Bernstein-Bezier Techniques in High Order Finite Elements

Mark Ainsworth

Division of Applied Mathematics Brown University Mark_Ainsworth@brown.edu

Outline

- Bernstein-Bezier Polynomials
- De Casteljan Algorithm
- Sum-Factorisation and AAD Algorithm
- Bernstein-Bezier Basis for Raviart-Thomas Elements
- Applications

Nomenclature

Bernstein-Bezier Polynomials

$$B^n_{\alpha}(\boldsymbol{x}) = {n \choose \alpha} \boldsymbol{\lambda}^{\boldsymbol{\alpha}}, \quad \boldsymbol{\alpha} \in \mathcal{I}_n$$

 $\boldsymbol{\lambda} = (\lambda_1, \lambda_2, \lambda_3)$ barycentric coordinates

Non-negative, partition of unity $\sum_{\alpha \in I_n} B_{\alpha}^n = 1$. Natural identifications: $\alpha \in I_n$

$$B^n_{\boldsymbol{lpha}}(\boldsymbol{x}) \dashrightarrow \boldsymbol{x}_{\boldsymbol{lpha}} \dashrightarrow \boldsymbol{lpha} \in \mathcal{I}_n$$

Bernstein-Bezier Polynomials

Typical degree 3 Bernstein-Bezier Polynomials

Interactive View

why Bernstein-Bezier?

- Elegant, efficient and stable algorithms. e.g. de Casteljan, ...
- Industry standard for graphics. e.g. psfonts defined as Bezier curves, CAD/CAM packages use Bezier extensively.
- Industry standard for graphics hardware, e.g. OpenGL hardware optimised routines to render Bezier curves and surfaces.

Some Nice Properties of Bernstein Polynomials

$$\int_{\mathcal{T}} B^n_{\alpha}(\mathbf{x}) \, \mathrm{d}\mathbf{x} = \frac{|\mathcal{T}|}{\binom{n+d}{d}}, \quad \alpha \in \mathcal{I}^n_d$$

$$B^{m}_{\alpha}B^{n}_{\beta} = \frac{\binom{\alpha+\beta}{\alpha}}{\binom{m+n}{m}}B^{m+n}_{\alpha+\beta}, \quad \alpha \in \mathcal{I}^{m}_{d}, \beta \in \mathcal{I}^{n}_{d}$$

How to evaluate BB poly (n=1) at x?

Replace coordinates by control points

... simply linear interpolation.

How to evaluate BB poly (n=3) at x?

Introduce (virtual) micro-mesh

LOCAL linear interpolation (as for n=1)

LOCAL linear interpolation (as for n=1)

$x = \lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3$

Form lattice from "new control points"

Perform LOCAL linear interpolation again

Form lattice from "new control points"

Perform linear interpolation again

$$x = \lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3$$

Single node
remains
II
 $\mathcal{U}(\mathbf{x})$

Gives the value of cubic BB poly at x

Stacking the arrays => Pyramid Algorithm

BOOK: R. Goldman, Pyramid Algorithms: A Dynamic Programming Approach to Curves and Surfaces for Geometric Modeling.

we consider following simple question: what advantages do Bernstein polynomials offer

we consider following simple question:

what advantages do Bernstein polynomials offer (if any)

we consider following simple question:

what advantages do Bernstein polynomials offer (if any) for high order FEM?

- we consider following simple question:
 - what advantages do Bernstein polynomials offer (if any) for high order FEM?
- Question motivated by:
 - almost ubiquitous use of Bernstein polys in CAGD community
 - ... and in spline literature.
 - Similar philosophy to IGA (Hughes et al.)

Bernstein-Bezier H^1 FEM

Previous work on using Bernstein-Bezier basis Awanou (PhD Thesis), Arnold et al. (2009), ... BuT don't take advantage of special properties of BB (could equally well used Lagrange basis).

work seeking to exploit properties of BB:

* R.C. Kirby, *Numer. Math.*, (2011). Constant data, affine simplices in 2D/3D.

* Ainsworth, Andriamaro & Davydov, *SIAM J. Sci. Comp.*, (2011). Variable data, curvilinear elements, non-linear problems, simplices, prisms, bricks, ..., any dimension.

Duffy Transformation

Define $\mathbf{x} : [0,1]^d \to T = \operatorname{conv}(\mathbf{x}_1, \dots, \mathbf{x}_{d+1})$ by rule

$$\mathbf{x}(\mathbf{t}) = \sum_{k=1}^{d+1} \lambda_k \mathbf{x}_k$$

where

$$\lambda_1 = t_1, \lambda_2 = t_2(1-\lambda_1), \ldots, \lambda_d = t_d(1-\lambda_1-\cdots-\lambda_{d-1}).$$

stroud Conical Quadrature Rule

Duffy transformation gives

$$\int_{\mathcal{T}} f(\mathbf{x}) \, \mathrm{d}\mathbf{x} = \\ d! |\mathcal{T}| \int_{0}^{1} \, \mathrm{d}t_{1} (1-t_{1})^{d-1} \int_{0}^{1} \, \mathrm{d}t_{2} (1-t_{2})^{d-2} \cdots \int_{0}^{1} \, \mathrm{d}t_{d} (f \circ \mathbf{x})(\mathbf{t}).$$

