Mimetic Finite Difference Method for Elliptic Problems

Konstantin Lipnikov

Los Alamos National Laboratory, Theoretical Division Applied Mathematics and Plasma Physics Group

July 2014, Durham

Collaborators: L.Beirao da Veiga, F.Brezzi, V.Gyrya, G.Manzini, V.Simoncini, M.Shashkov, D.Svyatskiy

Objective

The mimetic finite difference method preserves or mimics critical mathematical and physical properties of systems of PDEs such as conservation laws, exact identities, solution symmetries, secondary equations, and maximum principles.

These properties are needed for multiphysics simulations.
The task of building mimetic schemes becomes more difficult on unstructured polygonal and polyhedral meshes.

Outline

Part I Introduction to the MFD method
(1) Motivation and requirements
(2) Principles of mimetic discretizations
(3) Family of mimetic schemes

Part II The MFD and other methods
(1) Variational and finite volume viewpoints
(2) Maximum and minimum principles
(3) Discrete vector and tensor calculus

Part I. Introduction to the MFD method

Duality property (1/2)

Let $q=0$ on $\partial \Omega$. We have the integration by part formula:
$\int_{\Omega}(\operatorname{div} \mathbf{u}) q \mathrm{~d} x=-\int_{\Omega} \mathbf{u} \cdot \nabla q \mathrm{~d} x+\underbrace{\int_{\partial \Omega} q \mathbf{u} \cdot \mathbf{n d} x}_{=0}=-\int_{\Omega} \mathbf{u} \cdot \nabla q \mathrm{~d} x$.

Duality property (1/2)

Let $q=0$ on $\partial \Omega$. We have the integration by part formula:
$\int_{\Omega}(\operatorname{div} \mathbf{u}) q \mathrm{~d} x=-\int_{\Omega} \mathbf{u} \cdot \nabla q \mathrm{~d} x+\underbrace{\int_{\partial \Omega} q \mathbf{u} \cdot \mathbf{n d} x}_{=0}=-\int_{\Omega} \mathbf{u} \cdot \nabla q \mathrm{~d} x$.
Let $\mathbf{u}_{h} \in \mathcal{F}_{h}$ and $q_{h} \in \mathcal{C}_{h}$ be discrete fields (vectors of dofs), $q_{h}=0$ on $\partial \Omega$, and

$$
\operatorname{div}_{h}: \mathcal{F}_{h} \rightarrow \mathcal{C}_{h}, \quad \nabla_{h}: \mathcal{C}_{h} \rightarrow \mathcal{F}_{h}
$$

The discrete integration by parts formula mimics the continuous one:

$$
\left[\operatorname{div}_{h} \mathbf{u}_{h}, q_{h}\right]_{\mathcal{C}_{h}}=-\left[\mathbf{u}_{h}, \nabla_{h} q_{h}\right]_{\mathcal{F}_{h}} \quad \forall \mathbf{u}_{h}, q_{h}
$$

where $[\cdot, \cdot]$ are inner products (approximation of integrals).

Duality property (2/2)

Requirement 1

$$
\left[\operatorname{div}_{h} \mathbf{u}_{h}, q_{h}\right]_{\mathcal{C}_{h}}=-\left[\mathbf{u}_{h}, \nabla_{h} q_{h}\right]_{\mathcal{F}_{h}}
$$

The discrete gradient and divergence operators cannot be discretized independently of one another.

Consequence of the duality property $(1 / 2)$

The equation of Lagrangian gasdynamic (density ρ, velocity \mathbf{u}, internal energy e, pressure p):

$$
\begin{aligned}
\frac{1}{\rho} \frac{d \rho}{d t} & =-\operatorname{div} \mathbf{u} \\
\rho \frac{d \mathbf{u}}{d t} & =-\nabla p \\
\rho \frac{d e}{d t} & =-p \operatorname{div} \mathbf{u}
\end{aligned}
$$

Let $p=0$ of $\partial \Omega$. The integration by parts and continuity equation lead to conservation of the total energy E :
$\frac{d E}{d t}=\int_{\Omega(t)} \rho\left(\frac{d \mathbf{u}}{d t} \cdot \mathbf{u}+\frac{d e}{d t}\right) \mathrm{d} x=-\int_{\Omega(t)}(\mathbf{u} \cdot \nabla p+p \operatorname{div} \mathbf{u}) \mathrm{d} x=0$.

Consequence of the duality property (2/2)

The semi-discrete equations read:

$$
\begin{aligned}
\frac{1}{\rho_{h}} \frac{d \rho_{h}}{d t} & =-\operatorname{div}_{h} \mathbf{u}_{h} \\
\rho_{h} \frac{d \mathbf{u}_{h}}{d t} & =-\nabla_{h} p_{h} \\
\rho_{h} \frac{d e_{h}}{d t} & =-p_{h} \operatorname{div}_{h} \mathbf{u}_{h}
\end{aligned}
$$

The discrete integration by parts formula guarantees conservation of the total discrete energy E_{h} :

$$
\frac{d E_{h}}{d t}=-\left[\mathbf{u}_{h}, \nabla_{h} p_{h}\right]_{\mathcal{F}_{h}}-\left[p_{h}, \operatorname{div}_{h} \mathbf{u}_{h}\right]_{\mathcal{C}_{h}}=0
$$

Exact identities

For any \mathbf{u} and p it holds:

$$
\operatorname{div} \operatorname{curl} \mathbf{u}=0, \quad \operatorname{curl} \nabla p=0
$$

Requirement 2

For any discrete fields $\mathbf{u}_{h} \in \mathcal{E}_{h}$ and $p_{h} \in \mathcal{N}_{h}$ it holds:

$$
\operatorname{div}_{h} \operatorname{curl}_{h} \mathbf{u}_{h}=0, \quad \operatorname{curl}_{h} \nabla_{h} p_{h}=0
$$

Consequence of the exact identities $(1 / 2)$

Maxwell's equations (magnetic field $\mathbf{H}=\mu \mathbf{B}$, magnetic flux density \mathbf{B}, dielectric displacement $\mathbf{D}=\epsilon \mathbf{E}$, electric field \mathbf{E}):

$$
\frac{\partial \mathbf{B}}{\partial t}=-\operatorname{curl} \mathbf{E}, \quad \frac{\partial \mathbf{D}}{\partial t}=\operatorname{curl} \mathbf{H}
$$

satisfy

$$
\operatorname{div} \mathbf{B}=0, \quad \operatorname{div} \mathbf{D}=0
$$

for any time t.

Consequence of the exact identities $(2 / 2)$

The semi-discrete equations read:

$$
\frac{\partial \mathbf{B}_{h}}{\partial t}=-\operatorname{curl}_{h} \mathbf{E}_{h}, \quad \frac{\partial \mathbf{D}_{h}}{\partial t}=\widetilde{\operatorname{curl}_{h}} \mathbf{H}_{h}
$$

The exact discrete identities guarantee that the initial divergence-free condition is preserved:

$$
\frac{\partial}{\partial t}\left(\operatorname{div}_{h} \mathbf{B}_{h}\right)=\operatorname{div}_{h} \frac{\partial \mathbf{B}_{h}}{\partial t}=-\operatorname{div}_{h} \operatorname{curl}_{h} \mathbf{E}_{h}=0
$$

and

$$
\frac{\partial}{\partial t}\left(\widetilde{\operatorname{div}}_{h} \mathbf{D}_{h}\right)=\widetilde{\operatorname{div}}_{h} \frac{\partial \mathbf{D}_{h}}{\partial t}=-\widetilde{\operatorname{div}_{h}} \widetilde{\operatorname{cur}}_{h} \mathbf{H}_{h}=0
$$

Requirements for the mimetic discretization

In this talk, we build discrete mimetic operators that
(1) satisfy the duality property for a pair of operators
(2) satisfy exact identities
(3) lead to conditional maximum and minimum principles
(9) provide optimal approximation of PDEs
on unstructured polygonal and polyhedral meshes.

Incomplete list of related methods

- Cell method
- Co-volume method
- Summation by parts
- Hybrid FV, mixed FV, discrete duality FV
- Mixed FE, VEM
- FE exterior calculus

Mimetic method differs by constructive/practical approach to building discrete operators on general polyhedral meshes.

Unstructured polyhedral meshes in porous media

Filled Boundary
Var: ElementBlock
-20000
-30000
-30000
-40000
-50000
-70000
-70000

Kelvin's conjecture \& Weaire-Phelan's structure

Polyhedral cell has more neighbors which leads to better transfer of information in expense of a higher stencil.

Overall, polyhedral meshes may lead to faster time to a solution compared to simplicial meshes.

Unstructured polyhedral meshes: engineering

The Weaire-Phelan structure inspired the design of the aquatic center for the 2008 Olympics Games in Beijing.

The design is ideally suited to absorbing energy from earthquakes.

