回 BROWN

Bernstein Polynomials \& Duffy

How does Bernstein polynomial behave under Duffy transformation? $\times(t):[0,1]^{d} \rightarrow T$

Consider univariate Bernstein polynomial

$$
B_{k}^{m}(t)=\binom{m}{k} t^{k}(1-t)^{m-k}, k \in\{0,1, \ldots, m\}
$$

then

$$
B_{\alpha}^{n}(\mathbf{x}(\mathbf{t}))=B_{\alpha_{1}}^{n}\left(t_{1}\right) B_{\alpha_{2}}^{n-\alpha_{1}}\left(t_{2}\right) \cdots B_{\alpha_{d}}^{n-\alpha_{1}-\ldots-\alpha_{d-1}}\left(t_{d}\right)
$$

Tensorial Nature

Bernstein Polynomials \& Duffy

KEY OBSERVATION:

$$
B_{\alpha}^{n}(\mathbf{x}(\mathbf{t}))=B_{\alpha_{1}}^{n}\left(t_{1}\right) B_{\alpha_{2}}^{n-\alpha_{1}}\left(t_{2}\right) \cdots B_{\alpha_{d}}^{n-\alpha_{1}-\ldots-\alpha_{d-1}}\left(t_{d}\right)
$$

Bernstein polynomials possess key property needed for sum Factorisation Algorithm. Ref. orszag, 1980

BuT basis not tied to a tensorial construction. (回回) BROWN

Application：Evaluation of BBFEM

How to efficiently evaluate a BBFEM approx at all of stroud points？ $\mathbf{x}_{i_{1}, i_{2}, \ldots, i_{d}}$

$$
u(\mathbf{x})=\sum_{\alpha \in \mathcal{I}_{d}^{n}} c_{\alpha} B_{\alpha}^{n}(\mathbf{x})
$$

回回 BROWN
耀

Application: Evaluation of BBFEM

How to efficiently evaluate a BBFEM approx at all of stroud points? $\mathbf{x}_{i_{1}, i_{2}, \ldots, i_{d}}$

$$
u(\mathbf{x})=\sum_{\alpha \in \mathcal{I}_{d}^{n}} c_{\alpha} B_{\alpha}^{n}(\mathbf{x})
$$

Method 1: Apply de Casteljau Algorithm.
\Rightarrow Cost of $\mathcal{O}\left(n^{d+1}\right)$ per point.

Application: Evaluation of BBFEM

How to efficiently evaluate a BBFEM approx at all of stroud points? $\mathbf{x}_{i_{1}, i_{2}, \ldots, i_{d}}$

$$
u(\mathbf{x})=\sum_{\alpha \in \mathcal{I}_{d}^{n}} c_{\alpha} B_{\alpha}^{n}(\mathbf{x})
$$

Method 2: Apply sum factorisation.

Application: Evaluation of BBFEM

$$
\begin{aligned}
& (u \circ x)(t)= \\
& \left.\sum_{\alpha_{1}=0}^{n} B_{\alpha_{1}}^{n}\left(t_{1}\right) \sum_{\alpha_{2}=0}^{n-\alpha_{1}} B_{\alpha_{2}}^{n-\alpha_{1}}\left(t_{2}\right) \sum_{\alpha_{3}=0}^{n-\alpha_{1}-\alpha_{2}} B_{\alpha_{3}}^{n-\alpha_{1}-\alpha_{2}}\right) C_{\alpha_{1} \alpha_{2} \alpha_{3}}
\end{aligned}
$$

using KEY OBSERVATION, where x is Duffy transformation.

Application: Evaluation of BBFEM

$$
\begin{gathered}
(u \circ x)(t)= \\
\sum_{\alpha_{1}=0}^{n} B_{\alpha_{1}}^{n}\left(\xi_{i_{i}}^{0}\right) \sum_{\alpha_{2}=0}^{n-\alpha_{1}} B_{\alpha_{2}}^{n-\alpha_{1}}\left(\xi_{i_{2}}^{\prime}\right) \sum_{\alpha_{3}=0}^{n-\alpha_{\alpha_{2}}-\alpha_{2}} B_{\alpha_{3}\left(\xi_{i_{3}}^{0}-\alpha_{1}-\alpha_{1}\right.}^{\text {che }} C_{\alpha_{2} \alpha_{3}} \\
t=\left(\xi_{i_{1}}^{0}, \xi_{i_{2}}^{1}, \xi_{i_{3}}^{2}\right), \\
0 \leq i_{1}, i_{2}, i_{3} \leq q
\end{gathered}
$$

i.e. want to evaluate at Stroud points.

Application: Evaluation of BBFEM

$$
\begin{aligned}
& (u \circ x)(t)=x_{n}^{n} \\
& \sum_{\alpha_{1}=0}^{n} B_{\alpha_{1}}^{n}\left(\xi_{i,}^{0}\right) \sum_{\alpha_{2}=0}^{n-\alpha_{1}} B_{\alpha_{2}}^{n-\alpha_{1}}\left(\xi_{i_{2}}^{\prime}\right) \sum_{\alpha_{3}=0}^{n-\alpha_{1}-\alpha_{2}} B_{\alpha_{3}\left(\frac{\xi_{i 3}}{n-\alpha_{1}}\right) C_{\alpha_{1} \alpha_{2} \alpha_{3}}}
\end{aligned}
$$

