
FEM for degenerate isotropic
Hamilton–Jacobi–Bellman Equations

Max Jensen

University of Sussex

with Gabriele Braconi and Iain Smears

1



An optimal control problem

I We have paths, e.g. all roads from
Brighton B to Durham A.

I We have controls, e.g. steering
wheel + accelerator + brake.

I We have a cost functional on the
set of paths, e.g. the driving time
or petrol cost.

I We denote the minimal cost to get
from B to A by v(B).

I We can assign to every C on the
map a minimal cost.

I This defines the value function v .
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I Now suppose that the path choice depends on the control through
an Itô process.

I If v is smooth it solves the Hamilton–Jacobi–Bellman equation.

I Set
Hw := sup

α
(−aα ∆w + bα · ∇w︸ ︷︷ ︸

linear, 2nd order
non-divergence form

−rα).

Hamilton-Jacobi-Bellman problem

Find the (right kind of) solution of

−∂tv + Hv = 0

with final conditions v(T , ·) = Ψ and homogeneous Dirichlet BCs.
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Model Problem: Uncertain volatility

I From (Avellaneda, Levy, Paras; 1995).

I Consider stock prices as geometric Brownian motions

dS = f S dt + σ S dw(t) (w Brownian motion)

An option is a financial product whose value

J(t,S(t), σ)

depends on the stock price S(t) and the volatility σ : [0,T ]→ R+.
This value is the cost of hedging against the risk associated with the
option.

I Suppose the volatility is uncertain, however, guaranteed to be

σ : [0,T ]→ [σ∗, σ
∗].

To hedge against the uncertain volatility costs at time t and price S

V (t,S) = sup
σ

J(t,S , σ).
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Model Problem: Uncertain volatility

I One can derive directly or in the stochastic HJB framework that

0 =
∂

∂t
V + min

σ

(
1
2 σ

2 S2 ∂2

∂SS
V + r S

∂

∂S
V − r V

)

=
∂

∂t
V + 1

2 ς

(
∂2

∂SS
V

)2

S2 ∂2

∂SS
V + r S

∂

∂S
V − r V

with

ς

(
∂2

∂SS
V

)
=

{
σ∗ : ∂2

SSV < 0,

σ∗ : ∂2
SSV ≥ 0.

I Three features we want to address:
I fully-nonlinear (= nonlinear in highest derivative)
I discontinuous in nonlinearity ς
I degenerate at S = 0
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There is a wide range of Optimal Control applications, e.g. in Finance:

I Merton portfolio problem

I Irreversible and reversible abandonment and investment

I Valuation of natural resources

I . . .

Moreover, many nonlinear equations with a convex structure can be
modelled in the HJB setting (often requiring anisotropic diffusions):
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I Monge-Ampère equation

I Pucci’s equations
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Viscosity solutions

I Weak solutions of these problems are usually not unique.
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I Suppose v was smooth. If v − ψ has a maximum, then there

∇v = ∇ψ, D2v ≤ D2ψ (D2 Hessian)

where
A ≤ B :⇔ B − A is positive semi-definite.

I Instead of plugging the derivatives of v into HJB, we want to work
with the derivatives of ψ. This is the trick!
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The trick works because of the following:

If A ≤ B then with q0 ∈ R, ~q ∈ Rn

−q0 + H(x , t, ~q,A) ≥ −q0 + H(x , t, ~q,B).

Theorem

I v is C 2 solution of HJB. Then for all smooth ψ

−∂tψ(t, x) + H(x , t,∇ψ(t, x),D2ψ(t, x)) ≤ 0

at every (t, x) which maximises v − ψ with v(t, x) = ψ(t, x).

Viscosity Solution (Crandall, Lions)

I v ∈ C 0 is a subsolution of HJB if for all smooth ψ

−∂tψ(t, x) + H(x , t,∇ψ(t, x),D2ψ(t, x)) ≤ 0

at every (t, x) which maximises v − ψ with v(t, x) = ψ(t, x).

I Supersolution similar. Subsolution + supersolution =: solution.
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Under Reasonable Assumptions . . .

Theorem (Comparison principle)

Let w∗ be a viscosity subsolution and w∗ be a viscosity supersolution then

sup
ΩT

(w∗ − w∗) = sup
∂p ΩT

(w∗ − w∗).

Here ∂p ΩT parabolic boundary.

Corollary (Uniqueness)

The HJB viscosity solution is unique and equal to the value function.

Theorem (v viscosity solution  existence)

The value function of the optimal control problem is a viscosity solution
of the HJB equation.

For proofs see for instance (Fleming,Soner; Chapter V).
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Summary of the PDE Theory . . .