Duality requirement ($1 / 3$)

Consider the one-dimensional Poisson equation

$$
\begin{aligned}
-\frac{d^{2} p}{d x^{2}} & =b \quad x \in(0,1) \\
p(0)=p(1) & =0 .
\end{aligned}
$$

We write this second-order equation as a system of two first-order equations:

$$
u=-\frac{d p}{d x}, \quad \frac{d u}{d x}=b .
$$

Recall the integration by part property:

$$
\int_{0}^{1} \frac{d p}{d x} u d x=-\int_{0}^{1} p \frac{d u}{d x} d x
$$

Duality requirement $(2 / 3)$

By the duality requirement, approximation $d u / d x \approx \operatorname{div}_{h} u_{h}$ and $d p / d x \approx \nabla_{h} p_{h}$ must satisfy the discrete integration by parts formula:

$$
[\underbrace{\operatorname{div}_{h} u_{h}}_{q_{h}}, p_{h}]_{\mathcal{C}_{h}}=-[u_{h}, \underbrace{\nabla_{h} p_{h}}_{v_{h}}]_{\mathcal{F}_{h}} \quad \forall u_{h}, p_{h}
$$

where

- $\left[q_{h}, p_{h}\right]_{\mathcal{C}_{h}}=\sum_{i=1}^{n} \Delta x q_{i+1 / 2} p_{i+1 / 2} \approx \int_{0}^{1} p q \mathrm{~d} x$
- $\left[u_{h}, v_{h}\right]_{\mathcal{F}_{h}}=\sum_{i=1}^{n+1} \Delta x u_{i} v_{i} \approx \int_{0}^{1} u v \mathrm{~d} x$

Duality requirement $(3 / 3)$

Inserting this in the discrete integration by parts formula:

$$
\Delta x \sum_{i=1}^{n} \frac{u_{i+1}-u_{i}}{\Delta x} p_{i+1 / 2}=-\Delta x \sum_{i=1}^{n+1}\left(\nabla_{h} p_{h}\right)_{i} u_{i} \quad \forall u_{h}, p_{h}
$$

Rearranging the left-hand side, we recover the natural FD formula for the gradient:

$$
\left(\nabla_{h} p_{h}\right)_{i}=\frac{p_{i+1 / 2}-p_{i-1 / 2}}{\Delta x}
$$

where $p_{1 / 2}=p_{n+3 / 2}=0$.

Discretization principle

Commandment 1: Use duality

Select and discretize one the two adjoint operators. Derive the other discrete operator from the discrete duality formula.
(1) Divergence operator is discretized first. div_{h} is called the primary mimetic operator.
(2) Discrete gradient operator ∇_{h} is called the derived mimetic operator.

The discrete integration by parts formula

$$
\left[\operatorname{div}_{h} u_{h}, p_{h}\right]_{\mathcal{C}_{h}}=-\left[u_{h}, \nabla_{h} p_{h}\right]_{\mathcal{F}_{h}} \quad \forall u_{h}, p_{h}
$$

works the same way in two- and three-dimensions.

Accuracy requirement (1/4)

Accuracy of a mimetic scheme depends on properties of the inner products. For sufficiently smooth u and v :

$$
\left[q_{h}, p_{h}\right]_{\mathcal{C}_{h}}=\sum_{i=1}^{n} \Delta x q_{i+1 / 2} p_{i+1 / 2}=\int_{0}^{1} q p \mathrm{~d} x+O(\Delta x)
$$

The construction of inner product can be done cell-by-cell:

$$
\left[q_{h}, p_{h}\right]_{\mathcal{C}_{h}}=\sum_{i=1}^{n}\left[q_{h}, p_{h}\right]_{i, \mathcal{C}_{h}}
$$

where

$$
\left[q_{h}, p_{h}\right]_{i, \mathcal{C}_{h}}=\Delta x q_{i+1 / 2} p_{i+1 / 2}=\int_{x_{i}}^{x_{i+1}} q p \mathrm{~d} x+O\left((\Delta x)^{2}\right)
$$

Accuracy requirement (2/4)

Accuracy of a mimetic scheme depend on properties of the inner products. For sufficiently smooth u and v :

$$
\left[v_{h}, u_{h}\right]_{\mathcal{F}_{h}}=\sum_{i=1}^{n+1} \Delta x v_{i} u_{i}=\int_{0}^{1} v u \mathrm{~d} x+O(\Delta x)
$$

The construction of inner product can be done cell-by-cell:

$$
\left[v_{h}, u_{h}\right]_{\mathcal{F}_{h}}=\sum_{i=1}^{n}\left[v_{h}, u_{h}\right]_{i, \mathcal{F}_{h}}
$$

where

$$
\left[v_{h}, u_{h}\right]_{i, \mathcal{F}_{h}}=\frac{\Delta x}{2}\left(v_{i} u_{i}+v_{i+1} u_{i+1}\right)=\int_{x_{i}}^{x_{i+1}} v u \mathrm{~d} x+O\left((\Delta x)^{3}\right)
$$

Accuracy requirement $(3 / 4)$

By the definition of an inner-product, there exists a 2×2 SPD matrix \mathbb{M}_{i} such that

$$
\left[v_{h}, u_{h}\right]_{i, \mathcal{F}_{h}}=\left(v_{i}, v_{i+1}\right) \mathbb{M}_{i}\binom{u_{i}}{u_{i+1}} .
$$

In the considered case, \mathbb{M}_{i} is the scalar matrix:

$$
\mathbb{M}_{i}=\mathbb{M}_{i}^{F D}=\frac{\Delta x}{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

It corresponds to trapezoidal integration rule:

$$
\left(v_{i}, v_{i+1}\right) \mathbb{M}_{i}^{F D}\binom{u_{i}}{u_{i+1}}=\frac{\Delta x}{2}\left(v_{i} u_{i}+v_{i+1} u_{i+1}\right) \approx \int_{x_{i}}^{x_{i+1}} v u \mathrm{~d} x .
$$

Accuracy requirement $(3 / 4)$

By the definition of an inner-product, there exists a 2×2 SPD matrix \mathbb{M}_{i} such that

$$
\left[v_{h}, u_{h}\right]_{i, \mathcal{F}_{h}}=\left(v_{i}, v_{i+1}\right) \mathbb{M}_{i}\binom{u_{i}}{u_{i+1}} .
$$

In the considered case, \mathbb{M}_{i} is the scalar matrix:

$$
\mathbb{M}_{i}=\mathbb{M}_{i}^{F D}=\frac{\Delta x}{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

It corresponds to trapezoidal integration rule:

$$
\left(v_{i}, v_{i+1}\right) \mathbb{M}_{i}^{F D}\binom{u_{i}}{u_{i+1}}=\frac{\Delta x}{2}\left(v_{i} u_{i}+v_{i+1} u_{i+1}\right) \approx \int_{x_{i}}^{x_{i+1}} v u \mathrm{~d} x .
$$

Another quadrature rule gives a new matrix \mathbb{M}_{i}; hence a different inner product and another mimetic scheme.

Accuracy requirement (4/4)

If we consider piecewise linear approximations to functions u and v, we obtain another good inner product matrix:

$$
\mathbb{M}_{i}=\mathbb{M}_{i}^{R T}=\frac{\Delta x}{6}\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)
$$

Direct calculation gives

$$
\left(v_{i}, v_{i+1}\right) \mathbb{M}_{i}^{R T}\binom{u_{i}}{u_{i+1}}=\int_{x_{i}}^{x_{i+1}} v u d x+O\left((\Delta x)^{3}\right)
$$

In fact, we have a 1-parameter family of inner product matrices. We describe this family today and select the best scheme tomorrow.

Consistency condition

Let us approximate function v by a constant v^{0} and function u by a linear function u^{1}. Then,

$$
\int_{x_{i}}^{x_{i+1}} v^{0} u^{1} d x=\int_{x_{i}}^{x_{i+1}} v u d x+O\left((\Delta x)^{2}\right) .
$$

Note that both $\mathbb{M}_{i}^{F D}$ and $\mathbb{M}_{i}^{R T}$ satisfy

$$
\int_{x_{i}}^{x_{i+1}} v^{0} u^{1} d x=\frac{\Delta x}{2} v^{0}\left(u_{i}+u_{i+1}\right)=\left(v^{0}, v^{0}\right) \mathbb{M}_{i}\binom{u_{i}}{u_{i+1}}
$$

Commandment 2: Use a polynomial patch test

A consistent matrix \mathbb{M}_{i} must satisfy

$$
\left(v^{0}, v^{0}\right) \mathbb{M}_{i}\binom{u_{i}}{u_{i+1}}=\int_{x_{i}}^{x_{i+1}} v^{0} u^{1} d x \quad \forall v^{0}, \forall\left(u_{i}, u_{i+1}\right)
$$

where the integral is computable using dofs.

