Shifted Laplace and related preconditioning for the Helmholtz equation

Ivan Graham and Euan Spence (Bath, UK)

Collaborations with:
Paul Childs (Schlumberger Gould Research), Martin Gander (Geneva) Douglas Shanks (Bath) Eero Vainikko (Tartu, Estonia)

LMS Durham Symposium "Building Bridges..." July 2014

Outline of talk：

－Seismic inversion，HF Helmholtz equation
－（conventional）FE discretization，preconditioned GMRES solvers
－sharp analysis of preconditioners based on absorption
－analytic wavenumber－and absorption－explicit PDE bounds
－a class of（scalable）DD preconditioners，with coarse grids
－a new convergence theory for DD for Helmholtz
－some open theoretical questions

Outline of talk:

- Seismic inversion, HF Helmholtz equation
- (conventional) FE discretization, preconditioned GMRES solvers
- sharp analysis of preconditioners based on absorption
- analytic wavenumber- and absorption-explicit PDE bounds
- a class of (scalable) DD preconditioners, with coarse grids
- a new convergence theory for DD for Helmholtz
- some open theoretical questions

Chandler-Wilde, IGG, Langdon, Spence:
Numerical-asymptotic boundary integral methods in
high-frequency acoustic scattering
Acta Numerica 2012

Motivation

Seismic inversion

Inverse problem: reconstruct material properties of rock under sea bed (characterised by wave speed $c(x)$) from observed echos.

Regularised iterative method: repeated solution of the (forward problem): the wave equation

$$
-\Delta u+\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}=f \quad \text { or its elastic variant }
$$

Frequency domain:

$$
-\Delta u-\left(\frac{\omega}{c}\right)^{2} u=f, \quad \omega=\quad \text { frequency }
$$

solve for u with approximate c.

Seismic inversion

Inverse problem: reconstruct material properties of subsurface (wave speed $c(x)$) from observed echos.

Regularised iterative method: repeated solution of the (forward problem): the wave equation

$$
-\Delta u+\frac{\partial^{2} u}{\partial t^{2}}=f \quad \text { or its elastic variant }
$$

Frequency domain:

$$
-\Delta u-\left(\frac{\omega L}{c}\right)^{2} u=f, \quad \omega=\quad \text { frequency }
$$

solve for u with approximate c.
Large domain of characteristic length L.
effectively high frequency

Marmousi Model Problem

- [P. Childs, Schlumberger (2007)]: Solver of choice based on principle of limited absorption (Erlangga, Osterlee, Vuik, 2004)...
- This work: Analysis of this approach and use it to build better methods

Model interior impedance problem

$$
\begin{aligned}
-\Delta u-k^{2} u & =f \text { in bounded domain } \Omega \\
\frac{\partial u}{\partial n}-i k u & =g \text { on } \Gamma:=\partial \Omega
\end{aligned}
$$

．．．．Also truncated sound－soft scattering problems in Ω^{\prime}

Linear algebra problem

- weak form

$$
\begin{aligned}
a(u, v) & :=\int_{\Omega}\left(\nabla u \cdot \nabla \bar{v}-\quad k^{2} u \bar{v}\right)-\mathrm{i} k \int_{\Gamma} u \bar{v} \\
& =\int_{\Omega} f \bar{v}+\int_{\Gamma} g \bar{v}
\end{aligned}
$$

- (Fixed order) finite element discretization

$$
\mathbf{A} \mathbf{u}:=\left(\mathbf{S}-\quad k^{2} \mathbf{M}^{\Omega}-\mathrm{i} k \mathbf{M}^{\Gamma}\right) \mathbf{u}=\mathbf{f}
$$

Often: $\quad h \sim k^{-1} \quad$ but pollution effect: for quasioptimality need $\quad h \sim k^{-2}$??, $\quad h \sim k^{-3 / 2} \quad$??

Du and Wu 2013
Melenk and Sauter 2011 (hp)

Linear algebra problem

- weak form with absorption $k^{2} \rightarrow k^{2}+\mathrm{i} \varepsilon$,

$$
\begin{aligned}
a_{\varepsilon}(u, v) & :=\int_{\Omega}\left(\nabla u \cdot \nabla \bar{v}-\left(k^{2}+i \varepsilon\right) u \bar{v}\right)-\mathrm{i} k \int_{\Gamma} u \bar{v} \\
& =\int_{\Omega} f \bar{v}+\int_{\Gamma} g \bar{v} \quad \text { "Shifted Laplacian" }
\end{aligned}
$$

[Equivalently $k^{2}+\mathrm{i} \varepsilon \longleftrightarrow(k+\mathrm{i} \rho)^{2}$]

- Finite element discretization

$$
\mathbf{A}_{\varepsilon} \mathbf{u}:=\left(\mathbf{S}-\left(k^{2}+i \varepsilon\right) \mathbf{M}^{\Omega}-\mathrm{i} k \mathbf{M}^{\Gamma}\right) \mathbf{u}=\mathbf{f}
$$

