Nonconforming mimetic methods for diffusion problems

Gianmarco Manzini

Joint collaborations with:

K. Lipnikov, M. Shashkov, V. Gyrya, D. Svyatskiy (LANL, New Mexico),
L. Beirao da Veiga, F. Brezzi, A. Cangiani, D. Marini, A. Russo ("volley" team),
A. Buffa (IMATI, Italy), B. Ayuso (KAUST, Saudi Arabia)

Durham, UK, 2014
Outline

1. The construction of an MFD method:
 - meshes;
 - degrees of freedom;
 - approximation of the bilinear form;
 - approximation of the loading term.

2. Consistency condition and degrees of freedom:
 - the conforming MFD formulation;
 - the non-conforming MFD formulation.

3. Building a bridge with VEM.

4. Convergence results and numerical experiments.
1. **The construction of an MFD method:**
 - meshes;
 - degrees of freedom;
 - approximation of the bilinear form;
 - approximation of the loading term.

2. **Consistency condition and degrees of freedom:**
 - the conforming MFD formulation;
 - the non-conforming MFD formulation.

3. **Building a bridge with VEM.**

4. **Convergence results and numerical experiments.**
Outline

1. The construction of an MFD method:
 - meshes;
 - degrees of freedom;
 - approximation of the bilinear form;
 - approximation of the loading term.

2. Consistency condition and degrees of freedom:
 - the conforming MFD formulation;
 - the non-conforming MFD formulation.

3. Building a bridge with VEM.

4. Convergence results and numerical experiments.
Outline

1. The construction of an MFD method:
 - meshes;
 - degrees of freedom;
 - approximation of the bilinear form;
 - approximation of the loading term.

2. Consistency condition and degrees of freedom:
 - the conforming MFD formulation;
 - the non-conforming MFD formulation.

3. Building a bridge with VEM.

4. Convergence results and numerical experiments.
The linear diffusion problem

- Differential formulation:

 \[-\text{div}(K \nabla u) = f \quad \text{in} \quad \Omega,\]
 \[u = g \quad \text{on} \quad \Gamma,\]

 (this talk: constant K)

- Variational formulation:

 \[\text{Find } u \in H^1_0(\Omega) \text{ such that:}\]
 \[\int_{\Omega} K \nabla u \cdot \nabla v \, dV = \int_{\Omega} f v \, dV \quad \forall v \in H^1_0(\Omega),\]
The linear diffusion problem

- **Differential formulation:**
 \[
 -\text{div}(K\nabla u) = f \quad \text{in} \ \Omega, \\
 u = g \quad \text{on} \ \Gamma,
 \]
 (this talk: constant K)

- **Variational formulation:**

 \[
 \text{Find } u \in H^1_g(\Omega) \text{ such that:}
 \int_{\Omega} K\nabla u \cdot \nabla v \, dV = \int_{\Omega} fv \, dV \quad \forall v \in H^1_0(\Omega),
 \]
Scheme construction in five steps
Steps 1 and 2

1. We decompose Ω into a mesh Ω_h of polygons (2-D) or polyhedrons (3-D);
 - admissible meshes may contain "crazy" cells (non-convex, "singular" as in AMR);
 - we need some regularity assumptions to avoid pathological cases and perform the convergence analysis;

2. degrees of freedom: \mathcal{V}_h

\[u, v \in H^1_g(\Omega) \cap C^\alpha(\Omega) \quad \rightarrow \quad u_h, v_h \in \mathcal{V}_h, \quad \text{numbers!} \]

(with $\alpha \geq 0$).
Scheme construction in five steps
Steps 1 and 2

1. We decompose Ω into a mesh Ω_h of polygons (2-D) or polyhedrons (3-D);
 - admissible meshes may contain "crazy" cells (non-convex, "singular" as in AMR);
 - we need some regularity assumptions to avoid pathological cases and perform the convergence analysis;

2. degrees of freedom: \mathcal{V}_h

\[u, v \in H^1_g(\Omega) \cap C^\alpha(\overline{\Omega}) \quad \rightarrow \quad u_h, v_h \in \mathcal{V}_h, \quad \text{numbers!} \]

(with $\alpha \geq 0$).
Scheme construction in five steps
Steps 3 and 4

3. **bilinear form**: $\mathcal{A}_h(\cdot, \cdot) : \mathcal{V}_h \times \mathcal{V}_h \to \mathbb{R}$

$$\mathcal{A}_h(u_h, v_h) \approx \int_{\Omega} K \nabla u \cdot \nabla v \, dV,$$

it is built by “mimicking” a fundamental relation of calculus (*integration by parts*);

