A posteriori error estimates in FEEC for the de Rham complex

Alan Demlow Texas A&M University

joint work with

Anil Hirani University of Illinois Urbana-Champaign

Partially supported by NSF DMS-1016094 and a Simons Sabbatical Fellowship.

Brief summary of FEEC

Goal of Finite Element Exterior Calculus: Systematically construct and analyze stable numerical methods for PDE of Hodge-Laplace type using differential complexes and related tools such as Hodge decompositions.

Characteristics in brief:

- *Related areas:* Maxwell's equations, elasticity, mixed FEM.
- Forebears: Hiptmair, Bossavit...
- Main developers: Arnold, Falk, Winther in [AFW '06, '10].
- Analysis begins on abstract realization of differential complexes (Hilbert complexes).
- Unified analysis of Hodge-Laplace problem for all slots in complex.

Previous work and goals

Literature relevant to a posteriori estimates for FEEC:

- 1. MFEM scalar Laplacian: [Braess-Verfürth '96], [Carstensen '97]...
- 2. Maxwell's equations: [Beck et. al. '00], [Schöberl '08]....
- 3. This talk: [Demlow-Hirani, FoCM, '14].

Our goals:

- Give a "bird's eye view" of residual a posteriori techniques and estimates for differential forms. *Translate, generalize ideas from individual de Rham "slots".*
- 2. Develop a posteriori estimates for the Hodge Laplacian. Account for structure of PDE, including harmonic forms.

The de Rham complex

Definitions:

- $\Lambda^k(\Omega)$ is smooth k-forms on a Lipschitz domain $\Omega \subset \mathbb{R}^n$.
- Exterior derivative $d : \Lambda^k \to \Lambda^{k+1}$ (∇ , curl, div....).
- $H\Lambda^k = \{ v \in L_2\Lambda^k : dv \in L_2\Lambda^{k+1} \}$ $(H^1, H(\operatorname{curl}), H(\operatorname{div})....).$
- de Rham complex:

$$0 \to H\Lambda^0 \xrightarrow{d^1} H\Lambda^1 \xrightarrow{d^2} \cdots \xrightarrow{d^{n-1}} L_2 \to 0.$$

- Codifferential (adjoint) $\delta : \Lambda^{k+1} \to \Lambda^k$ (-div, curl, $-\nabla$).
- $d \circ d = \delta \circ \delta = 0.$
- tr=trace operator, $\star: \Lambda^k \to \Lambda^{n-k} = \text{Hodge star}$

Note: Can also consider essential boundary conditions.

Hodge decomposition

Hodge decomposition: $H\Lambda^k = \mathfrak{B}^k \oplus \mathfrak{H}^k \oplus \mathfrak{Z}^{k,\perp}$, where:

- $\mathfrak{B}^k = \operatorname{range}(d^{k-1}).$
- \mathfrak{Z}^k is the nullspace of d^k .
- Harmonic forms: $\mathfrak{Z}^k = \mathfrak{B}^k \oplus \mathfrak{H}^k$ (dim (\mathfrak{H}^k) depends on topology).
- $\mathfrak{Z}^{k,\perp}$ is the range of δ_{k+1} .

Harmonic forms for 3D de Rham:

- \mathfrak{H}^0 is constants, $\mathfrak{H}^3 = \emptyset$.
- k = 1, 2: $\mathfrak{H}^k = \{p : \operatorname{curl} p = 0, \operatorname{div} p = 0\}$ with appropriate BC's.

Hodge Laplacian

Basic Hodge-Laplace PDE:

$$(\delta d + d\delta)u = f.$$

Mixed form: Find $(\sigma, u, p) \in H\Lambda^{k-1} \times H\Lambda^k \times \mathfrak{H}^k$ with

$$\begin{aligned} \langle \sigma, \tau \rangle - \langle d\tau, u \rangle = 0 & (\sigma = \delta u) \\ \langle d\sigma, v \rangle + \langle du, dv \rangle + \langle v, p \rangle = \langle f, v \rangle & ((\delta d + d\delta)u = f - p \perp \mathfrak{H}^k) \\ \langle u, q \rangle = 0. & (u \perp \mathfrak{H}^k) \end{aligned}$$

for $(\tau, v, q) \in H\Lambda^{k-1} \times H\Lambda^k \times \mathfrak{H}^k$.

