FEM for degenerate isotropic Hamilton-Jacobi-Bellman Equations

Max Jensen
University of Sussex

with Gabriele Braconi and lain Smears

An optimal control problem

- We have paths, e.g. all roads from Brighton B to Durham A.
- We have controls, e.g. steering wheel + accelerator + brake.
- We have a cost functional on the set of paths, e.g. the driving time or petrol cost.
- We denote the minimal cost to get from B to A by $v(B)$.
- We can assign to every C on the map a minimal cost.
- This defines the value function v.

An optimal control problem

- We have paths, e.g. all roads from Brighton B to Durham A.
- We have controls, e.g. steering wheel + accelerator + brake.
- We have a cost functional on the set of paths, e.g. the driving time or petrol cost.
- We denote the minimal cost to get from B to A by $v(B)$.
- We can assign to every C on the map a minimal cost.
- This defines the value function v.

- Now suppose that the path choice depends on the control through an Itô process.
- If v is smooth it solves the Hamilton-Jacobi-Bellman equation.

> Hamilton-Jacobi-Bellman problem Find the (right kind of) solution of

with final conditions $v(T, \cdot)=\Psi$ and homogeneous Dirichlet BCs.

- Now suppose that the path choice depends on the control through an Itô process.
- If v is smooth it solves the Hamilton-Jacobi-Bellman equation.
- Set

$$
\mathcal{H} w:=\sup _{\alpha}(\underbrace{-a^{\alpha} \Delta w+b^{\alpha} \cdot \nabla w}_{\begin{array}{c}
\text { linear, 2nd order } \\
\text { non-divergence form }
\end{array}}-r^{\alpha})
$$

Hamilton-Jacobi-Bellman problem

Find the (right kind of) solution of

$$
-\partial_{t} v+\mathcal{H} v=0
$$

with final conditions $v(T, \cdot)=\Psi$ and homogeneous Dirichlet BCs.

Model Problem: Uncertain volatility

- From (Avellaneda, Levy, Paras; 1995).
- Consider stock prices as geometric Brownian motions

$$
\mathrm{d} S=f S \mathrm{~d} t+\sigma S \mathrm{~d} w(t) \quad(w \text { Brownian motion })
$$

An option is a financial product whose value

$$
\mathcal{J}(t, S(t), \sigma)
$$

depends on the stock price $S(t)$ and the volatility $\sigma:[0, T] \rightarrow \mathbb{R}_{+}$. This value is the cost of hedging against the risk associated with the option.

- Suppose the volatility is uncertain, however, guaranteed to be

To hedge against the uncertain volatility costs at time t and price S

$$
V(t, S)=\sup \mathcal{J}(t, S, \sigma)
$$

Model Problem: Uncertain volatility

- From (Avellaneda, Levy, Paras; 1995).
- Consider stock prices as geometric Brownian motions

$$
\mathrm{d} S=f S \mathrm{~d} t+\sigma S \mathrm{~d} w(t) \quad(w \text { Brownian motion })
$$

An option is a financial product whose value

$$
\mathcal{J}(t, S(t), \sigma)
$$

depends on the stock price $S(t)$ and the volatility $\sigma:[0, T] \rightarrow \mathbb{R}_{+}$. This value is the cost of hedging against the risk associated with the option.

- Suppose the volatility is uncertain, however, guaranteed to be

$$
\sigma:[0, T] \rightarrow\left[\sigma_{*}, \sigma^{*}\right] .
$$

To hedge against the uncertain volatility costs at time t and price S

$$
V(t, S)=\sup _{\sigma} \mathcal{J}(t, S, \sigma)
$$

Model Problem: Uncertain volatility

- One can derive directly or in the stochastic HJB framework that

$$
\begin{aligned}
0 & =\frac{\partial}{\partial_{t}} V+\min _{\sigma}\left(\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2}}{\partial_{S S}} V+r S \frac{\partial}{\partial S} V-r V\right) \\
& =\frac{\partial}{\partial_{t}} V+\frac{1}{2} \varsigma\left(\frac{\partial^{2}}{\partial_{S S}} V\right)^{2} S^{2} \frac{\partial^{2}}{\partial_{S S}} V+r S \frac{\partial}{\partial_{S}} V-r V
\end{aligned}
$$

with

$$
\varsigma\left(\frac{\partial^{2}}{\partial_{S S}} V\right)= \begin{cases}\sigma^{*}: & \partial_{S S}^{2} V<0 \\ \sigma_{*}: & \partial_{S S}^{2} V \geq 0\end{cases}
$$