Approximate integral over t k variable by Gauss-Jacobi rule:

$$\int_0^1 (1-s)^{d-k} g(s) \, \mathrm{d}s pprox \sum_{j=1}^q \omega_j^{(d-k)} g(\xi_j^{(d-k)})$$

stroud Conical Quadrature Rule

Gives

$$\int_{T} f(\mathbf{x}) d\mathbf{x} \approx d! |T| \sum_{i_1=1}^{q} \omega_{i_1}^{(d-1)} \sum_{i_2=1}^{q} \omega_{i_2}^{(d-2)} \cdots \sum_{i_d=1}^{q} \omega_{i_d}^{(0)} f(\mathbf{x}_{i_1,i_2,...,i_d}).$$

"Stroud conical quadrature"

- positive quadrature weights
- quadrature nodes on T

$$\mathbf{x}_{i_1,i_2,\ldots,i_d} = \mathbf{x}(\xi_{i_1}^{(d-1)},\xi_{i_2}^{(d-2)}\ldots,\xi_{i_d}^{(0)})$$

$$1 \leq i_1, i_2, \ldots, i_d \leq q$$

Bernstein Polynomials & Duffy

How does Bernstein polynomial behave under Duffy transformation? $x(t): [0,1]^d \to T$

Consider univariate Bernstein polynomial $B_k^m(t) = \binom{m}{k} t^k (1-t)^{m-k}, k \in \{0, 1, \dots, m\}$ then

 $B_{\alpha}^{n}(\mathbf{x}(\mathbf{t})) = B_{\alpha_{1}}^{n}(t_{1})B_{\alpha_{2}}^{n-\alpha_{1}}(t_{2})\cdots B_{\alpha_{d}}^{n-\alpha_{1}-\ldots-\alpha_{d-1}}(t_{d})$

Tensorial Nature

Bernstein Polynomials & Duffy

KEY OBSERVATION:

$$B_{\alpha}^{n}(\mathbf{x}(\mathbf{t})) = B_{\alpha_{1}}^{n}(t_{1})B_{\alpha_{2}}^{n-\alpha_{1}}(t_{2})\cdots B_{\alpha_{d}}^{n-\alpha_{1}-\ldots-\alpha_{d-1}}(t_{d})$$

Bernstein polynomials possess key property needed for Sum Factorisation Algorithm. Ref. Orszag, 1980

But basis not tied to a tensorial construction.

How to efficiently evaluate a BBFEM approx at all of Strond points? $X_{i_1,i_2,...,i_d}$

$$u(\mathbf{x}) = \sum_{\boldsymbol{lpha}\in\mathcal{I}_d^n} c_{\boldsymbol{lpha}} B_{\boldsymbol{lpha}}^n(\mathbf{x})$$

How to efficiently evaluate a BBFEM approx at all of Strond points? $X_{i_1,i_2,...,i_d}$

$$u(\mathbf{x}) = \sum_{\boldsymbol{lpha} \in \mathcal{I}_d^n} c_{\boldsymbol{lpha}} B_{\boldsymbol{lpha}}^n(\mathbf{x})$$

Method 1: Apply de Casteljau Algorithm. => Cost of $\mathcal{O}(n^{d+1})$ per point.

How to efficiently evaluate a BBFEM approx at all of Strond points? $X_{i_1,i_2,...,i_d}$

$$u(\mathbf{x}) = \sum_{\alpha \in \mathcal{I}_d^n} c_{\alpha} B_{\alpha}^n(\mathbf{x})$$

Method 2: Apply sum factorisation.

$$(\mathcal{U} \circ \mathbf{x})(t) = \prod_{\substack{n=\alpha, \\ n=\alpha, \\ n=\alpha,$$

using KEY OBSERVATION, where x is Duffy transformation.

i.e. want to evaluate at Stroud points.

$$(\mathcal{U} \circ \mathbf{x})(\underline{t}) = \underbrace{\operatorname{n-\alpha_{1}}}_{n} \underbrace{\operatorname{n-\alpha_{1}-\alpha_{2}}}_{n} \underbrace{\operatorname{B}}_{\alpha_{1}}^{n}(\underline{s}_{i}) \sum_{\alpha_{2}=0}^{n-\alpha_{1}} \operatorname{B}}_{\alpha_{2}}^{n-\alpha_{1}-\alpha_{2}}(\underline{s}_{i}) \sum_{\alpha_{3}=0}^{n-\alpha_{1}-\alpha_{2}} \underbrace{\operatorname{B}}_{\alpha_{3}}^{n-\alpha_{1}-\alpha_{2}}(\underline{s}_{i}) \underbrace{\operatorname{B}}_{\alpha_{3}}^{n-\alpha_{3}}(\underline{s}_{i}) \underbrace{\operatorname{B}}_{\alpha_{3}}^{n-\alpha_{3}$$

$$(\mathcal{U} \circ \mathbf{x})(\underline{t}) = \prod_{\substack{n=\alpha_1\\ \sum\\ \alpha_1=0}}^{n-\alpha_1} B_{\alpha_1}^{n}(\underline{s}_{i_1}^{\circ}) \sum_{\substack{n=\alpha_2\\ \alpha_2=0}}^{n-\alpha_1} B_{\alpha_2}^{n-\alpha_1}(\underline{s}_{i_2}^{\circ}) \sum_{\substack{n=0\\ \alpha_2\\ \alpha_2=0}}^{n-\alpha_1-\alpha_2} B_{\alpha_3}^{n-\alpha_1-\alpha_2}(\underline{s}_{i_3}^{\circ}) C_{\alpha_3\alpha_2\alpha_3}$$

