Shifted Laplace and related preconditioning for the Helmholtz equation

Ivan Graham and Euan Spence (Bath, UK)

Collaborations with:

Paul Childs (Schlumberger Gould Research), Martin Gander (Geneva) Douglas Shanks (Bath) Eero Vainikko (Tartu, Estonia)

LMS Durham Symposium "Building Bridges..." July 2014

Outline of talk:

- Seismic inversion, HF Helmholtz equation
- (conventional) FE discretization, preconditioned GMRES solvers
- sharp analysis of preconditioners based on absorption
- analytic wavenumber- and absorption-explicit PDE bounds
- a class of (scalable) DD preconditioners, with coarse grids

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

- a new convergence theory for DD for Helmholtz
- some open theoretical questions

Outline of talk:

- Seismic inversion, HF Helmholtz equation
- (conventional) FE discretization, preconditioned GMRES solvers
- sharp analysis of preconditioners based on absorption
- analytic wavenumber- and absorption-explicit PDE bounds
- a class of (scalable) DD preconditioners, with coarse grids
- a new convergence theory for DD for Helmholtz
- some open theoretical questions

Chandler-Wilde, IGG, Langdon, Spence:

Numerical-asymptotic boundary integral methods in high-frequency acoustic scattering Acta Numerica 2012

Motivation

Seismic Towing Configuration

2 PC 3/20/07

Seismic inversion

Inverse problem: reconstruct material properties of rock under sea bed (characterised by wave speed c(x)) from observed echos.

Regularised iterative method: repeated solution of the (forward problem): the wave equation

$$-\Delta u + \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} = f$$
 or its elastic variant

Frequency domain:

$$-\Delta u - \left(\frac{\omega}{c}\right)^2 u = f, \qquad \omega =$$
 frequency

《曰》 《聞》 《臣》 《臣》 三臣 …

solve for u with approximate c.

Seismic inversion

Inverse problem: reconstruct material properties of subsurface (wave speed c(x)) from observed echos.

Regularised iterative method: repeated solution of the (forward problem): the wave equation

$$-\Delta u + rac{\partial^2 u}{\partial t^2} = f$$
 or its elastic variant

Frequency domain:

$$-\Delta u - \left(\frac{\omega L}{c}\right)^2 u = f, \qquad \omega =$$
 frequency

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

solve for u with approximate c.

Large domain of characteristic length *L*. effectively high frequency

Marmousi Model Problem

• [P. Childs, Schlumberger (2007)]: Solver of choice based on principle of limited absorption (Erlangga, Osterlee, Vuik, 2004)...

• This work: Analysis of this approach and use it to build better methods

イロト イヨト イヨト イヨト

- 2

Model interior impedance problem

$$\begin{array}{rcl} -\Delta u - k^2 u &= f \quad \mbox{in bounded domain } \Omega \\ \frac{\partial u}{\partial n} - iku &= g \quad \mbox{on } \Gamma := \partial \Omega \end{array}$$

....Also truncated sound-soft scattering problems in Ω'

<ロト <回ト < 国ト < 国ト < 国ト 三 国

Linear algebra problem

• weak form

$$a (u, v) := \int_{\Omega} \left(\nabla u \cdot \nabla \overline{v} - \mathbf{k}^2 \ u \overline{v} \right) - \mathbf{i} \mathbf{k} \int_{\Gamma} u \overline{v}$$
$$= \int_{\Omega} f \overline{v} + \int_{\Gamma} g \overline{v}$$

,

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

• (Fixed order) finite element discretization

$$\mathbf{A} \mathbf{u} := (\mathbf{S} - \mathbf{k}^2 \mathbf{M}^{\Omega} - \mathbf{i} \mathbf{k} \mathbf{M}^{\Gamma}) \mathbf{u} = \mathbf{f}$$

Often: $h \sim k^{-1}$ but pollution effect: for quasioptimality need $h \sim k^{-2}$??, $h \sim k^{-3/2}$?? Du and Wu 2013 Melenk and Sauter 2011 (*hp*)

Linear algebra problem

• weak form with absorption $k^2 \rightarrow k^2 + i\varepsilon$,

$$\begin{aligned} a_{\varepsilon}(u,v) &:= \int_{\Omega} \left(\nabla u . \nabla \overline{v} - (k^2 + i\varepsilon) u \overline{v} \right) - \mathrm{i}k \int_{\Gamma} u \overline{v} \\ &= \int_{\Omega} f \overline{v} + \int_{\Gamma} g \overline{v} \quad \text{"Shifted Laplacian"} \end{aligned}$$