Bridge 1: to VEM

Consider a lifting operator from dofs to a functional space:

$$
u^{1}=\mathcal{L}\left\{\binom{u_{i}}{u_{i+1}}\right\}
$$

- Interpolation returns back our dofs, i.e. $u^{1}\left(x_{i}\right)=u_{i}$ and

$$
u^{1}\left(x_{i+1}\right)=u_{i+1} .
$$

- The lifted space contains constant functions.
- Divergence of u^{1} is a constant.

A lifting operator is introduced in many papers on mimetic schemes as a tool for their convergence analysis.

One-parameter family of inner product matrices

$$
\left(v^{0}, v^{0}\right) \mathbb{M}_{i}\binom{u_{i}}{u_{i+1}}=\int_{x_{i}}^{x_{i+1}} v^{0} u^{1} d x=\frac{\Delta x}{2} v^{0}\left(u_{i}+u_{i+1}\right)
$$

It is each to verify that

$$
\mathbb{M}_{i}=\frac{\Delta x}{2}\left(\begin{array}{cc}
2 a & 1-2 a \\
1-2 a & 2 a
\end{array}\right) .
$$

Obviously, that we need to constraint the parameter a to get an SPD matrix \mathbb{M}_{i}.

Stability condition

Commandment 3: Limit a family of consistent matrices

An admissible matrix \mathbb{M}_{i} is such that there exists two positive constants σ_{\star} and σ^{\star} independent of Δx such that

$$
\sigma_{\star} \Delta x\left(u_{i}^{2}+u_{i+1}^{2}\right) \leq\left(u_{i}, u_{i+1}\right) \mathbb{M}_{i}\binom{u_{i}}{u_{i+1}} \leq \sigma^{\star} \Delta x\left(u_{i}^{2}+u_{i+1}^{2}\right)
$$

for all vectors $\left(u_{i}, u_{i+1}\right)^{T}$.

- Matrix $\mathbb{M}_{i}^{F D}$ satisfies the stability condition with $\sigma \star=\sigma^{\star}=1$.
- For matrix $\mathbb{M}_{i}^{R T}$ we have $\sigma \star=1 / 6$ and $\sigma^{\star}=1 / 2$.

Five-step discretization algorithm

(1) Select degrees of freedom (for u and p).
(2) Discretize the primary mimetic operator (e.g., div_{h}).
(3) Construct local inner products that satisfy consistency and stability conditions.
(9) Formulate the discrete duality principle:

$$
\left[\operatorname{div}_{h} u_{h}, p_{h}\right]_{\mathcal{C}_{h}}=-\left[u_{h}, \nabla_{h} p_{h}\right]_{\mathcal{F}_{h}} \quad \forall u_{h}, p_{h} .
$$

(6) Deduce the derived mimetic operator (resp., ∇_{h}) from it.

Darcy flow in porous media

Consider a 2D or 3D Poisson equation:

$$
\begin{aligned}
\mathbf{u} & =-\nabla p \\
\operatorname{div} \mathbf{u} & =b
\end{aligned}
$$

subject to $p=0$ on $\partial \Omega$.

To derive its mimetic discretization

$$
\begin{aligned}
\mathbf{u}_{h} & =-\nabla_{h} p_{h} \\
\operatorname{div}_{h} \mathbf{u}_{h} & =b_{h}
\end{aligned}
$$

we apply the above five-step algorithm.

Step 1: Select degrees of freedom

The discrete velocities are defined on mesh faces and represent average fluxes. The discrete pressures are defined in mesh cells and represent average pressures:

$$
u_{f} \approx \frac{1}{|f|} \int_{f} \mathbf{u} \cdot \mathbf{n}_{f} \mathrm{~d} x, \quad p_{c} \approx \frac{1}{|c|} \int_{c} p \mathrm{~d} x
$$

Define $\mathbf{u}_{h}=\left(u_{f_{1}}, u_{f_{2}}, \ldots, u_{f_{n}}\right)^{T}$ and $p_{h}=\left(p_{c_{1}}, p_{c_{2}}, \ldots, p_{c_{m}}\right)^{T}$.

Step 2: Discretize the primary mimetic operator

We use a coordinate-invariant definition of the divergence:

$$
\int_{c} \operatorname{div} \mathbf{u} \mathrm{~d} x=\int_{\partial c} \mathbf{u} \cdot \mathbf{n} \mathrm{~d} x=\sum_{f \in \partial c} \sigma_{c, f} \int_{f} \mathbf{u} \cdot \mathbf{n}_{f} \mathrm{~d} x
$$

Replacing integrals by mid-point quadratures, we have

$$
\left.\left(\operatorname{div}_{h} \mathbf{u}_{h}\right)\right|_{c}=\frac{1}{|c|} \sum_{f \in \partial c} \sigma_{c, f}|f| u_{f}
$$

The discrete divergence operator is like in the FV and MFE methods. The difference between methods is in the discretization of the constitutive equation.

Step 3: Local inner products

We need accurate approximations of cell-based integrals:

$$
\left[q_{h}, p_{h}\right]_{c, \mathcal{C}_{h}} \approx \int_{c} q p \mathrm{~d} x . \quad\left[\mathbf{v}_{h}, \mathbf{u}_{h}\right]_{c, \mathcal{F}_{h}} \approx \int_{c} \mathbf{v} \cdot \mathbf{u} \mathrm{~d} x
$$

Recall that these inner products can be rewritten as vector-matrix-vector products with SPD matrices:

$$
\begin{aligned}
{\left[q_{h}, p_{h}\right]_{c, \mathcal{C}_{h}} } & =q_{c} \mathbb{M}_{c}^{\mathcal{C}} p_{c} \\
{\left[\mathbf{v}_{h}, \mathbf{u}_{h}\right]_{c, \mathcal{F}_{h}} } & =\left(v_{f_{1}}, \ldots, v_{f_{4}}\right) \mathbb{M}_{c}^{\mathcal{F}}\left(\begin{array}{c}
u_{f_{1}} \\
\vdots \\
u_{f_{4}}
\end{array}\right)
\end{aligned}
$$

In this example, $\mathbb{M}_{c}^{\mathcal{C}}$ is 1×1 matrix and $\mathbb{M}_{c}^{\mathcal{F}}$ is 4×4 matrix. Obvious choice $\mathbb{M}_{c}^{\mathcal{C}}=|c|$ leads to the 1st-order approximation of the integral, i.e. it is the admissible matrix.

Step 3: Consistency condition (1/3)

A consistent matrix $\mathbb{M}_{c}^{\mathcal{F}}$ must satisfy

$$
\left(v_{f_{1}}^{0}, \ldots, v_{f_{4}}^{0}\right) \mathbb{M}_{c}^{\mathcal{F}}\left(\begin{array}{c}
u_{f_{1}} \\
\vdots \\
u_{f_{4}}
\end{array}\right)=\int_{c} \mathbf{v}^{0} \cdot \mathbf{u}^{1} \mathrm{~d} x \quad \forall \mathbf{v}^{0}, \mathbf{u}^{1}
$$

where $v_{f_{i}}^{0}=\mathbf{v}^{0} \cdot \mathbf{n}_{f_{i}}$ and $\mathbf{u}^{1}=\mathcal{L}\left(\left(u_{f_{1}}, \ldots, u_{f_{4}}\right)^{T}\right) \in \mathcal{S}_{c}$ s.t.

- $\mathbf{u}^{1} \cdot \mathbf{n}_{f_{i}}=u_{f_{i}} \quad i=1,2,3,4 ;$
- $\operatorname{div} \mathbf{u}^{1}=$ constant $=\left(\operatorname{div}_{h} \mathbf{u}_{h}\right)_{c}$.

We need only existence result for \mathbf{u}^{1}.

Step 3: Consistency condition (2/3)

For any constant vector function \mathbf{v}^{0} there exists the linear polynomial q^{1} such that

$$
\mathbf{v}^{0}=\nabla q^{1} \quad \text { and } \quad \int_{c} q^{1} \mathrm{~d} x=0
$$

Then,

$$
\begin{aligned}
& \left(v_{f_{1}}^{0}, \ldots, v_{f_{4}}^{0}\right) \mathbb{M}_{c}^{\mathcal{F}}\left(\begin{array}{c}
u_{f_{1}} \\
\vdots \\
u_{f_{4}}
\end{array}\right)=\int_{c} \mathbf{v}^{0} \cdot \mathbf{u}^{1} \mathrm{~d} x \\
& =-\int_{c} q_{1} \underbrace{\operatorname{div} \mathbf{u}^{1}}_{=\text {constant }} \mathrm{d} x+\int_{\partial c} q_{1} \mathbf{u}^{1} \cdot \mathbf{n} \mathrm{~d} x=\sum_{i=1}^{4} \int_{f_{i}} q_{1} \mathbf{u}^{1} \cdot \mathbf{n}_{f_{i}} \mathrm{~d} x \\
& =\left(\int_{f_{1}} q_{1} \mathrm{~d} x, \ldots, \int_{f_{4}} q_{1} \mathrm{~d} x\right)\left(\begin{array}{c}
u_{f_{1}} \\
\vdots \\
u_{f_{4}}
\end{array}\right) \quad \forall \mathbf{v}^{0}, \mathbf{u}^{1} .
\end{aligned}
$$

Step 3: Consistency condition (3/3)

Algebraic equations w.r.t. unknown matrix $\mathbb{M}_{c}^{\mathcal{F}}$:

$$
\mathbb{M}_{c}^{\mathcal{F}}\left(\begin{array}{c}
v_{f_{1}}^{0} \\
\vdots \\
v_{f_{4}}^{0}
\end{array}\right)=\left(\begin{array}{c}
\int_{f_{1}} q^{1} \mathrm{~d} x \\
\vdots \\
\int_{f_{4}} q^{1} \mathrm{~d} x
\end{array}\right) \quad \forall \mathbf{v}^{0}=\nabla q^{1}
$$

It is sufficient to consider only linearly independent functions q^{1}. In two-dimensions, we have $q_{a}^{1}=x-x_{c}$ and $q_{b}^{1}=y-y_{c}$:

Mimetic matrix equation

The problem is under-determined for any cell c (triangles: Shashkov, Hyman, Liska, Nicolaides, Trapp).