Application: Evaluation of BBFEM

$$
\begin{aligned}
& (u \circ x)(t)=\sum_{\alpha_{1}=0}^{n} B_{\alpha_{1}}^{n}\left(\xi_{i}^{0}\right) \sum_{\alpha_{2}=0}^{n-\alpha_{1}} B_{\alpha_{2}}^{n-\alpha_{1}}(\underbrace{\left(\xi_{i_{3}}^{\prime}\right)}_{i_{i}} \sum_{C^{1}\left(\alpha_{1}, \alpha_{2}, \alpha_{1}-\alpha_{2}\right)}^{\left.\sum_{\alpha_{3}}^{n-\alpha_{3}\left(\xi_{i}\right)} \xi_{i_{3}}^{2}\right) c_{\alpha_{1} \alpha_{2} \alpha_{3}}}
\end{aligned}
$$

Application: Evaluation of BBFEM

$$
\begin{aligned}
& (u \circ x)(t)= \\
& \sum_{\alpha_{1}=0}^{n} B_{\alpha_{1}}^{n}\left(\xi_{i,}^{0}\right) \sum_{\alpha_{2}=0}^{n-\alpha_{1}} B_{\alpha_{2}}^{n-\alpha_{1}}\left(\xi_{i_{2}}^{\prime}\right) C^{1}\left(\alpha_{1}, \alpha_{2}, i_{3}\right)
\end{aligned}
$$

Application: Evaluation of BBFEM

$$
\begin{aligned}
& (u \circ x)(t)= \\
& \sum_{\alpha_{1}=0}^{n} B_{\alpha_{1}}^{n}\left(\xi_{i_{i}}^{0}\right) \sum_{\alpha_{2}=0}^{n-\alpha_{1}} B_{\alpha_{2}}^{n-\alpha_{1}}\left(\xi_{i_{2}}^{1}\right) C^{1}\left(\alpha_{1}, \alpha_{2}, i_{3}\right)
\end{aligned}
$$

Application: Evaluation of BBFEM

$$
\begin{aligned}
& (u \cdot x)(t)=\underbrace{\sum_{\alpha_{1}=0}^{n} B_{\alpha_{1}}^{n}\left(\xi_{i_{1}}^{0}\right)}_{\text {II def }} \underbrace{\sum_{\alpha_{2}=0}^{n-\alpha_{1}} B_{\alpha_{2}}^{n-\alpha_{1}}\left(\xi_{i_{2}}^{1}\right) C^{1}\left(\alpha_{1}, \alpha_{2}, i_{3}\right)}_{C^{2}\left(\alpha_{1}, i_{2}, i_{3}\right)}
\end{aligned}
$$

Application: Evaluation of BBFEM

$$
\begin{aligned}
& (u \circ x)(t)= \\
& \sum_{\alpha_{1}=0}^{n} B_{\alpha_{1}}^{n}\left(\xi_{i_{1}}\right) C^{2}\left(\alpha_{1}, i_{2}, i_{3}\right)
\end{aligned}
$$

Application: Evaluation of BBFEM

$$
\underbrace{\underbrace{x}_{\alpha_{1}=0}(t)=}_{\begin{array}{l}
\| \operatorname{def} \\
C^{3}\left(i_{1}, i_{2}, i_{3}\right)
\end{array}} \quad .
$$

Application: Evaluation of BBFEM

$$
(u \circ x)(t)=C^{3}\left(i_{1}, i_{2}, i_{3}\right)
$$

where $t=\left(\xi_{i_{1}}^{0}, \xi_{i_{2}}^{1}, \xi_{i_{3}}^{2}\right)$

$$
0 \leq i_{1}, i_{2}, i_{3} \leq q
$$

Application: Evaluation of BBFEM

$$
\begin{array}{r}
C^{3}\left(i_{1}, i_{2}, i_{3}\right)=\sum_{\alpha_{1}=0}^{n} B_{\alpha_{1}}^{n}\left(\xi_{i_{1}}^{0}\right) C^{2}\left(\alpha_{1}, i_{2}, i_{3}\right) \\
0 \leq i_{1}, i_{2}, i_{3} \leq q
\end{array}
$$

Application: Evaluation of BBFEM

$$
\begin{gathered}
C^{2}\left(\alpha_{1}, i_{2}, i_{3}\right)=\sum_{\alpha_{2}=0}^{n-\alpha_{1}} B_{\alpha_{2}}^{n-\alpha_{1}}\left(\xi_{i_{2}}^{1}\right) C^{1}\left(\alpha_{1}, \alpha_{2}, i_{3}\right) \\
C^{3}\left(i_{1}, i_{2}, i_{3}\right)=\sum_{\alpha_{1}=0}^{n} B_{\alpha_{1}}^{n}\left(\xi_{i_{1}}^{0}\right) C^{2}\left(\alpha_{1}, i_{2}, i_{3}\right) \\
0 \leq i_{1}, i_{2}, i_{3} \leq q
\end{gathered}
$$

Application: Evaluation of BBFEM

$$
\begin{gathered}
C^{2}\left(\alpha_{1}, i_{2}, i_{3}\right)=\sum_{\alpha_{2}=0}^{n-\alpha_{1}} B_{\alpha_{2}}^{n-\alpha_{1}}\left(\xi_{i_{2}}^{1}\right) C^{1}\left(\alpha_{1}, \alpha_{2}, i_{3}\right) \\
C^{3}\left(i_{1}, i_{2}, i_{3}\right)=\sum_{\alpha_{1}=0}^{n} B_{\alpha_{1}}^{n}\left(\xi_{i_{1}}^{0}\right) C^{2}\left(\alpha_{1}, i_{2}, i_{3}\right) \\
0 \leq i_{1}, i_{2}, i_{3} \leq q
\end{gathered}
$$

