Stabilized finite element methods for nonsymmetric, noncoercive and ill-posed problems

Erik Burman

Department of Mathematics University College London

LMS Workshop on Numerical Analysis: Building Bridges..., July 2014

UCL

Outline

- The coercive framework for FEM
- Stabilization for positive operators
- FEM, problems without coercivity
- Stabilized FEM, problems without coercivity
- Elliptic problems, analysis examples
- Hyperbolic pbs, analysis examples
- Ill-posed pbs, analysis examples

The classical framework for numerical analysis I

• Variational formulation: find $u \in V$ such that

 $a(u,v) = l(v) \quad \forall v \in V$

- Wellposedness given by the Lax-Milgram's lemma
 - $a(\cdot, \cdot)$ bilinear; $|a(u, v)| \le M ||u||_V ||v||_V$ for all $u, v \in V$
 - $\alpha \|u\|_V^2 \leq a(u, u)$, for all $u \in V$
 - $I(\cdot)$ linear, $I(v) \leq L \|v\|_V$, $L = \|I\|_{V'}$
- $\bullet\, \rightarrow$ there exists a unique solution
- Continuous dependence on data

 $\|u\|_{V} \leq M\alpha^{-1}\|I\|_{V'}$

The classical framework for numerical analysis II

• Galerkin projection: find $u_h \in V_h \subset V$ such that

 $a(u_h, v_h) = l(v_h) \quad \forall v_h \in V_h$

• Best approximation using coercivity, Galerkin orthogonality, continuity, $e = u - u_h \in V$

$$\alpha \|\boldsymbol{e}\|_{V}^{2} \leq \boldsymbol{a}(\boldsymbol{e},\boldsymbol{e}) = \boldsymbol{a}(\boldsymbol{e},\boldsymbol{u}-\boldsymbol{v}_{h}) \leq \boldsymbol{M} \|\boldsymbol{e}\|_{V} \|\boldsymbol{u}-\boldsymbol{v}_{h}\|_{V}$$

as a consequence

$$\|e\|_V \leq M\alpha^{-1} \inf_{v_h \in V_h} \|u - v_h\|_V$$

• Compare with the continuous dependence on data.

 $\|u\|_{V} \le M\alpha^{-1} \|I\|_{V'}$

Stabilization to enhance coercivity I

- Consider the discrete error: $e_h := i_h u u_h$
- For problems where Lax-Milgram fails the analysis above may lead to

$$\|i_h u - u_h\|_L^2 \le M\alpha^{-1} \|u - i_h u\|_* \|i_h u - u_h\|_V$$

 $\|\cdot\|_*$ with optimal approximation and $\|\cdot\|_V$ a stronger norm than $\|\cdot\|_L$

Example: the transport equation

• find $u_h \in V_h$ such that

$$(\sigma u_h + \beta \cdot \nabla u_h, v_h) = (f, v_h), \quad \forall v_h \in V_h$$

Coercivity in the L^2 -norm but continuity on L^2/H^1 :

$$\alpha \|i_h u - u_h\|_{L^2(\Omega)}^2 \le \|u - i_h u\|_{L^2(\Omega)} (\|\sigma(i_h u - u_h)\|_{L^2(\Omega)} + \|\beta \cdot \nabla(i_h u - u_h)\|_{L^2(\Omega)})$$

 \bullet inverse inequality \rightarrow error estimate for smooth solutions, optimality is lost

Stabilization to enhance coercivity II

• A stabilized formulation may read: find $u_h \in V_h$ such that

$$(\sigma u_h + \beta \cdot \nabla u_h, v_h) + s(u_h, v_h) = (f, v_h), \quad \forall v_h \in V_h$$

• $s(u_h, v_h)$: weakly consistent operator, making coercivity and continuity match

$$\| u_h \|^2 := \| u_h \|_{L^2(\Omega)}^2 + s(u_h, u_h)$$

• The analysis now becomes with $e_h := i_h u - u_h$,

 $\alpha ||\!||e_h|\!||^2 = a(e_h, e_h) + s(e_h, e_h) = a(u - i_h u, e_h) + s(i_h u, e_h) \le M ||u - i_h u||_* ||\!|e_h|\!||$

and hence

$$|||e_h||| \leq M\alpha^{-1}||u-i_hu||_*.$$

- $s(\cdot, \cdot)$ chosen to give the best compromise between stability and accuracy.
- $a(\cdot, \cdot)$ must be coercive, at least on some weak norm
- For a complete picture we need an inf-sup condition based analysis