Step 3: Construction of \mathbb{N}_{c} and \mathbb{R}_{c} for a pentagon

$$
\mathbb{M}_{c}^{\mathcal{F}} \mathbb{N}_{c}=\mathbb{R}_{c}
$$

Required geometric information: normals to faces, centroids of faces, areas of faces:

$$
\mathbb{N}_{c}=\left[\begin{array}{cc}
n_{1 x} & n_{1 y} \\
n_{2 x} & n_{2 y} \\
\vdots & \vdots \\
n_{5 x} & n_{5 y}
\end{array}\right] \quad \mathbb{R}_{c}=\left[\begin{array}{cc}
\left|f_{1}\right|\left(x_{1}-x_{c}\right) & \left|f_{1}\right|\left(y_{1}-y_{c}\right) \\
\left|f_{2}\right|\left(x_{1}-x_{c}\right) & \left|f_{2}\right|\left(y_{2}-y_{c}\right) \\
\vdots & \vdots \\
\left|f_{5}\right|\left(x_{5}-x_{c}\right) & \left|f_{5}\right|\left(y_{5}-y_{c}\right)
\end{array}\right]
$$

Step 3: Construction of \mathbb{N}_{c} and \mathbb{R}_{c} for a hexahedron

$$
\mathbb{M}_{c}^{\mathcal{F}} \mathbb{N}_{c}=\mathbb{R}_{c}
$$

Required geometric information: normals to faces, centroids of faces, areas of faces:
$\mathbb{N}_{c}=\left[\begin{array}{ccc}n_{1 x} & n_{1 y} & n_{1 z} \\ n_{2 x} & n_{2 y} & n_{2 z} \\ \vdots & \vdots & \vdots \\ n_{6 x} & n_{6 y} & n_{6 z}\end{array}\right] \quad \mathbb{R}_{c}=\left[\begin{array}{ccc}\left|f_{1}\right|\left(x_{1}-x_{c}\right) & \left|f_{1}\right|\left(y_{1}-y_{c}\right) & \left|f_{1}\right|\left(z_{1}-z_{c}\right) \\ \left|f_{2}\right|\left(x_{1}-x_{c}\right) & \left|f_{2}\right|\left(y_{2}-y_{c}\right) & \left|f_{2}\right|\left(z_{2}-z_{c}\right) \\ \vdots & \vdots & \vdots \\ \left|f_{6}\right|\left(x_{6}-x_{c}\right) & \left|f_{6}\right|\left(y_{6}-y_{c}\right) & \left|f_{6}\right|\left(z_{6}-z_{c}\right)\end{array}\right]$

Step 3: Properties of \mathbb{N}_{c} and \mathbb{R}_{c}

Lemma

For any polygon (polyhedron in 3D), we have

$$
\mathbb{N}_{c}^{T} \mathbb{R}_{c}=\mathbb{R}_{c}^{T} \mathbb{N}_{c}=|c| \mathbb{I}
$$

Sketch of the proof. Direct calculations give

$$
\begin{aligned}
\left(\mathbb{N}_{c}^{T} \mathbb{R}_{c}\right)_{1,2} & =\sum_{i=1}^{k} n_{f_{i}, x}\left|f_{i}\right|\left(y_{i}-y_{c}\right) \\
& =\sum_{i=1}^{k} \int_{f_{i}}\left(\nabla x \cdot \mathbf{n}_{f_{i}}\right)\left(y-y_{c}\right) \mathrm{d} x \\
& =\int_{c}(\nabla x) \cdot \nabla\left(y-y_{c}\right)=0
\end{aligned}
$$

Other entries are verified similarly.

Step 3: Solution of the mimetic matrix equation

Lemma

A one-parameter family of SPD solutions to $\mathbb{M}_{c}^{\mathcal{F}} \mathbb{N}_{c}=\mathbb{R}_{c}$ is

$$
\mathbb{M}_{c}^{\mathcal{F}}=\mathbb{M}_{c}^{\text {consistency }}+\mathbb{M}_{c}^{\text {stability }}
$$

where

$$
\mathbb{M}_{c}^{\text {consistency }}=\frac{1}{|c|} \mathbb{R}_{c} \mathbb{R}_{c}^{T}
$$

and

$$
\mathbb{M}_{c}^{\text {stability }}=a_{c}\left(\mathbb{I}-\mathbb{N}_{c}\left(\mathbb{N}_{c}^{T} \mathbb{N}_{c}\right)^{-1} \mathbb{N}_{c}^{T}\right) \quad a_{c}>0
$$

A complete description of the family of solutions will be given tomorrow.

Step 3: Stability condition (1/2)

An admissible $k \times k$ matrix $\mathbb{M}_{c}^{\mathcal{F}}$ must satisfy

$$
\sigma_{\star}|c| \sum_{i=1}^{k}\left|u_{f_{i}}\right|^{2} \leq\left(u_{f_{1}}, \ldots, u_{f_{k}}\right) \mathbb{M}_{c}^{\mathcal{F}}\left(\begin{array}{c}
u_{f_{1}} \\
\vdots \\
u_{f_{k}}
\end{array}\right) \leq \sigma^{\star}|c| \sum_{i=1}^{k}\left|u_{f_{i}}\right|^{2}
$$

where σ_{\star} and σ^{\star} are positive constants independent of c.

In practice, a good scaling is given by

$$
a_{c}=a_{c}^{*} \equiv|c|
$$

Step 3: Stability condition (2/2)

Consider a 2D elliptic problem and calculate Darcy flux and pressure errors as functions of the normalize parameter a_{c} / a_{c}^{*}.

The free parameter a_{c} can vary 2 -orders in magnitude.

Step 4: Formulate the discrete duality principle

$$
\left[\operatorname{div}_{h} \mathbf{u}_{h}, p_{h}\right]_{\mathcal{C}_{h}}=-\left[\mathbf{u}_{h}, \nabla_{h} p_{h}\right]_{\mathcal{F}_{h}} \quad \forall \mathbf{u}_{h}, p_{h}
$$

Step 5: Deduce the derived mimetic operator

$$
[\underbrace{\operatorname{div}_{h} \mathbf{u}_{h}}_{q_{h}}, p_{h}]_{\mathcal{C}}=-[\mathbf{u}_{h}, \underbrace{\nabla_{h} p_{h}}_{\mathbf{v}_{h}}]_{\mathcal{F}} \quad \forall \mathbf{u}_{h}, p_{h}
$$

By definition of the inner product, it can be associated with a symmetric positive definite matrix:

$$
\begin{aligned}
{\left[q_{h}, p_{h}\right]_{\mathcal{C}_{h}} } & =q_{h}^{T} \mathbb{M}_{\mathcal{C}} p_{h} \\
{\left[\mathbf{u}_{h}, \mathbf{v}_{h}\right]_{\mathcal{F}_{h}} } & =\mathbf{u}_{h}^{T} \mathbb{M}_{\mathcal{F}} \mathbf{v}_{h}
\end{aligned}
$$

Note that $\mathbb{M}_{\mathcal{C}}=\operatorname{diag}\left(\left|c_{1}\right|, \ldots,\left|c_{n}\right|\right)$ and $\mathbb{M}_{\mathcal{F}}=\sum_{c \in \Omega_{h}} \mathcal{N}_{c} \mathbb{M}_{c}^{\mathcal{F}} \mathcal{N}_{c}^{T}$.
Derived gradient operator

$$
\nabla_{h}=-\mathbb{M}_{\mathcal{F}}^{-1} \operatorname{div}_{h}^{T} \mathbb{M}_{\mathcal{C}}
$$

The algebraic form of the MFD scheme is

$$
\begin{aligned}
\mathbf{u}_{h} & =-\nabla_{h} p_{h}=\mathbb{M}_{\mathcal{F}}^{-1} \operatorname{div}_{h}^{T} \mathbb{M}_{\mathcal{C}} p_{h} \\
\operatorname{div}_{h} \mathbf{u}_{h} & =b_{h}
\end{aligned}
$$

or in a symmetrized form:

$$
\left(\begin{array}{cc}
\mathbb{M}_{\mathcal{F}} & -\operatorname{div}_{h}^{T} \mathbb{M}_{\mathcal{C}} \\
-\mathbb{M}_{\mathcal{C}} \operatorname{div}_{h} & 0
\end{array}\right)\binom{\mathbf{u}_{h}}{p_{h}}=\binom{0}{-\mathbb{M}_{\mathcal{C}} b_{h}}
$$

Derived gradient is not local on general meshes if $\mathbb{M}_{\mathcal{F}}^{-1}$ is dense.