$$(\mathcal{U} \circ \mathbf{x})(\underline{t}) = \prod_{\substack{n \sim \alpha, \\ \alpha_1 = 0}}^{n \sim \alpha} B_{\alpha_1}^{n}(\underline{s}) \sum_{\substack{n \sim \alpha, \\ \alpha_2 = 0}}^{n \sim \alpha} B_{\alpha_2}^{n-\alpha_3}(\underline{s}) C'(\alpha_1, \alpha_2, \underline{i})$$

$$(\mathcal{U} \circ \mathbf{x})(\underline{t}) = \prod_{\substack{n=\alpha_1 \\ \alpha_1 = 0}}^{n-\alpha_1} B_{\alpha_1}^{n}(\underline{s}_{i_1}^{n}) \sum_{\substack{n=\alpha_2 \\ \alpha_2 = 0}}^{n-\alpha_1} B_{\alpha_2}^{n-\alpha_1}(\underline{s}_{i_2}^{1}) C^1(\alpha_1, \alpha_2, \underline{i}_3)$$

$$(\mathcal{U} \circ \mathbf{x})(\underline{t}) = \prod_{\substack{\alpha_1 \in \mathbf{0} \\ \alpha_1 \neq \mathbf{0}}} B_{\alpha_1}^n(\underline{s}_{i_1}^\circ) \sum_{\substack{\alpha_2 \neq \mathbf{0} \\ \alpha_2 \neq \mathbf{0}}} B_{\alpha_2}^{n-\alpha_1}(\underline{s}_{i_2}^*) C^{4}(\alpha_1, \alpha_2, i_3)$$

$$= \prod_{\substack{\alpha_1 \neq \mathbf{0} \\ \alpha_2 \neq \mathbf{0}}} def$$

$$(\mathcal{U} \circ \mathbf{x})(\underline{t}) = \sum_{\alpha_1 = 0}^{n} B_{\alpha_1}^{n}(\underline{s}_{i_1}^{n}) C^2(\alpha_1, \underline{t}_2, \underline{t}_3)$$

$$(u \circ x)(t) =$$

 $\sum_{\alpha_{1}=0}^{n} B_{\alpha_{1}}^{n}(t) C^{2}(\alpha_{1}, t_{2}, t_{3})$
 $|| def$
 $C^{3}(t_{1}, t_{2}, t_{3})$

$(u \circ x)(t) = C^{3}(i_{1}, i_{2}, i_{3})$ where $t = (5^{\circ}_{i_{1}}, 5^{1}_{i_{2}}, 5^{2}_{i_{3}})$ $0 \le i_{1}, i_{2}, i_{3} \le q$

$$C^{3}(i_{1}, i_{2}, i_{3}) = \sum_{\alpha_{1}=0}^{n} B^{n}_{\alpha_{1}}(\tilde{s}^{\circ}_{i_{1}})C^{2}(\alpha_{1}, i_{2}, i_{3})$$

$$0 \leq i_{1}, i_{2}, i_{3} \leq Q$$

$$C^{2}(\alpha_{1}, i_{2}, i_{3}) = \sum_{\alpha_{2}=0}^{n-\alpha_{1}} B^{n-\alpha_{1}}_{\alpha_{2}}(\xi_{i_{2}}^{1})C^{1}(\alpha_{1}, \alpha_{2}, i_{3})$$

$$C^{3}(i_{1}, i_{2}, i_{3}) = \sum_{\alpha_{1}=0}^{n} B^{n}_{\alpha_{1}}(\xi_{i_{1}}^{0})C^{2}(\alpha_{1}, i_{2}, i_{3})$$

$$0 \le i_{1}, i_{2}, i_{3} \le Q$$

$$C^{2}(\alpha_{1}, i_{2}, i_{3}) = \sum_{\alpha_{2}=0}^{n-\alpha_{1}} B^{n-\alpha_{1}}_{\alpha_{2}}(\xi_{i_{2}}^{1})C^{1}(\alpha_{1}, \alpha_{2}, i_{3})$$

$$C^{3}(i_{1}, i_{2}, i_{3}) = \sum_{\alpha_{1}=0}^{n} B^{n}_{\alpha_{1}}(\xi_{i_{1}}^{0})C^{2}(\alpha_{1}, i_{2}, i_{3})$$

$$0 \le i_{1}, i_{2}, i_{3} \le Q$$

$$(Given) control$$

$$C^{1}(\alpha_{1},\alpha_{2},i_{3}) = \sum_{\alpha_{3}=0}^{n-\alpha_{1}-\alpha_{2}} B_{\alpha_{3}}(\xi_{i_{3}}^{2}) C_{\alpha_{1}\alpha_{2}\alpha_{3}}$$

$$C^{2}(\alpha_{1},i_{2},i_{3}) = \sum_{\alpha_{2}=0}^{n-\alpha_{1}} B_{\alpha_{2}}^{n-\alpha_{1}}(\xi_{i_{2}}^{1})C^{1}(\alpha_{1},\alpha_{2},i_{3})$$

$$C^{3}(i_{1},i_{2},i_{3}) = \sum_{\alpha_{1}=0}^{n} B_{\alpha_{1}}^{n}(\xi_{i_{1}}^{0})C^{2}(\alpha_{1},i_{2},i_{3})$$