Finite element methods for problems without coercivity I

- Elliptic problems (Schatz, 1974)
 - ▶ Well posedness under suitable assumptions on data using Fredholm's alternative
 - The standard Galerkin finite element method produces an invertible linear system and optimally convergent approximations for sufficiently small meshsizes
 - duality (Nitsche):

$$\|u-u_h\|_{L^2(\Omega)} \leq C_a h \|\nabla(u-u_h)\|_{L^2(\Omega)}$$

★ Gårding's inequality

$$C_1 \|u - u_h\|_{H^1(\Omega)}^2 - C_2 \|u - u_h\|_{L^2(\Omega)}^2 \le a(u - u_h, u - u_h)$$

 \star therefore, for small enough *h* the left hand side below is positive

$$(1 - C_a^2 C_2 C_1^{-1} h^2) \|u - u_h\|_{H^1(\Omega)} \le M C_1^{-1} \|u - i_h u\|_{H^1(\Omega)}$$

- The transport equation (hyperbolic)
 - Well posedness for smooth, non vanishing velocity fields using the method of characteristics
 - No known analysis for the standard Galerkin method
 - Stabilized FEM for non-negative form, exponential weight functions: Johnson-Nävert-Pitkäranta, 1983 ; Sangalli, 2000 ; Guzman 2008; Ayuso-Marini, 2009;

Finite element methods for problems without coercivity II

- To fix the ideas: $\mathcal{L}u := -\mu\Delta u + \beta \cdot \nabla u + \sigma u$
- The Peclet number is low
- Consider the well-posed, but indefinite problem:

$$\mathcal{L}u = f \text{ in } \Omega + BCs \text{ on } \partial \Omega$$

with associated weak form: find $u \in V$ such that

$$a(u,v) = (f,v), \quad \forall v \in V.$$

• $a(\cdot, \cdot)$ not coercive \rightarrow the discrete problem, find $u_h \in V_h$ such that

$$a(u_h, v_h) = (f, v_h), \quad \forall v_h \in V_h$$
(1)

may be ill-posed for fixed h.

Failure of coercivity \rightarrow matrix possibly singular

If $A := a(\varphi_j, \varphi_i)$, $F := l(\varphi_i)$, with φ_i nodal basis function,

$$AU = F$$

A may have zero eigenvalues, or be ill-conditioned, even if the continuous problem is well-posed.

• Non-uniqueness: $\exists \tilde{U} \in \mathbb{R}^N \setminus \{\mathbf{0}\}, N := \dim(V_h) \text{ s.t.}$

$$A\tilde{U}=0$$

② Non-existence: $F \notin \text{Image}(A) \rightarrow \text{compatibility conditions}$

Analogy: Stokes' problem,

- ${\small \textcircled{0}} \ \sim \ {\rm spurious} \ {\rm pressure} \ {\rm modes}$
- ${\it 2} \sim {\rm locking}$

A framework for stabilization of noncoercive problems I

Standard stabilization fails

 $a(u_h, v_h) + s(u_h, v_h)$ is still typically indefinite.

Inf-sup stability typically either requires some positivity or a mesh condition

Idea

- Consider $a(u_h, v_h) = (f, v_h)$ as the constraint for a minimization problem
- Minimize some weakly consistent stabilization possibly together with penalty for the boundary conditions
- Stabilize the Lagrange multiplier

A framework for stabilization of noncoercive problems II

• Lagrangian:

$$L(u_h, z_h) := \frac{1}{2} s_p(u_h - u, u_h - u) - \frac{1}{2} s_a(z_h, z_h) + a_h(u_h, z_h) - (f, z_h)$$

- "choose" the u_h that minimizes $s(u_h u, u_h u)$
- Lack of inf-sup stability handled by stabilizing the Lagrange-multiplier
- Stationary points

$$\begin{cases} \frac{\partial L}{\partial u_h}(v_h) = a_h(v_h, z_h) - s_p(u_h - u, v_h) = 0\\ \frac{\partial L}{\partial z_h}(w_h) = a_h(u_h, w_h) - s_a(z_h, w_h) - (f, w_h) = 0 \end{cases}$$

A framework for stabilization of noncoercive problems III

• The resulting Euler-Lagrange equations: find $(u_h, z_h) \in V_h imes V_h$

 $\begin{vmatrix} a_h(u_h, w_h) - s_a(z_h, w_h) &= (f, w_h) \\ a_h(v_h, z_h) + s_p(u_h, v_h) &= s_p(u, v_h) \end{vmatrix} \text{ for all } (w_h, v_h) \in V_h \times V_h \end{vmatrix} (2)$

- The exact solution is: $u_h = u$ and $z_h = 0$
- The resulting system has twice as many degrees of freedom as FEM
- $s_p(u, v_h)$ must be a known quantity
- imposition of boundary conditions possible in $s_a(\cdot, \cdot)$ and $s_p(\cdot, \cdot)$
- Skew-symmetry gives partial stability: take $w_h = -z_h$, $v_h = u_h$

$$|u_h|_{s_p}^2 + |z_h|_{s_a}^2 = -(f, z_h) + s_p(u, u_h)$$

with
$$|u_h|_{s_p}:=s_p(u_h,u_h)^{rac{1}{2}}$$
 and $|z_h|_{s_a}:=s_a(z_h,z_h)^{rac{1}{2}}$

Typically, piecewise affine elements \rightarrow invertibility of the matrix.