Application: Evaluation of BBFEM
(Given) control

$$
\begin{gathered}
C^{1}\left(\alpha_{1}, \alpha_{2}, i_{3}\right)=\sum_{\alpha_{3}=0}^{n-\alpha_{1}-\alpha_{2}} B_{\alpha_{3}}^{n-\alpha_{2}}\left(\xi_{i_{3}}^{2}\right) C_{\alpha_{1} \alpha_{2} \alpha_{3}}^{\text {points }} \\
C^{2}\left(\alpha_{1}, i_{2}, i_{3}\right)=\sum_{\alpha_{2}=0}^{n-\alpha_{1}} B_{\alpha_{2}}^{n-\alpha_{1}}\left(\xi_{i_{2}}^{1}\right) C^{1}\left(\alpha_{1}, \alpha_{2}, i_{3}\right) \\
C^{3}\left(i_{1}, i_{2}, i_{3}\right)=\sum_{\alpha_{1}=0}^{n} B_{\alpha_{1}}^{n}\left(\xi_{i_{1}}^{0}\right) C^{2}\left(\alpha_{1}, i_{2}, i_{3}\right) \\
0 \leq i_{1}, i_{2}, i_{3} \leq q
\end{gathered}
$$

Application: Evaluation of BBFEM

$$
\begin{aligned}
& C^{1}\left(\alpha_{1}, \alpha_{2}, i_{3}\right)=\sum_{\alpha_{3}=0}^{n-\alpha_{1}-\alpha_{2}} B_{\alpha_{3}}^{n-\alpha_{1}, \alpha_{2}}\left(\xi_{i_{3}}^{2}\right) C_{\alpha_{1} \alpha_{2} \alpha_{3}}^{(1)} \\
& C^{2}\left(\alpha_{1}, i_{2}, i_{3}\right)=\sum_{\alpha_{2}=0}^{n-\alpha_{1}} B_{\alpha_{2}}^{n-\alpha_{1}}\left(\xi_{i_{2}}^{1}\right) C^{1}\left(\alpha_{1}, \alpha_{2}, i_{3}\right) \\
& C^{3}\left(i_{1}, i_{2}, i_{3}\right)=\sum_{\alpha_{1}=0}^{n} B_{\alpha_{1}}^{n}\left(\xi_{i_{1}}^{0}\right) C^{2}\left(\alpha_{1}, i_{2}, i_{3}\right) \\
& 0 \leq i_{1}, i_{2}, i_{3} \leq q
\end{aligned}
$$

Application：Evaluation of BBFEM

Step 1：Apply KEY OBSERVATION to write

$(u \circ \mathrm{x})(\mathrm{t})=$
$\sum_{\alpha_{1}=0}^{n} B_{\alpha_{1}}^{n}\left(t_{1}\right) \sum_{\alpha_{2}=0}^{n-\alpha_{1}} B_{\alpha_{2}}^{n-\alpha_{1}}\left(t_{2}\right) \ldots \sum_{\alpha_{d}=0}^{n-\ldots \alpha_{1} \cdots \alpha_{d-1}} B_{\alpha_{d}}^{n-\alpha_{1}-\ldots-\alpha_{d-1}}\left(t_{d}\right)$

Application: Evaluation of BBFEM

Step 1: Apply KEY OBSERVATION to write

 $(u \circ \mathrm{x})(\mathrm{t})=$$$
\sum_{\alpha_{1}=0}^{n} B_{\alpha_{1}}^{n}\left(t_{1}\right) \sum_{\alpha_{2}=0}^{n-\alpha_{1}} B_{\alpha_{2}}^{n-\alpha_{1}}\left(t_{2}\right) \ldots \sum_{\alpha_{d}=0}^{n-\alpha_{1}-\ldots-\alpha_{d-1}} B_{\alpha_{d}}^{n-\alpha_{1}-\ldots-\alpha_{d-1}}\left(t_{d}\right)
$$

Step 2: Express in recursive form

$$
\begin{aligned}
C^{0}\left(\alpha_{1}, \ldots, \alpha_{d-1}, \alpha_{d}\right)= & c_{\alpha_{1}, \ldots, \alpha_{d-1}, \alpha_{d}} \\
C^{1}\left(\alpha_{1}, \ldots, \alpha_{d-1}, i_{d}\right)= & \sum_{\alpha_{d}=0}^{n-\alpha_{1}-\ldots-\alpha_{d-1}} B_{\alpha_{d}}^{n-\alpha_{1}-\ldots-\alpha_{d-1}}\left(\xi_{i_{d}}^{(0,0)}\right) C^{0}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d}\right) \\
C^{2}\left(\alpha_{1}, \ldots, i_{d-1}, i_{d}\right)= & \sum_{\alpha_{d-1}=0}^{n-\alpha_{1}-\ldots-\alpha_{d-2}} B_{\alpha_{d-1}}^{n-\alpha_{1}-\ldots-\alpha_{d-2}}\left(\xi_{i_{d-1}}^{(1,0)}\right) C^{1}\left(\alpha_{1}, \ldots, \alpha_{d-1}, i_{d}\right) \\
& \vdots \\
C^{d}\left(i_{1}, \ldots, i_{d-1}, i_{d}\right)= & \sum_{\alpha_{1}=0}^{n} B_{\alpha_{1}}^{n}\left(\xi_{i_{d}}^{(d-1,0)}\right) C^{d-1}\left(\alpha_{1}, \ldots, i_{d-1}, i_{d}\right)
\end{aligned}
$$