- Three features we want to address:
- fully-nonlinear (= nonlinear in highest derivative)
- discontinuous in nonlinearity ς
- degenerate at $S=0$

Model Problem: Uncertain volatility

- One can derive directly or in the stochastic HJB framework that

$$
\begin{aligned}
0 & =\frac{\partial}{\partial_{t}} V+\min _{\sigma}\left(\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2}}{\partial S S} V+r S \frac{\partial}{\partial S} V-r V\right) \\
& =\frac{\partial}{\partial_{t}} V+\frac{1}{2} \varsigma\left(\frac{\partial^{2}}{\partial_{S S}} V\right)^{2} S^{2} \frac{\partial^{2}}{\partial_{S S}} V+r S \frac{\partial}{\partial_{S}} V-r V
\end{aligned}
$$

with

$$
\varsigma\left(\frac{\partial^{2}}{\partial_{S S}} V\right)= \begin{cases}\sigma^{*}: & \partial_{S S}^{2} V<0 \\ \sigma_{*}: & \partial_{S S}^{2} V \geq 0\end{cases}
$$

- Three features we want to address:
- fully-nonlinear (= nonlinear in highest derivative)
- discontinuous in nonlinearity ς
- degenerate at $S=0$

There is a wide range of Optimal Control applications, e.g. in Finance:

- Merton portfolio problem
- Irreversible and reversible abandonment and investment
- Valuation of natural resources

Moreover, many nonlinear equations with a convex structure can be modelled in the HJB setting (often requiring anisotropic diffusions):

- Monge-Ampère equation
- Pucci's equations

Viscosity solutions

- Weak solutions of these problems are usually not unique.

- Suppose v was smooth. If $v-\psi$ has a maximum, then there

$$
\nabla v=\nabla \psi, \quad D^{2} v \leq D^{2} \psi \quad\left(D^{2} \text { Hessian }\right)
$$

where
$A \leq B: \Leftrightarrow B-A$ is positive semi-definite.

- Instead of plugging the derivatives of v into HJB, we want to work with the derivatives of ψ. This is the trick!

Viscosity solutions

- Weak solutions of these problems are usually not unique.

- Suppose v was smooth. If $v-\psi$ has a maximum, then there

$$
\nabla v=\nabla \psi, \quad D^{2} v \leq D^{2} \psi \quad\left(D^{2} \text { Hessian }\right)
$$

where

$$
A \leq B: \Leftrightarrow B-A \text { is positive semi-definite. }
$$

- Instead of plugging the derivatives of v into HJB, we want to work with the derivatives of ψ. This is the trick!

The trick works because of the following:
If $A \leq B$ then with $q_{0} \in \mathbb{R}, \vec{q} \in \mathbb{R}^{n}$

$$
-q_{0}+\mathcal{H}(x, t, \vec{q}, A) \geq-q_{0}+\mathcal{H}(x, t, \vec{q}, B) .
$$

Theorem

- v is C^{2} solution of HJB. Then for all smooth ψ

$$
-\partial_{t} \psi(t, x)+\mathcal{H}\left(x, t, \nabla \psi(t, x), D^{2} \psi(t, x)\right) \leq 0
$$

at every (t, x) which maximises $v-\psi$ with $v(t, x)=\psi(t, x)$.

- $v \in C^{0}$ is a subsolution of HJB if for all smooth ψ
\qquad

The trick works because of the following:
If $A \leq B$ then with $q_{0} \in \mathbb{R}, \vec{q} \in \mathbb{R}^{n}$

$$
-q_{0}+\mathcal{H}(x, t, \vec{q}, A) \geq-q_{0}+\mathcal{H}(x, t, \vec{q}, B) .
$$

Theorem

- v is C^{2} solution of HJB. Then for all smooth ψ

$$
-\partial_{t} \psi(t, x)+\mathcal{H}\left(x, t, \nabla \psi(t, x), D^{2} \psi(t, x)\right) \leq 0
$$

at every (t, x) which maximises $v-\psi$ with $v(t, x)=\psi(t, x)$.

