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The classical framework for numerical analysis I

Variational formulation: find u ∈ V such
that

a(u, v) = l(v) ∀v ∈ V

Wellposedness given by the
Lax-Milgram’s lemma

I a(·, ·) bilinear; |a(u, v)| ≤ M‖u‖V ‖v‖V
for all u, v ∈ V

I α‖u‖2
V ≤ a(u, u), for all u ∈ V

I l(·) linear, l(v) ≤ L‖v‖V , L = ‖l‖V ′

→ there exists a unique solution

Continuous dependence on data

‖u‖V ≤ Mα−1‖l‖V ′
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The classical framework for numerical analysis II

Galerkin projection: find uh ∈ Vh ⊂ V such that

a(uh, vh) = l(vh) ∀vh ∈ Vh

Best approximation using coercivity, Galerkin orthogonality, continuity,
e = u − uh ∈ V

α‖e‖2
V ≤ a(e, e) = a(e, u − vh) ≤ M‖e‖V ‖u − vh‖V

as a consequence
‖e‖V ≤ Mα−1 inf

vh∈Vh

‖u − vh‖V

Compare with the continuous dependence on data.

‖u‖V ≤ Mα−1‖l‖V ′
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Stabilization to enhance coercivity I

Consider the discrete error: eh := ihu − uh

For problems where Lax-Milgram fails the analysis above may lead to

‖ihu − uh‖L2 ≤ Mα−1‖u − ihu‖∗‖ihu − uh‖V ,

‖ · ‖∗ with optimal approximation and ‖ · ‖V a stronger norm than ‖ · ‖L

Example: the transport equation

find uh ∈ Vh such that

(σuh + β · ∇uh, vh) = (f , vh), ∀vh ∈ Vh

Coercivity in the L2-norm but continuity on L2/H1:

α‖ihu − uh‖2
L2(Ω) ≤ ‖u − ihu‖L2(Ω)(‖σ(ihu − uh)‖L2(Ω) + ‖β · ∇(ihu − uh)‖L2(Ω))

inverse inequality → error estimate for smooth solutions, optimality is lost
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Stabilization to enhance coercivity II
A stabilized formulation may read: find uh ∈ Vh such that

(σuh + β · ∇uh, vh) + s(uh, vh) = (f , vh), ∀vh ∈ Vh

s(uh, vh): weakly consistent operator, making coercivity and continuity match

|||uh|||2 := ‖uh‖2
L2(Ω) + s(uh, uh)

The analysis now becomes with eh := ihu − uh,

α|||eh|||2 = a(eh, eh) + s(eh, eh) = a(u − ihu, eh) + s(ihu, eh) ≤ M‖u − ihu‖∗|||eh|||

and hence
|||eh||| ≤ Mα−1‖u − ihu‖∗.

s(·, ·) chosen to give the best compromise between stability and accuracy.

a(·, ·) must be coercive, at least on some weak norm

For a complete picture we need an inf-sup condition based analysis
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Finite element methods for problems without coercivity I

Elliptic problems (Schatz, 1974)
I Well posedness under suitable assumptions on data using Fredholm’s alternative
I The standard Galerkin finite element method produces an invertible linear

system and optimally convergent approximations for sufficiently small meshsizes
F duality (Nitsche):

‖u − uh‖L2(Ω) ≤ Cah‖∇(u − uh)‖L2(Ω)

F Gårding’s inequality

C1‖u − uh‖2
H1(Ω)

− C2‖u − uh‖2
L2(Ω)

≤ a(u − uh, u − uh)

F therefore, for small enough h the left hand side below is positive

(1− C2
aC2C

−1
1 h2)‖u − uh‖H1(Ω) ≤ MC−1

1 ‖u − ihu‖H1(Ω)

The transport equation (hyperbolic)
I Well posedness for smooth, non vanishing velocity fields using the method of

characteristics
I No known analysis for the standard Galerkin method
I Stabilized FEM for non-negative form, exponential weight functions:

Johnson-Nävert-Pitkäranta, 1983 ; Sangalli, 2000 ; Guzman 2008;
Ayuso-Marini, 2009;
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Finite element methods for problems without coercivity II

To fix the ideas: Lu := −µ∆u + β · ∇u + σu

The Peclet number is low

Consider the well-posed, but indefinite problem:

Lu = f in Ω + BCs on ∂Ω

with associated weak form: find u ∈ V such that

a(u, v) = (f , v), ∀v ∈ V .

a(·, ·) not coercive → the discrete problem, find uh ∈ Vh such that

a(uh, vh) = (f , vh), ∀vh ∈ Vh (1)

may be ill-posed for fixed h.
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Failure of coercivity → matrix possibly singular

If A := a(ϕj , ϕi ), F := l(ϕi ), with ϕi nodal basis function,

AU = F

A may have zero eigenvalues, or be ill-conditioned, even if the continuous problem
is well-posed.

1 Non-uniqueness: ∃Ũ ∈ RN \ {0}, N := dim(Vh) s.t.

AŨ = 0

2 Non-existence: F 6∈ Image(A) → compatibility conditions

Analogy: Stokes’ problem,
1 ∼ spurious pressure modes

2 ∼ locking
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A framework for stabilization of noncoercive problems I

Standard stabilization fails

a(uh, vh) + s(uh, vh) is still typically indefinite.

Inf-sup stability typically either requires some positivity or a mesh condition

Idea

Consider a(uh, vh) = (f , vh) as the constraint for a minimization problem

Minimize some weakly consistent stabilization possibly together with penalty
for the boundary conditions

Stabilize the Lagrange multiplier
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A framework for stabilization of noncoercive problems II

Lagrangian:

L(uh, zh) :=
1

2
sp(uh − u, uh − u)− 1

2
sa(zh, zh) + ah(uh, zh)− (f , zh)

“choose” the uh that minimizes s(uh − u, uh − u)

Lack of inf-sup stability handled by stabilizing the Lagrange-multiplier

Stationary points
∂L

∂uh
(vh) = ah(vh, zh)− sp(uh − u, vh) = 0

∂L

∂zh
(wh) = ah(uh,wh)− sa(zh,wh)− (f ,wh) = 0
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A framework for stabilization of noncoercive problems III

The resulting Euler-Lagrange equations: find (uh, zh) ∈ Vh × Vh{
ah(uh,wh)− sa(zh,wh) = (f ,wh)
ah(vh, zh) + sp(uh, vh) = sp(u, vh)

for all (wh, vh) ∈ Vh × Vh (2)

The exact solution is: uh = u and zh = 0

The resulting system has twice as many degrees of freedom as FEM

sp(u, vh) must be a known quantity

imposition of boundary conditions possible in sa(·, ·) and sp(·, ·)
Skew-symmetry gives partial stability: take wh = −zh, vh = uh

|uh|2sp + |zh|2sa = −(f , zh) + sp(u, uh)

with |uh|sp := sp(uh, uh)
1
2 and |zh|sa := sa(zh, zh)

1
2

Typically, piecewise affine elements → invertibility of the matrix.
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Possible stabilization operators: the usual suspects

Galerkin-Least squares:

sp(uh − u,wh) = γ
∑
K∈Th

(h2(Luh − f ),Lwh)K + γ
∑
F∈FI

〈h[[∂nuh]], [[∂nwh]]〉F

sa(zh, vh) = γ
∑
K∈Th

(h2L∗zh,L∗vh)K + γ
∑
F∈FI

〈h[[∂nzh]], [[∂nvh]]〉F

discontinuous Galerkin (dG): sa(·, ·) ≡ sp(·, ·)

sp(uh,wh) = γ
∑
F∈FI

(
〈
h−1[[uh]], [[wh]]

〉
F

+ 〈h[[∂nuh]], [[∂nwh]]〉F )

Continuous interior penalty (CIP): sa(·, ·) ≡ sp(·, ·)

sp(uh,wh) = γ
∑
F∈FI

(
〈
h3[[∆uh]], [[∆wh]]