Linear algebra problem

- weak form with absorption $k^{2} \rightarrow k^{2}+\mathrm{i} \varepsilon$,

$$
\begin{aligned}
a_{\varepsilon}(u, v) & :=\int_{\Omega}\left(\nabla u \cdot \nabla \bar{v}-\left(k^{2}+i \varepsilon\right) u \bar{v}\right)-\mathrm{i} k \int_{\Gamma} u \bar{v} \\
& =\int_{\Omega} f \bar{v}+\int_{\Gamma} g \bar{v} \quad \text { "Shifted Laplacian" } \\
\varepsilon \sim k^{2} \longleftrightarrow \rho & \sim k \quad \varepsilon \sim k \longleftrightarrow \rho \sim 1
\end{aligned}
$$

- Finite element discretization

$$
\mathbf{A}_{\varepsilon} \mathbf{u}:=\left(\mathbf{S}-\left(k^{2}+i \varepsilon\right) \mathbf{M}^{\Omega}-\mathrm{i} k \mathbf{M}^{\Gamma}\right) \mathbf{u}=\mathbf{f}
$$

$$
\mathbf{A}_{\varepsilon}^{-1} \mathbf{A} \mathbf{u}=\mathbf{A}_{\varepsilon}^{-1} \mathbf{f}
$$

"Elman theory" for GMRES requires:
$\left\|\mathbf{A}_{\varepsilon}^{-1} \mathbf{A}\right\| \lesssim 1, \quad$ and $\quad \operatorname{dist}\left(0, \operatorname{fov}\left(\mathbf{A}_{\varepsilon}^{-1} \mathbf{A}\right)\right) \gtrsim 1 \quad$ any norm

Sufficient condition: $\left\|\mathbf{I}-\mathbf{A}_{\varepsilon}^{-1} \mathbf{A}\right\|_{2} \lesssim C<1$.

Preconditioning with $\mathbf{A}_{\varepsilon}^{-1}$ and its approximations

$$
\mathbf{A}_{\varepsilon}^{-1} \mathbf{A} \mathbf{u}=\mathbf{A}_{\varepsilon}^{-1} \mathbf{f} .
$$

"Elman theory" for GMRES requires:

$$
\left\|\mathbf{A}_{\varepsilon}^{-1} \mathbf{A}\right\| \lesssim 1, \quad \text { and } \quad \operatorname{dist}\left(0, \operatorname{fov}\left(\mathbf{A}_{\varepsilon}^{-1} \mathbf{A}\right)\right) \gtrsim 1 \quad \text { any norm }
$$

Sufficient condition: $\left\|\mathbf{I}-\mathbf{A}_{\varepsilon}^{-1} \mathbf{A}\right\|_{2} \lesssim C<1$.
In practice use

$$
\mathbf{B}_{\varepsilon}^{-1} \mathbf{A} \mathbf{u}=\mathbf{B}_{\varepsilon}^{-1} \mathbf{f}, \quad \text { where } \quad \mathbf{B}_{\varepsilon}^{-1} \approx \mathbf{A}_{\varepsilon}^{-1} .
$$

Writing

$$
\mathbf{I}-\mathbf{B}_{\varepsilon}^{-1} \mathbf{A}=\mathbf{I}-\mathbf{B}_{\varepsilon}^{-1} \mathbf{A}_{\varepsilon}+\mathbf{B}_{\varepsilon}^{-1} \mathbf{A}_{\varepsilon}\left(\mathbf{I}-\mathbf{A}_{\varepsilon}^{-1} \mathbf{A}\right),
$$

a sufficient condition is:

$$
\left\|\mathbf{I}-\mathbf{A}_{\varepsilon}^{-1} \mathbf{A}\right\|_{2} \text { and }\left\|\mathbf{I}-\mathbf{B}_{\varepsilon}^{-1} \mathbf{A}_{\varepsilon}\right\|_{2} \quad \text { small },
$$

i.e. $\mathbf{A}_{\varepsilon}^{-1}$ to be a good preconditioner for \mathbf{A} and $\mathbf{B}_{\varepsilon}^{-1}$ to be a good preconditioner for \mathbf{A}_{ε}.