Possible stabilization operators: the usual suspects

• Galerkin-Least squares:

$$s_{p}(u_{h}-u,w_{h})=\gamma\sum_{K\in\mathcal{T}_{h}}(h^{2}(\mathcal{L}u_{h}-f),\mathcal{L}w_{h})_{K}+\gamma\sum_{F\in\mathcal{F}_{l}}\langle h[\![\partial_{n}u_{h}]\!],[\![\partial_{n}w_{h}]\!]\rangle_{F}$$

$$s_a(z_h, v_h) = \gamma \sum_{K \in \mathcal{T}_h} (h^2 \mathcal{L}^* z_h, \mathcal{L}^* v_h)_K + \gamma \sum_{F \in \mathcal{F}_I} \langle h \llbracket \partial_n z_h \rrbracket, \llbracket \partial_n v_h \rrbracket \rangle_F$$

• discontinuous Galerkin (dG): $s_a(\cdot, \cdot) \equiv s_p(\cdot, \cdot)$

$$s_{p}(u_{h}, w_{h}) = \gamma \sum_{F \in \mathcal{F}_{l}} \left(\left\langle h^{-1} \llbracket u_{h} \rrbracket, \llbracket w_{h} \rrbracket \right\rangle_{F} + \left\langle h \llbracket \partial_{n} u_{h} \rrbracket, \llbracket \partial_{n} w_{h} \rrbracket \right\rangle_{F} \right)$$

• Continuous interior penalty (CIP): $s_a(\cdot, \cdot) \equiv s_p(\cdot, \cdot)$

$$s_{p}(u_{h}, w_{h}) = \gamma \sum_{F \in \mathcal{F}_{l}} \left(\left\langle h^{3} \llbracket \Delta u_{h} \rrbracket, \llbracket \Delta w_{h} \rrbracket \right\rangle_{F} + \left\langle h \llbracket \partial_{n} u_{h} \rrbracket, \llbracket \partial_{n} w_{h} \rrbracket \right\rangle_{F} \right)$$

∂_nu_h := n · ∇u_h, [[u_h]] is the jump of u_h on internal faces and equal u_h on boundary faces

The elliptic case: analysis by duality (GLS) I

Approximability:

$$\|u - i_h u\|_* := \|h^{-\frac{1}{2}} (u - i_h u)\|_{\mathcal{F}} + \|h^{-1} (u - i_h u)\|_{\Omega} + |u - i_h u|_{s_p} \le Ch^k |u|_{H^{k+1}(\Omega)}$$

Continuity :
$$\begin{cases} a(u - i_h u, v_h) \le C \|u - i_h u\|_* |v_h|_{s_a} \text{ and} \\ a(u - u_h, w - i_h w) \le Ch |u - u_h|_{s_p} \|w\|_{H^2(\Omega)} \end{cases}$$

Theorem

Assume that $u \in H^{k+1}(\Omega)$ is the unique solution of a(u, v) = (f, v), $\forall v \in V$ and that the adjoint problem $\mathcal{L}^* \varphi = \psi$ is wellposed with $\|\varphi\|_{H^2(\Omega)} \leq C_R \|\psi\|_{L^2(\Omega)}$. Then

$$\|u - u_h\|_{L^2(\Omega)} + h\|\nabla(u - u_h)\|_{L^2(\Omega)} \le \underbrace{Ch(|u - u_h|_{s_p} + |z_h|_{s_a})}_{a \text{ posteriori quantity}} \le Ch^{k+1}\|u\|_{H^{k+1}(\Omega)}$$

GLS: no conditions on the mesh-parameter dG and CIP: $C_R h^3 |\beta|_{W^2,\infty} \lesssim 1$ small if oscillation in data (c.f. Schatz $C_R^2 h^2 \lesssim 1$)

The elliptic case: analysis by duality (GLS) II

Sketch of proof.