〉
F

+ 〈h[[∂nuh]], [[∂nwh]]〉F )

∂nuh := n · ∇uh, [[uh]] is the jump of uh on internal faces and equal uh on
boundary faces
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The elliptic case: analysis by duality (GLS) I
1 Approximability:

‖u− ihu‖∗ := ‖h− 1
2 (u− ihu)‖F + ‖h−1(u− ihu)‖Ω + |u− ihu|sp ≤ Chk |u|Hk+1(Ω)

2 Continuity :

{
a(u − ihu, vh) ≤ C‖u − ihu‖∗|vh|sa and

a(u − uh,w − ihw) ≤ Ch|u − uh|sp‖w‖H2(Ω)

Theorem

Assume that u ∈ Hk+1(Ω) is the unique solution of a(u, v) = (f , v), ∀v ∈ V and
that the adjoint problem L∗ϕ = ψ is wellposed with ‖ϕ‖H2(Ω) ≤ CR‖ψ‖L2(Ω). Then

‖u − uh‖L2(Ω) + h‖∇(u − uh)‖L2(Ω) ≤ Ch(|u − uh|sp + |zh|sa)︸ ︷︷ ︸
a posteriori quantity

≤ Chk+1‖u‖Hk+1(Ω)

GLS: no conditions on the mesh-parameter
dG and CIP: CRh3|β|W 2,∞ . 1 small if oscillation in data
(c.f. Schatz C 2

Rh2 . 1)

Erik Burman (University College London) Stabilized FEM for ill-posed problems 14 / 38



The elliptic case: analysis by duality (GLS) II

Sketch of proof.

Step 1: Optimal convergence, stabilization semi-norm by energy arguments,
ξh = uh − ihu

|ξh|2sp + |zh|2sa = a(ξh, zh) + sp(ξh, ξh)− a(ξh, zh) + sa(zh, zh)

= a(u − ihu, zh)− sp(u − ihu, ξh) ≤ ‖u − ihu‖∗(|ξh|2sp + |zh|2sa)
1
2 .

Step 2: Prove optimal convergence in the L2-norm using a duality argument

‖u − uh‖L2(Ω) + ‖zh‖L2(Ω) ≤ Ch(|ξh|sp + |zh|sa) ≤ Chk+1|u|Hk+1(Ω)

Step 3: Prove optimal convergence in the H1-norm using Gårding’s inequality,
or an inverse inequality.

Important observation: no stability of the continuous problem is used in Step 1
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Example within the assumptions: noncoercive
convection–diffusion with pure Neumann conditions

0.01 0.1

1x10-7

1x10-6

0.00001

0.0001

0.001

0.01

0.1

1

∇ · (βu − ν∇u) = f , Pe= 200, u smooth, ∇ · β = −200

Neumann condition on ∂Ω: (βu − ν∇u) · n = g

Full lines, |u − uh|sp + |zh|sa , dashed L2-norm error, dotted O(hk), k = 1, 2, 3

Squares P1 approximation, circles P2 approximation
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Example beyond the assumptions: the Cauchy problem

0.01 0.1

0.01

0.1

1

L2 error
stabilization semi-norm
y=0.15*(-log(h))^(-1) 
y=0.075*(-log(h))^(-1/2)

β · ∇u − ν∆u = f , Pe= 200, u smooth

Dirichlet and Neumann bcs on {x ∈ (0, 1), y = 0} and {x = 1, y ∈ (0, 1)}
No boundary data on on {x = 0, y ∈ (0, 1)} and {x ∈ (0, 1), y = 1}
‖∇ϕ‖ ≤ ‖u − uh‖ can not hold, would give a posteriori upper bound
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Example beyond the assumptions: the Cauchy problem

0.01 0.1

0.01

0.1

1

Stabilization semi norm O(h)
L2 error
y=0.15*(-log(h))^(-1) 
y=0.075*(-log(h))^(-1/2)