$$O \leq i_{1}, i_{2}, i_{3} \leq Q$$

$$C^{1}(\alpha_{1},\alpha_{2},i_{3}) = \sum_{\substack{\alpha_{3}=0 \\ \alpha_{3}=0 \\ \alpha_{3}=0 \\ \alpha_{3}=0 \\ \alpha_{3}=0 \\ \alpha_{3}=0 \\ \beta_{\alpha_{3}}(\xi_{i_{3}}^{1}) C_{\alpha_{1}\alpha_{2}\alpha_{3}}$$

$$C^{2}(\alpha_{1},i_{2},i_{3}) = \sum_{\substack{\alpha_{2}=0 \\ \alpha_{2}=0 \\ \alpha_{2}=0 \\ \alpha_{3}=0 \\ \alpha_{4}=0 \\ \beta_{\alpha_{1}}(\xi_{i_{1}}^{0}) C^{2}(\alpha_{1},i_{2},i_{3})$$

$$O \leq i_{1}, i_{2}, i_{3} \leq Q$$

Step 1: Apply KEY OBSERVATION to write $(u \circ x)(t) =$

 $\sum_{\alpha_1=0}^{n} B_{\alpha_1}^n(t_1) \sum_{\alpha_2=0}^{n-\alpha_1} B_{\alpha_2}^{n-\alpha_1}(t_2) \dots \sum_{\alpha_d=0}^{n-\alpha_1-\dots-\alpha_{d-1}} B_{\alpha_d}^{n-\alpha_1-\dots-\alpha_{d-1}}(t_d)$

Step 1: Apply KEY OBSERVATION to write $(u \circ x)(t) =$

 $\sum_{\alpha_1=0}^{n} B_{\alpha_1}^n(t_1) \sum_{\alpha_2=0}^{n-\alpha_1} B_{\alpha_2}^{n-\alpha_1}(t_2) \dots \sum_{\alpha_d=0}^{n-\alpha_1-\dots-\alpha_{d-1}} B_{\alpha_d}^{n-\alpha_1-\dots-\alpha_{d-1}}(t_d)$

Step 2: Express in recursive form

$$C^{0}(\alpha_{1}, \dots, \alpha_{d-1}, \alpha_{d}) = c_{\alpha_{1}, \dots, \alpha_{d-1}, \alpha_{d}} \sum_{\alpha_{d}=0}^{n-\alpha_{1}-\dots-\alpha_{d-1}} B_{\alpha_{d}}^{n-\alpha_{1}-\dots-\alpha_{d-1}} (\xi_{i_{d}}^{(0,0)}) C^{0}(\alpha_{1}, \alpha_{2}, \dots, \alpha_{d})$$

$$C^{2}(\alpha_{1}, \dots, i_{d-1}, i_{d}) = \sum_{\alpha_{d-1}=0}^{n-\alpha_{1}-\dots-\alpha_{d-2}} B_{\alpha_{d-1}}^{n-\alpha_{1}-\dots-\alpha_{d-2}} (\xi_{i_{d-1}}^{(1,0)}) C^{1}(\alpha_{1}, \dots, \alpha_{d-1}, i_{d})$$

$$\vdots$$

$$C^{d}(i_{1}, \dots, i_{d-1}, i_{d}) = \sum_{\alpha_{1}=0}^{n} B_{\alpha_{1}}^{n} (\xi_{i_{d}}^{(d-1,0)}) C^{d-1}(\alpha_{1}, \dots, i_{d-1}, i_{d})$$

Recursion leads to

$$u(\mathbf{x}_{i_1,...,i_{d-1},i_d}) = C^d(i_1,...,i_{d-1},i_d)$$

at total cost for all points of

 $\mathcal{O}(n^{d+1})$

Recursion leads to

$$u(\mathbf{x}_{i_1,...,i_{d-1},i_d}) = C^d(i_1,...,i_{d-1},i_d)$$

at total cost for all points of

$$\mathcal{O}(n^{d+1})$$

i.e. we get all points at same cost for de Casteljan to get a single point.

Recursion leads to

$$u(\mathbf{x}_{i_1,...,i_{d-1},i_d}) = C^d(i_1,...,i_{d-1},i_d)$$

at total cost for all points of

$$\mathcal{O}(n^{d+1})$$

i.e. we get all points at same cost for de Casteljan to get a single point.

... including the cost of evaluating basis functions 'on the fly'.

Bernstein-Bezier Moments of f defined by

$$\mu_{\alpha}^{n}(f) = \int_{T} B_{\alpha}^{n}(\mathbf{x}) f(\mathbf{x}) d\mathbf{x}, \quad \alpha \in \mathcal{I}_{d}^{n}.$$

.. needed for element load vector.

Bernstein-Bezier Moments of f defined by

$$\mu_{\alpha}^{n}(f) = \int_{T} B_{\alpha}^{n}(\mathbf{x}) f(\mathbf{x}) d\mathbf{x}, \quad \alpha \in \mathcal{I}_{d}^{n}.$$

... needed for element load vector.

If data f constant, then have simple closed form $\mu_{\alpha}^{n}(f) = \frac{|T|}{|T|} f_{|T|}, \quad \alpha \in \mathcal{I}_{d}^{n}$

$$\mu_{\alpha}^{n}(t) = \frac{1}{\binom{n+d}{d}} t_{|T}, \quad \alpha \in L_{d}^{n}$$

Bernstein-Bezier Moments of f defined by

$$\mu_{\alpha}^{n}(f) = \int_{T} B_{\alpha}^{n}(\mathbf{x}) f(\mathbf{x}) d\mathbf{x}, \quad \alpha \in \mathcal{I}_{d}^{n}.$$

... needed for element load vector.