• Step 1: Optimal convergence, stabilization semi-norm by energy arguments, $\xi_h = u_h - i_h u$

$$\begin{aligned} |\xi_h|_{s_p}^2 + |z_h|_{s_a}^2 &= a(\xi_h, z_h) + s_p(\xi_h, \xi_h) - a(\xi_h, z_h) + s_a(z_h, z_h) \\ &= a(u - i_h u, z_h) - s_p(u - i_h u, \xi_h) \le \|u - i_h u\|_* (|\xi_h|_{s_p}^2 + |z_h|_{s_a}^2)^{\frac{1}{2}}. \end{aligned}$$

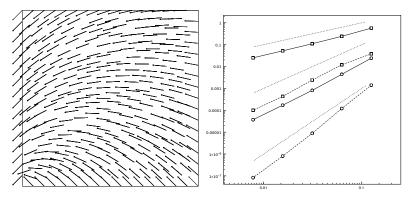
• Step 2: Prove optimal convergence in the L^2 -norm using a duality argument

 $\|u - u_h\|_{L^2(\Omega)} + \|z_h\|_{L^2(\Omega)} \le Ch(|\xi_h|_{s_p} + |z_h|_{s_a}) \le Ch^{k+1}|u|_{H^{k+1}(\Omega)}$

• Step 3: Prove optimal convergence in the *H*¹-norm using Gårding's inequality, or an inverse inequality.

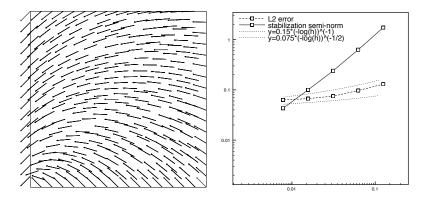
Important observation: no stability of the continuous problem is used in Step 1

Example within the assumptions: noncoercive convection-diffusion with pure Neumann conditions



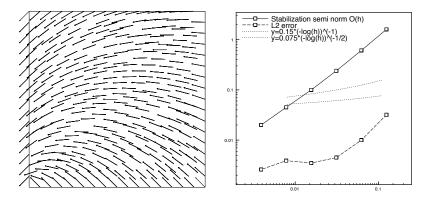
- $\nabla \cdot (\beta u \nu \nabla u) = f$, Pe= 200, u smooth, $\nabla \cdot \beta = -200$
- Neumann condition on $\partial \Omega$: $(\beta u \nu \nabla u) \cdot n = g$
- Full lines, $|u u_h|_{s_p} + |z_h|_{s_a}$, dashed L²-norm error, dotted $O(h^k)$, k = 1, 2, 3
- Squares P_1 approximation, circles P_2 approximation

Example beyond the assumptions: the Cauchy problem



- $\beta \cdot \nabla u \nu \Delta u = f$, Pe= 200, u smooth
- Dirichlet and Neumann bcs on $\{x \in (0,1), y = 0\}$ and $\{x = 1, y \in (0,1)\}$
- No boundary data on on $\{x=0, y \in (0,1)\}$ and $\{x \in (0,1), y=1\}$
- $\|\nabla \varphi\| \le \|u u_h\|$ can not hold, would give a posteriori upper bound

Example beyond the assumptions: the Cauchy problem



- $\beta \cdot \nabla u \nu \Delta u = f$, Pe= 200, u smooth
- Dirichlet and Neumann bcs on $\{x = 0, y \in (0,1)\}$ and $\{x \in (0,1), y = 1\}$
- No boundary data on $\{x \in (0,1), y = 0\}$ and $\{x = 1, y \in (0,1)\}$
- $\|\nabla \varphi\| \le \|u u_h\|$ can not hold, would give a posteriori upper bound

The hyperbolic case: analysis using inf-sup stability I

• Transport equation:

 $\mathcal{L}u := \nabla \cdot (\beta u) + \sigma u = f, \quad \beta \in W^{2,\infty}(\Omega), \, \sigma \in W^{1,\infty}(\Omega)$

- For every x ∈ Ω ∃ streamline leading to boundary data in finite time
 For GLS and dG stabilization the gradient jumps may be dropped. For CIP stabilization the jumps in the Laplacian may be dropped.
- Stabilization parameters will scale differently in h

Error estimate for stabilized FEM, hyperbolic case

 $\|u-u_h\|_{L^2(\Omega)}+\|h^{\frac{1}{2}}\beta\cdot\nabla(u-u_h)\|_{L^2(\Omega)}\leq Ch^{k+\frac{1}{2}}|u|_{H^{k+1}(\Omega)}$

Mesh conditions:

- standard stabilized FEM: $h^{\frac{1}{2}}$ small
- GLS optimization based: no condition on *h* under exact quadrature.
- dG and cG optimization based: h^2 small (for nonconstant smooth β and σ).

The hyperbolic case: analysis using inf-sup stability II

Main ideas and tools for proof.