I The value function is defined in terms of the original optimal control
problem.

I We now have a very nice theory of the HJB equation, which gives us
I in a general context the value function as solution of the HJB eqn
I and no other wrong solution
I without need to solve path integrals of the underlying optimal

control problem.

I It is not really a differential equation anymore (in a narrow sense).

I Instead it is a problem posed on the set of continuous functions
using monotonicity properties of the equation.

I If we use continuous functions, what about the Greeks
(finance speak for partial derivatives)?

I The research I present today addresses this question in the context
of computational methods.
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Task:

I Discretise HJB equations with a Finite Element Method.

Main Results:
I First proof of uniform convergence of Galerkin approximations

with
I non-smooth viscosity solutions (e.g. no classical solutions),
I non-smooth HJB operators (no linearisation of H).

(To my knowledge this has been an open problem for a long time.)

I Novel variational argument for gradient convergence.

I Unstructured meshes permitted and Newton solvers globally
convergent from above.

I HJB operators may be degenerate, but assumed isotropic.
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Notation:

I y ` is `th node

I sk is the kth time step

I h time step size

I φ` is the hat function at y ` with volume ‖φ`‖L1(Ω) = 1

Add artificial diffusion:
āαh ≥ aα

Numerical scheme/framework

I Let vh(T , ·) = Ψ.

I Find vh(sk , ·) such that

− vh(sk+1,y`)−vh(sk ,y`)
h +supα

(
āαh (y `) 〈∇vh,∇φ`〉︸ ︷︷ ︸

conceptually

−〈∆vh,φ`〉≈−∆vh(y`)

+〈bα ·∇vh−rα, φ`〉
)

= 0.
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Consistency

As h→ 0

‖aα − āαh ‖L∞(Ω) → 0

Weak discrete maximum principle (wDMP)

For fixed α, discrete linear operators have M-matrix property.

Elliptic projection converging in W∞
1

Finite element solutions to the Laplace equation converge in W∞1 (Ω)
E.g. see recent work by Demlow, Schatz, Wahlbin, etc.
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Selected literature

I Finite element methods
I (Smears,Süli; 2013) DG method, Cordes theory, hp convergence

proof under H2 regularity.

I (Lakkis, Pryer; 2011) similar to our method, also
anisotropic-diffusion numerical experiments; a convergence result by
Neilan for 2D Monge-Ampère for smooth operator + solution

I (Feng, Neilan; 2011) primarily for Monge-Ampère equations, special
case of HJB, biharmonic regularisation ‘ε∆2v + Fv = 0’,
convergence for smooth operator + solution, see also Brenner et al.

I (Böhmer; 2008) approximation with smooth functions (C 1

approximation space), convergence for smooth operator + solution

I (Cortey-Dumont; 1987)  (Boulbrachene; 2001, 2004)
QVI approach: convergence rates, but expensive!

I Finite difference methods
I method design: (Kushner; 1977), (Lions, Mercier; 1980), (Lions,

Souganidis; 1995), (Froese, Oberman; 2012)
I convergence: (Barles, Souganidis; 1991)
I convergence rates: (Barles, Jakobsen; 2002, 2005, 2007), (Caffarelli,

2008), (Krylov; 2005), (Dong, Krylov; 2007)
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Current numerical methods

I My personal view is that current methods struggle to combine all of
the following features in a single framework:

I Uniqueness: monotonicity ↔ smoothness

I Anisotropy

I Consistency (of second derivative)

I Efficiency (large stencils, . . . )

I Geometry

I We don’t do anisotropy.

I Other methods balance the challenge in other ways.
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I Set

v∗(t, x) = lim sup
(sk
h
,y`
h

)→(t,x)

h→0

vh(skh , y
`
h)

︸ ︷︷ ︸
upper semi-continuous envelope

, v∗(t, x) = lim inf
(sk
h
,y`
h

)→(t,x)

h→0

vh(skh , y
`
h)

︸ ︷︷ ︸
lower semi-continuous envelope

.

Theorem

v∗ is a HJB viscosity subsolution and v∗ is a HJB viscosity supersolution.

I The proof is based on (Barles, Souganidis).

I However, finite element methods not pointwise consistent.

〈∇Iw ,∇φi 〉 = − 3
2 ∆w(x) + O

(
∆x2

i

)
I But FEM for HJB and Laplace are inconsistent in the same way:
 use cancellation of consistency error with elliptic projection.

I The above theorem and a comparison principle give uniform
convergence.
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Convergence of Derivatives

I The partial derivatives of the value function contain crucial
information

Uncertain volatility model: ∂V /∂S amount of stock in hedging
portfolio.

