Bernstein polynomials and finite element algorithms

Robert Kirby ${ }^{1}$
${ }^{1}$ Baylor University
14 July 2014

BAYLOR

Motivation

Bernstein polynomials

FEEC

Discontinuous Galerkin

Concluding thoughts

BAYLOR

Problems for high order

Very large element matrices

$$
A_{i j}=\int_{K} w \nabla \phi_{i} \cdot \nabla \phi_{j} d x
$$

	Standard	Tensor product
Basis size:	$\mathcal{O}\left(n^{d}\right)$	
Element matrix size:	$\mathcal{O}\left(n^{2 d}\right)$	
Cost of local matvec:	$\mathcal{O}\left(n^{2 d}\right)$	$\mathcal{O}\left(n^{d+1}\right)$

But how do we go fast?

Tensor Products

- Sum factorization \leftrightarrow fast matvecs
- Operation count: $\mathcal{O}(n)$ per entry, $\mathcal{O}\left(n^{d+1}\right)$ total
- Memory usage: $\mathcal{O}\left(n^{d}\right)$

Simplex?

- Collapsed-coordinates: Karniadakis \& Sherwin for H^{1}
- General elements: FIAT (RCK), FEMSTER (White, Castillo)

Bernstein polynomials

Differentiation

It's sparse in B-form

$$
\frac{\partial}{\partial x}=\sum_{i=1}^{d+1} \frac{\partial b_{i}}{\partial x} \frac{\partial}{\partial b_{i}}
$$

Differentiation

It's sparse in B-form

$$
\begin{gathered}
\frac{\partial}{\partial x}=\sum_{i=1}^{d+1} \frac{\partial b_{i}}{\partial x} \frac{\partial}{\partial b_{i}} . \\
\frac{\partial}{\partial b_{i}} B_{\alpha}^{n}= \begin{cases}0, & \alpha_{i}=0 \\
\alpha_{i} B_{\alpha-e_{i}^{d}}^{n-1}, & \alpha_{i} \neq 0\end{cases}
\end{gathered}
$$

Differentiation

It's sparse in B-form

$$
\begin{gathered}
\frac{\partial}{\partial x}=\sum_{i=1}^{d+1} \frac{\partial b_{i}}{\partial x} \frac{\partial}{\partial b_{i}} \\
\frac{\partial}{\partial b_{i}} B_{\alpha}^{n}= \begin{cases}0, & \alpha_{i}=0 \\
\alpha_{i} B_{\alpha-e_{i}^{d}}^{n-1}, & \alpha_{i} \neq 0\end{cases}
\end{gathered}
$$

$D \leftrightarrow$ sparse matrix with at most $d+1$ nonzeros per row

Bernstein polynomials

Some history

- Approximation theory: Bernstein, quasi-interpolants, splines
- CAGD: stable and fast algorithms for curves/surfaces
- Finite element analysis?
- Peterson et. al.
- Schumaker (splines)
- NURBS - Hughes et. al.
- FEEC (Arnold, Falk, Winther)
- RCK \& Ainsworth

Duffy transforms and tensor products

$[0,1]^{d} \rightarrow d$-simplex
Define inductively:

$$
\begin{aligned}
& \lambda_{0}=t_{1} \\
& \lambda_{i}=t_{i+1}\left(1-\sum_{j=0}^{i-1} \lambda_{j}\right) \\
& \lambda_{n}=1-\sum_{j=0}^{n-1} \lambda_{j}
\end{aligned}
$$

Tensorialize Bernstein

With

$$
\mathbf{x}(\mathbf{t})=\sum_{i=0}^{n} \mathbf{x}_{i} \lambda_{i}(\mathbf{t})
$$

we have

$$
B_{\alpha}^{r}(\mathbf{x}(\mathbf{t}))=\prod_{i=0}^{n} B_{\alpha_{i}}^{r-\sum_{j=0}^{i} \alpha_{j}}\left(t_{i}\right)
$$

What operations are fast?

Evaluation

Given $u=\sum_{|\alpha|=n} u_{\alpha} B_{\alpha}^{n}$,

$$
\left\{u_{\alpha}\right\}_{\alpha} \mapsto\left\{u\left(\xi_{q}\right)\right\}_{q}
$$

when $\left\{\xi_{q}\right\}_{q}$ are Stroud points. Requires $\mathcal{O}\left(n^{d+1}\right)$ and no pre-tabulated data.

Moment computation

Given $\left\{f_{q}=f\left(\xi_{q}\right)\right\}_{q}$

$$
\left\{f_{q}\right\} \mapsto\left\{\int_{T} f B_{\alpha}^{n} d x\right\}_{\alpha}
$$

requires $\mathcal{O}\left(n^{d+1}\right)$ and no pre-tabulated data.

Derivatives?

Evaluate/integrate followed by short linear combinations!