[Equivalently $k^2 + i\varepsilon \longleftrightarrow (k + i\rho)^2$]

• Finite element discretization

$$\mathbf{A}_{\varepsilon}\mathbf{u} := (\mathbf{S} - (k^2 + i\varepsilon)\mathbf{M}^{\Omega} - \mathbf{i}k\mathbf{M}^{\Gamma})\mathbf{u} = \mathbf{f}$$

Linear algebra problem

• weak form with absorption $k^2 \rightarrow k^2 + i\varepsilon$,

$$\begin{aligned} a_{\varepsilon}(u,v) &:= \int_{\Omega} \left(\nabla u \cdot \nabla \overline{v} - (k^2 + i\varepsilon) u \overline{v} \right) - \mathrm{i}k \int_{\Gamma} u \overline{v} \\ &= \int_{\Omega} f \overline{v} + \int_{\Gamma} g \overline{v} \quad \text{"Shifted Laplacian"} \end{aligned}$$

$$arepsilon\sim k^2 \longleftrightarrow
ho\sim k \qquad arepsilon\sim k \longleftrightarrow
ho\sim 1$$

• Finite element discretization

$$\mathbf{A}_{\varepsilon}\mathbf{u} := (\mathbf{S} - (k^2 + i\varepsilon)\mathbf{M}^{\Omega} - \mathbf{i}k\mathbf{M}^{\Gamma})\mathbf{u} = \mathbf{f}$$

Preconditioning with A_{ε}^{-1} and its approximations

$$\mathbf{A}_{\varepsilon}^{-1}\mathbf{A}\mathbf{u} = \mathbf{A}_{\varepsilon}^{-1}\mathbf{f}.$$

"Elman theory" for GMRES requires:

 $\|\mathbf{A}_{\varepsilon}^{-1}\mathbf{A}\| \lesssim 1, \quad \text{ and } \quad \mathrm{dist}(0,\mathbf{fov}(\mathbf{A}_{\varepsilon}^{-1}\mathbf{A})) \gtrsim 1 \quad \text{ any norm}$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Sufficient condition: $\|\mathbf{I} - \mathbf{A}_{\varepsilon}^{-1}\mathbf{A}\|_2 \lesssim C < 1$.

Preconditioning with $\mathbf{A}_{\varepsilon}^{-1}$ and its approximations

$$\mathbf{A}_{\varepsilon}^{-1}\mathbf{A}\mathbf{u} = \mathbf{A}_{\varepsilon}^{-1}\mathbf{f}.$$

"Elman theory" for GMRES requires:

 $\|\mathbf{A}_{\varepsilon}^{-1}\mathbf{A}\| \lesssim 1, \quad \text{ and } \quad \operatorname{dist}(0, \mathbf{fov}(\mathbf{A}_{\varepsilon}^{-1}\mathbf{A})) \gtrsim 1 \quad \text{ any norm}$

Sufficient condition: $\|\mathbf{I} - \mathbf{A}_{\varepsilon}^{-1}\mathbf{A}\|_2 \lesssim C < 1$.

In practice use

$$\mathbf{B}_{arepsilon}^{-1}\mathbf{A}\mathbf{u}=\mathbf{B}_{arepsilon}^{-1}\mathbf{f}, \hspace{1em} ext{where} \hspace{1em} \mathbf{B}_{arepsilon}^{-1} \,pprox \, \mathbf{A}_{arepsilon}^{-1}.$$

Writing

$$\mathbf{I} - \mathbf{B}_{\varepsilon}^{-1} \mathbf{A} = \mathbf{I} - \mathbf{B}_{\varepsilon}^{-1} \mathbf{A}_{\varepsilon} + \mathbf{B}_{\varepsilon}^{-1} \mathbf{A}_{\varepsilon} (\mathbf{I} - \mathbf{A}_{\varepsilon}^{-1} \mathbf{A}),$$

a sufficient condition is:

$$\|\mathbf{I} - \mathbf{A}_{\varepsilon}^{-1}\mathbf{A}\|_2$$
 and $\|\mathbf{I} - \mathbf{B}_{\varepsilon}^{-1}\mathbf{A}_{\varepsilon}\|_2$ small,

i.e. A_{ε}^{-1} to be a good preconditioner for A_{ε} . and B_{ε}^{-1} to be a good preconditioner for A_{ε} .

