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Fully nonlinear elliptic PDE’s
Definition and notation

Given a real-valued nonlinear function F of matrices

(FNFun) F : Sym (Rd×d)→ R.

Consider the equation

N[u] := F(D2 u) − f = 0 and u|∂Ω = 0(FNE)

Conditional ellipticity condition, i.e.,

λ(M) sup
|ξ|=1

|Nξ| ≤ F(M+N) − F(M) ≤ Λ sup
|ξ|=1

|Nξ|

∀M ∈ C ⊆ Sym (Rd×d),N ∈ Sym (Rd×d).
(NL-Ellip)

for some ellipticity domain C and “constants” λ(·), Λ > 0.
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Fully nonlinear elliptic PDE’s
The ellipticity fauna

N[u] := F(D2 u) − f = 0

Conditionally elliptic

∃ C ⊆ Sym (Rd×d), λ(·), Λ > 0 :
λ(M) sup

|ξ|=1
|Nξ| ≤ F(M+N) − F(M) ≤ Λ sup

|ξ|=1
|Nξ|

∀M ∈ C ⊆ Sym (Rd×d),N ∈ Sym (Rd×d).

Unconditionally elliptic if C = Sym (Rd×d).

Uniformly elliptic inf λ > 0.
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Characterisation of the ellipticity condition
in the smooth case

Ellipticity condition, i.e.,

λ(M) sup
|ξ|=1

|Nξ| ≤ F(M+N) − F(M) ≤ Λ sup
|ξ|=1

|Nξ|

∀M ∈ C ⊆ Sym (Rd×d),N ∈ Sym (Rd×d).
(NL-Ellip)

for some ellipticity “constants” λ(·), Λ > 0.

If F is differentiable then
(NL-Ellip) is satisfied if and only if for each M ∈ C there exists µ > 0 such
that

(8.1) ξᵀF ′(M)ξ ≥ µ |ξ|2 ∀ ξ ∈ Rd.

Furthermore C = Sym (Rd×d) and µ is independent of M if and only if F
is uniformly elliptic.
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The Monge–Ampère–Dirichlet problem
A classical fully nonlinear elliptic PDE

Boundary value problem

detD2 u = f in Ω

u = 0 on ∂Ω
(MAD)

admits a unique solution in the cone of convex functions when
f > 0.[Caffarelli and Cabré, 1995]

Derivative of nonlinear function F(X) = detX yields

F ′(X) = Cof X.

Problem elliptic if and only if

ξᵀCof D2 uξ ≥ λ |ξ|2 ∀ ξ ∈ Rd

for some λ > 0.

Conotonic constraint

Restriction on unknown functions u: they must be globally either convex
or concave (conotonic).
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A simple fully nonlinear elliptic PDE

Consider problem

N[u] := sin (∆u) + 2∆u− f = 0 in Ω,

u = 0 on ∂Ω.

Differentiating, we see that

DN[v]w = (cos (∆v) + 2) I:D2w = (cos (∆v) + 2)∆w.

Hence problem uniformly elliptic.
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A Krylov-type cubic elliptic PDE

The problem is for d = 2

N[u] := (∂11u)
3 + (∂22u)

3 + ∂11u+ ∂22u− f = 0 in Ω

u = 0 on ∂Ω.
(Krylov)

Problem is uniformly elliptic since its differentiation gives:

F ′(X) =

[
3x222 + 1 0

0 3x211 + 1

]
.
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Pucci’s equation

Consider F : Sym (Rd×d)→ R to be the extremal function

F(N) =

d∑
i=1

αiλi(N) where λi(N) eigenvalues of N

for some given α1, . . . , αd ∈ R.

(Pucci)

Special case when d = 2, α1 = α ≥ 1 and α2 = 1 yields equation

(R2 Pucci) 0 = (α+ 1)∆u+ (α− 1)
(
(∆u)2 − 4 detD2 u

)1/2
.

The problem is unconditionally elliptic.
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Classes of fully nonlinear equations
A rough guide

See Caffarelli and Cabré, 1995 for a more systematic classification.

Isaacs form: infβ supα Lαβu = 0.

Bellman type: Isaacs with only one β (⇔ no inf). Related to
Hamilton–Jacobi–Bellman, stochastic control and differential game
theory.

Isaacs form is very general: “non-algebraic” and harder to treat
numerically. We don’t, yet.[Jensen and Smears, 2012; Lio and Ley, 2010, e.g.].

Hessian invariants (algebraic): Monge–Ampère, Pucci, Laplace (!).
Subdivided into unconeditionally elliptic (Pucci, Laplace) and
coneditionally elliptic (Monge–Ampère).

Other algebraic FNE’s (Krylov, algebraic nonlinearities, etc.)

Aronson equations and infinite-harmonic functions, nicely reviewed in
Barron, Evans, and Jensen, 2008. (These aren’t proper FNE’s, as
they are quasilinear, nevertheless, Hessian recovery applies well.)
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Monge’s mass transportation problem

consider densities f and g ≥ 0

supports spt f =: Ω and sptg =: Υ convex

f, g > 0 on intΩ and intΥ.