I It has been our aim to design a scheme which naturally provides
control of gradient.

Variational bound

Since v ≥ 0,

∂tv + sup
α

(Lαv − rα) = 0 =⇒ ∂tv + Lαv ≤ rα for any α

=⇒ 〈∂tv , v〉+ 〈Lαv , v〉 ≤ 〈rα, v〉

I Variational structure not good enough to identify ‘correct solution’.
However, once convergence to viscosity solution guaranteed,
variational structure can be very useful!

17



Convergence of Derivatives

I The partial derivatives of the value function contain crucial
information

Uncertain volatility model: ∂V /∂S amount of stock in hedging
portfolio.

I It has been our aim to design a scheme which naturally provides
control of gradient.

Variational bound

Since v ≥ 0,

∂tv + sup
α

(Lαv − rα) = 0 =⇒ ∂tv + Lαv ≤ rα for any α

=⇒ 〈∂tv , v〉+ 〈Lαv , v〉 ≤ 〈rα, v〉

I Variational structure not good enough to identify ‘correct solution’.
However, once convergence to viscosity solution guaranteed,
variational structure can be very useful!

17



I While HJB operator not smooth, in above applications there is at
least one semi-definite Lα with smooth coefficients!

I This gives (in spirit) a ‘discrete variational bound’

“‖wh‖L2(H1
γ) . 〈∂twh,wh〉+〈Lαhwh,wh〉 ≤ 〈rα,wh〉′′ (wh = Qhv−vh)

if Qhv is
I approximates v in H1((0,T )× Ω),
I non-negative,
I satisfies boundary conditions,
I is bounded from above by vh.

H1
γ is a weighted Sobolev space.

I Precisely

‖wh‖L2(H1
γ ).

∑
k (〈〈(hLαh +Id)wk

h ,·)−w
k+1
h ,wk

h 〉〉)+ 1
2 〈〈wh(T ,·),wh(T ,·)〉〉

.
∑

k 〈〈hr
α,wk

h 〉〉−
∑

k 〈〈Qhv(sk+1,·)+(hLαh +Id)Qhv(sk ,·),wk
h 〉〉

+ 1
2 〈〈w

T/h
h ,w

T/h
h 〉〉

using for non-constant coefficients a super-approximation result
(Demlow, Guzmán, Schatz; 2011) and a ‘quadrature’ L2 scalar
product 〈〈·, ·〉〉.
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I Here Qh : w 7→ Ih max{w − ‖v − vh‖L∞ , 0}.

I A crucial step in proof is to bound projection error in red region.

Theorem

If

I value function belongs to W 1,d+1+ε((0,T )× Ω), ε > 0,

I for an α the Lα is semi-definite with diffusion coefficient aα ∈W 2,∞,

I O(h) stabilisation with artificial diffusion,

then ‖v − vh‖L2(H1
γ) → 0 with γ =

√
aα.
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Semi-smooth Newton

I Semi-smooth Newton methods use a weakened concept of
differentiability:

x h + x

I Analysis of Newton methods for discrete HJB equations: (Howard;
1960), (Lions, Mercier; 1980), (Bokanowski, Maroso, Zidani; 2009),
(Lakkis, Pryer; 2011) . . .

Theorem

Our scheme has non-negative uniformly bounded unique solutions.
Semi-smooth Newton methods converge ‘globally from above’, monotone
and superlinearly.
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Numerical Experiment

I We examine the equation

−vt + sup
α∈[α0,α1]

{−α∆v}+ |∇v | = f ,

I DoF v. Newton iterations

DoF aver. no. Newton it.
674 3

2858 3.67
11759 4.04
47693 4.22

192089 4.86

Remark

For smooth problems we observe optimal rates in
L2, L∞ and H1.
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Thank you for the attention!
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Proof – HJB sub- and supersolutions.

I Suppose v∗ − ψ has (strict) maximum at (t, x).
I Let Ph be the elliptic projection:

〈∇Phψ,∇φ`h〉 = 〈∇ψ,∇φ`h〉. (1)

I Show there are nodes (skh , y
k
h )

I converging to (t, x)
I maximise vh − Phψ locally

I Then

0
(a)
= Fh(vh)(skh , y

k
h )

(b)

≥ Fh(Phψ)(skh , y
k
h ) + small

perturbation

(c)→ F (ψ)(t, x).

using
(a) definition of scheme
(b) monotonicity property
(c) orthogonality (1) for elliptic term, otherwise approximation

bounds of elliptic projection

aα(y `)〈∇Phψ,∇φ`h〉 = aα(y `)〈∇ψ,∇φ`h〉
I Corresponding argument if v∗ − ψ minimum at (t, x).
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