Conclusion for Part I

- The mimetic finite difference method is designed to mimic important properties of mathematical and physical systems on arbitrary polygonal or polyhedral meshes.
- The MFD method leads to a family of schemes that have the same stencil and formal accuracy order. Tomorrow l'll show how to find a member of this family that satisfies the maximum principle.
- The MFD method for diffusion problems is relative easy to implement on polyhedral meshes $\left(\mathbb{M}_{c}^{\mathcal{F}} \mathbb{N}_{c}=\mathbb{R}_{c}\right)$. A similar equation holds for mimetic discretizations of other PDEs.

Conclusion for Part I

- The mimetic finite difference method is designed to mimic important properties of mathematical and physical systems on arbitrary polygonal or polyhedral meshes.
- The MFD method leads to a family of schemes that have the same stencil and formal accuracy order. Tomorrow l'll show how to find a member of this family that satisfies the maximum principle.
- The MFD method for diffusion problems is \mathbf{r} to implement on polyhedral meshes $\left(\mathbb{M}_{c}^{\mathcal{F}} \mathbb{N}_{c}=\right.$ similar equation holds for mimetic discretiza other PDEs.

Part II. The MFD and other methods

Objective

The mimetic finite difference method preserves or mimics critical mathematical and physical properties of systems of PDEs such as conservation laws, exact identities, solution symmetries, secondary equations, and maximum principles.

These properties are needed for multiphysics simulations.
The task of building mimetic schemes becomes more difficult on unstructured polygonal and polyhedral meshes.

Five-step discretization algorithm

(1) Select degrees of freedom (for u and p).
(2) Discretize the primary mimetic operator (e.g., div_{h}).
(3) Construct local inner products that satisfy consistency and stability conditions.
(1) Formulate the discrete duality principle:

$$
\left[\operatorname{div}_{h} \mathbf{u}_{h}, p_{h}\right]_{\mathcal{C}_{h}}=-\left[\mathbf{u}_{h}, \widetilde{\nabla}_{h} p_{h}\right]_{\mathcal{F}_{h}} \quad \forall \mathbf{u}_{h}, p_{h} .
$$

(0) Deduce the derived mimetic operator (resp., $\widetilde{\nabla}_{h}$) from it.

Bridge 2: to MFE (1/3)

The MFD scheme for the Poisson equation with homogeneous b.c.:

$$
\begin{aligned}
\mathbf{u}_{h} & =-\widetilde{\nabla}_{h} p_{h} \\
\operatorname{div}_{h} \mathbf{u}_{h} & =b_{h}
\end{aligned}
$$

The primary divergence operator is

$$
\left.\left(\operatorname{div}_{h} \mathbf{u}_{h}\right)\right|_{c}=\frac{1}{|c|} \sum_{f \in \partial c} \sigma_{c, f}|f| u_{f}
$$

Multiply the 1 st equation by $\mathbf{v}_{h}^{T} \mathbb{M}_{\mathcal{F}}$, the 2 nd one by $q_{h}^{T} \mathbb{M}_{\mathcal{C}}$, and apply the integration by part formula:

$$
\begin{aligned}
& {\left[\mathbf{v}_{h}, \mathbf{u}_{h}\right]_{\mathcal{F}_{h}}=-\left[\mathbf{v}_{h}, \widetilde{\nabla}_{h} p_{h}\right]_{\mathcal{F}_{h}}=\left[\operatorname{div}_{h} \mathbf{v}_{h}, p_{h}\right]_{\mathcal{C}_{h}}} \\
& {\left[\operatorname{div}_{h} \mathbf{u}_{h}, q_{h}\right]_{\mathcal{C}_{h}}=\left[b_{h}, q_{h}\right]_{\mathcal{C}_{h}}}
\end{aligned}
$$

Bridge 2: to MFE (2/3)

Let $\mathcal{F}_{h} \times \mathcal{C}_{h}$ correspond to a MFE space $R T_{0} \times P_{0}$. Then, we can define the inner products using the FE functions:

$$
\begin{aligned}
{\left[\mathbf{v}_{h}, \mathbf{u}_{h}\right]_{\mathcal{F}_{h}} } & =\int_{\Omega} \mathbf{v}_{h}^{R T} \cdot \mathbf{u}_{h}^{R T} \mathrm{~d} x \\
{\left[q_{h}, p_{h}\right]_{\mathcal{C}_{h}} } & =\int_{\Omega} q_{h}^{P 0} p_{h}^{P 0} \mathrm{~d} x
\end{aligned}
$$

We can verify that this leads to admissible matrices $\mathbb{M}_{\mathcal{F}}$ and $\mathbb{M}_{\mathcal{C}}$. With such inner products, the MFD scheme becomes a MFE formulation:

$$
\begin{aligned}
& \int_{\Omega} \mathbf{v}_{h}^{R T} \cdot \mathbf{u}_{h}^{R T} \mathrm{~d} x=\int_{\Omega} \operatorname{div} \mathbf{v}_{h}^{R T} p_{h}^{P 0} \mathrm{~d} x \\
& \int_{\Omega} \operatorname{div} \mathbf{u}_{h}^{R T} q_{h}^{P 0} \mathrm{~d} x=\int_{\Omega} b_{h}^{P 0} q_{h}^{P 0} \mathrm{~d} x
\end{aligned}
$$

Hence, the MFE method on simplices is a member of the MFD family of schemes.

Bridge 2: to MFE (3/3)

A few mimetic schemes (not all) can be related to a triangular sub-partition of a polygon and the Raviart-Thomas FE function $\mathbf{u}_{h}^{R T}$

$\mathbf{u}_{h}^{R T}$ is an example of a lifting operator $\mathcal{L}\left(\left(u_{f_{1}}, \ldots, u_{f_{4}}\right)\right)$ and must satisfy the above properties, e.g. $\operatorname{div} \mathbf{u}_{h}^{R T}=$ constant.

Darcy flow in heterogeneous porous medium

Consider a 2D or 3D Poisson equation:

$$
\begin{aligned}
\mathbf{u} & =-\mathbb{K} \nabla p \\
\operatorname{div} \mathbf{u} & =b
\end{aligned}
$$

subject to $p=0$ on $\partial \Omega$.

We derive its mimetic discretization

$$
\begin{aligned}
\mathbf{u}_{h} & =-\widetilde{\nabla}_{h} p_{h} \\
\operatorname{div}_{h} \mathbf{u}_{h} & =b_{h}
\end{aligned}
$$

using a FV framework. The material properties will be absorbed in the derived gradient operator $\widetilde{\nabla}_{h}$.

Bridge 3: to FV (1/3)

To explain difference between the FV and MFD schemes, we write both in a hybrid form using edge-based pressures p_{f} :

$$
u_{c_{1}, f}=-K_{c_{1}} \frac{p_{f}-p_{c_{1}}}{d_{1 f}}, \quad u_{c_{2}, f}=-K_{c_{2}} \frac{p_{f}-p_{c_{2}}}{d_{2 f}}
$$

subject to the flux continuity condition:

$$
u_{c_{1}, f}+u_{c_{2}, f}=0 .
$$

The mass balance equation is common for both methods:

$$
\operatorname{div}_{h} \mathbf{u}_{h}=b_{h}
$$

Bridge 3: to FV (2/3)

$$
\mathbb{M}_{c}^{\mathcal{F}}\left[\begin{array}{c}
u_{c, f_{1}} \\
u_{c, f_{2}} \\
\vdots \\
u_{c, f_{5}}
\end{array}\right]=-\left[\begin{array}{c}
\left|f_{1}\right|\left(p_{f_{1}}-p_{c}\right) \\
\left|f_{2}\right|\left(p_{f_{2}}-p_{c}\right) \\
\vdots \\
\left|f_{5}\right|\left(p_{f_{5}}-p_{c}\right)
\end{array}\right]
$$

subject to flux continuity conditions:

$$
u_{c, f_{i}}+u_{c^{\prime}, f_{j}}=0
$$

Multiplying these equations by $v_{c, f_{i}}$ and summing over cells:

Duality requirement is satisfied.