4. **linear functional**: $(f, \cdot)_h : \mathcal{V}_h \to \mathbb{R}$

$$(f, v_h)_h \approx \int_{\Omega} fv \, dV.$$
3. **bilinear form**: $A_h(\cdot, \cdot) : \mathcal{V}_h \times \mathcal{V}_h \rightarrow \mathbb{R}$

$$A_h(u_h, v_h) \approx \int_{\Omega} K \nabla u \cdot \nabla v \, dV,$$

it is built by “mimicking” a fundamental relation of calculus (*integration by parts*);

4. **linear functional**: $(f, \cdot)_h : \mathcal{V}_h \rightarrow \mathbb{R}$

$$(f, v_h)_h \approx \int_{\Omega} fv \, dV.$$
5. The variational formulation

\[
\text{Find } u \in H^1_g(\Omega) \text{ such that:}
\]
\[
\int_{\Omega} K \nabla u \cdot \nabla v \, dV = \int_{\Omega} fv \, dV \quad \forall v \in H^1_0(\Omega),
\]

becomes the “mimetic variational” formulation:

\[
\text{Find } u_h \in \mathcal{V}_{h,g} \text{ such that:}
\]
\[
A_h(u_h, v_h) = (f, v_h)_h \quad \forall v_h \in \mathcal{V}_{h,0}.
\]
5. The variational formulation

\[\text{Find } u \in H^1_g(\Omega) \text{ such that:} \]
\[
\int_{\Omega} K \nabla u \cdot \nabla v \, dV = \int_{\Omega} fv \, dV \quad \forall v \in H^1_0(\Omega),
\]

becomes the “mimetic variational” formulation:

\[\text{Find } u_h \in \mathcal{V}_{h,g} \text{ such that:} \]
\[
\mathcal{A}_h(u_h, v_h) = (f, v_h)_h \quad \forall v_h \in \mathcal{V}_{h,0}. \]
Meshes: why polygonal/polyhedral?

- The meshes should be easily adaptable to the geometric characteristics of the domain, but also to the solution:
 - non-conforming meshes (hanging nodes);
 - (local) adaptive refinements (AMR);
 - highly deformed cells;
 - non-convex cells;
 - curved faces;
 - ...

- Growing interest to use them in scientific applications and commercial codes, SINTEF, CD-ADAPCO, ANSYS;
Meshes: why polygonal/polyhedral?

- The meshes should be easily adaptable to the geometric characteristics of the domain, but also to the solution:
 - non-conforming meshes (hanging nodes);
 - (local) adaptive refinements (AMR);
 - highly deformed cells;
 - non-convex cells;
 - curved faces;
 - ...

- Growing interest to use them in scientific applications and commercial codes, SINTEF, CD-ADAPCO, ANSYS;
Meshes: why polygonal/polyhedral?

- The meshes should be easily adaptable to the geometric characteristics of the domain, but also to the solution:
 - non-conforming meshes (hanging nodes);
 - (local) adaptive refinements (AMR);
 - highly deformed cells;
 - non-convex cells;
 - curved faces;
 - ...

- Growing interest to use them in scientific applications and commercial codes, SINTEF, CD-ADAPCO, ANSYS;
Meshes: why polygonal/polyhedral?

- The meshes should be easily adaptable to the geometric characteristics of the domain, but also to the solution:
 - non-conforming meshes (hanging nodes);
 - (local) adaptive refinements (AMR);
 - highly deformed cells;
 - non-convex cells;
 - curved faces;
 - ...

- Growing interest to use them in scientific applications and commercial codes, SINTEF, CD-ADAPCO, ANSYS;
Meshes: why polygonal/polyhedral?

- The meshes should be easily adaptable to the geometric characteristics of the domain, but also to the solution:
 - non-conforming meshes (hanging nodes);
 - (local) adaptive refinements (AMR);
 - highly deformed cells;
 - non-convex cells;
 - curved faces;
 - ...

- Growing interest to use them in scientific applications and commercial codes, SINTEF, CD-ADAPCO, ANSYS;
Meshes: why polygonal/polyhedral?

- The meshes should be easily adaptable to the geometric characteristics of the domain, but also to the solution:
 - non-conforming meshes (hanging nodes);
 - (local) adaptive refinements (AMR);
 - highly deformed cells;
 - non-convex cells;
 - curved faces;
 - ...

- Growing interest to use them in scientific applications and commercial codes, SINTEF, CD-ADAPCO, ANSYS;
Meshes: why polygonal/polyhedral?