Viscosity Solution (Crandall, Lions)

- $v \in C^{0}$ is a subsolution of HJB if for all smooth ψ

$$
-\partial_{t} \psi(t, x)+\mathcal{H}\left(x, t, \nabla \psi(t, x), D^{2} \psi(t, x)\right) \leq 0
$$

at every (t, x) which maximises $v-\psi$ with $v(t, x)=\psi(t, x)$.

- Supersolution similar. Subsolution + supersolution $=$: solution.

Under Reasonable Assumptions

Theorem (Comparison principle)

Let w^{*} be a viscosity subsolution and w_{*} be a viscosity supersolution then

$$
\sup _{\Omega_{T}}\left(w^{*}-w_{*}\right)=\sup _{\partial_{\mathrm{p}} \Omega_{T}}\left(w^{*}-w_{*}\right)
$$

Here $\partial_{\mathrm{p}} \Omega_{T}$ parabolic boundary.

Corollary (Uniqueness)

The HJB viscosity solution is unique and equal to the value function.
Theorem (v viscosity solution \rightsquigarrow existence)
The value function of the optimal control problem is a viscosity solution of the HJB equation.

For proofs see for instance (Fleming,Soner; Chapter V).

Summary of the PDE Theory

- The value function is defined in terms of the original optimal control problem.
- We now have a very nice theory of the HJB equation, which gives us
- in a general context the value function as solution of the HJB eqn
- and no other wrong solution
- without need to solve path integrals of the underlying optimal control problem.
- It is not really a differential equation anymore (in a narrow sense)
- Instead it is a problem posed on the set of continuous functions using monotonicity properties of the equation.
- If we use continuous functions, what about the Greeks (finance speak for partial derivatives)?
- The research I present today addresses this question in the context of computational methods.

Summary of the PDE Theory

- The value function is defined in terms of the original optimal control problem.
- We now have a very nice theory of the HJB equation, which gives us
- in a general context the value function as solution of the HJB eqn
- and no other wrong solution
- without need to solve path integrals of the underlying optimal control problem.
- It is not really a differential equation anymore (in a narrow sense).
- Instead it is a problem posed on the set of continuous functions using monotonicity properties of the equation.
- If we use continuous functions, what about the Greeks (finance speak for partial derivatives)?

Summary of the PDE Theory

- The value function is defined in terms of the original optimal control problem.
- We now have a very nice theory of the HJB equation, which gives us
- in a general context the value function as solution of the HJB eqn
- and no other wrong solution
- without need to solve path integrals of the underlying optimal control problem.
- It is not really a differential equation anymore (in a narrow sense).
- Instead it is a problem posed on the set of continuous functions using monotonicity properties of the equation.
- If we use continuous functions, what about the Greeks (finance speak for partial derivatives)?
- The research I present today addresses this question in the context of computational methods.

Task:

- Discretise HJB equations with a Finite Element Method.

Main Results:

- First proof of uniform convergence of Galerkin approximations with
- non-smooth viscosity solutions (e.g. no classical solutions),
- non-smooth HJB operators (no linearisation of \mathcal{H}). (To my knowledge this has been an open problem for a long time.)
- Novel variational argument for gradient convergence.
- Unstructured meshes permitted and Newton solvers globally convergent from above.
- HJB operators may be degenerate, but assumed isotropic.

Notation:

- y^{ℓ} is ℓ th node
- s^{k} is the k th time step
- h time step size
- ϕ^{ℓ} is the hat function at y^{ℓ} with volume $\left\|\phi^{\ell}\right\|_{L^{1}(\Omega)}=1$