Bridge 3: to FV (3/3)

$$
\mathbb{M}_{c}^{\mathcal{F}}\left[\begin{array}{c}
u_{c, f_{1}} \\
u_{c, f_{2}} \\
\vdots \\
u_{c, f_{5}}
\end{array}\right]=-\left[\begin{array}{c}
\left|f_{1}\right|\left(p_{f_{1}}-p_{c}\right) \\
\left|f_{2}\right|\left(p_{f_{2}}-p_{c}\right) \\
\vdots \\
\left|f_{5}\right|\left(p_{f_{5}}-p_{c}\right)
\end{array}\right]
$$

The patch test implies that this flux-pressure relationship must be exact for any solution p that is linear on cell c and the corresponding constant velocity $\mathbf{u}=-\mathbb{K}_{c} \nabla p$.

Bridge 3: to FV (3/3)

$$
\mathbb{M}_{c}^{\mathcal{F}}\left[\begin{array}{c}
u_{c, f_{1}} \\
u_{c, f_{2}} \\
\vdots \\
u_{c, f_{5}}
\end{array}\right]=-\left[\begin{array}{c}
\left|f_{1}\right|\left(p_{f_{1}}-p_{c}\right) \\
\left|f_{2}\right|\left(p_{f_{2}}-p_{c}\right) \\
\vdots \\
\left|f_{5}\right|\left(p_{f_{5}}-p_{c}\right)
\end{array}\right]
$$

The patch test implies that this flux-pressure relationship must be exact for any solution p that is linear on cell c and the corresponding constant velocity $\mathbf{u}=-\mathbb{K}_{c} \nabla p$.

On a Voronoi mesh, we can obviously take a diagonal matrix $\mathbb{M}_{c}^{\mathcal{F}}$ with diagonal entries provided by the FV scheme:

$$
\left(\mathbb{M}_{c}^{\mathcal{F}}\right)_{f_{i}, f_{i}}=\frac{K_{c}}{d_{f_{i}}}
$$

This matrix will be admissible and the resulting scheme will be mimetic.

General mesh or full permeability tensor

$$
\mathbb{M}_{c}^{\mathcal{F}}\left[\begin{array}{c}
u_{c, f_{1}} \\
u_{c, f_{2}} \\
\vdots \\
u_{c, f_{5}}
\end{array}\right]=-\left[\begin{array}{c}
\left|f_{1}\right|\left(p_{f_{1}}-p_{c}\right) \\
\left|f_{2}\right|\left(p_{f_{2}}-p_{c}\right) \\
\vdots \\
\left|f_{5}\right|\left(p_{f_{5}}-p_{c}\right)
\end{array}\right]
$$

On a general polygonal cell, we have to consider three linearly independent linear functions:

$$
p_{1}=1, \quad p_{2}=x, \quad p_{3}=y
$$

The corresponding Darcy velocity u is

$$
\mathbf{u}_{1}=0, \quad \mathbf{u}_{2}=-\mathbb{K}_{c} \nabla x, \quad \mathbf{u}_{3}=-\mathbb{K}_{c} \nabla y
$$

Mimetic matrix equation

Construction of \mathbb{N}_{c} and \mathbb{R}_{c} for a pentagon

$$
\mathbb{M}_{c}^{\mathcal{F}}\left[\begin{array}{c}
u_{c, f_{1}} \\
u_{c, f_{2}} \\
\vdots \\
u_{c, f_{5}}
\end{array}\right]=-\left[\begin{array}{c}
\left|f_{1}\right|\left(p_{f_{1}}-p_{c}\right) \\
\left|f_{2}\right|\left(p_{f_{2}}-p_{c}\right) \\
\vdots \\
\left|f_{5}\right|\left(p_{f_{5}}-p_{c}\right)
\end{array}\right]
$$

Required geometric information: normals to faces, centroids of faces, areas of faces, constant diffusion tensor:

$$
\mathbb{N}_{c}=\left[\begin{array}{cc}
n_{1 x} & n_{1 y} \\
n_{2 x} & n_{2 y} \\
\vdots & \vdots \\
n_{5 x} & n_{5 y}
\end{array}\right] \mathbb{K}_{c}, \quad \mathbb{R}_{c}=\left[\begin{array}{cc}
\left|f_{1}\right|\left(x_{1}-x_{c}\right) & \left|f_{1}\right|\left(y_{1}-y_{c}\right) \\
\left|f_{2}\right|\left(x_{1}-x_{c}\right) & \left|f_{2}\right|\left(y_{2}-y_{c}\right) \\
\vdots & \vdots \\
\left|f_{5}\right|\left(x_{5}-x_{c}\right) & \left|f_{5}\right|\left(y_{5}-y_{c}\right)
\end{array}\right]
$$

Properties of \mathbb{N}_{c} and \mathbb{R}_{c}

Lemma
For any polygon (polyhedron in 3D), we have

$$
\mathbb{N}_{c}^{T} \mathbb{R}_{c}=\mathbb{R}_{c}^{T} \mathbb{N}_{c}=|c| \mathbb{K}_{c} .
$$

Convergence results

Let

- Ω have a Lipschitz continuous boundary;
- Every cell c be shape regular;
- $p_{h}^{I} \in \mathcal{C}_{h}$ and $\mathbf{u}_{h}^{I} \in \mathcal{F}_{h}$ be interpolants of exact solution.

Then,

$$
\left|\left\|p_{h}^{I}-p_{h}\right\|\right|_{\mathcal{C}_{h}}+\| \| \mathbf{u}_{h}^{I}-\mathbf{u}_{h} \mid \|_{\mathcal{F}_{h}} \leq C h
$$

If Ω is convex and a_{c}^{*} is sufficiently large, then

$$
\left\|\left\|p_{h}^{I}-p_{h}\right\|\right\|_{\mathcal{C}_{h}} \leq C h^{2}
$$

where h is the mesh parameter.

- exact solution is

$$
p(x, y)= \begin{cases}\frac{7}{16}-\frac{K_{2}}{12 K_{1}}+\frac{2 K_{2}}{3 K_{1}} y^{3}, & y<0.5 \\ y-y^{4}, & y \geq 0.5\end{cases}
$$

Konstantin Lipnikov

Polygonal meshes (1/2)

$$
\begin{aligned}
p(x, y) & =x^{3} y^{2}+x \sin (2 \pi x y) \sin (2 \pi y) \\
\mathbb{K}(x, y) & =\left[\begin{array}{cc}
(x+1)^{2}+y^{2} & -x y \\
-x y & (x+1)^{2}
\end{array}\right]
\end{aligned}
$$

Polygonal meshes (2/2)

$$
\begin{aligned}
p(x, y) & =x^{3} y^{2}+x \sin (2 \pi x y) \sin (2 \pi y) \\
\mathbb{K}(x, y) & =\left[\begin{array}{cc}
(x+1)^{2}+y^{2} & -x y \\
-x y & (x+1)^{2}
\end{array}\right]
\end{aligned}
$$

Hexahedral meshes with curved faces $(1 / 2)$

Methods with one velocity unknown per curved mesh face do not converge. MFD technology allows to use 3 unknowns (F.Brezzi,K.L.,M.Shashkov, M3AS, 2006).

Hexahedral meshes with curved faces $(2 / 2)$

Discrete maximum principle ($1 / 2$)

$$
\left[\begin{array}{c}
u_{c, f_{1}} \\
u_{c, f_{2}} \\
\vdots \\
u_{c, f_{5}}
\end{array}\right]=-\left(\mathbb{M}_{c}^{\mathcal{F}}\right)^{-1}\left[\begin{array}{c}
\left|f_{1}\right|\left(p_{f_{1}}-p_{c}\right) \\
\left|f_{2}\right|\left(p_{f_{2}}-p_{c}\right) \\
\vdots \\
\left|f_{5}\right|\left(p_{f_{5}}-p_{c}\right)
\end{array}\right], \quad \mathbb{W}_{c}=\left(\mathbb{M}_{c}^{\mathcal{F}}\right)^{-1}
$$

Inserting this into the mass balance ($\operatorname{div}_{h} \mathbf{u}_{h}=b_{h}$) and flux continuity ($u_{c, f}+u_{c^{\prime}, f}=0$) equations, and imposing boundary conditions, we obtain an algebraic problem for only pressure unknowns:

$$
\mathbb{A} p_{h}=b_{h}, \quad \mathbb{A}=\sum_{c \in \Omega_{h}} \mathcal{N}_{c} \mathbb{A}_{c} \mathcal{N}_{c}^{T}
$$

Discrete maximum principle (2/2)

Define matrix \mathbb{B}_{c}^{T} as a shorter notation for $\left(\operatorname{div}_{h}\right)_{c}$ and define a square diagonal matrix \mathbb{C}_{c} such that $\mathbb{C}_{c} 1=\mathbb{B}_{c}$. Then, for most matrices, we have

$$
\mathbb{A}_{c}=\left[\begin{array}{rr}
\mathbb{C}_{c}^{T} \mathbb{W}_{c} \mathbb{C}_{c} & -\mathbb{C}_{c}^{T} \mathbb{W}_{c} \mathbb{B}_{c} \\
-\mathbb{B}_{c}^{T} \mathbb{W}_{c} \mathbb{C}_{c} & \mathbb{B}_{c}^{T} \mathbb{W}_{c} \mathbb{B}_{c}
\end{array}\right] .
$$