Preconditioning with $\mathbf{A}_{\varepsilon}^{-1}$ and its approximations

$$\mathbf{A}_{\varepsilon}^{-1}\mathbf{A}\mathbf{u} = \mathbf{A}_{\varepsilon}^{-1}\mathbf{f}.$$

"Elman theory" for GMRES requires:

 $\|\mathbf{A}_{\varepsilon}^{-1}\mathbf{A}\| \lesssim 1$, and $\operatorname{dist}(0, \mathbf{fov}(\mathbf{A}_{\varepsilon}^{-1}\mathbf{A})) \gtrsim 1$ Sufficient condition: $\|\mathbf{I} - \mathbf{A}_{\varepsilon}^{-1}\mathbf{A}\|_2 \lesssim C < 1$.

In practice use

$$\mathbf{B}_{\varepsilon}^{-1}\mathbf{A}\mathbf{u}=\mathbf{B}_{\varepsilon}^{-1}\mathbf{f},$$

 $\mathbf{B}_{\varepsilon}^{-1}$ easily computed approximation of $\mathbf{A}_{\varepsilon}^{-1}$. Writing

$$\mathbf{I} - \mathbf{B}_{\varepsilon}^{-1} \mathbf{A} = \mathbf{I} - \mathbf{B}_{\varepsilon}^{-1} \mathbf{A}_{\varepsilon} + \mathbf{B}_{\varepsilon}^{-1} \mathbf{A}_{\varepsilon} (\mathbf{I} - \mathbf{A}_{\varepsilon}^{-1} \mathbf{A}),$$

so we require

$$\|\mathbf{I} - \mathbf{A}_{\varepsilon}^{-1}\mathbf{A}\|_{2}$$
 and $\|\mathbf{I} - \mathbf{B}_{\varepsilon}^{-1}\mathbf{A}_{\varepsilon}\|_{2}$ small,

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

i.e. $\mathbf{A}_{\varepsilon}^{-1}$ to be a good preconditioner for \mathbf{A} and $\mathbf{B}_{\varepsilon}^{-1}$ to be a good preconditioner for \mathbf{A}_{ε} . Part 1

Preconditioning with $\mathbf{A}_{\varepsilon}^{-1}$ and its approximations

$$\mathbf{A}_{\varepsilon}^{-1}\mathbf{A}\mathbf{u} = \mathbf{A}_{\varepsilon}^{-1}\mathbf{f}.$$

"Elman theory" for GMRES requires:

 $\|\mathbf{A}_{\varepsilon}^{-1}\mathbf{A}\| \lesssim 1$, and $\operatorname{dist}(0, \mathbf{fov}(\mathbf{A}_{\varepsilon}^{-1}\mathbf{A})) \gtrsim 1$ Sufficient condition: $\|\mathbf{I} - \mathbf{A}_{\varepsilon}^{-1}\mathbf{A}\|_2 \lesssim C < 1$.

In practice use

$$\mathbf{B}_{\varepsilon}^{-1}\mathbf{A}\mathbf{u} = \mathbf{B}_{\varepsilon}^{-1}\mathbf{f},$$

 $\mathbf{B}_{\varepsilon}^{-1}$ easily computed approximation of $\mathbf{A}_{\varepsilon}^{-1}$. Writing

$$\mathbf{I} - \mathbf{B}_{\varepsilon}^{-1} \mathbf{A} = \mathbf{I} - \mathbf{B}_{\varepsilon}^{-1} \mathbf{A}_{\varepsilon} + \mathbf{B}_{\varepsilon}^{-1} \mathbf{A}_{\varepsilon} (\mathbf{I} - \mathbf{A}_{\varepsilon}^{-1} \mathbf{A}),$$

so we require

$$\|\mathbf{I} - \mathbf{A}_{\varepsilon}^{-1}\mathbf{A}\|_{2}$$
 and $\|\mathbf{I} - \mathbf{B}_{\varepsilon}^{-1}\mathbf{A}_{\varepsilon}\|_{2}$ small,

i.e. A_{ϵ}^{-1} to be a good preconditioner for A and B_{ϵ}^{-1} to be a good preconditioner for A_{ϵ} . Part 2

Bayliss, Goldstein & Turkel 1983, Laird & Giles 2002.....