Add artificial diffusion:

$$
\bar{a}_{h}^{\alpha} \geq a^{\alpha}
$$

Numerical scheme/framework

- Let $v_{h}(T, \cdot)=\Psi$.
- Find $v_{h}\left(s^{k}, \cdot\right)$ such that

$$
\begin{gathered}
-\frac{v_{h}\left(s^{k+1}, y^{\ell}\right)-v_{h}\left(s^{k}, y^{\ell}\right)}{h}+\sup _{\alpha}(\bar{a}_{h}^{\alpha}\left(y^{\ell}\right) \underbrace{\left.\left\langle b^{\alpha} \cdot \nabla v_{h}-r^{\alpha}, \phi^{\ell}\right\rangle\right)=0}_{\substack{\text { conceptually } \\
\left\langle\nabla v_{h}, \nabla \phi^{\ell}\right\rangle}} .\left\{\begin{array}{l}
-\left\langle\Delta v_{h}, \phi_{\ell}\right\rangle \approx-\Delta v_{h}\left(y^{\ell}\right)
\end{array}\right.
\end{gathered}
$$

Consistency

As $h \rightarrow 0$

$$
\left\|a^{\alpha}-\bar{a}_{h}^{\alpha}\right\|_{L^{\infty}(\Omega)} \rightarrow 0
$$

Weak discrete maximum principle (wDMP)
For fixed α, discrete linear operators have M -matrix property.

Elliptic projection converging in W_{1}^{∞}
Finite element solutions to the Laplace equation converge in $W_{1}^{\infty}(\Omega)$ E.g. see recent work by Demlow, Schatz, Wahlbin, etc.

Selected literature

- Finite element methods
- (Smears,Süli; 2013) DG method, Cordes theory, hp convergence proof under H^{2} regularity.
- (Lakkis, Pryer; 2011) similar to our method, also anisotropic-diffusion numerical experiments; a convergence result by Neilan for 2D Monge-Ampère for smooth operator + solution
- (Feng, Neilan; 2011) primarily for Monge-Ampère equations, special case of HJB, biharmonic regularisation ' $\epsilon \Delta^{2} v+F v=0$ ', convergence for smooth operator + solution, see also Brenner et al.
- (Böhmer; 2008) approximation with smooth functions (C^{1} approximation space), convergence for smooth operator + solution
- (Cortey-Dumont; 1987) \rightsquigarrow (Boulbrachene; 2001, 2004) QVI approach: convergence rates, but expensive!
- Finite difference methods
- method design: (Kushner; 1977), (Lions, Mercier; 1980), (Lions, Souganidis; 1995), (Froese, Oberman; 2012)
- convergence: (Barles, Souganidis; 1991)
- convergence rates: (Barles, Jakobsen; 2002, 2005, 2007), (Caffarelli, 2008), (Krylov; 2005), (Dong, Krylov; 2007)

Current numerical methods

- My personal view is that current methods struggle to combine all of the following features in a single framework:
- Uniqueness: monotonicity \leftrightarrow smoothness
- Anisotropy
- Consistency (of second derivative)
- Efficiency (large stencils, ...)
- Geometry
- We don't do anisotropy.
- Other methods balance the challenge in other ways.
- Set

$$
v^{*}(t, x)=\underbrace{\underbrace{\limsup _{h}}_{\substack{\left(s_{h}^{k}, y_{h}^{\ell}\right) \rightarrow(t, x) \\ h \rightarrow 0}} v_{h}\left(s_{h}^{k}, y_{h}^{\ell}\right)}_{\text {upper semi-continuous envelope }}, \quad v_{*}(t, x)=\underbrace{\left.\lim _{\substack{\left(s_{h}^{k}, y_{h}^{\ell}\right) \rightarrow(t, x) \\ h \rightarrow 0}}^{\operatorname{limf}_{h}\left(s_{h}^{k}, y_{h}^{\ell}\right.}\right)}_{\text {lower semi-continuous envelope }}
$$

Theorem

v^{*} is a HJB viscosity subsolution and v_{*} is a HJB viscosity supersolution.

- The proof is based on (Barles, Souganidis).
- However, finite clement methods not pointwise consistent.

$$
\left\langle\nabla J w, \nabla \phi_{i}\right\rangle=-\frac{3}{2} \Delta w(x)+\mathcal{O}\left(\Delta x_{i}^{2}\right)
$$

- But FEM for HJB and Laplace are inconsistent in the same way: \rightsquigarrow use cancellation of consistency error with elliptic projection.
- The above theorem and a comparison principle give uniform convergence.
- Set

Theorem

v^{*} is a HJB viscosity subsolution and v_{*} is a HJB viscosity supersolution.