β · ∇u − ν∆u = f , Pe= 200, u smooth

Dirichlet and Neumann bcs on {x = 0, y ∈ (0, 1)} and {x ∈ (0, 1), y = 1}
No boundary data on {x ∈ (0, 1), y = 0} and {x = 1, y ∈ (0, 1)}
‖∇ϕ‖ ≤ ‖u − uh‖ can not hold, would give a posteriori upper bound
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The hyperbolic case: analysis using inf-sup stability I

Transport equation:

Lu := ∇ · (βu) + σu = f , β ∈W 2,∞(Ω), σ ∈W 1,∞(Ω)

For every x ∈ Ω ∃ streamline leading to boundary data in finite time

For GLS and dG stabilization the gradient jumps may be dropped.
For CIP stabilization the jumps in the Laplacian may be dropped.

Stabilization parameters will scale differently in h

Error estimate for stabilized FEM, hyperbolic case

‖u − uh‖L2(Ω) + ‖h 1
2 β · ∇(u − uh)‖L2(Ω) ≤ Chk+ 1

2 |u|Hk+1(Ω)

Mesh conditions:

standard stabilized FEM: h
1
2 small

GLS optimization based: no condition on h under exact quadrature.

dG and cG optimization based: h2 small (for nonconstant smooth β and σ).
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The hyperbolic case: analysis using inf-sup stability II

Main ideas and tools for proof.

The stability of the dual problem is replaced by

∀vh ∈ Vh∃vp(vh) such that ‖vh‖2
L2(Ω) ≤ a(vh, vp(vh))

and similarly for the adjoint problem

for the transport equation: vp(vh) = (eηvh) where β · ∇η ≥ c, with c
sufficiently big

Superapproximation to estimate ‖vp(vh)− πhvp(vh)‖
Steps 1 and 2 of the elliptic case, must be handled together in this case,
weighting together the energy stability of | · |sp and | · |sa with the inf-sup
stability in the L2-norm
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Example within the assumptions: data assimilation

0.01 0.1

1x10-7

1x10-6

0.00001

0.0001

0.001

0.01

0.1

L2 error P1
L2 error P2
y=10*x^2
y=0.1*x^3
L2 error P1 interior data

0.01 0.1

1x10-7

1x10-6

0.00001

0.0001

0.001

0.01

0.1

stab FEM gamma>0
stab FEM gamma=0
stab FEM gamma<0
y=10*x^2
y=0.1*x^3

Problem: ∇ · (βu) = f , data set on the outflow boundary, smooth solution u
β = (−(x + 1)4 + y ,−8(y − x))T

Left plot: optimization method, L2-error vs. h, squares P1, circles P2

Right plot: standard stabilized method. Dash-dot: γ < 0, dashed γ = 0, full
γ > 0. Observe that for standard stabilization γ must change sign!
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Example beyond the assumptions: strong oscillation

0.01 0.1

0.1

1

10

100

0.001 0.01 0.1

0.01

0.1

1

10

100

Problem: ∇ · (βu) = f
data set on the inflow, smooth solution u, 64× 64 unstructured mesh.

β = (10 arctan(
y− 1

2

ε )− x2

ε , sin(x/ε) + sin(y/ε) x2

ε )T

circles: optimization method; squares: standard stabilized method

Left plot: SD-error vs ε with γCIP = 0.01, dotted line O(ε−
1
3 )

Right plot: SD-error vs γCIP for ε = {0.05 (full), 0.025 (dash), 0.0125 (dot)}
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Ill-posed problems. Example: the Cauchy problem

Let Ω be a convex polygonal (polyhedral) domain in Rd , d = 2, 3{
−∆u = f , in Ω

u = 0 and ∇u · n = ψ on Γ
(3)

Γ ⊂ ∂Ω, Γ simply connected, Γ′ := ∂Ω \ Γ

f ∈ L2(Ω), ψ ∈ H
1
2 (Γ)