Erlangga, Vuik & Oosterlee '04 and subsequent papers:

$$B_{\varepsilon}^{-1} = \mathsf{V}$$
-cycle for $\mathbf{A}_{\epsilon}^{-1}$

 $\epsilon \sim k^2$ (analysis via simplified Fourier eigenvalue analysis)

Kimn & Sarkis '13 used $\varepsilon \sim k^2$ to enhance domain decomposition methods

Engquist and Ying, '11 Used $\varepsilon \sim k$ to stabilise their sweeping preconditioner

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

...others...

Part 1

Theorem 1 (with Martin Gander and Euan Spence) For Lipschitz star-shaped domains Quasiuniform meshes:

$$\| \mathbf{I} - \mathbf{A}_{\epsilon}^{-1} \mathbf{A} \| \hspace{1em} \lesssim \hspace{1em} rac{\epsilon}{k} \; .$$

Shape regular meshes:

$$\|\mathbf{I} - \mathbf{D}^{1/2} \mathbf{A}_{\epsilon}^{-1} \mathbf{A} \mathbf{D}^{-1/2}\| \quad \lesssim \quad rac{\epsilon}{k} \; .$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

 $\mathbf{D} = \operatorname{diag}(\mathbf{M}^{\Omega}).$

So ϵ/k sufficiently small $\implies k$ -independent GMRES convergence.

Solving $\mathbf{A}_{\varepsilon}^{-1}\mathbf{A}\mathbf{x} = \mathbf{A}_{\varepsilon}^{-1}\mathbf{1}$ on unit square

	k	# GMRES
	10	6
$h \sim k^{-3/2}$	20	6
	40	6
	80	6

Shifted Laplacian preconditioner $arepsilon = k^{3/2}$

Solving $\mathbf{A}_{\varepsilon}^{-1}\mathbf{A}\mathbf{x} = \mathbf{A}_{\varepsilon}^{-1}\mathbf{1}$ on unit square

	k	# GMRES
	10	8
$h \sim k^{-3/2}$	20	11
	40	14
	80	16

Solving $\mathbf{A}_{\varepsilon}^{-1}\mathbf{A}\mathbf{x} = \mathbf{A}_{\varepsilon}^{-1}\mathbf{1}$ on unit square

	k	# GMRES
	10	13
$h\sim k^{-3/2}$	20	24
	40	48
	80	86

Proof of Theorem 1: via continuous problem

$$a_{\epsilon}(u,v) = \int_{\Omega} f\overline{v} + \int_{\Gamma} g\overline{v} , \quad v \in H^{1}(\Omega)$$
 (*)

Theorem (Stability) Assume Ω is Lipschitz and star-shaped. Then, if ϵ/k sufficiently small,

$$\underbrace{\|\nabla u\|_{L^{2}(\Omega)}^{2} + k^{2} \|u\|_{L^{2}(\Omega)}^{2}}_{=:\|u\|_{1,k}^{2}} \lesssim \|f\|_{L^{2}(\Omega)}^{2} + \|g\|_{L^{2}(\Gamma)}^{2}, \quad k \to \infty$$

" \leq " indept of k and ϵ cf. Melenk 95, Cummings & Feng 06

More absorption: $k \lesssim \epsilon \lesssim k^2$ general Lipschitz domain OK.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Key technique in proof (star-shaped case)

Rellich/Morawetz Identity

$$\mathcal{M}u = \mathbf{x} \cdot \nabla u + \alpha u, \quad \alpha = (d-1)/2$$

 $\mathcal{L}u = \Delta u + k^2 u$

$$\begin{aligned} \|\nabla u\|_{L^{2}(\Omega)}^{2} + k^{2} \|u\|_{L^{2}(\Omega)}^{2} &= -2\operatorname{Re}\int_{\Omega}(\overline{\mathcal{M}u}\mathcal{L}u) \\ &+ \int_{\Gamma}\left[2\operatorname{Re}(\overline{\mathcal{M}u}\frac{\partial u}{\partial n}) + (k^{2}|u|^{2} - |\nabla u|^{2})(\mathbf{x}.\mathbf{n})\right] \end{aligned}$$

Key technique in proof (star-shaped case)