Preconditioning with $\mathbf{A}_{\varepsilon}^{-1}$ and its approximations

$$
\mathbf{A}_{\varepsilon}^{-1} \mathbf{A} \mathbf{u}=\mathbf{A}_{\varepsilon}^{-1} \mathbf{f}
$$

"Elman theory" for GMRES requires:

$$
\left\|\mathbf{A}_{\varepsilon}^{-1} \mathbf{\Delta}\right\| \lesssim 1, \quad \text { and } \quad \operatorname{dist}\left(0, \text { fov }\left(\mathbf{A}_{\varepsilon}^{-1} \mathbf{A}\right)\right) \gtrsim 1
$$

Sufficient condition: $\left\|\mathbf{I}-\mathbf{A}_{\varepsilon}^{-1} \mathbf{A}\right\|_{2} \lesssim C<1$.
In practice use

$$
\mathbf{B}_{\varepsilon}^{-1} \mathbf{A u}=\mathbf{B}_{\varepsilon}^{-1} \mathbf{f}
$$

$\mathbf{B}_{\varepsilon}^{-1}$ easily computed approximation of $\mathbf{A}_{\varepsilon}^{-1}$. Writing

$$
\mathbf{I}-\mathbf{B}_{\varepsilon}^{-1} \mathbf{A}=\mathbf{I}-\mathbf{B}_{\varepsilon}^{-1} \mathbf{A}_{\varepsilon}+\mathbf{B}_{\varepsilon}^{-1} \mathbf{A}_{\varepsilon}\left(\mathbf{I}-\mathbf{A}_{\varepsilon}^{-1} \mathbf{A}\right)
$$

so we require

$$
\left\|\mathbf{I}-\mathbf{A}_{\varepsilon}^{-1} \mathbf{A}\right\|_{2} \text { and }\left\|\mathbf{I}-\mathbf{B}_{\varepsilon}^{-1} \mathbf{A}_{\varepsilon}\right\|_{2} \quad \text { small },
$$

i.e. $\mathbf{A}_{\varepsilon}^{-1}$ to be a good preconditioner for \mathbf{A}
and $\mathrm{B}_{\varepsilon}^{-1}$ to be a good preconditioner for A_{ε}. Part 1

Preconditioning with $\mathbf{A}_{\varepsilon}^{-1}$ and its approximations

$$
\mathbf{A}_{\varepsilon}^{-1} \mathbf{A} \mathbf{u}=\mathbf{A}_{\varepsilon}^{-1} \mathbf{f}
$$

＂Elman theory＂for GMRES requires：

$$
\left\|\mathbf{A}_{\varepsilon}^{-1} \mathbf{\Delta}\right\| \lesssim 1, \quad \text { and } \quad \operatorname{dist}\left(0, \text { fov }\left(\mathbf{A}_{\varepsilon}^{-1} \mathbf{A}\right)\right) \gtrsim 1
$$

Sufficient condition：$\left\|\mathbf{I}-\mathbf{A}_{\varepsilon}^{-1} \mathbf{A}\right\|_{2} \lesssim C<1$ ．
In practice use

$$
\mathbf{B}_{\varepsilon}^{-1} \mathbf{A u}=\mathbf{B}_{\varepsilon}^{-1} \mathbf{f}
$$

$\mathbf{B}_{\varepsilon}^{-1}$ easily computed approximation of $\mathbf{A}_{\varepsilon}^{-1}$ ．Writing

$$
\mathbf{I}-\mathbf{B}_{\varepsilon}^{-1} \mathbf{A}=\mathbf{I}-\mathbf{B}_{\varepsilon}^{-1} \mathbf{A}_{\varepsilon}+\mathbf{B}_{\varepsilon}^{-1} \mathbf{A}_{\varepsilon}\left(\mathbf{I}-\mathbf{A}_{\varepsilon}^{-1} \mathbf{A}\right),
$$

so we require

$$
\left\|\mathbf{I}-\mathbf{A}_{\varepsilon}^{-1} \mathbf{A}\right\|_{2} \text { and }\left\|\mathbf{I}-\mathbf{B}_{\varepsilon}^{-1} \mathbf{A}_{\varepsilon}\right\|_{2} \quad \text { small },
$$

i．e． $\mathbf{A}_{\varepsilon}^{-1}$ to be a good preconditioner for \mathbf{A}
and $\mathbf{B}_{\varepsilon}^{-1}$ to be a good preconditioner for \mathbf{A}_{ε} ．Part 2

A very short history

Bayliss, Goldstein \& Turkel 1983 , Laird \& Giles 2002.....

Erlangga, Vuik \& Oosterlee '04 and subsequent papers:

$$
B_{\varepsilon}^{-1}=\mathrm{V} \text {-cycle for } \mathbf{A}_{\epsilon}^{-1}
$$

$\epsilon \sim k^{2}$ (analysis via simplified Fourier eigenvalue analysis)

Kimn \& Sarkis '13 used $\varepsilon \sim k^{2}$ to enhance domain decomposition methods

Engquist and Ying, '11 Used $\varepsilon \sim k$ to stabilise their sweeping preconditioner
...others...