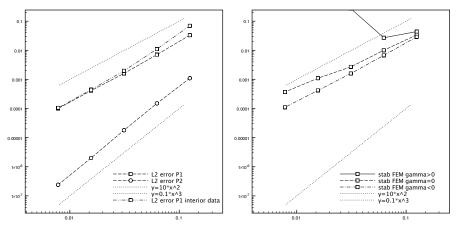
• The stability of the dual problem is replaced by

 $\forall v_h \in V_h \exists v_p(v_h) \text{ such that } \|v_h\|_{L^2(\Omega)}^2 \leq a(v_h, v_p(v_h))$

and similarly for the adjoint problem

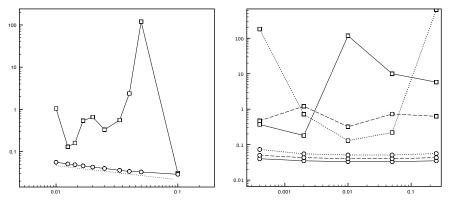
- for the transport equation: $v_p(v_h) = (e^{\eta}v_h)$ where $\beta \cdot \nabla \eta \ge c$, with c sufficiently big
- Superapproximation to estimate $\|v_p(v_h) \pi_h v_p(v_h)\|$
- Steps 1 and 2 of the elliptic case, must be handled together in this case, weighting together the energy stability of $|\cdot|_{s_p}$ and $|\cdot|_{s_a}$ with the inf-sup stability in the L^2 -norm

Example within the assumptions: data assimilation



- Problem: ∇ · (βu) = f, data set on the outflow boundary, smooth solution u
 β = (-(x + 1)⁴ + y, -8(y x))^T
- Left plot: optimization method, L^2 -error vs. h, squares P_1 , circles P_2
- Right plot: standard stabilized method. Dash-dot: $\gamma < 0$, dashed $\gamma = 0$, full $\gamma > 0$. Observe that for standard stabilization γ must change sign!

Example beyond the assumptions: strong oscillation



- Problem: $\nabla \cdot (\beta u) = f$
- data set on the inflow, smooth solution u, 64×64 unstructured mesh.
- $\beta = (10 \arctan(\frac{y-\frac{1}{2}}{\varepsilon}) \frac{x^2}{\varepsilon}, \sin(x/\varepsilon) + \sin(y/\varepsilon)\frac{x^2}{\varepsilon})^T$
- circles: optimization method; squares: standard stabilized method
- Left plot: SD-error vs ε with $\gamma_{CIP} = 0.01$, dotted line $O(\epsilon^{-\frac{1}{3}})$
- Right plot: SD-error vs γ_{CIP} for $\epsilon = \{0.05 \text{ (full)}, 0.025 \text{ (dash)}, 0.0125 \text{ (dot)}\}$

Ill-posed problems. Example: the Cauchy problem

Let Ω be a convex polygonal (polyhedral) domain in \mathbb{R}^d , d=2,3

$$\begin{cases} -\Delta u = f, \text{ in } \Omega\\ u = 0 \text{ and } \nabla u \cdot n = \psi \text{ on } \Gamma \end{cases}$$

•
$$\Gamma \subset \partial \Omega$$
, Γ simply connected, $\Gamma' := \partial \Omega \setminus \Gamma$

•
$$f \in L^2(\Omega), \psi \in H^{\frac{1}{2}}(\Gamma)$$

•
$$V := \{ v \in H^1(\Omega) : v|_{\Gamma} = 0 \}$$
 and $W := \{ v \in H^1(\Omega) : v|_{\Gamma'} = 0 \}$

- $a(u, w) = \int_{\Omega} \nabla u \cdot \nabla w \, dx$, and $I(w) := \int_{\Omega} fw \, dx + \int_{\Gamma} \psi w \, ds$
- abstract weak formulation,

find
$$u \in V$$
 such that $a(u, w) = l(w) \quad \forall w \in W$

(4)

(3)

The ill-posed case: analysis by continuous dependence I

Consider the abstract problem: find $u \in V$ such that

$$a(u,w) = l(w) \quad \forall w \in W.$$
(5)

- Assumption: I(w) is such that the problem (5) admits a unique solution $u \in V$.
- Observe that we do not assume that (5) admits a unique solution for all l(w) such that $\|I\|_{W'} < \infty$

Assumption: continuous dependence on data

Consider the functional $j: V \mapsto \mathbb{R}$. Let $\Xi: \mathbb{R}^+ \mapsto \mathbb{R}^+$ be a continuous, monotone increasing function with $\lim_{x\to 0^+} \Xi(x) = 0$.

