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Plan of the talk

• Part I : General discussion

• numerical modeling-sensitivity of schemes
• model adaptivity

• Part II : Atomistic to continuum passage: Consistency of
Cauchy-Born Approximations

• Part III: Atomistic/continuum coupling : design of ghost force free
methods



Self adapted methods: smart use of computational resources

For a given number of degrees of freedom N∗, we seek
approximations uN∗(t) such that

• uN∗(t) is much better approximation than

• uN∗,uniform(t)

Key issues:

• the algorithm should be able to detect the areas of interest
of the solution

• Goal: design of intelligent algorithms able to adapt to the
“solution” during computation



Self adapted methods: Mesh Adaptation



Self adapted methods: adaptive modeling

What about if we are not happy with our model?

change the model during the computation: Use different models in different
areas of the computational domain / multiscale - complex systems
models coupling information at different scales.
WHY?

• reduce the prohibitively high number of degrees of freedom

• not known models at the macroscale

We face new problems for numerical modeling where modelling, analysis,
computations should be combined.
We focus on an important such class of problems: atomistic - continuum
coupling in crystals.



An example where continuum theory fails to provide satisfactory
models: Crack propagation in Crystals

• Valid model only at the microscopic (atomistic) scale.
• There is no (nonlinear) PDE which serves as an acceptable model (at

the macro scale) (!)
• Direct atomistic simulations: Extremely high number of unknowns



Modeling and adaptivity: coupled atomistic / continuum models

• Aim: design of computational methods, based on hybrid (atomistic-
continuous) approximations, for both stationary and evolution problems.
Goal: Computation with atomistic accuracy at the cost of continuous
computational techniques.



Crystals in Materials
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No continuum models are known to describe the atomistic model when
defects are present: The quasi-continuum idea (atomistic/continuum
coupling) seems natural Tadmor, Ortiz & Phillips 1996 compare to the work
in multiscale modeling of materials, e.g., Lu & Kaxiras: Review article 2005.
Several works in the engineering literature.
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and so forth. By way of example, Shenoy et al. applied the method to study the interac-
tion of dislocations with grain boundaries (GBs) in Al [105]. In particular, they considered
a reformulation of the quasicontinuum model that allows for the treatment of interfaces,
and therefore of polycrystalline solids. As the first test of the model, they computed the
GB energy and atomic structure for various symmetric tilt GBs in Au, Al, and Cu, using
both direct atomistic calculations and the model calculations. They found excellent agree-
ment between the two sets of calculations, indicating the reliability of the model for their
purpose. In the study of Al, they used nanoindentation-induced dislocations to probe the
interaction between dislocations and GBs. Specifically, they considered a block oriented so
that the (111) planes are positioned to allow for the emergence of dislocations, which then
travel to the ! 21(2̄41) GB located at ∼200 Å beneath the surface (see Fig. 6a). First, the
energy minimization is performed to obtain the equilibrium configuration of the GB, then a
mesh is constructed accordingly, as shown in Fig. 6a. The region that is expected to partic-
ipate in the dislocation–GB interaction is meshed with full atomistic resolution, whereas in
the far fields the mesh is coarser. The displacement boundary conditions at the indentation
surface are then imposed onto this model structure, and after the critical displacement level
is reached, dislocations are nucleated at the surface. With the EAM potential [12] supplying
the atomistic energies in the quasicontinuum approach, the authors observed closely spaced
(15 Å) Shockley partials nucleated at the free surface. As seen from Fig. 6b, the partials are
subsequently absorbed at the GB with the creation of a step at the GB, and no evidence of
slip transmission into the adjacent grain is observed. The resultant structure can be under-
stood based on the concept of the displacement shift complete lattice [116] associated with
this symmetric-tilt GB. As the load is increased, the second pair of Shockley partials is nucle-
ated. These partials are not immediately absorbed into the GB, but instead form a pile-up
(Fig. 6b). The dislocations are not absorbed until a much higher load level is reached. Even
after the second set of partial dislocations is absorbed at the GB, there is no evidence of
slip transmission into the adjacent grain, although the GB becomes much less ordered. The
authors argued that their results give hints for the general mechanism governing the absorp-
tion and transmission of dislocations at GBs. The same work also studied the interaction
between a brittle crack and a GB and observed stress-induced GB motion (the combination
of GB sliding and migration). In this example, the reduction in the computational effort
associated with the quasicontinuum thinning of degrees of freedom is significant. For exam-
ple, the number of degrees of freedom associated with the mesh of Fig. 6a is about 104,
three orders of magnitude smaller than what would be required by a full atomistic simulation
(107 degrees of freedom).
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Figure 6. Example of a multiscale simulation using the quasicontinuum method. (a) Finite-element mesh used to
model dislocation-grain boundary interaction. The surface marked AB is rigidly indented to generate dislocations
at A (distance in Amstroms). (b) Snapshots of atomic positions at different stages in the deformation history.
Absorption of the first pair of dislocations at the GB results in a step, while the second pair form a pileup.