Rellich/Morawetz Identity

$$\mathcal{M}u = \mathbf{x} \cdot \nabla u + \alpha u, \quad \alpha = (d-1)/2$$

 $\mathcal{L}u = \Delta u + k^2 u$

$$\begin{aligned} \|\nabla u\|_{L^{2}(\Omega)}^{2} + k^{2} \|u\|_{L^{2}(\Omega)}^{2} &= -2\operatorname{Re}\int_{\Omega}(\overline{\mathcal{M}u}\mathcal{L}u) \\ &+ \int_{\Gamma}\left[2\operatorname{Re}(\overline{\mathcal{M}u}\frac{\partial u}{\partial n}) + (k^{2}|u|^{2} - |\nabla u|^{2})(\mathbf{x}.\mathbf{n})\right] \end{aligned}$$

cf. "Green's identity"

$$\|\nabla u\|_{L^{2}(\Omega)}^{2} - k^{2} \|u\|_{L^{2}(\Omega)}^{2} = -\int_{\Omega} (\overline{u}\mathcal{L}u) + \int_{\Gamma} \overline{u} \frac{\partial u}{\partial n}$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Bound for $\|\mathbf{A}_{\epsilon}^{-1}\|_2$

Fix $\mathbf{f} \in \mathbb{C}^N$, and consider the solution of $\mathbf{A}_{\varepsilon}\mathbf{u} = \mathbf{f}$. Then $u_h := \sum_j u_j \phi_j$ is FE solution of problem $a_{\epsilon}(u, v) = (f_h, v)$ with $\|f_h\|_{L_2(\Omega)} \sim h^{-d/2} \|\mathbf{f}\|_2$.

Then

$$k h^{d/2} \|\mathbf{u}\|_{2} \sim k \|u_{h}\|_{L_{2}(\Omega)}$$

$$\leq \|u_{h}\|_{1,k}$$

$$\leq \|u - u_{h}\|_{1,k} + \|u\|_{1,k}$$

$$\leq 2 \|u\|_{1,k}$$
 quasioptimality
$$\leq \|f_{h}\|_{L_{2}(\Omega)}$$
 stability

and so

$$\|\mathbf{A}_{\boldsymbol{\epsilon}}^{-1}\| ~\lesssim~ h^{-d}k^{-1}, \quad \text{for all} \quad \boldsymbol{\varepsilon} \lesssim k^2$$

(日) (월) (문) (문) (문)

PDE Theory to bound the matrix $\mathbf{A}_{\epsilon}^{-1}$

Fix $\mathbf{f} \in \mathbb{C}^N$, and consider the solution of $\mathbf{A}_{\varepsilon}\mathbf{u} = \mathbf{f}$. Then $u_h := \sum_j u_j \phi_j$ is FE solution of problem $a_{\epsilon}(u, v) = (f_h, v)$ with $\|f_h\|_{L_2(\Omega)} \sim h^{-d/2} \|\mathbf{f}\|_2$.

Then

$$k h^{d/2} \|\mathbf{u}\|_{2} \sim k \|u_{h}\|_{L_{2}(\Omega)}$$

$$\leq \|u_{h}\|_{1,k} \qquad (A)$$

$$\leq \|u - u_{h}\|_{1,k} + \|u\|_{1,k}$$

$$\leq 2 \|u\|_{1,k} \quad \text{quasioptimality}$$

$$\leq \|f_{h}\|_{L_{2}(\Omega)} \quad \text{stability} \qquad (B)$$

and so

$$\|\mathbf{A}_{\epsilon}^{-1}\| \lesssim h^{-d}k^{-1}, \text{ for all } \varepsilon \lesssim k^2$$

By H.Wu (2013) (A) \lesssim (B) when $hk^{3/2} \lesssim 1$. (without ε)

Corollary

$$\begin{aligned} \|\mathbf{I} - \mathbf{A}_{\epsilon}^{-1}\mathbf{A}\| &\leq & \|\mathbf{A}_{\varepsilon}^{-1}\|\|\mathbf{A}_{\varepsilon} - \mathbf{A}\| \\ &\leq & h^{-d}k^{-1} \|i\epsilon\mathbf{M}\| \\ &\lesssim & \frac{\epsilon}{k} \,. \end{aligned}$$

・ロト ・御ト ・ヨト ・ヨト

- 2

Corollary

$$\begin{aligned} \|\mathbf{I} - \mathbf{A}_{\epsilon}^{-1}\mathbf{A}\| &\leq & \|\mathbf{A}_{\varepsilon}^{-1}\|\|\mathbf{A}_{\varepsilon} - \mathbf{A}\| \\ &\leq & h^{-d}k^{-1} \|i\epsilon\mathbf{M}\| \\ &\lesssim & \frac{\epsilon}{k} \,. \end{aligned}$$