V := {v ∈ H1(Ω) : v |Γ = 0} and W := {v ∈ H1(Ω) : v |Γ′ = 0}
a(u,w) =

∫
Ω
∇u · ∇w dx , and l(w) :=

∫
Ω

fw dx +
∫

Γ
ψw ds

abstract weak formulation,

find u ∈ V such that a(u,w) = l(w) ∀w ∈W (4)

Erik Burman (University College London) Stabilized FEM for ill-posed problems 22 / 38



The ill-posed case: analysis by continuous dependence I

Consider the abstract problem: find u ∈ V such that

a(u,w) = l(w) ∀w ∈W . (5)

Assumption: l(w) is such that the problem (5) admits a unique solution u ∈ V .

Observe that we do not assume that (5) admits a unique solution for all l(w)
such that ‖l‖W ′ <∞

Assumption: continuous dependence on data

Consider the functional j : V 7→ R. Let Ξ : R+ 7→ R+ be a continuous, monotone
increasing function with limx→0+ Ξ(x) = 0.

If ‖l‖W ′ ≤ ε in (5) then |j(u)| ≤ Ξ(ε). if ε > 0 sufficiently small (6)
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Finite element formulation of the abstract problem I

Assume that Vh ⊂ V and Wh ⊂W

Finite element formulation: find (uh, zh) ∈ Vh ×Wh such that,

a(uh,wh)− sW (zh,wh) = l(wh)
a(vh, zh) + sV (uh, vh) = sV (u, vh)

}
for all (vh,wh) ∈ Vh ×Wh.

(7)

Stabilization operators may be chosen as before
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Finite element formulation of the abstract problem II

Main assumptions on a(·, ·), sW (·, ·) and sV (·, ·)
Assume that the form a(u, v) satisfies the continuities

a(v − iV v ,wh) ≤ ‖v − iV v‖∗,V |wh|sW , ∀v ∈ V , wh ∈Wh (8)

and for u solution of (5),

a(u − uh,w − iW w) ≤ δl(h)‖w‖W + ‖w − iW w‖∗,W |u − uh|sV , ∀w ∈W . (9)

Assume approximation estimates for v − iV v and w − iW w

|v − iV v |sV + ‖v − iV v‖∗,V ≤ CV (v)ht (10)

‖w − iW w‖∗,W + |iW w |sW ≤ CW ‖w‖W , ∀w ∈W . (11)
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Finite element formulation of the abstract problem III

Lemma (Convergence of stabilizing terms)

Let u be the solution of (5) and (uh, zh) the solution of the formulation (14) for
which (8) and (10) hold. Then

|u − uh|sV + |zh|sW ≤ (1 +
√

2)CV (u)ht .

Theorem (Convergence using continuous dependence)

Let u be the solution of (5) (which has the stability property (6)) and (uh, zh) the
solution of the formulation (14) (for which (8)-(10) hold). Then

|j(u − uh)| ≤ Ξ(η(uh, zh)) (12)

With the a posteriori quantity η(uh, zh) := δl(h) + CW (|u − uh|sV + |zh|sW ).
For sufficiently smooth u there holds

η(uh, zh) ≤ δl(h) + (1 +
√

2)CW CV (u)ht . (13)

The approximation will be optimal with respect to continuous dependence!
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Continuous dependence. Example: the Cauchy problem

The Cauchy problem is not wellposed in the sense of Hadamard

However if (3) admits a solution u ∈ H1(Ω), a (conditional) continuous
dependence of the form (6), with 0 < ε < 1, holds for: (interior estimate)

j(u) := ‖u‖L2(ω), ω ⊂ Ω : dist(ω, ∂Ω) =: dω,∂Ω > 0 with Ξ(x) = Cuςx
ς ,

Cuς > 0, ς := ς(dω,∂Ω) ∈ (0, 1)

and for: (global estimate)

j(u) := ‖u‖L2(Ω) with Ξ(x) = Cu(| log(x)|+ C )−ς with Cu,C > 0, ς ∈ (0, 1)