Figure: Lu & Kaxiras 2005



Mathematical understanding and method development: Current
status and open problems

• The formulation and behavior of such methods has been understood to
a satisfactory extend in one dimension. Luskin, et al, Dobson, Luskin &
Ortner, Ortner & Süli,
Ming & E, Abdulle, Lin & Shapeev, Gunzburger & Zhang, ....

• Ongoing work by several groups: The foundation and analysis of
methods of quasicontinuum character in two and three dimensions.

• Time-dependent case: Models are used for the qualitative study of the
propagation of face change interfaces as well as crystal dislocations
arising in crystal grids. The evolution problem is of particular interest
but it still remains unaccessible even at the engineering level.
A basic technical issue: The existence of traveling waves of kink type
(transition from one well to another) corresponding to moving
dislocations under external pressure: Mathematical issues:
nonclassical/dispersive shocks, oscillations, dispersive approximations,
reflections at the interfaces



Atomistic problems in crystalline materials

• The atoms within a undeformed crystalline structure are assumed to be
nodes of an Rd rectangular lattice.

• The (closest) interatomic distance is denoted by ε (lattice mesh size).

• The energy of a deformed crystal is described through given potentials
accounting for interactions between atoms. (a highly nonlinear function
involving “discrete derivatives”)

• Atomistic problem: energy minimisation problem (Euler-Largange
equations: “nonlinear difference equation”)



Notation

Lattice, discrete domain, continuous domain: We consider a simple two
dimensional lattice which is generated by two independent vectors of R2.
For simplicitywe will assume that the lattice Lentire is generated by the the unit
vectors of R2, e1, e2.
We will consider discrete periodic functions on Lentire with periodic domain L.
To be specific let

L =
{
` = (`1 , `2) ∈ Z2 ∩ [−N1 − 1, N1]× [−N2 − 1, N2]

}
.

The actual configuration of the atoms is thus a subset of R2 which we call
discrete domain and we denote by Ωdiscr. The corresponding continuous
domain is denoted by Ω :

Ωdiscr =
{
x` = (x`1 , x`2) = ε ` , ` ∈ L

}
,

Ω =
{
x ∈ [x−N1−1, xN1 ]× [x−N2−1, xN2 ]

}o
,



Functions and spaces: We consider atomistic deformations

y` = y(x`) , ` ∈ L of the form

y` = Fx` + v`, with v` = v(x`) periodic with respect to L .

The corresponding spaces for y and v are denoted by X and V :

X = {y : L → R2, y` = Fx` + v`, v ∈ V} ,

V = {u : L → R2, u` = u(x`) periodic with respect to L} .

For functions y, v : L → R2 we define the product

〈 y, v 〉ε := εd
∑
`∈L

y` v` .



Discrete and continuous derivatives:

Dηy` =
y`+η − y`

ε
, `, `+ η ∈ L,

∂ζiφ(ζ) =
∂φ(ζ1, . . . , ζd)

∂ζi
, ζ = (ζ1, . . . , ζd) ,

∇ζφ(ζ) =
¶
∂ζiφ(ζ)

©
i
,

∂iv(x) =
∂v(x)

∂xi
,

∇u(x) =
¶∂ui(x)

∂xα

©
iα
.