If $||I||_{W'} \le \epsilon$ in (5) then $|j(u)| \le \Xi(\epsilon)$. if $\epsilon > 0$ sufficiently small

Finite element formulation of the abstract problem I

- Assume that $V_h \subset V$ and $W_h \subset W$
- Finite element formulation: find $(u_h, z_h) \in V_h \times W_h$ such that,

$$\begin{array}{ll} \mathsf{a}(u_h, w_h) - \mathsf{s}_W(z_h, w_h) &= l(w_h) \\ \mathsf{a}(v_h, z_h) + \mathsf{s}_V(u_h, v_h) &= \mathsf{s}_V(u, v_h) \end{array} \right\} \quad \text{for all } (v_h, w_h) \in V_h \times W_h.$$

$$(7)$$

• Stabilization operators may be chosen as before

Finite element formulation of the abstract problem II

Main assumptions on $a(\cdot, \cdot)$, $s_W(\cdot, \cdot)$ and $s_V(\cdot, \cdot)$

Assume that the form a(u, v) satisfies the continuities

$$a(v - i_V v, w_h) \le \|v - i_V v\|_{*, V} |w_h|_{s_W}, \forall v \in V, w_h \in W_h$$
(8)

and for u solution of (5),

$$a(u - u_h, w - i_W w) \le \delta_l(h) \|w\|_W + \|w - i_W w\|_{*,W} |u - u_h|_{s_V}, \forall w \in W.$$
(9)

Assume approximation estimates for $v - i_V v$ and $w - i_W w$

$$|v - i_V v|_{s_V} + ||v - i_V v||_{*,V} \le C_V(v)h^t$$
(10)

$$\|w - i_W w\|_{*,W} + |i_W w|_{s_W} \le C_W \|w\|_W, \quad \forall w \in W.$$
(11)

Finite element formulation of the abstract problem III

Lemma (Convergence of stabilizing terms)

Let u be the solution of (5) and (u_h, z_h) the solution of the formulation (14) for which (8) and (10) hold. Then

$$|u - u_h|_{s_V} + |z_h|_{s_W} \le (1 + \sqrt{2})C_V(u)h^t.$$

Theorem (Convergence using continuous dependence)

Let u be the solution of (5) (which has the stability property (6)) and (u_h, z_h) the solution of the formulation (14) (for which (8)-(10) hold). Then

$$|j(u-u_h)| \le \Xi(\eta(u_h, z_h)) \tag{12}$$

With the a posteriori quantity $\eta(u_h, z_h) := \delta_l(h) + C_W(|u - u_h|_{s_V} + |z_h|_{s_W})$. For sufficiently smooth u there holds

$$\eta(u_h, z_h) \le \delta_l(h) + (1 + \sqrt{2}) C_W C_V(u) h^t.$$
(13)

The approximation will be optimal with respect to continuous dependence!

Continuous dependence. Example: the Cauchy problem

- The Cauchy problem is not wellposed in the sense of Hadamard
- However if (3) admits a solution u ∈ H¹(Ω), a (conditional) continuous dependence of the form (6), with 0 < ε < 1, holds for: (interior estimate)

$$\begin{split} j(u) &:= \|u\|_{L^2(\omega)}, \ \omega \subset \Omega : \ \text{dist}(\omega, \partial \Omega) =: d_{\omega, \partial \Omega} > 0 \text{ with } \Xi(x) = C_{u\varsigma} x^{\varsigma}, \\ C_{u\varsigma} &> 0, \ \varsigma := \varsigma(d_{\omega, \partial \Omega}) \in (0, 1) \end{split}$$

and for: (global estimate)

 $|j(u) := ||u||_{L^2(\Omega)}$ with $\Xi(x) = C_u(|\log(x)| + C)^{-\varsigma}$ with $C_u, C > 0, \varsigma \in (0, 1)$

The constant $C_{u\varsigma}$ grows monotonically in $||u||_{L^2(\Omega)}$ and C_u grows monotonically in $||u||_{H^1(\Omega)}$

• For details see:

G. Alessandrini, L. Rondi, E. Rosset, and S. Vessella. The stability for the Cauchy problem for elliptic equations. *Inverse Problems*, 25(12):123004, 47, 2009.

Stabilized FEM for the Cauchy problem

Stabilized FEM for the Cauchy problem

- Let $V_h \in V$, $W_h \in W$, with piecewise affine functions
- CIP-stabilization for u_h and z_h (+ boundary penalty for Neumann condition)

• Find $(u_h, z_h) \in V_h \times W_h$ such that

$$\begin{cases} a(u_h, w_h) - s_a(z_h, w_h) &= (f, w_h) + \langle \psi, w_h \rangle_{\Gamma} \\ a(v_h, z_h) + s_p(u_h, v_h) &= s_p(u, v_h) \end{cases} \text{ for all } (v_h, w_h) \in V_h \times W_h$$