Locally refined meshes:

$$\|\mathbf{I} - \mathbf{D}^{1/2} \mathbf{A}_{\epsilon}^{-1} \mathbf{A} \mathbf{D}^{-1/2}\| \quad \lesssim \quad rac{\epsilon}{k} \; .$$

Exterior scattering problem with refinement

$$h \sim k^{-1}$$
,
Solving $\mathbf{A}_{\varepsilon}^{-1}\mathbf{A}\mathbf{x} = \mathbf{A}_{\varepsilon}^{-1}\mathbf{1}$ on unit square

GMRES

with diagonal scaling

k	$\varepsilon = k$	$\varepsilon = k^{3/2}$
20	5	8
40	5	11
80	5	13
160	5	16

A trapping domain

Stability result fails when ε grows slower than k "quasimodes" Betcke, Chandler-Wilde, IGG, Langdon, Lindner, 2010

Part 2: How to approximate A_{ε}^{-1} ?

Erlangga, Osterlee, Vuik (2004): Geometric multigrid: problem "elliptic"

Engquist & Ying (2012):

"Since the shifted Laplacian operator is elliptic, standard algorithms such as multigrid can be used for its inversion"

Domain Decomposition:

Many non-overlapping methods ($\varepsilon = 0$)

Benamou & Després 1997.....Gander, Magoules, Nataf, Halpern, Dolean......

General issue: coarse grids, scalability?

Conjecture If ε large enough, classical overlapping DD methods with coarse grids will work (giving scalable solvers).

However Classical analysis for $\varepsilon=0$ (Cai & Widlund, 1992) leads to coarse grid size $H\sim k^{-2}$

Classical additive Schwarz

To solve a problem on a fine grid FE space \mathcal{S}_h

- Coarse space S_H (here linear FE) on a coarse grid
- Subdomain spaces S_i on subdomains Ω_i , overlap δ

 $H_{sub} \sim H$ in this case

Classical additive Schwarz p/c for matrix C

Approximation of C^{-1} :

$$\sum_i \mathbf{R}_i^T \mathbf{C}_i^{-1} \mathbf{R}_i + \mathbf{R}_H^T \mathbf{C}_H^{-1} \mathbf{R}_H$$

 $\begin{aligned} \mathbf{R}_i &= \text{restriction to } \mathcal{S}_i, & \mathbf{R}_H &= \text{restriction to } \mathcal{S}_H \\ \mathbf{C}_i &= \mathbf{R}_i \mathbf{C} \mathbf{R}_i^T & \mathbf{C}_H &= \mathbf{R}_H \mathbf{C} \mathbf{R}_H^T \\ \text{Dirichlet BCs} & \end{aligned}$

Apply to \mathbf{A}_{ε} to get $\mathbf{B}_{\varepsilon}^{-1}$

Non-standard DD theory - applied to A_{ε}

Coercivity Lemma There exisits $|\Theta| = 1$, with

$$\operatorname{Im}\left[\Theta a_{\varepsilon}(v,v)\right] \gtrsim \frac{\varepsilon}{k^{2}} \|v\|_{1,k}^{2}. \tag{(*)}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Projections onto subpaces:

$$a_{\varepsilon}(Q_i v_h, w_i) = a_{\varepsilon}(v_h, w_i), \quad v_h \in \mathcal{S}_h, \quad w_i \in \mathcal{S}_i.$$

Non-standard DD theory - applied to A_{ε}

Coercivity Lemma There exisits $|\Theta| = 1$, with

$$\operatorname{Im}\left[\Theta a_{\varepsilon}(v,v)\right] \gtrsim \frac{\varepsilon}{k^{2}} \underbrace{\|v\|_{1,k}^{2}}_{\|\nabla u\|_{\Omega}^{2}+k^{2}\|u\|_{\Omega}^{2}}. \tag{(\star)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Projections onto subpaces:

$$a_{\varepsilon}(Q_H v_h, w_H) = a_{\varepsilon}(v_h, w_H), \quad v_h \in \mathcal{S}_h, \quad w_H \in \mathcal{S}_H.$$

Guaranteed well-defined by (\star) .

Analysis of $\mathbf{B}_{\varepsilon}^{-1}\mathbf{A}_{\varepsilon}$ equivalent to analysing

$$Q \ := \ \sum_i Q_i \ + \ Q_H$$
 operator in FE space \mathcal{S}_h .

Convergence results

Assume $\varepsilon \sim k^2$ and overlap $\delta \sim H$.