3D realizations (boundary conditions vary):

• k = 0, 3: $-\Delta u = f$ in Ω in primal, mixed forms.

•
$$k = 1, 2$$
: $(\operatorname{curl}\operatorname{curl} - \nabla \operatorname{div})u = f$ in Ω .

The discrete problem

Approximating subspaces: \mathcal{T}_h is a regular simplicial mesh; corresponding spaces $V_h^k \subset H\Lambda^k$ (Lagrange, Nédélec, RT...) satisfy:

$$0 \to V_h^0 \xrightarrow{d^0} V_h^1 \xrightarrow{d^1} \cdots \xrightarrow{d^{n-1}} V_h^n \to 0.$$

The discrete Hodge decomposition $V_h^k = \mathfrak{B}_h^k \oplus \mathfrak{H}_h^k \oplus \mathfrak{H}_h^{k\perp}$:

• $\mathfrak{B}_{h}^{k} = d(V_{h}^{k-1}) \subset \mathfrak{B}^{k}.$ • $\mathfrak{H}_{h}^{k} \subset \mathfrak{Z}^{k}$, but $\mathfrak{H}_{h}^{k} \not\subset \mathfrak{H}^{k}$. (But, dim $(\mathfrak{H}_{h}^{k}) = \dim(\mathfrak{H}^{k}) < \infty$). • $\mathfrak{Z}_{h}^{k\perp} \not\subset \mathfrak{Z}^{k,\perp}.$

AFW FEM: Find $(\sigma_h, u_h, p_h) \in V_h^{k-1} \times V_h^k \times \mathfrak{H}_h^k$ satisfying $\langle \sigma_h, \tau_h \rangle - \langle d\tau_h, u_h \rangle = 0, \qquad \tau_h \in V_h^{k-1},$ $\langle d\sigma_h, v_h \rangle + \langle du_h, dv_h \rangle + \langle v_h, p_h \rangle = \langle f, v_h \rangle, \quad v_h \in V_h^k,$ $\langle u_h, q_h \rangle = 0, \qquad q_h \in \mathfrak{H}_h^k.$

The "Harmonic Gap"

Goal: Measure the effect of $\mathfrak{H}_h^k \neq \mathfrak{H}^k$ on approximation quality. **Definitions:** Given closed subspaces A, B of a Hilbert space W,

$$\sin \angle (A, B) = \sup_{x \in A, \|x\|=1} \|x - P_B x\|,$$

 $\operatorname{gap}(A,B) = \max(\operatorname{sin} \angle (A,B), \operatorname{sin} \angle (B,A)).$

In our case: Must control gap $(\mathfrak{H}^k, \mathfrak{H}^k)$.

A priori analysis

Lemma 1 (AFW '10). Assume there is an HA-bounded, commuting cochain projection $\Pi_h : V^k \to V_h^k$, and let $e_u = u - u_h$, etc. Then $\|e_{\sigma}\|_{H\Lambda^{k-1}} + \|e_u\|_{H\Lambda^k} + \|e_p\|_{H\Lambda^k}$ $\lesssim \inf_{\tau \in V_h^{k-1}} \|\sigma - \tau\|_{H\Lambda} + \inf_{v \in V_h^k} \|u - v\|_{H\Lambda} + \inf_{q \in V_h^k} \|p - q\|_{H\Lambda}$ $+ \left\{ \|P_{\mathfrak{H}_h^k} u\| \leq \operatorname{gap}(\mathfrak{H}^k, \mathfrak{H}_h^k) \inf_{v \in V_h^k} \|P_{\mathfrak{B}} u - v\|_{H\Lambda} \right\}.$

Error is bounded by

- A best approximation term
- plus a harmonic nonconformity error (higher order...but can dominate error in some examples?).
- Also: Analysis can be carried out entirely at Hilbert complex level.