To avoid confusion we distinguish between derivatives with respect to
arguments—denoted by ∂ζi—which usually appear in composite functions
and derivatives with respect to the spatial variable xi and denoted by ∂i .



Atomistic and Cauchy Born potential:
We consider the atomistic potential

Φa(y) = εd
∑
`∈L

∑
η∈R

φη (Dηy`),

where R is the set of interaction vectors.

x! x!+e1
x!+η1e1

x!+e2

x!+η2e2

x!+e2

x!+η

•

•

1

For a given field of external forces f : L → R2 the atomistic problem reads:

find a local minimizer ya in X of :

Φa(ya)− 〈f, ya〉ε .
If such a minimizer exists, then

〈DΦa(ya), v〉ε = 〈f, v〉ε , for all v ∈ V .
Here,

〈DΦa(y), v〉ε = εd
∑
`∈L

∑
η∈R

∇ζφη (Dηy`) · Dηv` .



Reverse point of view:

• The atomistic problem is the exact problem (discrete difference scheme)

• Aim: find a continuum approximation (a PDE) to the atomistic model



A continuum model for smooth deformations: Cauchy Born
approximation

The corresponding Cauchy-Born stored energy function is

W (F ) = WCB(F ) =
∑
η∈R

φη (F η),

find a local minimizer yCB in X of :

ΦCB(y)− 〈f, yCB〉 =

∫
Ω

W (∇yCB)− 〈f, yCB〉 .

Here

X = {y : y : Ω→ Rd, y(x) = Fx+ v(x), v ∈ V } ,

V = {u : Ω→ Rd, u ∈W k,p(Ω,Rd) ∩W 1,p
# (Ω,Rd),

∫
Ω

udx = 0} .



If such a minimizer exists, then

〈DΦCB(y), v〉 =

∫
Ω

Siα(∇y(x)) ∂αv
i(x) dx = 〈f, v〉 , v ∈ V .

The stress tensor is defined through

S :=
¶∂W (F )

∂Fiα

©
iα
.

A simple calculation yields the relation between the stress tensor and the
atomistic potential,

Siα =
∂W (F )

∂Fiα
=

∂

∂Fiα

∑
η∈R

φη (F η)

=
∂

∂Fiα

∑
η∈R

φη (Fjβ ηβ) =
∑
η∈R

∂ζjφη (Fjβ ηβ)
∂

∂Fiα
Fjβ ηβ

=
∑
η∈R

∂ζiφη (F η) ηα .



Remarks on the relation between the atomistic and continuum
CB models

• The continuum model approximates the atomistic only when
deformations are sufficiently smooth. X. Blanc, C.LeBris & P.L. Lions
2002 and W. E. & P. Ming 2008
See also: G. Friesecke & F. Theil 2002

• results based on different notions of consistency

• Key issues:

• The interaction potential is non-convex: e.g. φη(r) = V (|r|),
V the Lennard-Jones-Potential:

• Long range interactions vs. interactions only of next
neighbors (only adjacent atoms interact)



One dimensional example.

• The simplest model:

Φa(y) = ε
∑
ξ∈L

2∑
r=1

φr (Dryξ) = ε
∑
ξ∈L

φ1 (D1yξ) + φ2 (D2yξ) .

Then the corresponding Cauchy-Born stored energy function is

W (F ) = WCB(F ) =

2∑
r=1

φr (F r) = φ1 (F ) + φ2 (2F ) .

Then the atomistic Cauchy-Born model is defined through the atomistic
potential:

Φa,CB(y) = ε
∑
ξ∈L

W (D1yξ) = ε
∑
ξ∈L

φ1 (D1yξ) + φ2 (2D1yξ) .

The continuous potential is defined through

ΦCB(y) =

∫
Ω

W (y′(x))dx .



• 1D results / Consistency error on potentials (energies) periodicity +
symmetry→ O(ε2)

• Standard coupling (coupling of energies)): O(ε)

• Main Computational Problem: ad-hoc coupling→ Ghost
Forces

Ghost force in 2d
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(b) Profile for D+(yQC − x)

Ghost force leads to O(1)

error (discrete gradient)

around the interface

interface width = O(ε|ln ε|);
outside interface, error =

O(ε) Quasicontinuum method – p.26

• Why?