Theorem 1 (with Martin Gander and Euan Spence)
For Lipschitz star-shaped domains
Quasiuniform meshes:

$$
\left\|\mathbf{I}-\mathbf{A}_{\epsilon}^{-1} \mathbf{A}\right\| \lesssim \frac{\epsilon}{k}
$$

Shape regular meshes:

$$
\left\|\mathbf{I}-\mathbf{D}^{1 / 2} \mathbf{A}_{\epsilon}^{-1} \mathbf{A} \mathbf{D}^{-1 / 2}\right\| \lesssim \frac{\epsilon}{k}
$$

$\mathbf{D}=\operatorname{diag}\left(\mathbf{M}^{\Omega}\right)$.

So ϵ / k sufficiently small $\Longrightarrow k$-independent GMRES convergence.

Shifted Laplacian preconditioner $\varepsilon=\boldsymbol{k}$

Solving $\mathbf{A}_{\varepsilon}^{-1} \mathbf{A} \mathbf{x}=\mathbf{A}_{\varepsilon}^{-1} \mathbf{1}$ on unit square

	k	$\#$ GMRES
10	$\mathbf{6}$	
$h \sim k^{-3 / 2}$	20	6
40	6	
80	6	

Shifted Laplacian preconditioner $\varepsilon=\boldsymbol{k}^{\mathbf{3 / 2}}$

Solving $\mathbf{A}_{\varepsilon}^{-1} \mathbf{A} \mathbf{x}=\mathbf{A}_{\varepsilon}^{-1} \mathbf{1}$ on unit square

	k	$\#$ GMRES
	10	$\mathbf{8}$
$h \sim k^{-3 / 2}$	20	11
	40	14
	80	16

Shifted Laplacian preconditioner $\varepsilon=\boldsymbol{k}^{2}$

Solving $\mathbf{A}_{\varepsilon}^{-1} \mathbf{A} \mathbf{x}=\mathbf{A}_{\varepsilon}^{-1} \mathbf{1}$ on unit square

	k	$\#$ GMRES
	10	13
$h \sim k^{-3 / 2}$	20	24
	40	48
	80	86

Proof of Theorem 1: via continuous problem

$$
\begin{equation*}
a_{\epsilon}(u, v)=\int_{\Omega} f \bar{v}+\int_{\Gamma} g \bar{v}, \quad v \in H^{1}(\Omega) \tag{*}
\end{equation*}
$$

Theorem (Stability) Assume Ω is Lipschitz and star-shaped. Then, if ϵ / k sufficiently small,

$$
\underbrace{\|\nabla u\|_{L^{2}(\Omega)}^{2}+k^{2}\|u\|_{L^{2}(\Omega)}^{2}}_{=:\|u\|_{1, k}^{2}} \lesssim\|f\|_{L^{2}(\Omega)}^{2}+\|g\|_{L^{2}(\Gamma)}^{2}, \quad k \rightarrow \infty
$$

" " indept of k and ϵ cf. Melenk 95, Cummings \& Feng 06

More absorption: $k \lesssim \epsilon \lesssim k^{2}$ general Lipschitz domain OK.

Key technique in proof (star-shaped case)

Rellich/Morawetz Identity
$\mathcal{M} u=\mathbf{x} . \nabla u+\alpha u, \quad \alpha=(d-1) / 2$
$\mathcal{L} u=\Delta u+k^{2} u$
$\|\nabla u\|_{L^{2}(\Omega)}^{2}+k^{2}\|u\|_{L^{2}(\Omega)}^{2}=-2 \operatorname{Re} \int_{\Omega}(\overline{\mathcal{M} u} \mathcal{L} u)$

$$
+\int_{\Gamma}\left[2 \operatorname{Re}\left(\overline{\mathcal{M} u} \frac{\partial u}{\partial n}\right)+\left(k^{2}|u|^{2}-|\nabla u|^{2}\right)(\text { x.n })\right]
$$

Key technique in proof (star-shaped case)

Rellich/Morawetz Identity

$$
\begin{aligned}
& \mathcal{M} u=\mathbf{x} . \nabla u+\alpha u, \quad \alpha=(d-1) / 2 \\
& \mathcal{L} u=\Delta u+k^{2} u
\end{aligned} \begin{aligned}
&\|\nabla u\|_{L^{2}(\Omega)}^{2}+k^{2}\|u\|_{L^{2}(\Omega)}^{2}=-2 \operatorname{Re} \int_{\Omega}(\overline{\mathcal{M} u} \mathcal{L} u) \\
&+\int_{\Gamma}\left[2 \operatorname{Re}\left(\overline{\mathcal{M} u} \frac{\partial u}{\partial n}\right)+\left(k^{2}|u|^{2}-|\nabla u|^{2}\right)(\mathbf{x} . \mathbf{n})\right]
\end{aligned}
$$

cf. "Green's identity"

$$
\|\nabla u\|_{L^{2}(\Omega)}^{2}-k^{2}\|u\|_{L^{2}(\Omega)}^{2}=-\int_{\Omega}(\bar{u} \mathcal{L} u)+\int_{\Gamma} \bar{u} \frac{\partial u}{\partial n}
$$