Structure of a posteriori result

Theorem 1. Let
$$u_h^{\perp} = P_{\mathfrak{Z}_h^{k,\perp}} u_h$$
. For $0 \le k \le n$, we have
 $\|e_{\sigma}\|_{H\Lambda^{k-1}} + \|e_u\|_{H\Lambda^k} + \|e_p\|$
 $\lesssim \Big(\sum_{K \in \mathcal{T}_h} \eta_{-1}(K)^2 + \eta_0(K)^2 + \eta_{\mathfrak{H}}(p_h)^2\Big)^{1/2}$
 $+ \Big\{\|P_{\mathfrak{H}} u_h\| \lesssim \mu \Big(\sum_{K \in \mathcal{T}_h} \eta_{\mathfrak{H}}(K, u_h^{\perp})^2\Big)^{1/2} + \mu^2 \|u_h\|\Big\}$

Notes:

- Definitions of $\eta_{\mathfrak{H}}, \eta_{-1}, \eta_0, \mu \simeq \operatorname{gap}(\mathfrak{H}^k, \mathfrak{H}^k_h)$ given later.
- Similar to a priori estimate, we have efficient and conforming residual terms + harmonic nonconformity term.
- Harmonic error should be higher order, but can't prove efficiency.
- Hilbert complex analysis not as helpful as a priori case.

Definition of $\mu \simeq \operatorname{gap}(\mathfrak{H}^k, \mathfrak{H}^k)$

Lemma 2. Given $q_i \in V_h^k$, let $\eta_{\mathfrak{H}}(K, q_i) = h_K \|\delta q_i\|_{L_2(K)} + h_K^{1/2}\|[[\operatorname{tr} \star q_i]]\|_{L_2(\partial K)}, \quad K \in \mathcal{T}_h.$ Also, let $\{q_i\}_{i=1}^N$ be an orthonormal basis for \mathfrak{H}_h^k and define

$$\mu_i = (\sum_{K \in \mathcal{T}_h} \eta_{\mathfrak{H}}(K, q_i)^2)^{1/2}.$$

Then

$$\operatorname{gap}(\mathfrak{H}^k,\mathfrak{H}^k_h)\simeq \mu:=(\sum_{i=1}^N\mu_i^2)^{1/2}.$$

Note: $\mathfrak{H}^k = \{ p : dp = 0, \ \delta p = 0 \text{ in } \Omega, \ \mathrm{tr} \star p = 0 \text{ on } \partial \Omega \}.$

Definition of η_{-1}

Interpretation: Arises from testing 1st line in MFEM.

$$\sup_{\tau \in H\Lambda^{k-1}, \|\tau\|_{H\Lambda} = 1} \langle \sigma - \sigma_h, \tau \rangle - \langle d\tau, u - u_h \rangle.$$

Definition: Given $K \in \mathcal{T}_h$ and $0 \le k \le n$, let

$$\eta_{-1}(K) = \begin{cases} 0 & \text{for } k = 0, \\ h_K \| \sigma_h - \delta u_h \|_K + h_K^{1/2} \| \llbracket \operatorname{tr} \star u_h \rrbracket \|_{\partial K} & \text{for } k = 1, \\ h_K (\| \delta \sigma_h \|_K + \| \sigma_h - \delta u_h \|_K) \\ + h_K^{1/2} (\| \llbracket \operatorname{tr} \star \sigma_h \rrbracket \|_{\partial K} + \| \llbracket \operatorname{tr} \star u_h \rrbracket \|_{\partial K}) & \text{for } 2 \le k \le n. \end{cases}$$

Efficiency: $\eta_{-1}(K) \lesssim \|e_u\|_{L_2\Lambda^k(\omega_K)} + \|e_\sigma\|_{L_2\Lambda^{k-1}(\omega_K)}.$

A posteriori estimates for the de Rham complex $\mathrm{p.12}$

Definition of η_0

Interpretation: Arises from testing second line in MFEM.