General data: need quadrature rule with $\mathcal{O}(q^d)$ Points where $q = \mathcal{O}(n)$

Total of $\mathcal{O}(n^d)$ moments => potentially costly.

Duffy transformation and KEY OBSERVATION gives

$$\mu_{\alpha}^{n}(f) = d! |T| \int_{0}^{1} dt_{d} B_{\alpha_{d}}^{n-\alpha_{1}-\ldots-\alpha_{d-1}}(t_{d}) \\ \cdot \int_{0}^{1} dt_{d-1}(1-t_{d-1}) B_{\alpha_{d-1}}^{n-\alpha_{1}-\ldots-\alpha_{d-2}}(t_{d-1}) \\ \cdots \\ \cdot \int_{0}^{1} dt_{1}(1-t_{1})^{d-1} B_{\alpha_{1}}^{n}(t_{1})(f \circ \mathbf{x})(\mathbf{t})$$

Apply Stroud conical quadrature rule to obtain recursive formulae:

$$F^{0}(i_{1}, i_{2}, \dots, i_{d}) = (f \circ \mathbf{x})(\xi_{i_{1}}^{(d-1)}, \xi_{i_{2}}^{(d-2)}, \dots, \xi_{i_{d}}^{(0)})$$

$$F^{1}(\alpha_{1}, i_{2}, \dots, i_{d}) = \sum_{i_{1}=1}^{q} \omega_{i_{1}}^{(d-1)} B_{\alpha_{1}}^{n}(\xi_{i_{1}}^{(d-1)}) F^{0}(i_{1}, i_{2}, \dots, i_{d})$$

$$F^{2}(\alpha_{1}, \alpha_{2}, \dots, i_{d}) = \sum_{i_{2}=1}^{q} \omega_{i_{2}}^{(d-2)} B_{\alpha_{2}}^{n-\alpha_{1}}(\xi_{i_{2}}^{(d-2)}) F^{1}(\alpha_{1}, i_{2}, \dots, i_{d})$$

$$\vdots$$

$$F^{d}(\alpha_{1}, \alpha_{2}, \dots, \alpha_{d}) = \sum_{i_{d}=1}^{q} \omega_{i_{d}}^{(0)} B_{\alpha_{d}}^{n-\alpha_{1}-\dots-\alpha_{d-1}}(\xi_{i_{d}}^{(0)}) F^{d-1}(\alpha_{1}, \alpha_{2}, \dots)$$

,

Apply Stroud conical quadrature rule to obtain recursive formulae:

$$F^{0}(i_{1}, i_{2}, \dots, i_{d}) = (f \circ \mathbf{x})(\xi_{i_{1}}^{(d-1)}, \xi_{i_{2}}^{(d-2)}, \dots, \xi_{i_{d}}^{(0)})$$

$$F^{1}(\alpha_{1}, i_{2}, \dots, i_{d}) = \sum_{i_{1}=1}^{q} \omega_{i_{1}}^{(d-1)} B_{\alpha_{1}}^{n}(\xi_{i_{1}}^{(d-1)}) F^{0}(i_{1}, i_{2}, \dots, i_{d})$$

$$F^{2}(\alpha_{1}, \alpha_{2}, \dots, i_{d}) = \sum_{i_{2}=1}^{q} \omega_{i_{2}}^{(d-2)} B_{\alpha_{2}}^{n-\alpha_{1}}(\xi_{i_{2}}^{(d-2)}) F^{1}(\alpha_{1}, i_{2}, \dots, i_{d})$$

$$\vdots$$

$$F^{d}(\alpha_{1}, \alpha_{2}, \dots, \alpha_{d}) = \sum_{i_{d}=1}^{q} \omega_{i_{d}}^{(0)} B_{\alpha_{d}}^{n-\alpha_{1}-\dots-\alpha_{d-1}}(\xi_{i_{d}}^{(0)}) F^{d-1}(\alpha_{1}, \alpha_{2}, \dots)$$

Result of recursion

$$u_{\alpha}^{n}(f) = d! |T| F^{d}(\alpha_{1}, \alpha_{2}, \dots, \alpha_{d})$$

,

- Claim: The number of operations needed to compute $\mu_{\alpha}^{n}(f)$ is $\mathcal{O}(n^{d+1})$, even including the cost of evaluating basis functions on the fly.
 - Can obtain element load vector at a cost of O(n^{d+1}) operations, even with variable data f.
 - Hence, curvilinear elements also handled in same complexity.