回四

Application：Evaluation of BBFEM

Recursion leads to

$$
u\left(\mathbf{x}_{i_{1}, \ldots, i_{d-1}, i_{d}}\right)=C^{d}\left(i_{1}, \ldots, i_{d-1}, i_{d}\right)
$$

at total cost for all points of

$$
\mathcal{O}\left(n^{d+1}\right)
$$

回回 BROWN
解

Application：Evaluation of BBFEM

Recursion leads to

$$
u\left(\mathbf{x}_{i_{1}, \ldots, i_{d-1}, i_{d}}\right)=C^{d}\left(i_{1}, \ldots, i_{d-1}, i_{d}\right)
$$

at total cost for all points of

$$
\mathcal{O}\left(n^{d+1}\right)
$$

ie．we get all points at same cost for de casteljau to get a single point．

Application: Evaluation of BBFEM Recursion leads to

$$
u\left(\mathbf{x}_{i_{1}, \ldots, i_{d-1}, i_{d}}\right)=C^{d}\left(i_{1}, \ldots, i_{d-1}, i_{d}\right)
$$

at total cost for all points of

$$
\mathcal{O}\left(n^{d+1}\right)
$$

ie. we get all points at same cost for de Casteljau to get a single point.
... including the cost of evaluating basis
functions 'on the $f l y$ '.

Evaluation of Moments

Bernstein-Bezier Moments of f defined by

$$
\mu_{\boldsymbol{\alpha}}^{n}(f)=\int_{T} B_{\alpha}^{n}(\mathbf{x}) f(\mathbf{x}) \mathrm{d} \mathbf{x}, \quad \boldsymbol{\alpha} \in \mathcal{I}_{d}^{n}
$$

... needed for element load vector.

Evaluation of Moments

Bernstein-Bezier Moments of f defined by

$$
\mu_{\boldsymbol{\alpha}}^{n}(f)=\int_{T} B_{\alpha}^{n}(\mathbf{x}) f(\mathbf{x}) \mathrm{d} \mathbf{x}, \quad \boldsymbol{\alpha} \in \mathcal{I}_{d}^{n}
$$

... needed for element load vector.
If data f constant, then have simple closed form

$$
\mu_{\alpha}^{n}(f)=\frac{|T|}{\binom{n+d}{d}} f_{\mid T}, \quad \alpha \in \mathcal{I}_{d}^{n}
$$

回目

Evaluation of Moments

Bernstein-Bezier Moments of f defined by

$$
\mu_{\boldsymbol{\alpha}}^{n}(f)=\int_{T} B_{\alpha}^{n}(\mathbf{x}) f(\mathbf{x}) \mathrm{d} \mathbf{x}, \quad \boldsymbol{\alpha} \in \mathcal{I}_{d}^{n}
$$

... needed for element load vector.
General data: need quadrature rule with $\mathcal{O}\left(q^{d}\right)$ Points where

$$
q=\mathcal{O}(n)
$$

Total of $\mathcal{O}\left(n^{d}\right)$ moments \Rightarrow potentially costly.
\qquad

Evaluation of Moments

Duffy transformation and KEY OBSERVATION

 gives$$
\begin{aligned}
\mu_{\boldsymbol{\alpha}}^{n}(f)= & d!|T| \int_{0}^{1} \mathrm{~d} t_{d} B_{\alpha_{d}}^{n-\alpha_{1}-\ldots-\alpha_{d-1}}\left(t_{d}\right) \\
& \cdot \int_{0}^{1} \mathrm{~d} t_{d-1}\left(1-t_{d-1}\right) B_{\alpha_{d-1}}^{n-\alpha_{1}-\ldots-\alpha_{d-2}}\left(t_{d-1}\right) \\
& \cdots \\
& \cdot \int_{0}^{1} \mathrm{~d} t_{1}\left(1-t_{1}\right)^{d-1} B_{\alpha_{1}}^{n}\left(t_{1}\right)(f \circ \mathbf{x})(\mathbf{t})
\end{aligned}
$$

Evaluation of Moments

Apply Stroud conical quadrature rule to obtain

 recursive formulae:$$
\begin{aligned}
F^{0}\left(i_{1}, i_{2}, \ldots, i_{d}\right)= & (f \circ \mathbf{x})\left(\xi_{i_{1}}^{(d-1)}, \xi_{i_{2}}^{(d-2)}, \ldots, \xi_{i_{d}}^{(0)}\right) \\
F^{1}\left(\alpha_{1}, i_{2}, \ldots, i_{d}\right)= & \sum_{i_{1}=1}^{q} \omega_{i_{1}}^{(d-1)} B_{\alpha_{1}}^{n}\left(\xi_{i_{1}}^{(d-1)}\right) F^{0}\left(i_{1}, i_{2}, \ldots, i_{d}\right) \\
F^{2}\left(\alpha_{1}, \alpha_{2}, \ldots, i_{d}\right)= & \sum_{i_{2}=1}^{q} \omega_{i_{2}}^{(d-2)} B_{\alpha_{2}}^{n-\alpha_{1}}\left(\xi_{i_{2}}^{(d-2)}\right) F^{1}\left(\alpha_{1}, i_{2}, \ldots, i_{d}\right) \\
& \vdots \\
F^{d}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d}\right)= & \sum_{i_{d}=1}^{q} \omega_{i_{d}}^{(0)} B_{\alpha_{d}}^{n-\alpha_{1}-\ldots-\alpha_{d-1}}\left(\xi_{i_{d}}^{(0)}\right) F^{d-1}\left(\alpha_{1}, \alpha_{2}, \ldots,\right.
\end{aligned}
$$