Optimal-complexity assembly

Constant-order work per entry

Since $B_{\alpha}^{r} B_{\beta}^{s}=\frac{\left(\begin{array}{c}\alpha+\beta \\ \alpha \\ \binom{\alpha}{r}\end{array} B_{\alpha+\beta}^{r+s} \text {, so matrix formation }, ~\right.}{\text { a }}$

$$
M_{\alpha \beta}=\int_{T} f B_{\alpha}^{r} B_{\beta}^{s}
$$

just requires (plus arithmetic/bookkeeping) all moments

$$
\left\{\int_{T} f B_{\gamma}^{r+s} d x\right\}_{\gamma}
$$

The de Rham complex

FEEC (Arnold, Falk, Winther)

Basis functions for $P_{n}^{-} \Lambda^{1}: B_{\alpha}^{n-1} \phi_{i j}$
Basis functions for $P_{n}^{-} \Lambda^{2}: B_{\alpha}^{n-1} \phi_{i j k}$, where

$$
\begin{aligned}
\phi_{i j} & =b_{i} d b_{j}-b_{j} d b_{i} \\
\phi_{i j k} & =b_{i} d b_{j} \wedge d b_{k}-b_{j} d b_{i} \wedge d b_{k}+b_{k} d \lambda_{i} \wedge d b_{j}
\end{aligned}
$$

Convert to Bernstein form

Short linear combination

$$
\begin{aligned}
B_{\alpha}^{n-1} \phi_{i j} & =b_{i} B_{\alpha}^{n-1} d b_{j}-b_{j} B_{\alpha}^{n-1} d b_{i} \\
& =b_{i} \frac{(n-1)!}{\alpha!} \mathbf{b}_{d}^{\alpha} d b_{j}-b_{j} \frac{(n-1)!}{\alpha!} \mathbf{b}_{d}^{\alpha} d b_{i} \\
& =\frac{(n-1)!}{\alpha!} \mathbf{b}_{d}^{\alpha+e_{i}} d b_{j}-\frac{(n-1)!}{\alpha!} \mathbf{b}_{d}^{\alpha+e_{j}} d b_{i} \\
& =\frac{\alpha_{i}+1}{n} B_{\alpha+e_{i}}^{n} d b_{j}-\frac{\alpha_{j}+1}{n} B_{\alpha+e_{j}}^{n} d b_{i}
\end{aligned}
$$

Algorithms

Conversion

- Each k-form basis function requires $k+1$ Bernstein polynomials
- Operator formation/application reuses fast evaluation/integration kernels for Bernstein
- Optimal complexity for H (div) and H (curl).

But I don't like $P_{n}^{-} \Lambda^{k}$!

What about $P_{n} \Lambda^{k}$?

"Second-kind" basis functions look like:

$$
B_{\alpha}^{r} \psi_{\sigma}^{\alpha, f, T}
$$

Shorter linear combinations, but more geometric data to load. Won't discuss more here.

1-form action and per-nonzero build time

BAYLOR

2-form action and per-nonzero build time

BAYLOR

Accuracy?

Maxwell cavity eigenvalue and mixed Poisson error on unit cube meshed into six tetrahedra:

BAYLOR

Weak form

Elementwise IBP

$$
\sum_{e}\left[\left(u_{h, t}, w_{h}\right)_{e}-\left(F\left(u_{h}\right), \nabla w_{h}\right)_{e}+\left\langle\hat{F} \cdot n, w_{h}\right\rangle_{\partial e}\right]=0
$$

Can also consider "strong DG" (Hesthaven/Warburton)

What does it cost?

$$
\sum_{e}\left[\left(u_{h, t}, w_{h}\right)_{e}-\left(F\left(u_{h}\right), \nabla w_{h}\right)_{e}+\left\langle\widehat{F} \cdot n, w_{h}\right\rangle_{\partial e}\right]=0
$$

Elementwise convection term

- Evaluate u_{h} at QP: $\mathcal{O}\left(n^{d+1}\right)$
- Evaluate $F\left(u_{h}\right)$ at QP: $\mathcal{O}\left(n^{d}\right)$
- Moment calculation: $\mathcal{O}\left(n^{d+1}\right)$

What does it cost?

$$
\sum_{e}\left[\left(u_{h, t}, w_{h}\right)_{e}-\left(F\left(u_{h}\right), \nabla w_{h}\right)_{e}+\left\langle\widehat{F} \cdot n, w_{h}\right\rangle_{\partial e}\right]=0
$$

Boundary flux term

- Evaluate u_{h} at boundary QP: $\mathcal{O}\left(n^{d}\right)$
- Riemann solve at each QP: $\mathcal{O}\left(n^{d-1}\right)$
- Boundary moment computation: $\mathcal{O}\left(n^{d}\right)$.

What does it cost?

$$
\sum_{e}\left[\left(u_{h, t}, w_{h}\right)_{e}-\left(F\left(u_{h}\right), \nabla w_{h}\right)_{e}+\left\langle\widehat{F} \cdot n, w_{h}\right\rangle_{\partial e}\right]=0
$$

Mass inversion

- Cholesky: $\mathcal{O}\left(n^{3 d}\right)$ startup plus $\mathcal{O}\left(n^{2 d}\right)$ per cell
- CG (Fast matvec plus neat theorem): $\mathcal{O}\left(n^{d+2}\right)$ per cell
- Need a fast algorithm, or this is the bottleneck!