- The proof is based on (Barles, Souganidis).
- However, finite element methods not pointwise consistent.

$$
\left\langle\nabla \mathcal{J} w, \nabla \phi_{i}\right\rangle=-\frac{3}{2} \Delta w(x)+\mathcal{O}\left(\Delta x_{i}^{2}\right)
$$

- But FEM for HJB and Laplace are inconsistent in the same way: \rightsquigarrow use cancellation of consistency error with elliptic projection.
- The above theorem and a comparison principle give uniform convergence.

Convergence of Derivatives

- The partial derivatives of the value function contain crucial information
Uncertain volatility model: $\partial V / \partial S$ amount of stock in hedging portfolio.
- It has been our aim to design a scheme which naturally provides control of gradient.

Variational bound
$\partial_{t} v+\sup \left(L^{\alpha} v-r^{\alpha}\right)=0 \Longrightarrow \partial_{t} v+L^{\alpha} v \leq r^{\alpha} \quad$ for any α

- Variational structure not good enough to identify 'correct solution' However, once convergence to viscosity solution guaranteed, variational structure can be very useful!

Convergence of Derivatives

- The partial derivatives of the value function contain crucial information
Uncertain volatility model: $\partial V / \partial S$ amount of stock in hedging portfolio.
- It has been our aim to design a scheme which naturally provides control of gradient.

Variational bound

Since $v \geq 0$,

$$
\begin{aligned}
\partial_{t} v+\sup _{\alpha}\left(L^{\alpha} v-r^{\alpha}\right)=0 & \Longrightarrow \partial_{t} v+L^{\alpha} v \leq r^{\alpha} \quad \text { for any } \alpha \\
& \Longrightarrow\left\langle\partial_{t} v, v\right\rangle+\left\langle L^{\alpha} v, v\right\rangle \leq\left\langle r^{\alpha}, v\right\rangle
\end{aligned}
$$

- Variational structure not good enough to identify 'correct solution'. However, once convergence to viscosity solution guaranteed, variational structure can be very useful!
- While HJB operator not smooth, in above applications there is at least one semi-definite L^{α} with smooth coefficients!
- This gives (in spirit) a 'discrete variational bound'
$"\left\|w_{h}\right\|_{L^{2}\left(H_{\gamma}^{1}\right)} \lesssim\left\langle\partial_{t} w_{h}, w_{h}\right\rangle+\left\langle L_{h}^{\alpha} w_{h}, w_{h}\right\rangle \leq\left\langle r^{\alpha}, w_{h}\right\rangle^{\prime \prime} \quad\left(w_{h}=Q_{h} v-v_{h}\right)$
if $Q_{h} v$ is
- approximates v in $H^{1}((0, T) \times \Omega)$,
- non-negative,
- satisfies boundary conditions,
- is bounded from above by v_{h}.
H_{γ}^{1} is a weighted Sobolev space.
- While HJB operator not smooth, in above applications there is at least one semi-definite L^{α} with smooth coefficients!
- This gives (in spirit) a 'discrete variational bound'
$"\left\|w_{h}\right\|_{L^{2}\left(H_{\gamma}^{1}\right)} \lesssim\left\langle\partial_{t} w_{h}, w_{h}\right\rangle+\left\langle L_{h}^{\alpha} w_{h}, w_{h}\right\rangle \leq\left\langle r^{\alpha}, w_{h}\right\rangle^{\prime \prime} \quad\left(w_{h}=Q_{h} v-v_{h}\right)$
if $Q_{h} v$ is
- approximates v in $H^{1}((0, T) \times \Omega)$,
- non-negative,
- satisfies boundary conditions,
- is bounded from above by v_{h}.
H_{γ}^{1} is a weighted Sobolev space.
- Precisely