• Other couplings / other consistency notions Methods with ghost forces
are energy consistent

• Can we design Ghost-Force-Free methods?

• Force based coupling Dobson & Luskin 2008: Ghost-Force-Free / not
energy based.



To understand better we need to go back to the uncoupled
problem.

• We need a sharp analysis on the approximation properties
of the continuum model

• Consistency analysis:
• Variational Consistency:

CV (y) := sup
{
|〈DΦa(y), v〉ε − 〈DΦCB(y), v〉| :

v ∈ V with ‖v‖W 1,p(Ω) = 1
}
,

where in the last relation y is any smooth function. We we
shall refer to CV (y) as the variational consistency error.

• Energy Consistency error

CE(y) := |Φa(y)− ΦCB(y)|.



Construction of an atomistic Cauchy-Born model in MultiD

• We provide a link of the continuous model to the atomistic model by
introducing an intermediate model which we call atomistic Cauchy-Born
model (A-CB) .

• To construct this model we start from the continuous model and perform
appropriate approximate steps yielding finally the A-CB model. [Key :
Link to Finite Elements]

• The final model has variational consistency error of the order O(ε2)
compared to the continuous Cauchy-Born.

• We show that the A-CB has O(ε2) variational consistency error
compared to the original atomistic model.

Bilinear Finite Elements on the Lattice: Let Vh be the space of bilinear
periodic functions on the Lattice L . To be specific let

T = {K ⊂ Ω : K = (x`1 , x`1+1)× (x`2 , x`2+1) , x` = (x`1 , x`2) ∈ Ωdiscr} ,

Vh = {v : Ω→ R2, v ∈ C(Ω) , v|K ∈ Q1(K) and v` = v(x`) periodic} ,

where Q1(K) denotes the set of bilinear functions on K :
v|K(x) = α0 + α1x1 + α2x2 + α3x1x2 .



The atomistic Cauchy-Born model :

Definition of the model.
We define the average discrete derivatives as follows:

De1v` =
1

2

¶
De1v` +De1v`+e2

©
,

De2v` =
1

2

¶
De2v` +De2v`+e1

©
.

Thus we can define the discrete gradient matrix as¶
∇v`
©
iα

= Deαv
i
` .

We introduce the atomistic potential

Φa,CB(y) = εd
∑
`∈L

∑
η∈R

φη (∇y` η)

= εd
∑
`∈L

WCB(∇y`) .



Now, for a given field of external forces f : L → Rd the atomistic
Cauchy-Born problem reads:

find a local minimizer ya,CB in X of :

Φa,CB(ya,CB)− 〈f, ya〉ε .

If such a minimizer exists, then

〈DΦa,CB(ya,CB), v〉ε = 〈f, v〉ε , for all v ∈ V .



Theorem. (ENERGY CONSISTENCY.) Let y be a smooth function. Then the
atomistic energy Φa(y) is is a second order approximation of the continuum
Cauchy-Born energy ΦCB(y) in the sense that there exists a constant
ME = ME(y), ∣∣∣Φa(y)− ΦCB(y)

∣∣∣ ≤ ME ε
2.

Sketch of the Proof: We start from the continuum Cauchy-Born energy

ΦCB(y) =

∫
Ω

WCB(∇ y(x)) dx =
∑
K∈T

∫
K

WCB(∇ y(x)) dx

=
∑
K∈T

|K|WCB(∇ y(mK)) +
∑
K∈T

∫
K

î
WCB(∇ y(x))−WCB(∇ y(mK))

ó
dx

= : I1 + I2

where mK is the barycenter of K. Using Bramble-Hilbert Lemma we get∣∣I2∣∣ ≤ C(y) ε2.

We will compare I1 to the atomistic energy Φa(y).



Since mK is the barycenter of K the key point here is to rearrange the terms
in Φa(y) in order to create symmetries around the cell K. In fact, using the
periodicity, we have

Φa(y) =εd
∑
`∈L

∑
η∈R

φη (Dηy`)

=εd
∑
`∈L

∑
η∈R

1

4

î
φη (Dηy`) + φη (Dηy`−(η1−1)e1) + φη (Dηy`−(η2−1)e2)

+ φη (Dηy`−(η1−1)e1−(η2−1)e2)
ó
.