Theorem IGG, Spence, Vainikko, 2014

For all coarse grid sizes H,

 $\|Q\|_{1,k} \lesssim 1.$

Theorem IGG, Spence, Vainikko, 2014

There exists C > 0 so that

 $\operatorname{dist}(0, \operatorname{fov}(Q)) \gtrsim 1,$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

provided kH < C (no pollution!).

Hence *k*-independent GMRES convergence.

Convergence results

Assume $\varepsilon \sim k^2$. and overlap δ .

Theorem IGG, E. Spence, E. Vainikko, 2014

For all coarse grid sizes H,

 $\|Q\|_{1,k} \lesssim 1.$

Theorem IGG, E. Spence, E. Vainikko, 2014

There exists C > 0 so that

$$\operatorname{dist}(0, \operatorname{fov}(Q)) \gtrsim \left(1 + \frac{H}{\delta}\right)^{-2},$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

provided kH < C (no pollution!).

$\mathbf{B}_{arepsilon}^{-1}$ as preconditioner for $\mathbf{A}_{arepsilon}$

Numerical experiments: unit square

$$\varepsilon = k^2$$
 $h \sim k^{-3/2}$, $H \sim k^{-1}$ $\delta \sim H$

Classical additive Schwarz

 k
 #GMRES

 20
 14

 40
 15

 60
 15

 80
 17

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

Some steps in proof

$$(v_h, Qv_h)_{1,k} = \sum_j (v_h, Q_j v_h)_{1,k} + (v_h, Q_H v_h)_{1,k}$$

(日) (문) (문) (문) (문)

$$(v_h, Qv_h)_{1,k} = \sum_j (v_h, Q_j v_h)_{1,k} + (v_h, Q_H v_h)_{1,k}$$
$$(v_h, Q_H v_h)_{1,k} = \|Q_H v_h\|_{1,k}^2 + ((I - Q_H) v_h, Q_H v_h)_{1,k}$$

(日) (문) (문) (문) (문)

Some steps in proof

$$(v_h, Qv_h)_{1,k} = \sum_j (v_h, Q_j v_h)_{1,k} + (v_h, Q_H v_h)_{1,k}$$
$$(v_h, Q_H v_h)_{1,k} = \|Q_H v_h\|_{1,k}^2 + ((I - Q_H)v_h, Q_H v_h)_{1,k}$$
$$((I - Q_H)v_h, Q_H v_h)_{1,k} = \underbrace{a_{\varepsilon}((I - Q_H)v_h, Q_H v_h)}_{=0} + L_2 \quad \text{terms}$$

Galerkin Orthogonality, duality, regularity \implies condition on kH

Some steps in proof

$$(v_h, Qv_h)_{1,k} = \sum_j (v_h, Q_j v_h)_{1,k} + (v_h, Q_H v_h)_{1,k}$$
$$(v_h, Q_H v_h)_{1,k} = \|Q_H v_h\|_{1,k}^2 + ((I - Q_H)v_h, Q_H v_h)_{1,k}$$
$$((I - Q_H)v_h, Q_H v_h)_{1,k} = \underbrace{a_{\varepsilon}((I - Q_H)v_h, Q_H v_h)}_{=0} + L_2 \quad \text{terms}$$

Galerkin Orthogonality, duality, regularity \implies condition on kH

Some steps in proof $\varepsilon \sim k^2$

$$(v_h, Qv_h)_{1,k} = \sum_j (v_h, Q_j v_h)_{1,k} + (v_h, Q_H v_h)_{1,k}$$
$$(v_h, Q_H v_h)_{1,k} = \|Q_H v_h\|_{1,k}^2 + ((I - Q_H) v_h, Q_H v_h)_{1,k}$$
$$((I - Q_H) v_h, Q_H v_h)_{1,k} = \underbrace{a_{\varepsilon}((I - Q_H) v_h, Q_H v_h)}_{=0} + L_2 \quad \text{terms}$$

Galerkin Orthogonality, duality, regularity \implies condition on kH

$$\begin{aligned} |(v_h, Qv_h)_{1,k}| &\gtrsim \sum_{j} \|Q_j v_h\|_{1,k}^2 + \|Q_H v_h\|_{1,k}^2 \\ &\gtrsim \|v_h\|_{1,k}^2 \end{aligned}$$