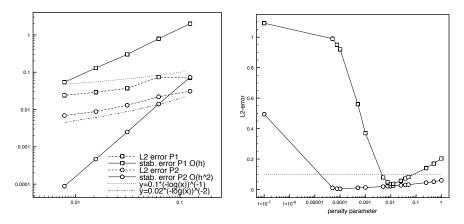
where a possible choice of stabilization operators is

$$s_{V}(u_{h}, v_{h}) := \sum_{F \in \mathcal{F}_{I} \cup \mathcal{F}_{\Gamma}} \int_{F} h_{F} \llbracket \partial_{n} u_{h} \rrbracket \llbracket \partial_{n} v_{h} \rrbracket \, \mathrm{d}s, \quad \text{with } h_{F} := \mathrm{diam}(F)$$
$$w_{W}(z_{h}, w_{h}) := a(z_{h}, w_{h}) \quad \text{or} \quad s_{W}(z_{h}, w_{h}) := \sum_{F \in \mathcal{F}_{I} \cup \mathcal{F}_{\Gamma'}} \int_{F} h_{F} \llbracket \partial_{n} z_{h} \rrbracket \llbracket \partial_{n} w_{h} \rrbracket \, \mathrm{d}s$$

This formulation satisfies the assumptions of the convergence theorem

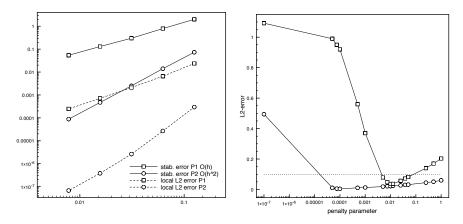
S

Numerical results for the Cauchy problem



- $\Omega := [0,1] \times [0,1]$, smooth exact solution u
- Dirichlet and Neumann bcs on $\{x = 0, y \in (0,1)\}$ and $\{x \in (0,1), y = 1\}$
- Left: convergence plots global errors
- Right: L^2 -error against stabilization parameter (squares P_1 , circles P_2)

Numerical results for the Cauchy problem



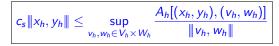
- $\Omega := [0,1] \times [0,1]$, smooth exact solution u
- Dirichlet and Neumann bcs on $\{x = 0, y \in (0,1)\}$ and $\{x \in (0,1), y = 1\}$
- Left: convergence plots local errors, $\{x > 0.5, y < 0.5\}$
- Right: L^2 -error against stabilization parameter (squares P_1 , circles P_2)

Variations on the theme: discrete inf-sup condition Instead of using positivity in the derivation of the first estimate

$$|u - u_h|_{s_p} + |z_h|_{s_a} \le Ch^k |u|_{H^{k+1}(\Omega)}$$

we can in some cases stabilize less and derive a discrete inf-sup condition:

 $\exists c_s > 0$ such that $\forall x_h \in V_h, y_h \in W_h$ there holds



where

$$A_h[(x_h, y_h), (v_h, w_h)] := a_h(x_h, w_h) - s_a(y_h, w_h) + a_h(v_h, y_h) + s_p(x_h, v_h)$$

and ideally (so far only for piecewise affine elements)

$$||\!| x_h, y_h ||\!| := ||h \nabla x_h||_{L^2(\Omega)} + ||\nabla y_h||_{L^2(\Omega)} + ||h^{\frac{1}{2}} [\![\partial_n x_h]\!] ||_{\mathcal{F}_I \cup \mathcal{F}_\Gamma} + |x_h|_{s_p} + |y_h|_{s_a}$$

Then we may prove:

$$|||u-u_h,z_h||| \leq Ch|u|_{H^2(\Omega)}$$

Example: the Cauchy problem, Crouzeix-Raviart element I

• the Crouzeix-Raviart space

$$X_h^{\Gamma} := \{ v_h \in L^2(\Omega) : \int_F [v_h] \, \mathrm{d}s = 0, \, \forall F \in \mathcal{F}_i \cup \mathcal{F}_{\Gamma} \text{ and } v_h|_{\kappa} \in \mathbb{P}_1(\kappa), \, \forall \kappa \in \mathcal{K}_h \}$$

- $V_h := X_h^{\Gamma}$ and $W_h := X_h^{\Gamma'}$
- broken norms

$$\|x\|_{h}^{2} := \sum_{\kappa \in \mathcal{T}_{h}} \|x\|_{\kappa}^{2}$$
 and $\|x\|_{1,h}^{2} := \|x\|_{h}^{2} + \|\nabla x\|_{h}^{2}$

• Finite element formulation: find $(u_h, z_h) \in V_h \times W_h$ such that,

$$a_{h}(u_{h}, w_{h}) - s_{W}(z_{h}, w_{h}) = l(w_{h})$$

$$a_{h}(v_{h}, z_{h}) + s_{V}(u_{h}, v_{h}) = 0$$
(14)

for all $(v_h, w_h) \in V_h \times W_h$

Example: the Cauchy problem, Crouzeix-Raviart element II

• Here the bilinear forms are defined by

$$a_h(u_h, w_h) = \sum_{\kappa \in \mathcal{T}_h} \int_{\kappa} \nabla u_h \cdot \nabla w_h \, \mathrm{d}x,$$

$$s_W(z_h, w_h) := \sum_{\kappa \in \mathcal{T}_h} \int_{\kappa} \gamma_W \nabla z_h \cdot \nabla w_h \, \mathrm{d}x \tag{15}$$

or

$$s_W(z_h, w_h) := \sum_{F \in \mathcal{F}_i \cup \mathcal{F}_{\Gamma'}} \int_F \gamma_W h_F^{-1}[z_h][w_h] \, \mathrm{d}s \tag{16}$$

and finally

$$s_{V}(u_{h},v_{h}) := \sum_{F \in \mathcal{F}_{i} \cup \mathcal{F}_{F}} \int_{F} \gamma_{V} h_{F}^{-1}[u_{h}][v_{h}] ds$$
(17)