.....



Comparison of atomistic Cauchy-Born and atomistic models:
Atomistic stresses

To compare the atomistic and atomistic Cauchy-Born models we start from
the atomistic potential and notice:

〈DΦa(y), v〉ε = εd
∑
`∈L

∑
η∈R

∇ζφη (Dηy`) · Dηv`

= εd
∑
`∈L

∑
η∈R

∇ζφη (Dηy`) ·
{1

2
Dη1e1v` +

1

2
Dη1e1v`+η2e2

}
+ εd

∑
`∈L

∑
η∈R

∇ζφη (Dηy`) ·
{1

2
Dη2e2v` +

1

2
Dη2e2v`+η1e1

}
.

x! x!+e1
x!−η1e1

x!+η

•

••

•

1



Due to the periodicity,

〈DΦa(y), v〉ε = εd
∑
`∈L

∑
η∈R

∇ζφη (Dηy`) · Dηv`

= εd
∑
`∈L

∑
η∈R

{1

2
∇ζφη (Dηy`) +

1

2
∇ζφη (Dηy`−η2e2)

}
· Dη1e1v`

+ εd
∑
`∈L

∑
η∈R

{1

2
∇ζφη (Dηy`) +

1

2
∇ζφη (Dηy`−η1e1)

}
· Dη2e2v` .

Since,
Dη1e1v` = De1v` + · · ·+De1v`+(η1−1)e1 ,

Dη2e2v` = De2v` + · · ·+De2v`+(η2−1)e2 ,

we conclude

〈DΦa(y), v〉ε

= εd
∑
`∈L

∑
η∈R

η1−1∑
k=0

{1

2
∇ζφη (Dηy`−k e1) +

1

2
∇ζφη (Dηy`−k e1−η2e2)

}
· De1v`

+ εd
∑
`∈L

∑
η∈R

η2−1∑
k=0

{1

2
∇ζφη (Dηy`−k e2) +

1

2
∇ζφη (Dηy`−k e2−η1e1)

}
· De2v` .



we can show

Theorem (VARIATIONAL CONSISTENCY) Let y be a smooth function; then, for
any v ∈ Vh, the continuum Cauchy–Born variation 〈DΦCB(y), v〉 is a
second-order approximation to the atomistic variation 〈DΦa(y), v〉ε in the
sense that there exist a constant MV = MV (y, p), 1 ≤ p ≤ ∞, independent
of v, such that∣∣∣〈DΦCB(y), v〉 − 〈DΦa(y), v〉ε

∣∣∣ ≤MV ε
2 |v|W1,p(Ω).

In addition, there exists a constant M ′V = M ′V (y, p), 1 ≤ p ≤ ∞, independent
of v, such that∣∣∣〈DΦa,CB(y), v〉ε − 〈DΦa(y), v〉ε

∣∣∣ ≤M ′V ε2 |v|W1,p(Ω).

...



Remarks

• Comparison with the results of X. Blanc, C.LeBris & P.L. Lions 2002 and
W. E. & P. Ming 2008, and the recent result of Ortner & Theil 2013

• Definitions of QC methods in 2 and 3D via the atomistic CB model

• Analysis of QC methods in 2 and 3D as well as of models accounting
for surface energy, cf. Recent work by Phoebus Rosakis.

• Extensions: a) AC models based on triangular and tetrahedral meshes,
b) multibody potentials



Towards the construction of ghost free methods in multi-D

What is a ghost-force free coupling?

• The energy E is said to be free of ghost forces, if

〈DE(yF ), v〉 = 0, yF (x) = Fx ,

for all appropriate variations v : Ω̄ ∩ L→ R2 such that v` = 0 outside a
compact set.

• Ad-hoc coupling of energies leads to ghost forces... “energy consistent”
coupling may still lead to ghost forces

Ghost force in 2d
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(b) Profile for D+(yQC − x)

Ghost force leads to O(1)

error (discrete gradient)

around the interface

interface width = O(ε|ln ε|);
outside interface, error =

O(ε) Quasicontinuum method – p.26

• Dynamic problem (!!!)