- The meshes should be easily adaptable to the geometric characteristics of the domain, but also to the solution:
 - non-conforming meshes (hanging nodes);
 - (local) adaptive refinements (AMR);
 - highly deformed cells;
 - non-convex cells;
 - curved faces;
 - ...

- Growing interest to use them in scientific applications and commercial codes, SINTEF, CD-ADAPCO, ANSYS;
Meshes: academic examples

Examples: convex and non-convex polygonal cells
Meshes: academic examples
Examples: randomized quads and Adaptive Mesh Refinements (AMR)
Meshes: academic examples
Examples: locally refined, prismatic and random hexahedral meshes
Construction of $A_h(u_h, v_h)$

- $A_h(u_h, v_h)$ must be
 - symmetric, bounded and semi-positive;
 - locally defined through an assembly process (like FEM):
 $$A_h(u_h, v_h) = \sum_P A_{h,P}(u_{h,P}, v_{h,P})$$

where $u_{h,P} = u_h|_P$, $v_{h,P} = v_h|_P$;

- Any $A_{h,P}(u_{h,P}, v_{h,P})$ must be a local approximation:
 $$\forall P \in \Omega_h : \quad A_{h,P}(u_{h,P}, v_{h,P}) \approx \int_P K \nabla u \cdot \nabla v \, dV.$$
Construction of $\mathcal{A}_h(u_h, v_h)$

- $\mathcal{A}_h(u_h, v_h)$ must be
 - symmetric, bounded and semi-positive;
 - locally defined through an assembly process (like FEM):
 \[
 \mathcal{A}_h(u_h, v_h) = \sum_P \mathcal{A}_{h,P}(u_{h,P}, v_{h,P})
 \]
 where $u_{h,P} = u_{h|P}$, $v_{h,P} = v_{h|P}$;

- Any $\mathcal{A}_{h,P}(u_{h,P}, v_{h,P})$ must be a local approximation:
 \[
 \forall P \in \Omega_h : \quad \mathcal{A}_{h,P}(u_{h,P}, v_{h,P}) \approx \int_P K \nabla u \cdot \nabla v \, dV.
 \]
Construction of $\mathcal{A}_h(u_h, v_h)$

- $\mathcal{A}_h(u_h, v_h)$ must be
 - symmetric, bounded and semi-positive;
 - locally defined through an assembly process (like FEM):
 \[
 \mathcal{A}_h(u_h, v_h) = \sum_P \mathcal{A}_{h,P}(u_{h,P}, v_{h,P})
 \]
 where $u_{h,P} = u_{h|P}$, $v_{h,P} = v_{h|P}$;

- Any $\mathcal{A}_{h,P}(u_{h,P}, v_{h,P})$ must be a local approximation:
 \[
 \forall P \in \Omega_h : \quad \mathcal{A}_{h,P}(u_{h,P}, v_{h,P}) \approx \int_P K \nabla u \cdot \nabla v \, dV.
 \]
Construction of $A_h(u_h, v_h)$

- $A_h(u_h, v_h)$ must be
 - symmetric, bounded and semi-positive;
 - locally defined through an assembly process (like FEM):
 \[
 A_h(u_h, v_h) = \sum_P A_{h,P}(u_{h,P}, v_{h,P})
 \]
 where $u_{h,P} = u_{h|P}$, $v_{h,P} = v_{h|P}$;

- Any $A_{h,P}(u_{h,P}, v_{h,P})$ must be a local approximation:
 \[
 \forall P \in \Omega_h : \quad A_{h,P}(u_{h,P}, v_{h,P}) \approx \int_P K \nabla u \cdot \nabla v \, dV.
 \]
Construction of $A_h(u_h, v_h)$: consistency and stability

- **PROBLEM:** in MFD we do **not** have an approximation space (as in FEM, DG, VEM, etc) . . . only degrees of freedom!

- **Consistency:** exactness property on polynomials \rightarrow accuracy

 Let $u, v \in P_k(P)$, $u_{h,P}, v_{h,P}$ their dofs:

 $$A_{h,P}(u_{h,P}, v_{h,P}) = \int_P K\nabla u \cdot \nabla v \, dV.$$

- **Stability:** well-posedness property \rightarrow continuity and coercivity

 There exist two constants σ_*, σ^* such that

 $$\sigma_* \| v_{h,P} \|_{1,h,P}^2 \leq A_{h,P}(v_{h,P}, v_{h,P}) \leq \sigma^* \| v_{h,P} \|_{1,h,P}^2$$

 (for some suitable norm $\| \cdot \|_{1,h,P}$ which mimics the energy norm on P)
Construction of $A_h(u_h, v_h)$: consistency and stability

- **PROBLEM:** in MFD we do not have an approximation space (as in FEM, DG, VEM, etc) . . . only degrees of freedom!