$$
\begin{aligned}
\left\|w_{h}\right\|_{L^{2}\left(H_{\gamma}^{1}\right)} \lesssim & \left.\sum_{k}\left(\left\langle\left\langle\left(h L_{h}^{\alpha}+\mathrm{ld}\right) w_{h}^{k}, \cdot\right)-w_{h}^{k+1}, w_{h}^{k}\right\rangle\right\rangle\right)+\frac{1}{2}\left\langle\left\langle w_{h}(T, \cdot), w_{h}(T, \cdot)\right\rangle\right\rangle \\
& \lesssim \sum_{k}\left\langle\left\langle h r^{\alpha}, w_{h}^{k}\right\rangle\right\rangle-\sum_{k}\left\langle\left\langle Q_{h} v\left(s^{k+1}, \cdot\right)+\left(h L_{h}^{\alpha}+\mathrm{Id}\right) Q_{h} v\left(s^{k}, \cdot\right), w_{h}^{k}\right\rangle\right\rangle \\
& +\frac{1}{2}\left\langle\left\langle w_{h}^{T / h}, w_{h}^{T / h}\right\rangle\right\rangle
\end{aligned}
$$

using for non-constant coefficients a super-approximation result (Demlow, Guzmán, Schatz; 2011) and a 'quadrature' L^{2} scalar product $\langle\langle\cdot, \cdot\rangle\rangle$.

- Here $Q_{h}: w \mapsto \mathcal{J}_{h} \max \left\{w-\left\|v-v_{h}\right\|_{L^{\infty},} 0\right\}$.

- A crucial step in proof is to bound projection error in red region.

Theorem

If

- value function belongs to $W^{1, d+1+\varepsilon}((0, T) \times \Omega), \varepsilon>0$,
- for an α the L^{α} is semi-definite with diffusion coefficient $a^{\alpha} \in W^{2, \infty}$,
- $\mathcal{O}(h)$ stabilisation with artificial diffusion,
then $\left\|v-v_{h}\right\|_{L^{2}\left(H_{\gamma}^{1}\right)} \rightarrow 0$ with $\gamma=\sqrt{a^{\alpha}}$.

Semi-smooth Newton

- Semi-smooth Newton methods use a weakened concept of differentiability:

- Analysis of Newton methods for discrete HJB equations: (Howard; 1960), (Lions, Mercier; 1980), (Bokanowski, Maroso, Zidani; 2009), (Lakkis, Pryer; 2011) ...

Theorem

Our scheme has non-negative uniformly bounded unique solutions. Semi-smooth Newton methods converge 'globally from above', monotone and superlinearly.

Numerical Experiment

- We examine the equation

$$
-v_{t}+\sup _{\alpha \in\left[\alpha_{0}, \alpha_{1}\right]}\{-\alpha \Delta v\}+|\nabla v|=f
$$

- DoF v. Newton iterations

DoF	aver. no. Newton it.
674	3
2858	3.67
11759	4.04
47693	4.22
192089	4.86

Remark

For smooth problems we observe optimal rates in L^{2}, L^{∞} and H^{1}.

Thank you for the attention!

Proof - HJB sub- and supersolutions.

- Suppose $v^{*}-\psi$ has (strict) maximum at (t, x).
- Let P_{h} be the elliptic projection:

$$
\begin{equation*}
\left\langle\nabla P_{h} \psi, \nabla \phi_{h}^{\ell}\right\rangle=\left\langle\nabla \psi, \nabla \phi_{h}^{\ell}\right\rangle . \tag{1}
\end{equation*}
$$

- Show there are nodes $\left(s_{h}^{k}, y_{h}^{k}\right)$
- converging to (t, x)
- maximise $v_{h}-P_{h} \psi$ locally
- Then

$$
0 \stackrel{(a)}{=} F_{h}\left(v_{h}\right)\left(s_{h}^{k}, y_{h}^{k}\right) \stackrel{(b)}{\geq} F_{h}\left(P_{h} \psi\right)\left(s_{h}^{k}, y_{h}^{k}\right)+\underset{\text { perturbation }}{\text { small }} \xrightarrow{(c)} F(\psi)(t, x) \text {. }
$$

using
(a) definition of scheme
(b) monotonicity property
(c) orthogonality (1) for elliptic term, otherwise approximation bounds of elliptic projection

$$
a^{\alpha}\left(y^{\ell}\right)\left\langle\nabla P_{h} \psi, \nabla \phi_{h}^{\ell}\right\rangle=a^{\alpha}\left(y^{\ell}\right)\left\langle\nabla \psi, \nabla \phi_{h}^{\ell}\right\rangle
$$

- Corresponding argument if $v_{*}-\psi$ minimum at (t, x).