The constant Cuς grows monotonically in ‖u‖L2(Ω) and Cu grows monotonically
in ‖u‖H1(Ω)

For details see:
G. Alessandrini, L. Rondi, E. Rosset, and S. Vessella.
The stability for the Cauchy problem for elliptic equations.
Inverse Problems, 25(12):123004, 47, 2009.
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Stabilized FEM for the Cauchy problem

Stabilized FEM for the Cauchy problem

Let Vh ∈ V , Wh ∈W , with piecewise affine functions

CIP-stabilization for uh and zh (+ boundary penalty for Neumann condition)

Find (uh, zh) ∈ Vh ×Wh such that{
a(uh,wh)− sa(zh,wh) = (f ,wh) + 〈ψ,wh〉Γ
a(vh, zh) + sp(uh, vh) = sp(u, vh)

for all (vh,wh) ∈ Vh ×Wh

where a possible choice of stabilization operators is

sV (uh, vh) :=
∑

F∈FI∪FΓ

∫
F

hF [[∂nuh]][[∂nvh]] ds, with hF := diam(F )

sW (zh,wh) := a(zh,wh) or sW (zh,wh) :=
∑

F∈FI∪FΓ′

∫
F

hF [[∂nzh]][[∂nwh]] ds

This formulation satisfies the assumptions of the convergence theorem
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Numerical results for the Cauchy problem

0.01 0.1

0.0001

0.001

0.01

0.1

1

L2 error P1
stab. error P1 O(h)
L2 error P2
stab. error P2 O(h^2)
y=0.1*(-log(x))^(-1) 
y=0.02*(-log(x))^(-2)

1x10-7 1x10-6 0.00001 0.0001 0.001 0.01 0.1 1

penalty parameter

0

0.2

0.4

0.6

0.8

1

L2
-e

rro
r

Ω := [0, 1]× [0, 1], smooth exact solution u

Dirichlet and Neumann bcs on {x = 0, y ∈ (0, 1)} and {x ∈ (0, 1), y = 1}
Left: convergence plots global errors

Right: L2-error against stabilization parameter (squares P1, circles P2)
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Numerical results for the Cauchy problem
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stab. error P1 O(h)
stab. error P2 O(h^2)
local L2 error P1
local L2 error P2
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penalty parameter

0
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0.4

0.6

0.8

1

L2
-e

rro
r

Ω := [0, 1]× [0, 1], smooth exact solution u

Dirichlet and Neumann bcs on {x = 0, y ∈ (0, 1)} and {x ∈ (0, 1), y = 1}
Left: convergence plots local errors, {x > 0.5, y < 0.5}
Right: L2-error against stabilization parameter (squares P1, circles P2)
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Variations on the theme: discrete inf-sup condition
Instead of using positivity in the derivation of the first estimate

|u − uh|sp + |zh|sa ≤ Chk |u|Hk+1(Ω)

we can in some cases stabilize less and derive a discrete inf-sup condition:

∃cs > 0 such that ∀xh ∈ Vh, yh ∈Wh there holds

cs |||xh, yh||| ≤ sup
vh,wh∈Vh×Wh

Ah[(xh, yh), (vh,wh)]

|||vh,wh|||

where

Ah[(xh, yh), (vh,wh)] := ah(xh,wh)− sa(yh,wh) + ah(vh, yh) + sp(xh, vh)

and ideally (so far only for piecewise affine elements)

|||xh, yh||| := ‖h∇xh‖L2(Ω) + ‖∇yh‖L2(Ω) + ‖h 1
2 [[∂nxh]]‖FI∪FΓ

+ |xh|sp + |yh|sa

Then we may prove:

|||u − uh, zh||| ≤ Ch|u|H2(Ω)
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Example: the Cauchy problem, Crouzeix-Raviart element I

the Crouzeix-Raviart space

X Γ
h := {vh ∈ L2(Ω) :