 $\sup_{v \in H\Lambda^k, \|v\|_{H\Lambda=1}} \langle d(\sigma - \sigma_h), v \rangle + \langle d(u - u_h), dv \rangle + \langle (p - p_h), v \rangle.$

Definition: Given $K \in \mathcal{T}_h$ and $0 \le k \le n$, let

$$\eta_{0}(K) = \begin{cases} h_{K} \|f - p_{h} - \delta du_{h}\|_{K} + h_{K}^{1/2} \| \llbracket \operatorname{tr} \star du_{h} \rrbracket \|_{\partial K} & \text{for } k = 0, \\ \|f - d\sigma_{h}\|_{K} & \text{for } k = n, \\ h_{K}(\|f - d\sigma_{h} - p_{h} - \delta du_{h}\|_{K} + \|\delta(f - d\sigma_{h} - p_{h})\|_{K}) \\ + h_{K}^{1/2}(\| \llbracket \operatorname{tr} \star du_{h} \rrbracket \|_{\partial K} + \| \llbracket \operatorname{tr} \star (f - d\sigma_{h} - p_{h}) \rrbracket \|_{\partial K}), \\ 1 \le k \le n - 1. \end{cases}$$

• Efficiency holds up to data oscillation.

• Note: $f = d\sigma + p + \delta du$, and residual is $f - d\sigma_h - p_h - \delta du_h$.

• More regularity of f is needed than $f \in L_2\Lambda^k$.

A "Hodge imbalance" in our norms

Question: $h_K \|\delta(f - d\sigma_h - p_h)\|_K$, $h_K^{1/2} \|[tr \star (f - d\sigma_h - p_h)]]\|_{\partial K}$ require more regularity than $f \in L_2$. Why is this necessary?

- Residual: $\mathcal{R} = d(\sigma \sigma_h) + \delta d(u u_h) + (p p_h).$
- $d\sigma + p$ is directly approximated in L_2 by $d\sigma_h + p_h$
- δdu is only weakly approximated (in H^{-1}).
- Must Hodge decompose f to construct error indicators with correct "strength" for each variable.
- The above indicators Hodge decompose f weakly by killing δdu .
- Literature: A term involving div f arises in time-harmonic Maxwell's equations if div $f \neq 0$.

Example 1: k = 0

- $d\delta + \delta d = -\Delta$ with Neumann BC's.
- Assumption: Standard compatibility condition $\int_{\Omega} f = 0$ holds $(\iff f \perp \mathfrak{H}^0 = \mathbb{R}, \text{ and } p = p_h = 0).$
- The AFW mixed method is a standard primal FEM.
- Estimates reduce to standard ones:

$$\begin{aligned} |u - u_h||_{H^1(\Omega)} \\ \lesssim (\sum_{T \in \mathcal{T}_h} h_K^2 ||f - p_h - \delta du_h||_K + h_K || [[\operatorname{tr} \star du_h]] ||_{\partial K}^2)^{1/2} \\ = (\sum_{T \in \mathcal{T}_h} h_K^2 ||f + \Delta u_h||_K^2 + h_K || [[\nabla u_h]] ||_{\partial K}^2)^{1/2}. \end{aligned}$$

Example 2: k = n = 3

- $d\delta + \delta d = -\Delta$ with Dirichlet BC's.
- AFW gives standard mixed method with $\sigma = -\nabla u$ and norm $H(\text{div}) \times L_2$ (not so interesting in practice...).
- A posteriori estimates:

$$\eta_{-1} = h_K(\|\operatorname{curl} \sigma_h\|_K + \|\sigma_h + \nabla u_h\|_K) + h_K^{1/2}(\|[u_h]]\|_{\partial K} + \|[\sigma_{h,t}]]\|_{\partial K}), \eta_0 = \|f - \operatorname{div} \sigma_h\|_K, \|\sigma - \sigma_h\|_{H(\operatorname{div})} + \|u - u_h\|_{L_2} \simeq (\sum_{K \in \mathcal{T}_h} \eta_{-1}(K)^2 + \eta_0(K)^2)^{1/2}.$$

- Similar to [Carstensen '97], but has not appeared previously in the literature.
- [Ca '97] assumes convexity of Ω ; no restriction here.