State of the art

1D & 2D : Energy based couplings free of ghost forces have been
constructed recently.
3D : Next

• 1D : Li & Luskin 2011 and Shapeev 2011

• 2D : Shapeev 2011

• Other works (mainly special cases) : Belytschko et. al. 2002,
Shimokawa et. al. 2004, W. E, J. Lu, & J. Yang 2006, Ortner & Zhang
2011, Shapeev 2011(3D)



Towards the construction of ghost free methods in multi-D:
Notation

Let Ω, Ωa and Ω∗ each be the interior of the closure of the union of lattice
cells K ∈ TQ and connected, and suppose

Ω̄ = Ω̄a ∪ Ω̄∗, Γ = Ω̄a ∩ Ω̄∗.

Here Γ is the interface.

• Fix η ∈ R and define the bond b` = {x ∈ R2 : x = x` + tεη, 0 < t < 1}.
The set of all bonds Bη is defined as consists of all b = b` for ` ∈ L.



The approach of A. Shapeev

• Work with each bond separately

• Represent long-range differences as line integrals over bonds:

−
∫
b`

∇y η = Dηy`

• In two space dimensions was then possible to transform the assembly
of line integrals over all possible interactions into an area integral
through a counting argument known as bond density lemma
Lemma (Shapeev) Let S be a set consisting of unions of triangles
T ∈ TT . Then for any fixed η ∈ R the following identity holds:∑

b∈Bη

−
∫
b

χS dτ = |S| .

• Limitations: Lemma valid only in 2D; the construction works only on
piecewise linears over triangles.



Towards the construction of ghost free methods in multi-D:

A bond volume approach

• Represent long-range differences as volume integrals over bond
volumes

• Construction of an underlined globally continuous function representing
the coupled modeling method

• Work in two phases: first use in the continuum region appropriate
atomistic Cauchy-Born models

• Subsequently: Use in the continuum region finite elements of arbitrary
high order

• Possibility of using discontinuous finite elements

• Work in both 2 and 3D.



Finite elements for elliptic problems: methods without ghost
forces: consistent discretisations

For a finite element function with support in the interior of the domain Ω
(ignore boundary effects)

(?)0 =〈∇yF ,∇v〉 =F

∫
Ω

∇vdx, yF (x) = Fx .

Relation to “patch test consistency” / nonconforming methods.



Energy free of ghost forces: what we want to prove

For a fixed η we have

(?)0 =〈DE η(yF ), v〉 =φ′η(F η) ·
¶
ε2

∑
`∈L

B`, η⊂Ωa

Dηv` +

∫
Ω∗

∇v(x)η dx

+
∑
`∈L

B`, η∈BΓ

1

|η1η2|

∫
B`, η

χΩa
∇v`,ηη dx

©
= φ′η(F η) ·

∫
Ω

∇W (x)η dx(?)



2D: bond volumes and long range differences

We construct methods based on bond volumes instead of bonds. For fixed
η ∈ R bond volume B`, η is the interior of a parallelogram with diagonal b`,
i.e.,

B`, η is the open quadrilateral with vertices x`, x`+η1e1 , x`+η2e2 , x`+η .

Lemma
Let v ∈ Q1(B`, η). Then

ε2 Dηv` =
1

|η1 η2|

∫
B`, η

∇v(x)η dx .

x! x!+e1
x!+η1e1

x!+e2

x!+η2e2

x!+e2

x!+η

•

•

1



2D: bond volumes and energies

The method is designed with respect to bond volumes B`, η. In particular, we
consider three cases determined by the location of each bond volume B`, η

a. The closure of the bond volume is contained in the atomistic region:
B`, η ⊂ Ωa

b. The bond volume is contained in the region Ω∗ : B`, η ⊂ Ω∗

c. We denote by BΓ the set of bond volumes which do not satisfy a) or b).
In fact B`, η ∈ BΓ if the bond volume intersects the interface:
B`, η ∩ Γ 6= ∅ or if B`, η ⊂ Ωa and B`, η ∩ Γ 6= ∅

For a fixed η, the contribution to the energy corresponding to a) is:

EaΩa,η{y} = ε2
∑
`∈L

B`, η⊂Ωa

φη(Dηy`) .