- **Consistency:** exactness property on polynomials \rightarrow accuracy
 Let $u, v \in P_k(P)$, $u_{h,P}, v_{h,P}$ their dofs:

 $$A_{h,P}(u_{h,P}, v_{h,P}) = \int_P K \nabla u \cdot \nabla v \, dV.$$

- **Stability:** well-posedness property \rightarrow continuity and coercivity
 There exist two constants σ_*, σ^* such that

 $$\sigma_* \| v_{h,P} \|^2_{1,h,P} \leq A_{h,P}(v_{h,P}, v_{h,P}) \leq \sigma^* \| v_{h,P} \|^2_{1,h,P}$$

 (for some suitable norm $\| \cdot \|_{1,h,P}$ which mimics the energy norm on P)
Construction of $A_h(u_h, v_h)$: consistency and stability

- **Problem**: in MFD we do not have an approximation space (as in FEM, DG, VEM, etc)... only degrees of freedom!

- **Consistency**: exactness property on polynomials \rightarrow accuracy

 Let $u, v \in P_k(P), u_{h,P}, v_{h,P}$ their dofs:

 \[
 A_{h,P}(u_{h,P}, v_{h,P}) = \int_P K \nabla u \cdot \nabla v \, dV.
 \]

- **Stability**: well-posedness property \rightarrow continuity and coercivity

 There exist two constants $\sigma_\star, \sigma^\star$ such that

 \[
 \sigma_\star \| v_{h,P} \|_{1,h,P}^2 \leq A_{h,P}(v_{h,P}, v_{h,P}) \leq \sigma^\star \| v_{h,P} \|_{1,h,P}^2
 \]

 (for some suitable norm $\| \cdot \|_{1,h,P}$ which mimics the energy norm on P)
Let K be constant on P. We integrate by parts on the polygonal cell P.

- **IF** u is a **linear polynomial** on P $\implies K \nabla u$ is a **constant vector**;

THEN

$$
\int_P K \nabla u \cdot \nabla v \, dV = - \int_P \text{div}(K \nabla u) \, v \, dV + \sum_{e \in \partial P} K \nabla u \cdot n_{P,e} \int_e v \, dS
$$

equal to zero!

THUS,

$$
\int_P K \nabla u \cdot \nabla v \, dV = \sum_{e \in \partial P} K \nabla u \cdot n_{P,e} \int_e v \, dS.
$$
The local consistency condition: two options

The low-order setting, \(m = 1, \ d = 2 \)

1. we use a numerical integration rule on each edge \(e = (v', v'') \), we require the **exactness for linear polynomials**:

\[
\sum_{e \in \partial P} K \nabla u \cdot n_{P,e} \left(\int_e v \, dS \right) \approx \sum_{e \in \partial P} K \nabla u \cdot n_{P,e} |e| \frac{v(x_v') + v(x_v'')}{2}.
\]

trapezoidal rule

2. we introduce the 0-th order moment of \(v \) as a degree of freedom:

\[
\sum_{e \in \partial P} K \nabla u \cdot n_{P,e} \left(\int_e v \, dS \right) = \sum_{e \in \partial P} K \nabla u \cdot n_{P,e} |e| \mu_{e,0}(v)
\]

where:

\[
\mu_{e,0}(v) = \frac{1}{|e|} \int_e v \, dS.
\]
The local consistency condition: two options

The low-order setting, \(m = 1, \, d = 2 \)

1. we use a numerical integration rule on each edge \(e = (v', v'') \), we require the **exactness for linear polynomials**:

\[
\sum_{e \in \partial P} K \nabla u \cdot n_{P,e} \int_e v \, dS \approx \sum_{e \in \partial P} K \nabla u \cdot n_{P,e} \left| e \right| \frac{v(x_{v'}) + v(x_{v''})}{2}.
\]

trapezoidal rule

2. we introduce the **0-th order moment** of \(v \) as a degree of freedom:

\[
\sum_{e \in \partial P} K \nabla u \cdot n_{P,e} \int_e v \, dS = \sum_{e \in \partial P} K \nabla u \cdot n_{P,e} \left| e \right| \mu_{e,0}(v)
\]

where:

\[
\mu_{e,0}(v) = \frac{1}{|e|} \int_e v \, dS.
\]
1. Conforming mimetic discretization

The low-order setting, \(m = 1, \ d = 2 \)