All about the Bernstein mass matrix

Positive operators

$$
\begin{gathered}
6 M^{1,1,1}=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right) \\
30 M^{1,2,2}=\left(\begin{array}{lll}
6 & 3 & 1 \\
3 & 4 & 3 \\
1 & 3 & 6
\end{array}\right) \\
140 M^{1,3,3}=\left(\begin{array}{cccc}
20 & 10 & 4 & 1 \\
10 & 12 & 9 & 4 \\
4 & 9 & 12 & 10 \\
1 & 4 & 10 & 20
\end{array}\right)
\end{gathered}
$$

2d mass matrices

Positive and structured

$$
1120 \mathrm{M}^{2,3,3}=\left(\begin{array}{c|cc|ccc|cccc}
20 & 10 & 10 & 4 & 4 & 4 & 1 & 1 & 1 & 1 \\
\hline 10 & 12 & 6 & 9 & 6 & 3 & 4 & 3 & 2 & 1 \\
10 & 6 & 12 & 3 & 6 & 9 & 1 & 2 & 3 & 4 \\
\hline 4 & 9 & 3 & 12 & 6 & 2 & 10 & 6 & 3 & 1 \\
4 & 6 & 6 & 6 & 8 & 6 & 4 & 6 & 6 & 4 \\
4 & 3 & 9 & 2 & 6 & 12 & 1 & 3 & 6 & 10 \\
\hline 1 & 4 & 1 & 10 & 4 & 1 & 20 & 10 & 4 & 1 \\
1 & 3 & 2 & 6 & 6 & 3 & 10 & 12 & 9 & 4 \\
1 & 2 & 3 & 3 & 6 & 6 & 4 & 9 & 12 & 10 \\
1 & 1 & 4 & 1 & 4 & 10 & 1 & 4 & 10 & 20
\end{array}\right)
$$

BAYLOR

Fast algorithm [RCK'11]

Two facts

- Each block a (scaled) lower-dimensional mass matrix
- Blocks in a column are related by (sparse) degree elevation

Fast algorithm [RCK'11]

Two facts

- Each block a (scaled) lower-dimensional mass matrix
- Blocks in a column are related by (sparse) degree elevation

Algorithmic result

- $x \rightarrow M^{d, n, n} \times$ requires $\mathcal{O}\left(d n^{d+1}\right)$ complexity rather than $\mathcal{O}\left(n^{2 d}\right)$
- Allows fast matrix-free Krylov methods.

> BAYLOR

Interesting spectrum

Theorem (RCK and Kieu)

The eigenvalues of $M^{d, n, n}$ are

$$
\lambda_{i, n, d}=\frac{(n!)^{2}}{(n+d+i)!(n-i)!}, \quad 0 \leq i \leq n
$$

The multiplicity of $\lambda_{i, n, d}$ is $\binom{d+i-1}{d-1}$.
For each $\lambda_{i, n, d}$, the eigenspace is spanned by B-form coefficients for $P_{i} \perp P_{i-1}$

How'd you get that?

The Bernstein-Durrmeyer operator

$$
D_{n}(f)=\sum_{|\alpha|=n} \frac{\left(f, B_{\alpha}^{n}\right)}{\left(B_{\alpha}^{n}, B_{\alpha}^{n}\right)} B_{\alpha}^{n}
$$

See [Derriennic85, Farouki/Goodman/Sauer83]: the spectrum of the B-D operator is already known!

Fast inversion (a sketch)

Solve $M x=y$ in $\mathcal{O}\left(n^{d+1}\right)$

- Use "blockwise" Gaussian elimination:

$$
m_{i j} M^{d-1, n-i, n-j}-\frac{m_{i 0} m_{0 j}}{m_{00}} M^{d-1, n-i, n}\left(M^{d-1, n, n}\right)^{-1} M^{d-1, n, n-j},
$$

becomes, with Bernstein magic

$$
m_{i j} M^{d-1, n-i, n-j}-\frac{m_{i 0} m_{0 j}}{m_{00}} M^{d-1, n-i, n-j}=\left(m_{i j}-\frac{m_{i 0} m_{0 j}}{m_{00}}\right) M^{d-1, n-i, n-j}
$$

- "Auxilliary" matrix is scaled 1d mass matrix.
- Manipulate RHS by elevation + axpy.
BAYLOR

What we've seen

No new discretizations

- Bernstein polynomials: new bases for old spaces
- Optimal complexity evaluation/moment/assembly algorithms on simplices
- Gets de Rham complex, (maybe) DG right
- Can we get Hermite, splines, etc? Elliptic DG?

To-do list

Math

- Tool in other discretizations
- Stable fast mass inversion
- Preconditioning

Code

- Fine-grained parallelism: GPU/MIC/etc
- FEniCS: polyalgorithmic code generation?