Biglig

Evaluation of Moments

Apply Stroud conical quadrature rule to obtain

 recursive formulae:$$
\begin{aligned}
F^{0}\left(i_{1}, i_{2}, \ldots, i_{d}\right)= & (f \circ \mathbf{x})\left(\xi_{i_{1}}^{(d-1)}, \xi_{i_{2}}^{(d-2)}, \ldots, \xi_{i_{d}}^{(0)}\right) \\
F^{1}\left(\alpha_{1}, i_{2}, \ldots, i_{d}\right)= & \sum_{i_{1}=1}^{q} \omega_{i_{1}}^{(d-1)} B_{\alpha_{1}}^{n}\left(\xi_{i_{1}}^{(d-1)}\right) F^{0}\left(i_{1}, i_{2}, \ldots, i_{d}\right) \\
F^{2}\left(\alpha_{1}, \alpha_{2}, \ldots, i_{d}\right)= & \sum_{i_{2}=1}^{q} \omega_{i_{2}}^{(d-2)} B_{\alpha_{2}}^{n-\alpha_{1}}\left(\xi_{i_{2}}^{(d-2)}\right) F^{1}\left(\alpha_{1}, i_{2}, \ldots, i_{d}\right) \\
& \vdots \\
F^{d}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d}\right)= & \sum_{i_{d}=1}^{q} \omega_{i_{d}}^{(0)} B_{\alpha_{d}}^{n-\alpha_{1}-\ldots-\alpha_{d-1}}\left(\xi_{i_{d}}^{(0)}\right) F^{d-1}\left(\alpha_{1}, \alpha_{2}, \ldots,\right.
\end{aligned}
$$

Result of recursion

$$
\mu_{\alpha}^{n}(f)=d!|T| F^{d}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d}\right)
$$

回四 BROWN

Evaluation of Moments

Claim: The number of operations needed to compute $\mu_{\alpha}^{n}(f)$ is $\mathcal{O}\left(n^{d+1}\right)$, even including the cost of evaluating basis functions on the fly.

- Can obtain element load vector at a cost of $\mathcal{O}\left(n^{d+1}\right)$ operations, even with variable data f.
- Hence, curvilinear elements also handled in same complexity.

Ref: Ainsworth, Andriamaro \& Davydov, SISC 2011

Evaluation of Element Mass Matrix

$$
\mathbf{M}_{\boldsymbol{\alpha} \boldsymbol{\beta}}^{T}=\int_{T} c(\mathbf{x}) B_{\boldsymbol{\alpha}}^{n}(\mathbf{x}) B_{\boldsymbol{\beta}}^{n}(\mathbf{x}) \mathrm{d} \mathbf{x}, \quad \boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathcal{I}_{d}^{n}
$$

Dimension $\binom{n+d}{d} \times\binom{ n+d}{d}$ ie． $\mathcal{O}\left(n^{2 d}\right)$
Is it possible to compute matrix in $\mathcal{O}(1)$ operation per entry？ie．complexity $\mathcal{O}\left(n^{2 d}\right)$

Evaluation of Element Mass Matrix

$$
\mathbf{M}_{\boldsymbol{\alpha} \boldsymbol{\beta}}^{T}=\int_{T} c(\mathbf{x}) B_{\boldsymbol{\alpha}}^{n}(\mathbf{x}) B_{\boldsymbol{\beta}}^{n}(\mathbf{x}) \mathrm{d} \mathbf{x}, \quad \boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathcal{I}_{d}^{n}
$$

Dimension $\binom{n+d}{d} \times\binom{ n+d}{d}$ ie. $\mathcal{O}\left(n^{2 d}\right)$
Is it possible to compute matrix in $\mathcal{O}(1)$ operation per entry? ie. complexity $\mathcal{O}\left(n^{2 d}\right)$

Karniadakis \& sherwin approach gives $\mathcal{O}\left(n^{2 d+1}\right)$

Evaluation of Element Mass Matrix

$$
\mathbf{M}_{\alpha \boldsymbol{\beta}}^{T}=\int_{T} c(\mathbf{x}) B_{\alpha}^{n}(\mathbf{x}) B_{\boldsymbol{\beta}}^{n}(\mathbf{x}) \mathrm{d} \mathbf{x}, \quad \boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathcal{I}_{d}^{n}
$$

Dimension $\binom{n+d}{d} \times\binom{ n+d}{d}$ ie. $\mathcal{O}\left(n^{2 d}\right)$
Is it possible to compute matrix in $\mathcal{O}(1)$ operation per entry? ie. complexity $\mathcal{O}\left(n^{2 d}\right)$
Karniadakis \& sherwin approach gives $\mathcal{O}\left(n^{2 d+1}\right)$
Eisner \& Melenk (2006) gives $\mathcal{O}\left(n^{2 d}\right)$
вит requires 6 -fold increase in dimension.
國目

Evaluation of Element Mass Matrix

Claim: Bernstein-Bezier basis achieves optimal complexity (without tinkering with the space).