Look for ψ : Ω→ Υ that transports the mass density f into the mass
density g.
Mass conservation:

(23.1)

∫
A

f(x) d x =

∫
ψ(A)

g(y) dy ∀A (Borel) ⊆ Ω.

Then

(23.2)

∫
ψ(A)

g(y) dy =

∫
A

g(ψ(x)) |detDψ(x)|d x.

Hence

(23.3) g(ψ(x)) |detDψ(x)| = f(x) ∀ x ∈ Ω.

Omar Lakkis (Sussex, GB) NVFEM for fully nonlinear equations Durham 2014-07-15 11 / 37
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From Monge to Monge–Ampère

Following Caffarelli, 1990a; Caffarelli, 1990b,c; Caffarelli and Cabré, 1995
Evans, 2001 Urbas, 1997 under convexity and regularity assumptions, the
Monge-Ampere equation

detD2 u(x) = k(x, u(x),∇u(x))

coupled to the second boundary condition second boundary condition

(31.1) ∇u(Ω) = Υ,

provides a solution to the Monge problem and the right-hand side

(31.2)
f(x)

g(∇u(x))
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Finite difference approaches

1 Earliest known provided approximations of the Monge–Ampère (and
other equations) by Oliker and Prussner, 1988.

2 Kuo and Trudinger, 1992 gave mostly theoretical work introduced the
concept of wide stencils and proving convergence for wide enough
stencils.

3 Benamou and Brenier, 2000 proposed an approach based on the
Brenier-solution concept related to fluid-dynamics and
mass-trasportation.

4 Oberman, 2008 introduced more practically effective work working
out the details, proiding a bound on the wide stencil’s width. See also
Froese, 2011 and Benamou, Froese, and Oberman, 2012 for second
boundary conditions.
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Galerkin (mainly finite element) methods I

Dean and Glowinski, 2006 (and earlier work) introduced a FE least
square method to solve Monge–Ampère equation.

Böhmer, 2010 (and earlier papers) advocates (mostly theoretically,
proving convergence) the use of C1/spline finite elements to directly
compute the Hessian. Practical schemes have been constructed
recently by Davydov and Saeed, 2013.

Feng and Neilan, 2009 introduce the vanishing moment method a
fourth order semilinear approximation: ε∆2u+ F[u] = 0 and take
ε→ 0. (Similar to early vanishing viscosity methods for first order
PDE’s.)

More recently, related work by Brenner et al., 2011 introduces a
penalty method to deal with the convexity.

Neilan, 2012 considers a generalization of scheme in Lakkis and Pryer,
2011 and proves convergence rates for MAD in 2d.
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Galerkin (mainly finite element) methods II

Awanou, 2011 uses a pseudo time [sic] approach.

Jensen and Smears, 2012 provide and analyze a FEM for a special
class of Hamilton–Jacobi–Bellman equation. Further work in Smears
and Süli, 2013, 2014 for a DGFEM approach.
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A fixed-point solution

Nonlinear PDE
N[u] := F(D2 u) − f = 0

can be rewritten as follows

N[u] =

[∫ 1
0

F ′(tD2 u) d t

]
:D2 u+ F(0) − f = 0.

Define

N(D2 u) :=

∫ 1
0

F ′(tD2 u) d t,

g := f− F(0),

then if u solves (FNE), it also solves

N(D2 u):D2 u = g.

Fixed point iteration: given u0 find

N(D2 un):D2 un+1 = g, for n = 1, 2, . . . .
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Crucial remark

Note that solving
N(D2 un):D2 un+1 = g

involves a linear elliptic equation in non-divergence form.

Big fat note

Standard variational FEM’s do not apply.
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Newton’s method

Given an initial guess u0, let

DN[un]
(
un+1 − un

)
= −N[un], for n = 0, 1, 2, . . . ,

where
DN[u]v = F ′(D2 u) : D2 v.

I.e.,

F ′(D2 un) : D2
(
un+1 − un

)
= f− F(D2 un).

Big fat note (repeated)

Equation in nondivergence form, standard FEM’s will not apply.
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The need for Hessian recovery
Detailed in Lakkis and Pryer, 2013

Fixed point iteration
N(D2 un):D2 un+1 = g

and Newton’s iteration

F ′(D2 un) : D2
(
un+1 − un

)
= f− F(D2 un).

besides being nonvariational, like fixed-point, requires the suitable
approximation of a Hessian’s function.