Discrete maximum principle (2/2)

Define matrix \mathbb{B}_{c}^{T} as a shorter notation for $\left(\operatorname{div}_{h}\right)_{c}$ and define a square diagonal matrix \mathbb{C}_{c} such that $\mathbb{C}_{c} 1=\mathbb{B}_{c}$. Then, for most matrices, we have

$$
\mathbb{A}_{c}=\left[\begin{array}{rr}
\mathbb{C}_{c}^{T} \mathbb{W}_{c} \mathbb{C}_{c} & -\mathbb{C}_{c}^{T} \mathbb{W}_{c} \mathbb{B}_{c} \\
-\mathbb{B}_{c}^{T} \mathbb{W}_{c} \mathbb{C}_{c} & \mathbb{B}_{c}^{T} \mathbb{W}_{c} \mathbb{B}_{c}
\end{array}\right] .
$$

Lemma

(i) Let \mathbb{W}_{c} be an M-matrix. (ii) Let vector $\mathbb{W}_{c} \mathbb{B}_{c}$ have nonnegative entries.
Then matrix \mathbb{A}_{c} is a singular M-matrix with the null space consisting of constant vectors.

The matrix equation $\mathbb{M}_{c}^{\mathcal{F}} \mathbb{N}_{c}=\mathbb{R}_{c}$ can be written as

$$
\mathbb{N}_{c}=\mathbb{W}_{c} \mathbb{R}_{c}
$$

The solution to this matrix equation is

$$
\mathbb{W}_{c}=\frac{1}{|c|} \mathbb{N}_{c} \mathbb{K}_{c}^{-1} \mathbb{N}_{c}^{T}+\mathbb{D}_{c} \mathbb{P}_{c} \mathbb{D}_{c}^{T}
$$

where $\mathbb{D}_{c}^{T} \mathbb{R}_{c}=0$ and \mathbb{P}_{c} is an arbitrary SPD matrix. Recall that $\mathbb{N}_{c}^{T} \mathbb{R}_{c}=\mathbb{K}_{c}|c|$.

The goal is to find a mimetic scheme where all matrices \mathbb{W}_{c} are M -matrices.

Cell	\mathbb{P}_{c}	\# parameters
triangle/tetrahedron	1×1	$\mathbf{1}$
quadrilateral	2×2	$\mathbf{3}$
hexahedron	3×3	$\mathbf{6}$
tetradecahedron	11×11	$\mathbf{6 6}$

Control of positive definiteness of $\mathbb{W}_{c}(1 / 2)$

$$
\mathbb{W}_{c}=\frac{1}{|c|} \mathbb{N}_{c} \mathbb{K}_{c}^{-1} \mathbb{N}_{c}^{T}+\mathbb{D}_{c} \mathbb{P}_{c} \mathbb{D}_{c}^{T}, \quad \mathbb{A}_{c}=\left[\begin{array}{rr}
\mathbb{C}_{c}^{T} \mathbb{W}_{c} \mathbb{C}_{c} & -\mathbb{C}_{c}^{T} \mathbb{W}_{c} \mathbb{B}_{c} \\
-\mathbb{B}_{c}^{T} \mathbb{W}_{c} \mathbb{C}_{c} & \mathbb{B}_{c}^{T} \mathbb{W}_{c} \mathbb{B}_{c}
\end{array}\right]
$$

Direct control of a Z-matrix structure and spectral properties of \mathbb{W}_{c} is not practical. We introduce a stronger requirement.

Lemma

(i) Let \mathbb{W}_{c} be a Z-matrix. (ii) Let vector $\mathbb{W}_{c} \mathbb{B}_{c}$ have positive entries.
Then matrix \mathbb{A}_{c} is a singular M-matrix with the null space consisting of constant vectors.

Control of positive definiteness of $\mathbb{W}_{c}(2 / 2)$

A general symmetric square matrix \mathbb{P}_{c} of size m can be described by $s=m(m+1) / 2$ parameters, e.g.

$$
\mathbb{P}_{c}=\left(\begin{array}{ll}
a_{1} & a_{3} \\
a_{3} & a_{2}
\end{array}\right)
$$

- Since \mathbb{W}_{c} depends linearly on \mathbb{P}_{c}, the Z-matrix property $\left(\mathbb{W}_{c}\right)_{i j} \leq 0$ for $i \neq j$ leads to linear inequality constraints.
- $\left(\mathbb{W}_{c} \mathbb{B}_{c}\right)_{i} \geq \epsilon>0$ are also linear inequality constraints.

A linear programming tools (simplex or interior point methods) can be used to find an M-matrix \mathbb{W}_{c}. To enforce its diagonal dominance, we maximize

$$
\Phi\left(a_{1}, \ldots, a_{s}\right)=\sum_{i, j=1}^{k}\left(\mathbb{W}_{c}\right)_{i j}
$$

Cost of the simplex method

cell type	Experiment I		Experiment II	
	monotone MFD	base MFD	monotone MFD	base MFD
quad	15.3 $\mu \mathrm{s}$	$5.05 \mu s$	14.7 ms	$4.91 \mu s$
pentagon	28.0 μs	$6.62 \mu s$	29.3 /	$6.64 \mu s$
hexahedron	-	-	48.7 $\mu \mathrm{s}$	$8.92 \mu \mathrm{~s}$

- The monotone MFD method is 3-6 times more expensive than the base MFD with $\mathbb{W}_{c}^{\text {stability }}=\alpha_{c} \mathbb{D}_{c} \mathbb{D}_{c}^{T}$.
- The simplex method returns diagonal matrices \mathbb{W}_{c} on a Voronoi mesh.
- It can be used in other MFD schemes.

Monotone MFD method (1/2)

$$
\begin{aligned}
& \mathbb{K}(x, y)=\left[\begin{array}{cc}
(x+1)^{2}+y^{2} & -x y \\
-x y & (x+1)^{2}
\end{array}\right] \\
& p(x, y)=x^{3} y^{2}+x \sin (2 \pi x) \sin (2 \pi y)
\end{aligned}
$$

Optimization improves errors on non-Voronoi meshes.

Monotone MFD method (2/2)

$$
\frac{\partial C}{\partial t}+\operatorname{div}(\mathbf{u} C)=-\operatorname{div}(\mathbb{K} \nabla C), \quad \mathbb{K}=\alpha_{L} \frac{\mathbf{u u}}{\|\mathbf{u}\|^{2}}+\alpha_{T}\left(\mathbb{I}-\frac{\mathbf{u u}}{\|\mathbf{u}\|^{2}}\right)+\phi \tau D_{m}
$$

u makes angle 30° with the primary mesh orientation.

Undershoots in the base MFD method are small enough and go to zero as the contamination front moves away from the source. Inclusion of chemical reactions may lead to significant amplification of the undershoots (C.Steefel and K.MacQuarrie, Reactive transport in porous media, 34).
 Mimetic Finite Difference Method for Elliptic Problems

Discrete spaces

Exact discrete identities are enforced using staggered discretization. Discrete fields associated with various geometric objects:

- \mathcal{C}_{h} - cell-centered values
- \mathcal{F}_{h} - face-centered values
- \mathcal{E}_{h} - edge-centered values
- \mathcal{N}_{h} - node-centered values

- Los Alamos

The three primary and three derived operators fit in to the following diagram:

$$
\begin{aligned}
& \mathcal{N}_{h} \underset{\nabla_{h}}{\underset{\nabla_{h}}{\operatorname{curl}_{h}}} \mathcal{E}_{h} \underset{\mathcal{N}_{h}}{\underset{\operatorname{div}_{h}}{\longrightarrow}} \mathcal{C}_{h} \\
& \mathcal{N}_{h} \underset{\mathcal{C u r l}_{h}}{\leftrightarrows} \mathcal{F}_{h} \underset{\widetilde{\nabla}_{h}}{\leftrightarrows} \\
& \mathcal{C}_{h}
\end{aligned}
$$

Coordinate-invariant definition of operators

We start with coordinate invariant definitions of discrete operators. Such approach is important for curvilinear coordinate systems.

$$
\begin{aligned}
& \int_{\mathbf{x}_{a}}^{\mathbf{x}_{b}}(\nabla p) \cdot \boldsymbol{\tau} \mathrm{d} x=p\left(\mathbf{x}_{a}\right)-p\left(\mathbf{x}_{b}\right) \\
& \int_{S}(\mathbf{c u r l} \mathbf{u}) \cdot \mathbf{n} \mathrm{d} x=\oint_{\partial S} \mathbf{u} \cdot \boldsymbol{\tau} \mathrm{~d} x \\
& \int_{V} \operatorname{div} \mathbf{u} \mathrm{~d} x=\oint_{\partial V} \mathbf{u} \cdot \mathbf{n} \mathrm{~d} x
\end{aligned}
$$