Example: the Cauchy problem, Crouzeix-Raviart element III

• Compact form: find $(u_h, z_h) \in \mathcal{V}_h := V_h \times W_h$ such that,

$$A_h[(u_h, z_h), (v_h, w_h)] = l(w_h)$$
 for all $(v_h, w_h) \in \mathcal{V}_h$

• The bilinear form is then given by

$$A_h[(u_h, z_h), (v_h, w_h)] := a_h(u_h, w_h) - s_W(z_h, w_h) + a_h(v_h, z_h) + s_V(u_h, v_h)$$

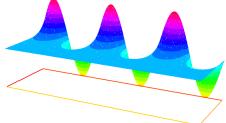
Theorem (Inf-sup stability for the Crouzeix-Raviart based method)

Assume that $(\gamma_V \gamma_W) \leq (C_i c_T)^{-2}$. Then there exists a positive constant c_s independent of γ_V , γ_W such that there holds

$$c_{s}|||x_{h}, y_{h}||| \leq \sup_{(v_{h}, w_{h}) \in \mathcal{V}_{h}} \frac{A_{h}[(x_{h}, y_{h}), (v_{h}, w_{h})]}{|||v_{h}, w_{h}|||}$$

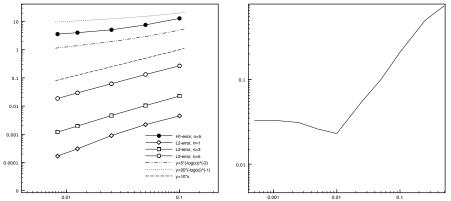
where $|||x_h, y_h||| := \gamma_V^{\frac{1}{2}} ||h \nabla x_h||_h + \gamma_V^{\frac{1}{2}} ||h[\partial_n x_h]||_{\mathcal{F}_i \cup \mathcal{F}_{\Gamma_C}} + |x_h|_{s_V} + |y_h|_{s_W}$

Numerical results for the Cauchy problem (CR-element) I



- Original problem by Hadamard
- $\Omega := [0, \pi] \times [0, 1]$
- $u(x, y) = (1/n) \sin(nx) \sinh(ny)$, n parameter
- Dirichlet and Neumann bcs on $\{x \in (0, \pi), y = 0\}$
- Dirichlet on $\{x=0, y \in (0,1)\}$ and $\{x=\pi, y \in (0,1)\}$
- increasing *n* increases the rate of exponential growth and size of Sobolev norms

Numerical results for the Cauchy problem (CR-element) II



- Left: global L²-error for n = 1, n = 3, n = 5, $\gamma_V = \gamma_W = 0.01$
- Right: stabilization parameter $\gamma_V = \gamma_W$ against L^2 -error on a 10 imes 10 mesh
- Higher values of n does not yield converging solution on these meshes. $\|u\|_{H^2(\Omega)}\text{-norm too large}$

Conclusions and outlook

- Stabilized finite element methods in an optimization framework
- Error estimates for non-coercive problems
- A posteriori and a priori error estimates are obtained similarly, constants unknown
- Ill-posed problems: error analysis using continuous dependence
- New ideas on data assimilation and inverse problems using stabilized FEM
- New ideas on the design and analysis of Tikhonov regularization methods

Numerical example: source identification I

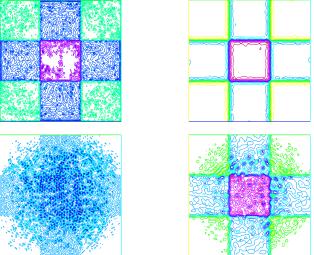


Figure : Left: naive application of the stiffness matrix, Right: stabilized reconstruction, top unpertubed data, bottom perturbed data

Numerical example: source identification II

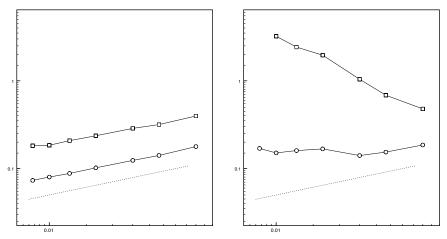


Figure : Convergence plots in the L^2 -norm, Left: unperturbed data; Right: perturbed data