Fix $\mathbf{f} \in \mathbb{C}^{N}$, and consider the solution of $\mathbf{A}_{\varepsilon} \mathbf{u}=\mathbf{f}$.
Then $u_{h}:=\sum_{j} u_{j} \phi_{j}$ is FE solution of problem
with

$$
a_{\epsilon}(u, v)=\left(f_{h}, v\right)
$$

Then

$$
\begin{aligned}
k h^{d / 2}\|\mathbf{u}\|_{2} & \sim k\left\|u_{h}\right\|_{L_{2}(\Omega)} \\
& \leq\left\|u_{h}\right\|_{1, k} \\
& \leq\left\|u-u_{h}\right\|_{1, k}+\|u\|_{1, k} \\
& \leq 2\|u\|_{1, k} \quad \text { quasioptimality } \\
& \lesssim\left\|f_{h}\right\|_{L_{2}(\Omega)} \quad \text { stability }
\end{aligned}
$$

and so

$$
\left\|\mathbf{A}_{\epsilon}^{-1}\right\| \lesssim h^{-d} k^{-1}, \quad \text { for all } \varepsilon \lesssim k^{2}
$$

PDE Theory to bound the matrix $\mathbf{A}_{\epsilon}^{-1}$

Fix $\mathbf{f} \in \mathbb{C}^{N}$, and consider the solution of $\mathbf{A}_{\varepsilon} \mathbf{u}=\mathbf{f}$.
Then $u_{h}:=\sum_{j} u_{j} \phi_{j}$ is FE solution of problem
with

$$
\begin{array}{r}
a_{\epsilon}(u, v)=\left(f_{h}, v\right) \\
\left\|f_{h}\right\|_{L_{2}(\Omega)} \sim h^{-d / 2}\|\mathbf{f}\|_{2} .
\end{array}
$$

Then

$$
\begin{align*}
k h^{d / 2}\|\mathbf{u}\|_{2} & \sim k\left\|u_{h}\right\|_{L_{2}(\Omega)} \\
& \leq\left\|u_{h}\right\|_{1, k} \tag{A}\\
& \leq\left\|u-u_{h}\right\|_{1, k}+\|u\|_{1, k} \\
& \lesssim 2\|u\|_{1, k} \quad \text { quasioptimality } \\
& \lesssim\left\|f_{h}\right\|_{L_{2}(\Omega)} \quad \text { stability } \tag{B}
\end{align*}
$$

and so

$$
\left\|\mathbf{A}_{\epsilon}^{-1}\right\| \lesssim h^{-d} k^{-1}, \quad \text { for all } \quad \varepsilon \lesssim k^{2}
$$

By H.Wu (2013) $\quad(\mathrm{A}) \lesssim(\mathrm{B})$ when $h k^{3 / 2} \lesssim 1 . \quad$ (without ε)

Corollary

$$
\begin{aligned}
\left\|\mathbf{I}-\mathbf{A}_{\epsilon}^{-1} \mathbf{A}\right\| & \leq\left\|\mathbf{A}_{\varepsilon}^{-1}\right\|\left\|\mathbf{A}_{\varepsilon}-\mathbf{A}\right\| \\
& \leq h^{-d} k^{-1}\|i \epsilon \mathbf{M}\| \\
& \lesssim \frac{\epsilon}{k}
\end{aligned}
$$

Corollary

$$
\begin{aligned}
\left\|\mathbf{I}-\mathbf{A}_{\epsilon}^{-1} \mathbf{A}\right\| & \leq\left\|\mathbf{A}_{\varepsilon}^{-1}\right\|\left\|\mathbf{A}_{\varepsilon}-\mathbf{A}\right\| \\
& \leq h^{-d} k^{-1}\|i \epsilon \mathbf{M}\| \\
& \lesssim \frac{\epsilon}{k}
\end{aligned}
$$

Locally refined meshes:

$$
\left\|\mathbf{I}-\mathbf{D}^{1 / 2} \mathbf{A}_{\epsilon}^{-1} \mathbf{A} \mathbf{D}^{-1 / 2}\right\| \lesssim \frac{\epsilon}{k}
$$

Exterior scattering problem with refinement

$h \sim k^{-1}$,
Solving $\mathbf{A}_{\varepsilon}^{-1} \mathbf{A x}=\mathbf{A}_{\varepsilon}^{-1} \mathbf{1}$ on unit square \# GMRES

with diagonal scaling			
k	$\varepsilon=k$	$\varepsilon=k^{3 / 2}$	
20	5	8	
40	5	11	
80	5	13	
160	5	16	

A trapping domain

$k \quad \varepsilon=k \quad \varepsilon=k^{3 / 2}$

$10 \pi / 8$	$\mathbf{1 8}$	$\mathbf{2 9}$
$20 \pi / 8$	$\mathbf{1 9}$	$\mathbf{4 1}$
$40 \pi / 8$	$\mathbf{2 1}$	$\mathbf{6 0}$
$80 \pi / 8$	$\mathbf{2 2}$	$\mathbf{8 9}$

Part 2: How to approximate $\mathbf{A}_{\varepsilon}^{-1}$?