$$
\mathbf{M}_{\boldsymbol{\alpha} \boldsymbol{\beta}}^{T}=\int_{T} c(\mathbf{x}) B_{\boldsymbol{\alpha}}^{n}(\mathbf{x}) B_{\boldsymbol{\beta}}^{n}(\mathbf{x}) \mathrm{d} \mathbf{x}, \quad \boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathcal{I}_{d}^{n}
$$

Recall property of Bernstein polynomials

$$
B_{\alpha}^{n} B_{\boldsymbol{\beta}}^{n}=\frac{\binom{\boldsymbol{\alpha}+\boldsymbol{\beta}}{\boldsymbol{\alpha}}}{\binom{2 n}{n}} B_{\boldsymbol{\alpha}+\boldsymbol{\beta}}^{2 n}, \quad \boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathcal{I}_{d}^{n}
$$

Evaluation of Element Mass Matrix

Claim: Bernstein-Bezier basis achieves optimal complexity (without tinkering with the space).

$$
\mathbf{M}_{\boldsymbol{\alpha} \boldsymbol{\beta}}^{T}=\int_{T} c(\mathbf{x}) B_{\boldsymbol{\alpha}}^{n}(\mathbf{x}) B_{\boldsymbol{\beta}}^{n}(\mathbf{x}) \mathrm{d} \mathbf{x}, \quad \boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathcal{I}_{d}^{n}
$$

Hence,

$$
\mathbf{M}_{\boldsymbol{\alpha} \boldsymbol{\beta}}^{T}=\frac{\binom{\boldsymbol{\alpha}+\boldsymbol{\beta}}{\boldsymbol{\alpha}}}{\binom{2 n}{n}} \mu_{\boldsymbol{\alpha}+\boldsymbol{\beta}}^{2 n}(c), \quad \boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathcal{I}_{d}^{n}
$$

Evaluation of Element Mass Matrix

Apply AAD Algorithm to compute the moments

$$
\mu_{\boldsymbol{\alpha}+\boldsymbol{\beta}}^{2 n}(c)
$$

Complexity： $\mathcal{O}\left((2 n)^{d+1}\right)$

Evaluation of Element Mass Matrix

Apply AAD Algorithm to compute the moments

$$
\mu_{\boldsymbol{\alpha}+\boldsymbol{\beta}}^{2 n}(c)
$$

Complexity: $\mathcal{O}\left((2 n)^{d+1}\right)$

$$
\mathbf{M}_{\boldsymbol{\alpha} \boldsymbol{\beta}}^{T}=\frac{\binom{\boldsymbol{\alpha}+\boldsymbol{\beta}}{\boldsymbol{\alpha}}}{\binom{2 n}{n}} \mu_{\boldsymbol{\alpha}+\boldsymbol{\beta}}^{2 n}(c), \quad \boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathcal{I}_{d}^{n}
$$

Remarkably, multinomials dominate the cost! ... careful treatment gives $\mathcal{O}\left(n^{2 d}\right)$ complexity.
(回回) BROWN

Evaluation of Element Stiffness

Matrix

$\mathbf{S}_{\alpha \beta}^{T}=\int_{T} \operatorname{grad} B_{\beta}^{n}(\mathbf{x}) \cdot \mathbf{A}(\mathbf{x}) \cdot \operatorname{grad} B_{\alpha}^{n}(\mathbf{x}) \mathrm{d} \mathbf{x}, \quad \boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathcal{I}_{d}^{n}$

Evaluation of Element Stiffness

Matrix

$\mathbf{S}_{\alpha \boldsymbol{\beta}}^{T}=\int_{T} \operatorname{grad} B_{\boldsymbol{\beta}}^{n}(\mathbf{x}) \cdot \mathbf{A}(\mathbf{x}) \cdot \operatorname{grad} B_{\boldsymbol{\alpha}}^{n}(\mathbf{x}) \mathrm{d} \mathbf{x}, \quad \boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathcal{I}_{d}^{n}$
Another useful property of Bernstein polys

$$
\operatorname{grad} B_{\alpha}^{n}(\mathbf{x})=n \sum_{k=1} B_{\alpha-\mathbf{e}_{k}}^{n-1}(\mathbf{x}) \operatorname{grad} \lambda_{k}, \quad \alpha \in \mathcal{I}_{d}^{n}
$$

回回 BROWN

Evaluation of Element Stiffness

Matrix

$\mathbf{S}_{\alpha \beta}^{T}=\int_{T} \operatorname{grad} B_{\beta}^{n}(\mathbf{x}) \cdot \mathbf{A}(\mathbf{x}) \cdot \operatorname{grad} B_{\alpha}^{n}(\mathbf{x}) \mathrm{d} \mathbf{x}, \quad \boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathcal{I}_{d}^{n}$
Another useful property of Bernstein polys

Hence

$$
\operatorname{grad} B_{\alpha}^{n}(\mathbf{x})=n \sum_{k=1} B_{\alpha-\mathbf{e}_{k}}^{n-1}(\mathbf{x}) \operatorname{grad} \lambda_{k}, \quad \alpha \in \mathcal{I}_{d}^{n}
$$

$$
\mathbf{S}_{\boldsymbol{\alpha} \boldsymbol{\beta}}^{T}=n^{2} \sum_{k, \ell=1}^{d+1} \frac{\binom{\boldsymbol{\alpha}-\mathbf{e}_{\boldsymbol{k}}+\boldsymbol{\beta}-\mathbf{e}_{\ell}}{\boldsymbol{\alpha}-\mathbf{e}_{k}}}{\binom{2 n-2}{n-1}} \operatorname{grad} \lambda_{k} \cdot \mu_{\boldsymbol{\alpha}-\mathbf{e}_{k}+\boldsymbol{\beta}-\mathbf{e}_{\ell}}^{2 n-2}(\mathbf{A}) \cdot \operatorname{grad} \lambda_{\ell}
$$

(四)

Bernstein-Bezier \Rightarrow Optimal Complexity

Theorem: All element matrices can be assembled in optimal complexity $\mathcal{O}\left(n^{2 d}\right)$ including cases where

- non-constant coefficients
- non-affine elements
- coefficients depending on solution u (and/or its derivatives). Moreover, complexity achieved even if basis functions evaluated on the fly.