Primary discrete gradient operator

$$
\nabla_{h}: \mathcal{N}_{h} \rightarrow \mathcal{E}_{h}
$$

The continuum coordinate-invariant definition is

$$
\int_{e}(\nabla p) \cdot \boldsymbol{\tau}_{e} \mathrm{~d} x=p\left(\mathbf{x}_{n_{2}}\right)-p\left(\mathbf{x}_{n_{1}}\right)
$$

Using mid-point quadratures, we get the primary gradient operator:

$$
\left(\nabla_{h} p_{h}\right)_{e}=\frac{p_{n_{2}}-p_{n_{1}}}{|e|}
$$

Primary discrete curl operator

$$
\operatorname{curl}_{h}: \mathcal{E}_{h} \rightarrow \mathcal{F}_{h}
$$

The continuum coordinate-invariant definition is

$$
\int_{f}(\operatorname{curl} \mathbf{u}) \cdot \mathbf{n}_{f} \mathrm{~d} x=\oint_{\partial f} \mathbf{u} \cdot \boldsymbol{\tau} \mathrm{~d} x .
$$

Using mid-point quadratures, we get the primary curl operator:

$$
\left(\operatorname{curl}_{h} \mathbf{u}_{h}\right)_{f}=\frac{1}{|f|} \sum_{e \in \partial f} \sigma_{f, e}|e| u_{e}, \quad u_{e} \approx \frac{1}{|e|} \int_{e} \mathbf{u} \cdot \boldsymbol{\tau}_{e} \mathrm{~d} x
$$

Exact discrete identities: primary operators

Lemma

Let domain Ω and its mesh partition Ω_{h} be simply connected. Then,

$$
\operatorname{curl}_{h} \mathbf{u}_{h}=0 \quad \text { if and only if } \quad \mathbf{u}_{h}=\nabla_{h} p_{h}
$$

for some $p_{h} \in \mathcal{N}_{h}$ and

$$
\operatorname{div}_{h} \mathbf{v}_{h}=0 \quad \text { if and only if } \quad \mathbf{v}_{h}=\operatorname{curl}_{h} \mathbf{u}_{h}
$$

for some $\mathbf{u}_{h} \in \mathcal{E}_{h}$.

Derived divergence operator

Consider homogeneous boundary conditions and continuum relationship

$$
\int_{\Omega} p \operatorname{div} \mathbf{u} \mathrm{~d} x=-\int_{\Omega}(\nabla p) \cdot \mathbf{u} \mathrm{d} x
$$

Its discrete analog

$$
\left[p_{h}, \widetilde{\operatorname{div}}_{h} \mathbf{u}_{h}\right]_{\mathcal{N}}=-\left[\nabla_{h} p_{h}, \mathbf{u}_{h}\right]_{\mathcal{E}} \quad \forall p_{h}, \mathbf{u}_{h}
$$

Using definition of inner products, we obtain explicit formula for the derived gradient operator:

$$
\widetilde{\operatorname{div}}_{h}=-\mathbb{M}_{\mathcal{N}}^{-1} \nabla_{h}^{T} \mathbb{M}_{\mathcal{E}}
$$

Derived curl operator

Consider homogeneous boundary conditions and continuum relationship

$$
\int_{\Omega} \mathbf{v} \cdot(\operatorname{curl} \mathbf{u}) \mathrm{d} x=\int_{\Omega}(\operatorname{curl} \mathbf{v}) \cdot \mathbf{u} \mathrm{d} x
$$

Its discrete analog

$$
\left[\mathbf{v}_{h}, \widetilde{\operatorname{cur}}_{h} \mathbf{u}_{h}\right]_{\mathcal{E}}=\left[\operatorname{curl}_{h} \mathbf{v}_{h}, \mathbf{u}_{h}\right]_{\mathcal{F}} \quad \forall \mathbf{u}_{h}, \mathbf{v}_{h}
$$

Using definition of inner products, we obtain explicit formula for the derived gradient operator:

$$
\widetilde{\operatorname{curl}}_{h}=\mathbb{M}_{\mathcal{E}}^{-1} \operatorname{curl}_{h}^{T} \mathbb{M}_{\mathcal{F}}
$$

Lemma

The derived discrete gradient, divergence, and curl operators satisfy the following exact relationship:

$$
\widetilde{\operatorname{curr}}_{h} \mathbf{u}_{h}=0 \quad \text { if and only if } \quad \mathbf{u}_{h}=\widetilde{\nabla}_{h} p_{h}
$$

for some $p_{h} \in \mathcal{C}_{h}$ and

$$
\widetilde{\operatorname{div}}_{h} \mathbf{v}_{h}=0 \quad \text { if and only if } \quad \mathbf{v}_{h}=\widetilde{\operatorname{curl}}_{h} \mathbf{u}_{h}
$$

for some $\mathbf{u}_{h} \in \mathcal{F}_{h}$.

Helmholtz decomposition theorems ($1 / 3$)

Theorem

Let domain Ω and mesh Ω_{h} be simply-connected. Then, for any $\mathbf{u}_{h} \in \mathcal{F}_{h}$ there exists a unique $p_{h} \in \mathcal{C}_{h}$ and a unique $\mathbf{v}_{h} \in \mathcal{E}_{h}$ with $\operatorname{div}_{h} \mathbf{v}_{h}=0$ such that

$$
\mathbf{u}_{h}=\widetilde{\nabla}_{h} p_{h}+\operatorname{curl}_{h} \mathbf{v}_{h}
$$

Helmholtz decomposition theorems (2/3)

mesh and \mathbf{u}_{h}

Fields $\widetilde{\nabla}_{h} p_{h}$ and $\operatorname{curl}_{h} \mathbf{v}_{h}$

Helmholtz decomposition theorems ($3 / 3$)

Theorem

Let domain Ω and mesh Ω_{h} be simply-connected. Then, for any $\mathbf{u}_{h} \in \mathcal{E}_{h}$ there exist a discrete field $p_{h} \in \mathcal{N}_{h}$, which is defined up to a constant field, and a unique discrete field $\mathbf{u}_{h} \in \mathcal{F}_{h}$ with $\operatorname{div}_{h} \mathbf{v}_{h}=0$ such that

$$
\mathbf{u}_{h}=\nabla_{h} p_{h}+\widetilde{\operatorname{curl}}_{h} \mathbf{v}_{h} .
$$

Mimetic inner product in $\mathcal{E}_{h}(1 / 2)$

$$
\left[\mathbf{v}_{h}, \mathbf{u}_{h}\right]_{c, \mathcal{E}_{h}}=\int_{c} \mathbf{v}^{0} \cdot \mathbf{u}^{1} \mathrm{~d} x
$$

where \mathbf{v}^{0} is a constant vector function and and $\mathbf{u}^{1}=\mathcal{L}\left(\mathbf{u}_{c, h}\right)$ is a lifted function such that

- Interpolation returns back our dofs, i.e. $\mathbf{u}^{1} \cdot \boldsymbol{\tau}_{e_{i}}=u_{e_{i}}$.
- The lifted space contains constant vector functions.
- Curl of u^{1} is bounded and its trace is constant on each face f.

We need only existence result for such an approximation.

Mimetic inner product in $\mathcal{E}_{h}(2 / 2)$

Any constant vector function \mathbf{v}^{0} can be written as

$$
\mathbf{v}^{0}=\frac{1}{2} \operatorname{curl}\left(\mathbf{v}^{0} \times\left(\mathbf{x}-\mathbf{x}_{c}\right)\right)
$$

Then,

$$
\begin{aligned}
\left(v_{e_{1}}^{0}, \ldots, v_{e_{17}}^{0}\right) \mathbb{M}_{c}^{\mathcal{E}}\left(\begin{array}{c}
u_{e_{1}} \\
\vdots \\
u_{e_{12}}
\end{array}\right) & =\int_{c} \mathbf{v}^{0} \cdot \mathbf{u}^{1} \mathrm{~d} x \\
& =\left(R_{e_{1}}, \ldots, R_{e_{17}}\right)\left(\begin{array}{c}
u_{e_{1}} \\
\vdots \\
u_{e_{17}}
\end{array}\right)+\underbrace{h O(|P|)}_{\text {drop out }}
\end{aligned}
$$

where $R_{e_{i}}$ depends on cell geometry and \mathbf{v}^{0}. Result is the mimetic matrix equation $\mathbb{M}_{c}^{\mathcal{E}}=\mathbb{N}_{c}=\mathbb{R}_{c}$.

Conclusion for Part II

- We established connection of the MFD method with a few other methods.
- Essential difference with other compatible discretization methods is the constructive approach to building inner products. Material properties are embedded there.
- MFD is a family of schemes may contain a monotone sub-family. Simplex method is efficient tool to find it.
- Rigorous convergence theory does exists (2013 JCP review paper with 200+ references, book).