Erlangga, Osterlee, Vuik (2004):
Geometric multigrid: problem "elliptic"
Engquist \& Ying (2012):
"Since the shifted Laplacian operator is elliptic, standard algorithms such as multigrid can be used for its inversion"

Domain Decomposition:

Many non-overlapping methods $(\varepsilon=0)$
Benamou \& Després 1997.....Gander, Magoules, Nataf, Halpern, Dolean........

General issue: coarse grids, scalability?
Conjecture If ε large enough, classical overlapping DD methods with coarse grids will work (giving scalable solvers).

However Classical analysis for $\varepsilon=0$ (Cai \& Widlund, 1992) leads to coarse grid size $H \sim k^{-2}$

Classical additive Schwarz

To solve a problem on a fine grid FE space \mathcal{S}_{h}

- Coarse space \mathcal{S}_{H} (here linear FE) on a coarse grid
- Subdomain spaces \mathcal{S}_{i} on subdomains Ω_{i}, overlap δ $H_{\text {sub }} \sim H$ in this case

Classical additive Schwarz p/c for matrix C

Approximation of C^{-1} :

$$
\sum_{i} \mathbf{R}_{i}^{T} \mathbf{C}_{i}^{-1} \mathbf{R}_{i}+\mathbf{R}_{H}^{T} \mathbf{C}_{H}^{-1} \mathbf{R}_{H}
$$

$\mathbf{R}_{i}=$ restriction to \mathcal{S}_{i},
$\mathbf{C}_{i}=\mathbf{R}_{i} \mathbf{C R} \mathbf{R}_{i}^{T}$
Dirichlet BCs

Apply to \mathbf{A}_{ε} to get $\mathbf{B}_{\varepsilon}^{-1}$

Non-standard DD theory - applied to \mathbf{A}_{ε}

Coercivity Lemma There exisits $|\Theta|=1$, with

$$
\operatorname{Im}\left[\Theta a_{\varepsilon}(v, v)\right] \gtrsim \frac{\varepsilon}{k^{2}}\|v\|_{1, k}^{2} .
$$

Projections onto subpaces:

$$
a_{\varepsilon}\left(Q_{i} v_{h}, w_{i}\right)=a_{\varepsilon}\left(v_{h}, w_{i}\right), \quad v_{h} \in \mathcal{S}_{h}, \quad w_{i} \in \mathcal{S}_{i}
$$

Non-standard DD theory - applied to \mathbf{A}_{ε}

Coercivity Lemma There exisits $|\Theta|=1$, with

$$
\operatorname{Im}\left[\Theta a_{\varepsilon}(v, v)\right] \gtrsim \frac{\varepsilon}{k^{2}} \underbrace{\|v\|_{1, k}^{2}}_{\|\nabla u\|_{\Omega}^{2}+k^{2}\|u\|_{\Omega}^{2}} .
$$

Projections onto subpaces:

$$
a_{\varepsilon}\left(Q_{H} v_{h}, w_{H}\right)=a_{\varepsilon}\left(v_{h}, w_{H}\right), \quad v_{h} \in \mathcal{S}_{h}, \quad w_{H} \in \mathcal{S}_{H}
$$

Guaranteed well-defined by (\star).
Analysis of $\mathbf{B}_{\varepsilon}^{-1} \mathbf{A}_{\varepsilon}$ equivalent to analysing

$$
Q:=\sum_{i} Q_{i}+Q_{H} \quad \text { operator in FE space } \quad \mathcal{S}_{h}
$$

Convergence results

Assume $\varepsilon \sim k^{2}$ and overlap $\delta \sim H$.
Theorem IGG, Spence, Vainikko, 2014
For all coarse grid sizes H,

$$
\|Q\|_{1, k} \lesssim 1
$$

Theorem IGG, Spence, Vainikko, 2014
There exists $C>0$ so that

$$
\operatorname{dist}(0, \operatorname{fov}(Q)) \gtrsim 1,
$$

provided $k H<C$ (no pollution!).
Hence k-independent GMRES convergence.

Convergence results

Assume $\varepsilon \sim k^{2}$. and overlap δ.
Theorem IGG, E. Spence, E. Vainikko, 2014
For all coarse grid sizes H,

$$
\|Q\|_{1, k} \lesssim 1
$$

Theorem IGG, E. Spence, E. Vainikko, 2014
There exists $C>0$ so that

$$
\operatorname{dist}(0, \operatorname{fov}(Q)) \gtrsim\left(1+\frac{H}{\delta}\right)^{-2}
$$

provided $k H<C$ (no pollution!).