Ref: Ainsworth, Andriamaro & Davydov, SISC 2011

$$\begin{split} \mathbf{M}_{\alpha\beta}^{\mathcal{T}} &= \int_{\mathcal{T}} c(\mathbf{x}) B_{\alpha}^{n}(\mathbf{x}) B_{\beta}^{n}(\mathbf{x}) \, \mathrm{d}\mathbf{x}, \quad \alpha, \beta \in \mathcal{I}_{d}^{n} \\ \textbf{Dimension} \quad {n+d \choose d} \times {n+d \choose d} \quad \textbf{i.e.} \quad \mathcal{O}(n^{2d}) \end{split}$$

Is it possible to compute matrix in $\mathcal{O}(1)$ operation per entry? i.e. complexity $\mathcal{O}(n^{2d})$

$$\begin{split} \mathbf{M}_{\alpha\beta}^{\mathcal{T}} &= \int_{\mathcal{T}} c(\mathbf{x}) B_{\alpha}^{n}(\mathbf{x}) B_{\beta}^{n}(\mathbf{x}) \, \mathrm{d}\mathbf{x}, \quad \alpha, \beta \in \mathcal{I}_{d}^{n} \\ \textbf{Dimension} \quad {n+d \choose d} \times {n+d \choose d} \quad \textbf{i.e.} \quad \mathcal{O}(n^{2d}) \end{split}$$

Is it possible to compute matrix in O(1) operation per entry? i.e. complexity $O(n^{2d})$

Karniadakis & Sherwin approach gives $\mathcal{O}(n^{2d+1})$

 $\mathsf{M}_{\alpha\beta}^{\mathsf{T}} = \int_{\mathsf{T}} c(\mathbf{x}) B_{\alpha}^{\mathsf{n}}(\mathbf{x}) B_{\beta}^{\mathsf{n}}(\mathbf{x}) \, \mathrm{d}\mathbf{x}, \quad \alpha, \beta \in \mathcal{I}_{d}^{\mathsf{n}}$ Dimension $\binom{n+d}{d} \times \binom{n+d}{d}$ i.e. $\mathcal{O}(n^{2d})$ Is it possible to compute matrix in $\mathcal{O}(1)$ operation per entry? i.e. complexity $\mathcal{O}(n^{2d})$ Karniadakis & Sherwin approach gives $\mathcal{O}(n^{2d+1})$ Eibner & Melenk (2006) gives $\mathcal{O}(n^{2d})$ But requires 6-fold increase in dimension.

Claim: Bernstein-Bezier basis achieves optimal complexity (without tinkering with the space).

$$\mathbf{M}_{\boldsymbol{\alpha}\boldsymbol{\beta}}^{\mathcal{T}} = \int_{\mathcal{T}} c(\mathbf{x}) B_{\boldsymbol{\alpha}}^{n}(\mathbf{x}) B_{\boldsymbol{\beta}}^{n}(\mathbf{x}) \, \mathrm{d}\mathbf{x}, \quad \boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathcal{I}_{d}^{n}$$

Recall property of Bernstein polynomials

$$B^{n}_{\alpha}B^{n}_{\beta} = \frac{\binom{\alpha+\beta}{\alpha}}{\binom{2n}{n}}B^{2n}_{\alpha+\beta}, \quad \alpha,\beta \in \mathcal{I}^{n}_{d}$$

Claim: Bernstein-Bezier basis achieves optimal complexity (without tinkering with the space).

$$\mathbf{M}_{\alpha\beta}^{\mathcal{T}} = \int_{\mathcal{T}} c(\mathbf{x}) B_{\alpha}^{n}(\mathbf{x}) B_{\beta}^{n}(\mathbf{x}) \, \mathrm{d}\mathbf{x}, \quad \alpha, \beta \in \mathcal{I}_{d}^{n}$$

Hence,

$$\mathsf{M}_{\boldsymbol{\alpha}\boldsymbol{\beta}}^{\mathcal{T}} = \frac{\binom{\boldsymbol{\alpha}+\boldsymbol{\beta}}{\boldsymbol{\alpha}}}{\binom{2n}{n}} \mu_{\boldsymbol{\alpha}+\boldsymbol{\beta}}^{2n}(\boldsymbol{c}), \quad \boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathcal{I}_{d}^{n}$$

Apply AAD Algorithm to compute the moments

 $\mu^{2n}_{oldsymbol{lpha}+oldsymbol{eta}}(c)$

Complexity: $O((2n)^{d+1})$

Apply AAD Algorithm to compute the moments $\mu^{2n}_{\pmb{\alpha}+\pmb{\beta}}(\pmb{c})$

Complexity: $\mathcal{O}((2n)^{d+1})$

$$\mathsf{M}_{\boldsymbol{\alpha}\boldsymbol{\beta}}^{\mathsf{T}} = \frac{\binom{\boldsymbol{\alpha}+\boldsymbol{\beta}}{\boldsymbol{\alpha}}}{\binom{2n}{n}} \mu_{\boldsymbol{\alpha}+\boldsymbol{\beta}}^{2n}(\boldsymbol{c}), \quad \boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathcal{I}_d^n$$

Remarkably, multinomials dominate the cost! ... careful treatment gives $O(n^{2d})$ complexity.

Evaluation of Element Stiffness Matrix

$\mathbf{S}_{\alpha\beta}^{\mathcal{T}} = \int_{\mathcal{T}} \operatorname{grad} B_{\beta}^{n}(\mathbf{x}) \cdot \mathbf{A}(\mathbf{x}) \cdot \operatorname{grad} B_{\alpha}^{n}(\mathbf{x}) \, \mathrm{d}\mathbf{x}, \quad \alpha, \beta \in \mathcal{I}_{d}^{n}$

Evaluation of Element Stiffness Matrix

 $\mathbf{S}_{\boldsymbol{\alpha}\boldsymbol{\beta}}^{\mathcal{T}} = \int_{\mathcal{T}} \operatorname{grad} B_{\boldsymbol{\beta}}^{n}(\mathbf{x}) \cdot \mathbf{A}(\mathbf{x}) \cdot \operatorname{grad} B_{\boldsymbol{\alpha}}^{n}(\mathbf{x}) \, \mathrm{d}\mathbf{x}, \quad \boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathcal{I}_{d}^{n}$