Example 3: n = 3, k = 1 (Vector Laplacian)

- $\delta d + d\delta = (\operatorname{curl}\operatorname{curl} \nabla \operatorname{div}); u \cdot n = 0, \operatorname{curl} u \times n = 0 \text{ on } \partial\Omega.$
- Error indicators: Let $\{q_i\}_{i=1}^N$ be an orthonormal basis for \mathfrak{H}_h^1 . $\eta_{-1} = h_K \|\sigma_h + \operatorname{div} u_h\| + h_K^{1/2} \|\llbracket u_h \cdot n \rrbracket \|_{\partial K},$ $\eta_0 = h_K (\|f - \nabla \sigma_h - p_h - \operatorname{curl} \operatorname{curl} u_h\|_K + \|\operatorname{curl}(f - d\sigma_h - p_h)\|_K)$ $+ h_K^{1/2} (\|\llbracket\operatorname{curl} u_h \times n \rrbracket \|_{\partial K} + \|\llbracket (f - \nabla \sigma_h - p_h) \cdot n \rrbracket \|_{\partial K}),$ $\eta_{\mathfrak{H}}(K, q) = h_K \|\operatorname{div} q\|_K + h_K^{1/2} \|\llbracket q \cdot n \rrbracket \|_{\partial K}.$
- Final estimate is exactly as in Theorem 1.
- First a posteriori estimates for the vector Laplacian.
- It seems the effect of harmonic forms on a posteriori estimates has not been studied before.

Tool 1 for proof: Regular decompositions

Need: Decomposition of $v \in H\Lambda^k$ as $v = d\varphi + z$, where z, ϕ are smooth enough to give an "h" in interpolation estimates.

Previous literature: Regular decompositions are a well-known tool for Maxwell's equations ([Hiptmair '02], [Pasciak-Zhao '02]).

Generalization to arbitrary n, k:

Lemma 3. Given $v \in H\Lambda^k$, there are $\varphi \in H^1\Lambda^{k-1}$ and $z \in H^1\Lambda^k$ such that $v = d\varphi + z$, and $\|\varphi\|_{H^1} + \|z\|_{H^1} \lesssim \|v\|_H$.

Proof uses: [Mitrea-Mitrea-Monniaux '08] for stable solution of relevant BVP, [M.-M.-Shaw '08] for bounded extension operator.

Tool 2: Interpolation operators

Desirable properties of $\Pi_h : L_2 \Lambda^k \to V_h^k$:

 \bullet Commutes with d, locally bounded, projection.

We prove: Only local boundedness and commutativity.

Lemma 4. For $0 \le k \le n$, there exists $\Pi_h : L_2 \Lambda^k \to V_h^k$ such that $d\Pi_h = \Pi_h d$, and for $K \in \mathcal{T}_h$ and $z \in H^1 \Lambda^k$,

$$||z - \prod_h z||_{L_2(K)} \lesssim h_K |z|_{H^1(\omega_K)}.$$

We "average" the approaches of:

- [Schöberl '01, '08] constructed Π_h for the 3D de Rham complex.
- [Christiansen-Winther '08]: Projecting, commuting, globally bounded Π_h .

Note: Supplanted by recent work of [Falk-Winther]?

Thoughts on AFEM convergence in FEEC

Literature:

- [Zhong et. al '12] prove optimality of AFEM for time-harmonic Maxwell's equations.
- [Chen-Holst-Xu '09] prove optimality of AFEM for controlling $\|\sigma \sigma_h\|_{L_2}$ in case $k = n, \Omega$ simply connected.
- [Holst-Mihalik-Szypowski] recently extended MFEM results to arbitrary domain topology in FEEC notation.

Difficulties in proving AFEM convergence for arbitrary k, natural variational norm:

- Lack of orthogonality (inf-sup).
- Harmonic errors (mess up a priori optimality).