The contribution to the energy from the atomistic CB region will be

Ea,cbΩ∗,η
{y} =

∫
Ω∗

φη(∇y(x)η)dx .



2D: energies on the interface

For each bond volume intersecting the interface we denote by y`,η a
continuous piecewise polynomial function on an appropriate decomposition
T (B`, η) of B`, η. satisfying

(•) only requirement: conforming glue of T (B`, η) with the neighbor bond
volumes.

x`

B`,⌘

�

x`+⌘

•

•

1

Corresponding energy:

EΓ,η{y} =
∑
`∈L

B`, η∈BΓ

1

|η1η2|

∫
B`, η

χΩa
φη(∇y`,ηη) dx .



Total energy

the total energy is defined through

Ebv{y} =
∑
η∈R
E η{y}

where
E η{y} = EaΩa,η{y}+ Ea,cbΩ∗,η

{y}+ EΓ,η{y} .

x`

B`,⌘

�

x`+⌘

•

•

1

x`

B`,⌘

�

x`+⌘

•

•

1

Figure : Alternative decompositions T (B`, η) of B`, η for two different bonds.

Energy free of ghost forces



Energy free of ghost forces: Idea of the proof

First we fix η and we consider decompositions consisting of bond volumes
which cover R2 :

SmBη :=
¶
B`, η : (i) B`, η ∩Bj, η = ∅, if ` 6= j, (ii) R2 = ∪B`, η

©
,

m = 1, . . . , |η1η2|. The number of different such coverings is |η1η2| , hence
the numbering m,m = 1, . . . , |η1η2|. Notice that bond volumes corresponding
to different m may overlap, but within a single SmBη its elements consist a
decomposition of non-overlapping bond volumes.

Sk′
Bη

Sk
Bη

Figure : Two different coverings SkBη and Sk′Bη



Energy free of ghost forces: Idea of the proof II

For a fixed η we have

(?)0 =〈DE η(yF ), v〉 =φ′η(F η) ·
¶
ε2

∑
`∈L

B`, η⊂Ωa

Dηv` +

∫
Ω∗

∇v(x)η dx

+
∑
`∈L

B`, η∈BΓ

1

|η1η2|

∫
B`, η

χΩa
∇v`,ηη dx

©
The main idea of the proof is to write the above sum as

ε2
∑
`∈L

B`, η⊂Ωa

Dηv` +

∫
Ω∗

∇v(x)η dx +
∑
`∈L

B`, η∈BΓ

1

|η1η2|

∫
B`, η

χΩa
∇v`,ηη dx

=
1

|η1η2|

|η1η2|∑
m=1

∫
Ω

∇v[m](x)η dx

where v[m], m = 1, . . . , η1η2 are appropriate conforming functions (in H1(Ω))
each one associated to a different covering SmBη consisting of bond volumes.



Energy free of ghost forces: Idea of the proof II

For a fixed η we have

(?)0 =〈DE η(yF ), v〉 =φ′η(F η) ·
¶
ε2

∑
`∈L

B`, η⊂Ωa

Dηv` +

∫
Ω∗

∇v(x)η dx

+
∑
`∈L

B`, η∈BΓ

1

|η1η2|

∫
B`, η

χΩa
∇v`,ηη dx

©
The main idea of the proof is to write the above sum as

ε2
∑
`∈L

B`, η⊂Ωa

1

|η1η2|

∫
B`, η

∇v(x)η dx+

∫
Ω∗

∇v(x)η dx +
∑
`∈L

B`, η∈BΓ

1

|η1η2|

∫
B`, η

χΩa
∇v`,ηη dx

=
1

|η1η2|

|η1η2|∑
m=1

∫
Ω

∇v[m](x)η dx

where v[m], m = 1, . . . , |η1η2| are appropriate conforming functions (in
H1(Ω)) each one associated to a different covering SmBη consisting of bond
volumes.



Construction in 3 D: We need to work with tetrahedra

xℓ+e2

xℓ+e3

xℓ+e1

xℓ+e1+e2+e3

xℓ

xℓ+e1+e2

xℓ+e2+e3

xℓ+e1+e3

Figure : A type A decomposition of the cell K` into six tetrahedra.