Ref: Ainsworth, Andriamaro \& Davydov, SISC 2011

Example: 2D

Example: 3D

Example: 4D

Bernstein－Bezier Basis for Raviart－Thomas Elements

四四 BROWN
耀

Raviart-Thomas Elements

Raviart-Thomas finite element $\mathbb{R} \mathbb{T}_{n}$ of order $n \in \mathbb{Z}_{+}$

$$
\mathbb{R} \mathbb{T}_{n}=\mathbb{P}_{n}^{2}+\boldsymbol{x} \mathbb{P}_{n}
$$

dimension $(n+1)(n+3)$.
e.g. $V_{\boldsymbol{\omega}}=\operatorname{span}\left\{\boldsymbol{\omega}_{k}: k=1,2,3\right\}$ coincides with $\mathbb{R} \mathbb{T}_{0}$.

$$
\boldsymbol{\omega}_{k}=\frac{1}{2|T|}\left(\boldsymbol{x}-\boldsymbol{x}_{k}\right), \quad k=1,2,3 .
$$

回回

Raviart-Thomas $(n=0)$

Figure 1. Basis functions for $\mathbb{R} \mathbb{T}_{0}$ with Whitney functions indicated by arrows.

Equivalent Expression for

Basis

Standard RT0 Basis

$$
\boldsymbol{\omega}_{k}=\frac{1}{2|T|}\left(\boldsymbol{x}-\boldsymbol{x}_{k}\right)
$$

Whitney functions

$$
\boldsymbol{\omega}_{1}=\lambda_{2} \operatorname{curl} \lambda_{3}-\lambda_{3} \operatorname{curl} \lambda_{2}
$$

$$
=\left|\begin{array}{ccc}
1 & 0 & 0 \\
\lambda_{1} & \lambda_{2} & \lambda_{3} \\
\operatorname{curl} \lambda_{1} & \operatorname{curl} \lambda_{2} & \operatorname{curl} \lambda_{3}
\end{array}\right|
$$

'Generalised' whitney

Functions

By analogy with

$$
\boldsymbol{\omega}_{1}=\left\lvert\, \begin{array}{ccc}
1 & 0 & 0 \\
\lambda_{1} & \lambda_{2} & \lambda_{3} \\
\operatorname{curl} \lambda_{1} & \operatorname{curl} \lambda_{2} & \operatorname{curl} \lambda_{3}
\end{array}\right.
$$

For $\boldsymbol{\alpha} \in \mathcal{I}_{n}$ define

$$
\Upsilon_{\alpha}^{n}=(n+1) B_{\alpha}^{n} \left\lvert\, \begin{array}{ccc}
\alpha_{1} & \alpha_{2} & \alpha_{3} \\
\lambda_{1} & \lambda_{2} & \lambda_{3} \\
\operatorname{curl} \lambda_{1} & \operatorname{curl} \lambda_{2} & \operatorname{curl} \lambda_{3}
\end{array}\right.
$$

Bernstein-Bezier Basis fo $\mathbb{R} \mathbb{T}_{n}$

Dispense with all three vertex functions:

$$
V_{\text {curl }}^{n}=\operatorname{span}\left\{\operatorname{curl} B_{\alpha}^{n+1}: \alpha \in \breve{\mathcal{I}}_{n+1}\right\}
$$

where

$$
\breve{\mathcal{I}}_{n}=\mathcal{I}_{n}-\{(n, 0,0),(0, n, 0),(0,0, n)\}
$$

Bernstein-Bezier Basis fo $\mathbb{R} \mathbb{T}_{n}$

Dispense with one 'generalised' Whitney function:

$$
V_{\Upsilon}^{n}=\operatorname{span}\left\{\boldsymbol{\Upsilon}_{\boldsymbol{\alpha}}^{n}: \boldsymbol{\alpha} \in \mathcal{I}_{n}^{\prime}\right\}
$$

where

$$
\mathcal{I}_{n}^{\prime}=\mathcal{I}_{n} \text { minus any one index }
$$

Bernstein-Bezier Basis fo $\mathbb{R} \mathbb{T}_{n}$

Include all three lowest order Whitney functions.

Theorem 3.6. The set

$$
\left\{\boldsymbol{\Upsilon}_{\alpha}^{n}: \alpha \in \mathcal{I}_{n}^{\prime}\right\} \cup\left\{\operatorname{curl} B_{\alpha}^{n+1}: \alpha \in \breve{\mathcal{I}}_{n+1}\right\} \cup\left\{\boldsymbol{\omega}_{1}, \omega_{2}, \omega_{3}\right\}
$$

forms a basis for $\mathbb{R} \mathbb{T}_{n}$.