Convergence of AFEM for $gap(\mathfrak{H}^k, \mathfrak{H}^k)$

Based on work in progress, can prove:

Lemma 5. Assume that $\dim(\mathfrak{H}^k) = \dim(\mathfrak{H}^k) = 1$. Then a standard AFEM based on Dörfler marking for controlling $\operatorname{gap}(\mathfrak{H}^k, \mathfrak{H}^k)$ using the above estimates and estimators is contractive.

Notes:

- $\dim(\mathfrak{H}^k) = 1$ shouldn't be essential.
- Computation of harmonic forms is a "miniature eigenvalue problem" (we know the eigenvalue, only need the eigenvectors.).
- AFEM convergence results for eigenvalues are harder to prove, BUT existing results require mesh fineness condition (we don't).

A 2D Example

Left: A smooth vector field $u \in \mathfrak{B}^1 \oplus \mathfrak{Z}^{1,\perp}$ satisfying natural BC's. Right: A (discrete) harmonic vector field q.

A posteriori estimates for the de Rham complex $\mathrm{p.22}$

Example (cont.)

Computation of Hodge decomposition: Use FEM to solve $\Delta z = \operatorname{div} u$ on a *uniform* sequence of meshes. Then $P_{\mathfrak{B}^1} u = \nabla z$.

Expectation: $\|\nabla(z-z_h)\| \sim h^{\frac{2}{3}}$ if $P_{\mathfrak{B}^1}u = \nabla z$ has corner singularities.

Iteration	Energy error	EOC	Iteration	Energy error	EOC
1	60.06	.72	6	3.77	.78
2	36.46	.78	7	2.20	.75
3	21.19	.84	8	1.31	.73
4	11.82	.84	9	.79	.71
5	6.61	.81	10	.48	

Example (cont.)

	$\left \right\rangle$	$\mathbf{\mathbf{N}}$	M	Æ	\searrow					<u> </u>		1		Ì.	$\left \right\rangle$		·			.<		7	R	È.	-	-	-	7	٦,		\mathbf{i}	
	$\left \cdot \right $	-	R	$\overline{\mathbf{x}}$							-			$\overline{\}$	$\left \right\rangle$		J	$\overline{\}$		7	<u>}_</u>	\uparrow	\mathbb{A}		>	5			$\mathbf{\lambda}$		-	$\overline{\}$
			\square	\overline{A}	-7				R	<u>-</u> Z-	X		X	$\mathbf{\mathbf{i}}$] [-	J	\mathbf{k}			\square	$\left[\right]$	$\left[\right]$			<u>,</u>		$\overline{\ }$	$\overline{\}$	$\overline{\mathbf{X}}$	$\overline{\}$	$\overline{\}$
	\mathbf{N}	\square	X	X	\mathbf{A}	\sim			2	\sim	$\overline{\mathbf{x}}$					•	ſ	$\overline{\cdot}$	$\overline{\}$.~,	<u> </u>	-	<u> </u>	<u>F</u>	-~	<u> </u>	Þ,	7	7	\mathbf{X}	$\overline{\}$	$\overline{\}$
			$\overline{\mathbf{N}}$									1	$\overline{\}$	$\overline{\}$		•	J	$\overline{\}$	$\overline{\langle}$	X									7	$\overline{\langle}$	$\overline{\mathbf{N}}$	$\overline{\langle}$
			$\left[\right]$									$\overline{\}$	$\overline{\}$	$\overline{\}$			\cdot	$\overline{\}$	$\overline{\}$	$\overline{\}$									$\overline{\}$	$\overline{\langle}$	$\overline{}$	$\overline{\mathbf{N}}$
	$\left \right\rangle$	$\left \right\rangle$	\square									$\overline{\}$	\backslash		$\left \cdot \right $] [-	·	$\overline{\cdot}$	$\overline{\}$										$\overline{\}$	$\overline{\}$	$\overline{}$	$\overline{\}$
	Ń	\backslash	\square									$\overline{\}$	\backslash	\backslash			\cdot	$\overline{\}$	$\overline{\}$										$\overline{\}$	$\overline{\}$	$\overline{}$	$\overline{\}$
		$\left \right\rangle$	\mathbb{N}									$\overline{\}$]	·	$\overline{\}$	Ń										\mathbf{i}		\mathbf{i}	$\overline{}$
	$\left \right\rangle$	$\left \right\rangle$	$\left[\right]$									$\overline{\}$			$\left \right\rangle$		\cdot	$\overline{\ }$											\mathbf{i}		\searrow	
	$\left \cdot \right $	$\left \cdot \right $	\square									$\overline{\}$			$\left \right\rangle$]].		$\mathbf{\cdot}$	·	\backslash									\mathbf{i}	\mathbf{i}	\mathbf{i}	
		$\left \cdot \right $	<u>-</u>									X		\mathbf{i}	$\left \cdot \right $]].	\cdot	$\overline{\}$		-\									$\mathbf{\dot{k}}$	\mathbf{i}		$\overline{\}$
	\backslash	X	\searrow	Ž		\sim		╞╲	2	╞╾┥	2						ſ	$\overline{\ }$	X	<u> </u>	È,	À,	Þ.	Ê,		À	È.	7-	-		$\mathbf{\mathbf{X}}$	\mathbf{i}
	\square	X	\searrow	¥	Ż	\mathbb{R}		<u>-</u>		<u> </u>	<u>-</u>			\backslash	\square		\cdot	$\overline{\}$		$\left \right\rangle$	\square			<u> </u>	À	À	À	À	X	×	\searrow	\searrow
	$\left \cdot \right $	-	A	4						<u>, </u>		<u> </u>	\backslash	\square	\square		-	-		7	∱∖╤	\uparrow	$\left\{ \mathbf{x} \right\}$	<u>, </u>	2		ς,	<u>-</u>	≁	.7-	\searrow	
$\mathbf{}$	\mathbf{i}	\sum	7-	7		A,	A,	È.		<u> </u>	27	<u>_</u>	\sum	$\overline{\}$	$\mathbf{\mathbf{i}}$			$\overline{\}$		$\overline{\mathbb{N}}$	N.	N,	Ŀ,	<u></u>	<u> </u>	À,	<u> </u>	<u>\</u>	\mathbf{X}	$\mathbf{\mathbf{i}}$	$\overline{\}$	$\overline{\mathbf{N}}$