Another useful property of Bernstein polys grad $B^n_{oldsymbol lpha}(\mathbf{x}) = n \sum_{k=1}^{d+1} B^{n-1}_{oldsymbol lpha - \mathbf{e}_k}(\mathbf{x})$ grad $\lambda_k, \quad oldsymbol lpha \in \mathcal{I}^n_d$

Evaluation of Element Stiffness Matrix

 $\mathbf{S}_{\boldsymbol{\alpha}\boldsymbol{\beta}}^{\mathcal{T}} = \int_{\mathcal{T}} \operatorname{grad} B_{\boldsymbol{\beta}}^{n}(\mathbf{x}) \cdot \mathbf{A}(\mathbf{x}) \cdot \operatorname{grad} B_{\boldsymbol{\alpha}}^{n}(\mathbf{x}) \, \mathrm{d}\mathbf{x}, \quad \boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathcal{I}_{d}^{n}$

Another useful property of Bernstein polys grad $B^n_{\alpha}(\mathbf{x}) = n \sum_{k=1}^{d+1} B^{n-1}_{\alpha-\mathbf{e}_k}(\mathbf{x})$ grad λ_k , $\alpha \in \mathcal{I}^n_d$ Hence

$$\mathbf{S}_{\boldsymbol{\alpha}\boldsymbol{\beta}}^{\mathcal{T}} = n^2 \sum_{k,\ell=1}^{d+1} \frac{\binom{\boldsymbol{\alpha} - \mathbf{e}_k + \boldsymbol{\beta} - \mathbf{e}_\ell}{\boldsymbol{\alpha} - \mathbf{e}_k}}{\binom{2n-2}{n-1}} \operatorname{grad} \lambda_k \cdot \mu_{\boldsymbol{\alpha} - \mathbf{e}_k + \boldsymbol{\beta} - \mathbf{e}_\ell}^{2n-2}(\mathbf{A}) \cdot \operatorname{grad} \lambda_\ell$$

Bernstein-Bezier => Optimal Complexity

Theorem: All element matrices can be assembled in optimal complexity $\mathcal{O}(n^{2d})$ including cases where

- non-constant coefficients
- non-affine elements
- coefficients depending on solution u (and/or its derivatives).

Moreover, complexity achieved even if basis functions evaluated on the fly.

Ref: Ainsworth, Andriamaro & Davydov, SISC 2011

Example: 2D

Ξ

ш

Ш

m

Example: 3D

Φ

Ð

Example: 4D

₽

Ē

Ф

E COL

Bernstein-Bezier Basis for Raviart-Thomas Elements

Raviart-Thomas Elements

Raviart-Thomas finite element \mathbb{RT}_n of order $n \in \mathbb{Z}_+$ $\mathbb{RT}_n = \mathbb{P}_n^2 + x\mathbb{P}_n$ dimension (n+1)(n+3). e.g. $V_{\omega} = \operatorname{span}\{\omega_k : k = 1, 2, 3\}$ coincides with \mathbb{RT}_0 .

$$\boldsymbol{\omega}_k = \frac{1}{2|T|} (\boldsymbol{x} - \boldsymbol{x}_k), \quad k = 1, 2, 3.$$

Raviart-Thomas (n=0)

FIGURE 1. Basis functions for \mathbb{RT}_0 with Whitney functions indicated by arrows.

'Generalised' whitney Functions

By analogy with $\omega_1 = \begin{vmatrix} 1 & 0 & 0 \\ \lambda_1 & \lambda_2 & \lambda_3 \\ \operatorname{curl} \lambda_1 & \operatorname{curl} \lambda_2 & \operatorname{curl} \lambda_3 \end{vmatrix}$

For $\alpha \in \mathcal{I}_n$ define

$$\mathbf{\Upsilon}_{\boldsymbol{\alpha}}^{n} = (n+1)B_{\boldsymbol{\alpha}}^{n} \begin{vmatrix} \alpha_{1} & \alpha_{2} & \alpha_{3} \\ \lambda_{1} & \lambda_{2} & \lambda_{3} \\ \mathbf{curl}\,\lambda_{1} & \mathbf{curl}\,\lambda_{2} & \mathbf{curl}\,\lambda_{3} \end{vmatrix}$$

Bernstein-Bezier Basis fo
$$\mathbb{RT}_n$$

Dispense with all *three* vertex functions:

$$V_{\mathbf{curl}}^{n} = \operatorname{span} \left\{ \operatorname{\mathbf{curl}} B_{\alpha}^{n+1} : \ \alpha \in \check{\mathcal{I}}_{n+1} \right\}$$

where

$$\breve{\mathcal{I}}_n = \mathcal{I}_n - \{(n, 0, 0), (0, n, 0), (0, 0, n)\}$$

Bernstein-Bezier Basis fo
$$\mathbb{RT}_n$$

Dispense with *one* 'generalised' Whitney function:

$$V_{\Upsilon}^n = \operatorname{span}{\{\Upsilon_{\alpha}^n : \alpha \in \mathcal{I}'_n\}}$$

where

$${\mathcal I}'_n = {\mathcal I}_n$$
 minus any one index

Bernstein-Bezier Basis fo \mathbb{RT}_n

Include all *three* lowest order Whitney functions.