$\mathbf{B}_{\varepsilon}^{-1}$ as preconditioner for \mathbf{A}_{ε}

Numerical experiments: unit square

$$
\varepsilon=k^{2} \quad h \sim k^{-3 / 2}, \quad H \sim k^{-1} \quad \delta \sim H
$$

Classical additive Schwarz

k	\#GMRES
20	14
40	15
60	15
80	17

Some steps in proof

$$
\left(v_{h}, Q v_{h}\right)_{1, k}=\sum_{j}\left(v_{h}, Q_{j} v_{h}\right)_{1, k}+\left(v_{h}, Q_{H} v_{h}\right)_{1, k}
$$

Some steps in proof

$$
\left(v_{h}, Q v_{h}\right)_{1, k}=\sum_{j}\left(v_{h}, Q_{j} v_{h}\right)_{1, k}+\left(v_{h}, Q_{H} v_{h}\right)_{1, k}
$$

$$
\left(v_{h}, Q_{H} v_{h}\right)_{1, k}=\left\|Q_{H} v_{h}\right\|_{1, k}^{2}+\left(\left(I-Q_{H}\right) v_{h}, Q_{H} v_{h}\right)_{1, k}
$$

Some steps in proof

$$
\begin{gathered}
\left(v_{h}, Q v_{h}\right)_{1, k}=\sum_{j}\left(v_{h}, Q_{j} v_{h}\right)_{1, k}+\left(v_{h}, Q_{H} v_{h}\right)_{1, k} \\
\left(v_{h}, Q_{H} v_{h}\right)_{1, k}=\left\|Q_{H} v_{h}\right\|_{1, k}^{2}+\left(\left(I-Q_{H}\right) v_{h}, Q_{H} v_{h}\right)_{1, k} \\
\left(\left(I-Q_{H}\right) v_{h}, Q_{H} v_{h}\right)_{1, k}=\underbrace{a_{\varepsilon}\left(\left(I-Q_{H}\right) v_{h}, Q_{H} v_{h}\right)}_{=0}+L_{2} \text { terms }
\end{gathered}
$$

Galerkin Orthogonality, duality, regularity \Longrightarrow condition on $k H$

Some steps in proof

$$
\begin{gathered}
\left(v_{h}, Q v_{h}\right)_{1, k}=\sum_{j}\left(v_{h}, Q_{j} v_{h}\right)_{1, k}+\left(v_{h}, Q_{H} v_{h}\right)_{1, k} \\
\left(v_{h}, Q_{H} v_{h}\right)_{1, k}=\left\|Q_{H} v_{h}\right\|_{1, k}^{2}+\left(\left(I-Q_{H}\right) v_{h}, Q_{H} v_{h}\right)_{1, k} \\
\left(\left(I-Q_{H}\right) v_{h}, Q_{H} v_{h}\right)_{1, k}=\underbrace{a_{\varepsilon}\left(\left(I-Q_{H}\right) v_{h}, Q_{H} v_{h}\right)}_{=0}+L_{2} \text { terms }
\end{gathered}
$$

Galerkin Orthogonality, duality, regularity \Longrightarrow condition on $k H$

Some steps in proof

$$
\begin{gathered}
\left(v_{h}, Q v_{h}\right)_{1, k}=\sum_{j}\left(v_{h}, Q_{j} v_{h}\right)_{1, k}+\left(v_{h}, Q_{H} v_{h}\right)_{1, k} \\
\left(v_{h}, Q_{H} v_{h}\right)_{1, k}=\left\|Q_{H} v_{h}\right\|_{1, k}^{2}+\left(\left(I-Q_{H}\right) v_{h}, Q_{H} v_{h}\right)_{1, k} \\
\left(\left(I-Q_{H}\right) v_{h}, Q_{H} v_{h}\right)_{1, k}=\underbrace{a_{\varepsilon}\left(\left(I-Q_{H}\right) v_{h}, Q_{H} v_{h}\right)}_{=0}+L_{2} \text { terms }
\end{gathered}
$$

Galerkin Orthogonality, duality, regularity \Longrightarrow condition on $k H$

$$
\begin{aligned}
\left|\left(v_{h}, Q v_{h}\right)_{1, k}\right| & \gtrsim \sum_{j}\left\|Q_{j} v_{h}\right\|_{1, k}^{2}+\left\|Q_{H} v_{h}\right\|_{1, k}^{2} \\
& \gtrsim \quad\left\|v_{h}\right\|_{1, k}^{2}
\end{aligned}
$$