Big fat note (a variation)

Hence the use of the recovered Hessian introduced by Lakkis and Pryer,
2011.
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Hessian recovery

Introduce Galerkin finite element spaces

Vh :=
{
Φ ∈ H1(Ω) : Φ|K ∈ Pp ∀ K ∈ T and Φ ∈ C0(Ω)

}
,

V0 := V ∩H10(Ω),

Unbalanced mixed problem:

Find (U,H) ∈ V0 × Vd×d satisfying

〈H, Φ〉+
∫
Ω

∇U ⊗∇Φ−

∫
∂Ω

∇U ⊗ n Φ = 0

〈A:H, Ψ〉 = 〈f, Ψ〉 ∀ (Φ,Ψ) ∈ V× V0.
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A (sometimes) commutative diagram

discretization are often possible (e.g., when the nonlinearity is algebraic in
the Hessian):

(exact) nonlinear PDE (exact) nonvariational linear PDE’s

FE fully nonlinear PDE
discrete linear 1

discrete linear 2

Newton

N
V

F
E

M

F
N

F
E

M

Newton
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Convergence analysis
Available for the linear nondivergence case so far

A priori estimates for the error∥∥∥A : (D2u−H[uh])
∥∥∥
H−1(Ω)

.

A posteriori error estimate for the error

‖u− uh‖2L2(Ω) ≤
∑
K∈T

(
h2K‖f−A:D2U‖2L2(K)

+ hK ‖A:J∇U⊗K‖2L2(∂K)

)
where the tensor jump of a field v across an edge E = K ∩ K ′ is given by

Jv⊗KE := lim
ε→0 (v(x+ εnK)⊗ nK + v(x− εnK ′)⊗ nK ′)
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A nonlinear function of ∆u

N[u] := sin (∆u) + 2∆u− f = 0 in Ω,

u = 0 on ∂Ω.

P1 elements (left) and P2 elements (right)
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Krylov’s equation

P1 elements (left) and P2 elements (right)
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Pucci’s equation

0 = (α+ 1)∆u+ (α− 1)
(
(∆u)2 − 4 detD2 u

)1/2
.

P2,α = 2 (left) and P2,α = 5 (right)
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Some MAD stuff
reminder: MAD = Monge–Ampère–Dirichlet

FE-convexity check inspired from Aguilera and Morin, 2009.

Exact solution and EOC’s for P2 elements (suboptimal for P1)
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Some MAD stuff
reminder: MAD = Monge–Ampère–Dirichlet

FE-convexity check inspired from Aguilera and Morin, 2009.

principal minor and determinant instances
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Nonclassical solutions
Viscosity or Alexandrov

Singular solution u(x) = |x|
2α
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Nonclassical solutions
Viscosity or Alexandrov

More singular, α = 0.6, α = 0.55, . . .
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Adaptive approximation of nonclassical solutions
Viscosity or Alexandrov

Singular solution u(x) = |x|
1.1 (empirical ZZ-estimators)
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Conclusions and outlook

Obtained and tested a practical and “easy” Netwon scheme based on
nonvariational FEM (NVFEM) via Hessian recovery.

Convergence rates optimal in all examples.

A posteriori error esimates for very weak norms in the linear problem,
provide an elementary way to do adaptivity.

In progress: prove apriori convergence for stronger norms in linear
problems.

In progress: embed second boundary condition (∇u(Ω) = Υ with
prescribed Υ). (This was achieved for wide-stencils but on structured
grids by Benamou, Froese, and Oberman, 2012.)

Open problem: prove conservation of conotonicity for MAD/MAS.

Open problem: apriori and aposteriori analysis for nonlinear problem.
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Aguilera, Néstor E. and Pedro Morin (2009). “On convex functions and
the finite element method”. In: SIAM J. Numer. Anal. 47.4,
pp. 3139–3157. issn: 0036-1429. doi: 10.1137/080720917. url:
http://dx.doi.org/10.1137/080720917.

Awanou, Gerard (2011). Pseudo time continuation and time marching
methods for Monge–Ampère type equations. online preprint. url:
http://www.math.niu.edu/~awanou/MongePseudo05.pdf.

Barron, E. N., L. C. Evans, and R. Jensen (2008). “The infinity Laplacian,
Aronsson’s equation and their generalizations”. In: Trans. Amer. Math.
Soc. 360.1, pp. 77–101. issn: 0002-9947. doi:
10.1090/S0002-9947-07-04338-3. url:
http://dx.doi.org/10.1090/S0002-9947-07-04338-3.

Omar Lakkis (Sussex, GB) NVFEM for fully nonlinear equations Durham 2014-07-15 30 / 37

http://dx.doi.org/10.1137/080720917
http://dx.doi.org/10.1137/080720917
http://www.math.niu.edu/~awanou/MongePseudo05.pdf
http://dx.doi.org/10.1090/S0002-9947-07-04338-3
http://dx.doi.org/10.1090/S0002-9947-07-04338-3


Department of  Mathematics

References II

Benamou, Jean-David and Yann Brenier (2000). “A computational fluid
mechanics solution to the Monge-Kantorovich mass transfer problem”.
In: Numer. Math. 84.3, pp. 375–393. issn: 0029-599X. doi:
10.1007/s002110050002. url:
http://dx.doi.org/10.1007/s002110050002.

Benamou, Jean-David, Brittany D. Froese, and Adam M. Oberman (Aug.
2012). A viscosity solution approach to the Monge-Ampere formulation
of the Optimal Transportation Problem. Tech. rep. eprint: 1208.4873.
url: http://arxiv.org/abs/1208.4873.
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