Construction in 3 D: Atomistic CB model in tetrahedra

TT = {T ⊂ Ω : T is a tetrahedron whose vertices are lattice vertices of

K` , x` ∈ Ωdiscr},

Vε,T := {v : Ω→ R2, v ∈ C(Ω) , v|T ∈ P1(T )

and v` = v(x`) periodic with respect to L},

Φ̃a,CB(y) :=
ε3

6

∑
`∈L

∑
T∈K`(T )

∑
η∈R

φη (∇̃y η) =
ε3

6

∑
`∈L

∑
T∈K`(T )

WCB(∇̃y).



Construction in 3 D: A key result

xℓ

Bℓ,η

xℓ+η

Figure : A bond volume B`, η and its type A decomposition into six
tetrahedra.

Lemma
Let v be a piecewise linear and continuous function on a type A
decomposition of the bond volume B`, η into tetrahedra. Then

ε3 Dηv` =
1

|η1 η2 η3|

∫
B`, η

∇v(x)η dx .



Construction in 3 D: Proof

We have,

1

η1 η2 η3

∫
B`, η

∇v(x)η dx =
1

η1 η2 η3

∫
∂B`, η

v ν · η ds

=
1

η1 η2 η3

3∑
i=1

{∫
∂B`, η(−ei)

(−ηi)v ds +

∫
∂B`, η(ei)

ηi v ds
}
,

where ∂B`, η(ei) is the face of B`, η with outward unit normal ei. Therefore, if τ is a triangle on a face:∫
τ

ηi v ds =
|τ |
3

3∑
j=1

ηi v(zj),

where zi are the vertices of τ . Since τ is one of the two triangles of ∂B`, η(ηi), |τ | ηi = ε2

2
η1 η2 η3 . Hence,

1

η1 η2 η3

∫
∂B`, η(ei)

ηi v ds =
ε2

6

2∑
j=1

{
v(zj) + 2 v(z̃j)

}
.

We notice that x`+η is a shared vertex at each ∂B`, η(ei), while x` is a shared vertex at each ∂B`,−η(−ei),
for all i = 1, 2, 3.

1

η1 η2 η3

∫
B`, η

∇v(x) · η dx = ε
2
(
v`+η − v`

)
,



Construction in 3 D: Sensitivity on the type of decomposition

x` •

•

Decomposition into 5 tetrahedra, one of them without faces on the boundary

1

The result is sensitive to the particular decomposition of the bond volume
B`, η into tetrahedra.



Construction in 3 D: Energy on interface

B`,⌘

�

1

Figure : A possible decomposition T (B`, η) of B`, η.

EΓ,η{y} =
∑
`∈L

B`, η∈BΓ

1

η1η2η3

∫
B`, η

χΩa
φη(∇y`,ηη) dx .



Construction in 3 D: The method is consistent

The energy is free of ghost forces, in the sense that

〈DEbv(yF ), v〉 = 0, yF (x) = Fx ,



Construction in 3 D: Alternative construction: discontinuous on Γ

EDΓ,η{y} =
∑
`∈L

B`, η∈BΓ

1

η1η2η3

î∫
B`, η

χΩa
φη(∇y`,ηη) dx

−
∫
B`, η∩Γ

φ′η({{∇y`,ηη}}) [[y`,ηη]] dS
ó
.



Remarks

• The first systematic approach in the literature that leads to ghost force
free couplings in dimensions 1, 2 and 3 and for all interatomic potentials
of finite range. In particular:

• The method allows to replace atomistic CB models by any
high-order finite element discretization of the continuum energy.
The new method is still consistent.

• The discontinuous method is very flexible:

• It allows the introduction of penalty-type stabilisation terms,
• It allows DG finite element discretisations of the continuum

energy.

• There are several alternative ways to treat the interface and its
discretisation.



Remarks II

• Finite elements, and modern numerical analysis in general, provide a
very valuable toolbox to address subtle modelling issues.

• Several exciting open problems related to physical phenomena are
described by discrete models at micro scales.



thank you !