 $\begin{array}{l} \mbox{Left: } P_{\mathfrak{B}^1}u.\\ \mbox{Right: } P_{\mathfrak{Z}^{1,\perp}}u. \end{array}$

Effects on error bounds

Recall the harmonic nonconformity error:

$$\left\{ \|P_{\mathfrak{H}_{h}^{k}}u\| \leq \operatorname{gap}(\mathfrak{H}^{k},\mathfrak{H}_{h}^{k}) \inf_{v \in V_{h}^{k}} \|P_{\mathfrak{B}}u - v\|_{H\Lambda} \right\}$$

Expectation: gap $(\mathfrak{H}^k, \mathfrak{H}^k_h) \sim h^{2/3}$, so $\|P_{\mathfrak{H}^k_h} u\| \sim h^{4/3}$.

Iteration	$\ P_{\mathfrak{H}_h^k}u\ $	EOC	Iteration	Energy error	EOC
1	0.014		4	0.0014	1.237
2	0.0076	0.927	5	0.00059	1.275
3	0.0034	1.155	6	0.00024	1.297

- $||P_{\mathfrak{H}_h}u|| \le ||u u_h||_{L_2}$, so $||u u_h||_{L_2} \ge Ch^{4/3}$ also.
- Used lowest-order element, but higher order shouldn't affect rates.
- A (well-founded) conjecture: Mixed approximation to the Hodge Laplacian may converge suboptimally even if u, σ, p are smooth.

Comments and Conclusions

What we've accomplished:

- Generalized and unified tools and techniques for a posteriori error estimation for the de Rham complex.
- Explained the "Hodge imbalance" in residuals.
- Gave a posteriori upper bounds for harmonic forms and their effect on errors in approximating Hodge Laplace problems.

To do:

- Clarify whether our a posteriori estimation of the harmonic nonconformity error is efficient.
- Applications?

Credit: Kaushik Kalyanaraman of UIUC performed some of the computations in the final section.