Theorem 3.6. The set

$$\{\boldsymbol{\Upsilon}_{\boldsymbol{\alpha}}^{n}: \ \boldsymbol{\alpha} \in \mathcal{I}_{n}'\} \cup \left\{ \mathbf{curl} \, B_{\boldsymbol{\alpha}}^{n+1}: \ \boldsymbol{\alpha} \in \breve{\mathcal{I}}_{n+1} \right\} \cup \{\boldsymbol{\omega}_{1}, \boldsymbol{\omega}_{2}, \boldsymbol{\omega}_{3}\}$$

forms a basis for \mathbb{RT}_n .

What does it mean geometrically?

FIGURE 2. Basis functions for \mathbb{RT}_1 : • denotes functions belonging to $V_{\mathbf{curl}}^1$; • correspond to functions belonging to $V_{\mathbf{\Upsilon}}^1$; ◊ denotes the (arbitrarily chosen) index omitted from the set \mathcal{I}_1 to obtain \mathcal{I}'_1 .

FIGURE 3. Basis functions for \mathbb{RT}_2 : • denotes functions belonging to $V^2_{\mathbf{curl}}$; • corresponds to functions belonging to $V^2_{\mathbf{\Upsilon}}$; ◊ denotes the (arbitrarily) chosen function omitted from the set \mathcal{I}_2 to obtain \mathcal{I}'_2 .

Raviart-Thomas (n=2)

FIGURE 4. Basis functions for \mathbb{RT}_3 : • denotes functions belonging to $V^3_{\mathbf{curl}}$; • corresponds to functions belonging to $V^3_{\mathbf{\Upsilon}}$; ◊ denotes the (arbitrarily) chosen function omitted from the set \mathcal{I}_3 to obtain \mathcal{I}'_3 .

Raviart-Thomas (General Case)

Order	Internal Dofs		Edge Dofs		Total
n	V_{Υ}^n	$V_{\mathbf{curl}}^n$	$V_{\boldsymbol{\omega}}$	$V_{\mathbf{curl}}^n$	
0	-	-	3	-	3
1	2	-	3	3	8
2	5	1	3	6	15
3	9	3	3	9	24
:	:	:		:	:
n	n(n+3)/2	n(n-1)/2	3	$\frac{1}{3n}$	(n+1)(n+3)

Application: Darcy Flow

$(\boldsymbol{u}, p) \in \boldsymbol{H}(\operatorname{div}; \Omega) \times L_0^2(\Omega) \text{ such that}$ $\boldsymbol{n} \cdot \boldsymbol{u} = \psi \text{ on } \partial\Omega \text{ and}$ $\frac{\nu}{\kappa} (\boldsymbol{u}, \boldsymbol{v}) - (p, \operatorname{div} \boldsymbol{v}) = -\varrho(\boldsymbol{g}, \boldsymbol{v})$ $(\operatorname{div} \boldsymbol{u}, w) = (f, w)$ for all $(\boldsymbol{v}, w) \in \boldsymbol{H}_0(\operatorname{div}; \Omega) \times L_0^2(\Omega)$

Darcy: Element Residuals

Current Approximation: $(\boldsymbol{u}^{\ell}, p^{\ell})$ Residuals:

$$\begin{aligned} \boldsymbol{v} &\mapsto & -\varrho(\boldsymbol{g}, \boldsymbol{v})_T - \frac{\nu}{\kappa} \left(\boldsymbol{u}^{\ell}, \boldsymbol{v} \right)_T + (p^{\ell}, \operatorname{div} \boldsymbol{v})_T \\ w &\mapsto & (f, w)_T - (\operatorname{div} \boldsymbol{u}^{\ell}, w)_T \end{aligned}$$

 \boldsymbol{v} is chosen to be $\boldsymbol{\Upsilon}_{\boldsymbol{\alpha}}^{n}$, $\operatorname{curl} B_{\boldsymbol{\alpha}}^{n+1}$ and $\boldsymbol{\omega}_{k}$, and $w = B_{\boldsymbol{\alpha}}^{n}$.

CPu for Element Residuals

Application: Maxwell's Equations

find $\mathbf{u} \in H_0(\text{curl})$ and $\lambda \in \mathbb{R}$ such that $(\operatorname{curl} \mathbf{u}, \operatorname{curl} \mathbf{v}) = \lambda^2(\mathbf{u}, \mathbf{v}), \quad \mathbf{v} \in H_0(\operatorname{curl}).$ $\Omega = [0, 1]^2$ True Solution: $\lambda_{k\ell}^2 := \pi^2 (k^2 + \ell^2), \quad k, \ell \in \mathbb{Z}_+.$ $\mathbf{u}_{k,\ell}(x,y) := \left(\begin{array}{c}k\sin(k\pi x)\cos(\ell\pi x)\\\\\ell\sin(\ell\pi y)\cos(k\pi x)\end{array}\right)^{\perp}$

Ξ

m

Application: Maxwell's Equations

Summary

• Conceptual simplicity:

Basis Functions <-> Nodes • Optimal complexity computation of element matrices using AAD Algorithm/fast matrix multiply (MA, Andriamaro & Davydov, SISC, 2011) • Extension to H(div)/H(curl) MA, Andriamaro & Davydov, Brown Tech. Rep. 20, 2012) •Non-uniform Local Polynomial Orders with de Casteljan 'pyramid' algorithms for entire FE implementation (Ainsworth, SISC 36, 2014). 🕮 BROWN