Some steps in proof $\varepsilon \ll k^2$

$$(v_h, Qv_h)_{1,k} = \sum_j (v_h, Q_j v_h)_{1,k} + (v_h, Q_H v_h)_{1,k}$$
$$(v_h, Q_H v_h)_{1,k} = \|Q_H v_h\|_{1,k}^2 + ((I - Q_H)v_h, Q_H v_h)_{1,k}$$
$$((I - Q_H)v_h, Q_H v_h)_{1,k} = \underbrace{a_{\varepsilon}((I - Q_H)v_h, Q_H v_h)}_{=0} + L_2 \quad \text{terms}$$

Galerkin Orthogonality, duality, regularity \implies condition on kH

$$\begin{aligned} |(v_h, Qv_h)_{1,k}| &\gtrsim \sum_{j} \|Q_j v_h\|_{1,k}^2 + \|Q_H v_h\|_{1,k}^2 \\ &\gtrsim \left(\frac{\varepsilon}{k^2}\right)^2 \|v_h\|_{1,k}^2 \end{aligned}$$

• **Hybrid**: Multiplicative between coarse and local solves Mandel and Brezina: 1994,96

• **RAS**: only add up once on regions of overlap Cai & Sarkis, 1999, Kimn & Sarkis 2010

• local Dirichlet \rightarrow local impedance (or PML) Toselli , 1999

$\mathbf{B}_{\varepsilon}^{-1}$ as preconditioner for \mathbf{A}_{ε} $\varepsilon = k^2$

 $h \sim k^{-3/2}$, $n \sim k^3$, Hybrid RAS, Dirichlet subdomain problems

 $H \sim k^{-1}$

k

20

40

60

80

Relative Coarse and subdomain problem size

Scale = 0.07

$\mathbf{B}_{arepsilon}^{-1}$ as preconditioner for $\mathbf{A}_{arepsilon}$ $arepsilon = k^2$

 $h \sim k^{-3/2}$, $n \sim k^3$, Hybrid RAS, Dirichlet subdomain problems

 $H\sim k^{-0.9}$

Scale = 0.03

$\mathbf{B}_{arepsilon}^{-1}$ as preconditioner for $\mathbf{A}_{arepsilon}$ $arepsilon = k^2$

 $h \sim k^{-3/2}$, $n \sim k^3$, Hybrid RAS, Dirichlet subdomain problems

 $H\sim k^{-0.8}$

Scale = 0.03

◆ロト ◆母ト ◆臣ト ◆臣ト 三臣 → ���?

Solving the real problem: \mathbf{B}_k^{-1} as preconditioner for \mathbf{A}

 $h \sim k^{-3/2}$, $n \sim k^3$, Hybrid RAS, Dirichlet subdomain problems $\varepsilon \sim k$ seems best choice $H \sim k^{-1}$

Solving the real problem: \mathbf{B}_k^{-1} as preconditioner for A

Scale = 0.07

 $h \sim k^{-3/2}$, $n \sim k^3$, Hybrid RAS, Dirichlet subdomain problems

 $H \sim k^{-1}$

Without coarse grid

relative size of coarse and subdomain problems $H = k^{-1}$ 0.07 coarse grid subdomain 0.06 0.05 0.04 0.03 0.02 0.01 20 40 60 80 100 (日) (日) (日) (日) (日)

Solving the real problem: \mathbf{B}_k^{-1} as preconditioner for A

20 grid points per wavelength, $h \sim k^{-1}$, $n \sim k^2$, Hybrid RAS Impedance subdomain problems $H \sim k^{-0.5}$

Scale = 0.035

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ =

GMRES $\sim \log k$

Solving the real problem: \mathbf{B}_k^{-1} as preconditioner for A

20 grid points per wavelength, $h \sim k^{-1}$, $n \sim k^2$, Hybrid RAS Dirichlet subdomain problems $H \sim k^{-0.5}$

Scale = 0.035

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Summary

• k and ϵ explicit analysis allows rigorous explanation of some empirical observations and formulation of new methods.

- When $\epsilon \in [0, k]$, $\mathbf{A}_{\epsilon}^{-1}$ is optimal preconditioner for \mathbf{A}
- When $\epsilon \sim k^2$, $\mathbf{B}_{\varepsilon}^{-1}$ is "optimal" for \mathbf{A}_{ε} $(H \sim k^{-1})$
- Analysis is for classical DP method introduce more wavelike components
- When preconditioning A with ${\bf B}_{\varepsilon}^{-1},$ empirical best choice is $\varepsilon \sim k$

- New framework for DD analysis for larger k.
- Open questions in analysis when $\frac{\varepsilon}{k^2} \ll 1$