Some steps in proof

$$
\begin{gathered}
\left(v_{h}, Q v_{h}\right)_{1, k}=\sum_{j}\left(v_{h}, Q_{j} v_{h}\right)_{1, k}+\left(v_{h}, Q_{H} v_{h}\right)_{1, k} \\
\left(v_{h}, Q_{H} v_{h}\right)_{1, k}=\left\|Q_{H} v_{h}\right\|_{1, k}^{2}+\left(\left(I-Q_{H}\right) v_{h}, Q_{H} v_{h}\right)_{1, k} \\
\left(\left(I-Q_{H}\right) v_{h}, Q_{H} v_{h}\right)_{1, k}=\underbrace{a_{\varepsilon}\left(\left(I-Q_{H}\right) v_{h}, Q_{H} v_{h}\right)}_{=0}+L_{2} \text { terms }
\end{gathered}
$$

Galerkin Orthogonality, duality, regularity \Longrightarrow condition on $k H$

$$
\begin{aligned}
\left|\left(v_{h}, Q v_{h}\right)_{1, k}\right| & \gtrsim \sum_{j}\left\|Q_{j} v_{h}\right\|_{1, k}^{2}+\left\|Q_{H} v_{h}\right\|_{1, k}^{2} \\
& \gtrsim\left(\frac{\varepsilon}{k^{2}}\right)^{2}\left\|v_{h}\right\|_{1, k}^{2}
\end{aligned}
$$

Useful Variants

- Hybrid: Multiplicative between coarse and local solves Mandel and Brezina: 1994,96
- RAS: only add up once on regions of overlap

Cai \& Sarkis, 1999, Kimn \& Sarkis 2010

- local Dirichlet \rightarrow local impedance (or PML) Toselli , 1999

$\mathbf{B}_{\varepsilon}^{-1}$ as preconditioner for \mathbf{A}_{ε}

$h \sim k^{-3 / 2}, \quad n \sim k^{3}, \quad$ Hybrid RAS,
Dirichlet subdomain problems

Relative Coarse and subdomain problem size

Scale $=0.07$

k	$\#$ GMRES
20	8
40	8
60	8
80	8
100	8

$\mathbf{B}_{\varepsilon}^{-1}$ as preconditioner for \mathbf{A}_{ε} $\varepsilon=k^{2}$

$h \sim k^{-3 / 2}, \quad n \sim k^{3}, \quad$ Hybrid RAS，
Dirichlet subdomain problems

$$
H \sim k^{-0.9}
$$

Scale $=0.03$

k	\＃GMRES
20	9
40	10
60	10
80	10
100	10

$\mathbf{B}_{\varepsilon}^{-1}$ as preconditioner for \mathbf{A}_{ε} $\varepsilon=k^{2}$

$h \sim k^{-3 / 2}, \quad n \sim k^{3}, \quad$ Hybrid RAS,
Dirichlet subdomain problems

$$
H \sim k^{-0.8}
$$

Scale $=0.03$

k	\#GMRES
20	10
40	10
60	11
80	11
100	11

Solving the real problem: \mathbf{B}_{k}^{-1} as preconditioner for \mathbf{A}

$h \sim k^{-3 / 2}, \quad n \sim k^{3}, \quad$ Hybrid RAS,
Dirichlet subdomain problems $\quad \varepsilon \sim k$ seems best choice
$H \sim k^{-1}$

Scale $=0.07$
k \# GMRES
2012
4015
$60 \quad 20$
8026
10033

Solving the real problem: \mathbf{B}_{k}^{-1} as preconditioner for \mathbf{A}

$h \sim k^{-3 / 2}, \quad n \sim k^{3}, \quad$ Hybrid RAS,
Dirichlet subdomain problems

$$
H \sim k^{-1}
$$

Without coarse grid
Scale $=0.07$

Solving the real problem: \mathbf{B}_{k}^{-1} as preconditioner for \mathbf{A}

20 grid points per wavelength, $h \sim k^{-1}, \quad n \sim k^{2}$, Hybrid RAS
Impedance subdomain problems $H \sim k^{-0.5}$

\# GMRES $\sim \log k$
Scale $=0.035$

Solving the real problem: \mathbf{B}_{k}^{-1} as preconditioner for \mathbf{A}

20 grid points per wavelength, $h \sim k^{-1}, \quad n \sim k^{2}$, Hybrid RAS
Dirichlet subdomain problems $H \sim k^{-0.5}$

Scale $=0.035$

- k and ϵ explicit analysis allows rigorous explanation of some empirical observations and formulation of new methods.
- When $\epsilon \in[0, k], \quad \mathbf{A}_{\epsilon}^{-1}$ is optimal preconditioner for \mathbf{A}
- When $\epsilon \sim k^{2}, \quad \mathbf{B}_{\varepsilon}^{-1}$ is "optimal" for $\mathbf{A}_{\varepsilon}\left(H \sim k^{-1}\right)$
- Analysis is for classical DP method - introduce more wavelike components
- When preconditioning \mathbf{A} with $\mathbf{B}_{\varepsilon}^{-1}$, empirical best choice is $\varepsilon \sim k$
- New framework for DD analysis for larger k.
- Open questions in analysis when $\frac{\varepsilon}{k^{2}} \ll 1$