What does it mean geometrically?
BROWN

Raviart-Thomas ($n=1$)

Figure 2. Basis functions for $\mathbb{R} \mathbb{T}_{1}$: • denotes functions belonging to $V_{\text {curl }}^{1} ;$ correspond to functions belonging to $V_{\Upsilon}^{1} ; \diamond$ denotes the (arbitrarily chosen) index omitted from the set \mathcal{I}_{1} to obtain \mathcal{I}_{1}^{\prime}.

Raviart-Thomas ($n=1$)

Raviart-Thomas ($n=2$)

Figure 3. Basis functions for $\mathbb{R} \mathbb{T}_{2}$: • denotes functions belonging to $V_{\text {curl }}^{2} ;$ corresponds to functions belonging to $V_{\Upsilon}^{2} ; \bigcirc$ denotes the (arbitrarily) chosen function omitted from the set \mathcal{I}_{2} to obtain \mathcal{I}_{2}^{\prime}.

Raviart-Thomas ($n=2$)

(四) BROWN

Raviart－Thomas（ $n=3$ ）

Figure 4．Basis functions for $\mathbb{R} \mathbb{T}_{3}$ ：• denotes functions belonging to $V_{\text {curl }}^{3} ;$ corresponds to functions belonging to $V_{\Upsilon}^{3} ; \diamond$ denotes the（arbitrarily）chosen function omitted from the set \mathcal{I}_{3} to ob－ tain \mathcal{I}_{3}^{\prime} ．

回回BROWN
四四

Raviart-Thomas (General

Case)

Order	Internal Dofs		Edge Dofs		Total
	V_{Υ}^{n}	$V_{\text {curl }}^{n}$	V_{ω}	$V_{\text {curl }}^{n}$	
0	-	-	3	-	3
1	2	-	3	3	8
2	5	1	3	6	15
3	9	3	3	9	24
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
n	$n(n+3) / 2$	$n(n-1) / 2$	3	$3 n$	$(n+1)(n+3)$

回 BROWN四

Application：Darcy Flow

$(\boldsymbol{u}, p) \in \boldsymbol{H}(\operatorname{div} ; \Omega) \times L_{0}^{2}(\Omega)$ such that $\boldsymbol{n} \cdot \boldsymbol{u}=\psi$ on $\partial \Omega$ and

$$
\begin{array}{ll}
\frac{\nu}{\kappa}(\boldsymbol{u}, \boldsymbol{v})-(p, \operatorname{div} \boldsymbol{v}) & =-\varrho(\boldsymbol{g}, \boldsymbol{v}) \\
(\operatorname{div} \boldsymbol{u}, w) & =(f, w)
\end{array}
$$

for all $(\boldsymbol{v}, w) \in \boldsymbol{H}_{0}(\operatorname{div} ; \Omega) \times L_{0}^{2}(\Omega)$

Darcy: Element Residuals

Current Approximation:

$$
\left(\boldsymbol{u}^{\ell}, p^{\ell}\right)
$$

Residuals:

$$
\begin{array}{rlrl}
\boldsymbol{v} & \mapsto-\varrho(\boldsymbol{g}, \boldsymbol{v})_{T}-\frac{\nu}{\kappa}\left(\boldsymbol{u}^{\ell}, \boldsymbol{v}\right)_{T}+\left(p^{\ell}, \operatorname{div} \boldsymbol{v}\right)_{T} \\
w & \mapsto & (f, w)_{T}-\left(\operatorname{div} \boldsymbol{u}^{\ell}, w\right)_{T}
\end{array}
$$

\boldsymbol{v} is chosen to be $\boldsymbol{\Upsilon}_{\boldsymbol{\alpha}}^{n}, \boldsymbol{\operatorname { c u r l }} B_{\boldsymbol{\alpha}}^{n+1}$ and $\boldsymbol{\omega}_{k}$, and $w=B_{\boldsymbol{\alpha}}^{n}$.国目

CPu for Element Residuals

四 BROWN
解

Application：Maxwell＇s Equations

find $\mathbf{u} \in H_{0}($ curl $)$ and $\lambda \in \mathbb{R}$ such that
$(\operatorname{curl} \mathbf{u}, \operatorname{curl} \mathbf{v})=\lambda^{2}(\mathbf{u}, \mathbf{v}), \quad \mathbf{v} \in H_{0}($ curl $)$.
$\Omega=[0,1]^{2}$
True Solution：$\quad \lambda_{k, \ell}^{2}:=\pi^{2}\left(k^{2}+\ell^{2}\right), \quad k, \ell \in \mathbb{Z}_{+}$．

$$
\mathbf{u}_{k, \ell}(x, y):=\binom{k \sin (k \pi x) \cos (\ell \pi x)}{\ell \sin (\ell \pi y) \cos (k \pi x)}^{\perp}
$$

四回輏 BROWN

Application：Maxwell＇s Equations

四四BROWN
解

Application: Maxwell's Equations

回回 BROWN

Summary

- Conceptual simplicity:

Basis Functions \Leftrightarrow Nodes

- Optimal complexity computation of element matrices using AAD Algorithm/fast matrix multiply (MA, Andriamaro \& Davydov, SISC, 2011) - Extension to $H(d i v) / H(c u r l) M A$, Andriamaro \& Davydov, Brown Tech. Rep. 20, 2012)
- Non-uniform Local Polynomial Orders with de Casteljau 'pyramid' algorithms for entire FE implementation (Ainsworth, SISC 36, 2014).