∫
F

[vh] ds = 0, ∀F ∈ Fi ∪FΓ and vh|κ ∈ P1(κ), ∀κ ∈ Kh}

Vh := X Γ
h and Wh := X Γ′

h

broken norms

‖x‖2
h :=

∑
κ∈Th

‖x‖2
κ and ‖x‖2

1,h := ‖x‖2
h + ‖∇x‖2

h

Finite element formulation: find (uh, zh) ∈ Vh ×Wh such that,

ah(uh,wh)− sW (zh,wh) = l(wh)

ah(vh, zh) + sV (uh, vh) = 0
(14)

for all (vh,wh) ∈ Vh ×Wh
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Example: the Cauchy problem, Crouzeix-Raviart element II

Here the bilinear forms are defined by

ah(uh,wh) =
∑
κ∈Th

∫
κ

∇uh · ∇wh dx ,

sW (zh,wh) :=
∑
κ∈Th

∫
κ

γW∇zh · ∇wh dx (15)

or

sW (zh,wh) :=
∑

F∈Fi∪FΓ′

∫
F

γW h−1
F [zh][wh] ds (16)

and finally

sV (uh, vh) :=
∑

F∈Fi∪FΓ

∫
F

γV h−1
F [uh][vh] ds (17)

Erik Burman (University College London) Stabilized FEM for ill-posed problems 32 / 38



Example: the Cauchy problem, Crouzeix-Raviart element III
Compact form: find (uh, zh) ∈ Vh := Vh ×Wh such that,

Ah[(uh, zh), (vh,wh)] = l(wh) for all (vh,wh) ∈ Vh

The bilinear form is then given by

Ah[(uh, zh), (vh,wh)] := ah(uh,wh)− sW (zh,wh) + ah(vh, zh) + sV (uh, vh)

Theorem (Inf-sup stability for the Crouzeix-Raviart based method)

Assume that (γV γW ) ≤ (CicT )−2. Then there exists a positive constant cs
independent of γV , γW such that there holds

cs |||xh, yh||| ≤ sup
(vh,wh)∈Vh

Ah[(xh, yh), (vh,wh)]

|||vh,wh|||

where |||xh, yh||| := γ
1
2

V ‖h∇xh‖h + γ
1
2

V ‖h[∂nxh]‖Fi∪FΓC
+ |xh|sV + |yh|sW
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Numerical results for the Cauchy problem (CR-element) I

Original problem by Hadamard

Ω := [0, π]× [0, 1]

u(x , y) = (1/n) sin(nx) sinh(ny), n parameter

Dirichlet and Neumann bcs on {x ∈ (0, π), y = 0}
Dirichlet on {x = 0, y ∈ (0, 1)} and {x = π, y ∈ (0, 1)}
increasing n increases the rate of exponential growth and size of Sobolev
norms
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Numerical results for the Cauchy problem (CR-element) II

0.01 0.1
0

0.0001

0.001

0.01

0.1

1

10

H1-error, n=5
L2-error, n=1
L2-error, n=3
L2-error, n=5
y=5*(-log(x))^(-2)
y=20*(-log(x))^(-1)
y=10*x

0.001 0.01 0.1

0.01

0.1

Left: global L2-error for n = 1, n = 3, n = 5, γV = γW = 0.01

Right: stabilization parameter γV = γW against L2-error on a 10× 10 mesh

Higher values of n does not yield converging solution on these meshes.
‖u‖H2(Ω)-norm too large
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Conclusions and outlook

1 Stabilized finite element methods in
an optimization framework

2 Error estimates for non-coercive
problems

3 A posteriori and a priori error
estimates are obtained similarly,
constants unknown

4 Ill-posed problems: error analysis
using continuous dependence

5 New ideas on data assimilation and
inverse problems using stabilized
FEM

6 New ideas on the design and analysis
of Tikhonov regularization methods
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Numerical example: source identification I

Figure : Left: naive application of the stiffness matrix, Right: stabilized reconstruction,
top unpertubed data, bottom perturbed data
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Numerical example: source identification II
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Figure : Convergence plots in the L2-norm, Left: unperturbed data; Right: perturbed data
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