1. According to

\[
\sum_{e \in \partial P} K \nabla u \cdot n_{P,e} \int_e v \, dS \approx \sum_{e \in \partial P} K \nabla u \cdot n_{P,e} |e| \frac{v(x_{v'}) + v(x_{v''})}{2}.
\]

we require that

\[
A_{h,P}(u_{h,P}, v_{h,P}) = \sum_{e \in \partial P} K \nabla u \cdot n_{P,e} |e| \frac{v_{v'} + v_{v''}}{2}.
\]

when

- \(u_{h,P} \) is a discrete representation of the linear polynomial \(u \) on \(P \);
- \(v_{v'}, v_{v''} \) are the degrees of freedom of \(v_{h,P} \) at \(v', v'' \).

The dofs represent the vertex values of \(u_{h,P}, v_{h,P} \)
2. Non-conforming mimetic discretization

The low-order setting, $m = 1$, $d = 2$

2. As $|e| \mu_{e,0}(v) = \int_e v \, dS$, and according to:

$$\sum_{e \in \partial P} K \nabla u \cdot n_{P,e} \int_e v \, dS = \sum_{e \in \partial P} K \nabla u \cdot n_{P,e} |e| \mu_{e,0}(v)$$

we require that

$$\mathcal{A}_{h,P}(u_{h,P}, v_{h,P}) = \sum_{e \in \partial P} K \nabla u \cdot n_{P,e} |e| v_{e,0}$$

when

- $u_{h,P}$ is a discrete representation of the linear polynomial u on P;
- $v_{e,0}$ is the degree of freedom of $v_{h,P}$ associated with edge e.

The dofs represent the zero-th order moments of $u_{h,P}$, $v_{h,P}$
Algebraic consistency: matrices \mathbb{N} and \mathbb{R}

Low order setting, $m = 1$, $d = 2$

- **basis of** $\mathbb{P}_1(P) = \left\{ 1, (x - x_P), (y - y_P) \right\} = \{ u_1, u_2, u_3 \}$

 $((x_P, y_P) \text{ is the barycenter of } P)$
Algebraic consistency: matrices \mathbb{N} and \mathbb{R}

Low order setting, $m = 1, d = 2$

- **basis of** $\mathbb{P}_1(P) = \left\{ 1, (x - x_P), (y - y_P) \right\} = \{ u_1, u_2, u_3 \}$

 (x_P, y_P) is the barycenter of P

- **matrix \mathbb{N}:** degrees of freedom of the polynomial basis:
Algebraic consistency: matrices \mathbb{N} and \mathbb{R}

Low order setting, $m = 1$, $d = 2$

- **basis of** $\mathbb{P}_1(P) = \left\{ 1, (x - x_P), (y - y_P) \right\} = \left\{ u_1, u_2, u_3 \right\}$

 ((x_P, y_P) is the barycenter of P)

- **matrix \mathbb{N}**: degrees of freedom of the polynomial basis:

 $$\mathbb{N} = \begin{pmatrix}
 1 & (x_1 - x_P) & (y_1 - y_P) \\
 1 & (x_2 - x_P) & (y_2 - y_P) \\
 \vdots & \vdots & \vdots \\
 1 & (x_m - x_P) & (y_m - y_P)
 \end{pmatrix}$$
Algebraic consistency: matrices \mathbb{N} and \mathbb{R}

Low order setting, $m = 1$, $d = 2$

- **basis of** $\mathbb{P}_1(P) = \left\{ 1, (x - x_P), (y - y_P) \right\} = \{u_1, u_2, u_3\}$

 ((x_P, y_P) is the barycenter of P)

- **matrix \mathbb{N}**: degrees of freedom of the polynomial basis:

\[
\mathbb{N} = \begin{pmatrix}
1 & (x_1 - x_P) & (y_1 - y_P) \\
1 & (x_2 - x_P) & (y_2 - y_P) \\
\vdots & \vdots & \vdots \\
1 & (x_m - x_P) & (y_m - y_P)
\end{pmatrix}
\]
Algebraic consistency: matrices \mathbb{N} and \mathbb{R}

Low order setting, $m = 1$, $d = 2$

- **basis of** $\mathbb{P}_1(P) = \left\{ 1, (x - x_P), (y - y_P) \right\} = \{u_1, u_2, u_3\}$

 ((x_P, y_P) is the barycenter of P)

- **matrix \mathbb{N}**: degrees of freedom of the polynomial basis:

 $$
 \mathbb{N} = \begin{pmatrix}
 1 & (x_1 - x_P) & (y_1 - y_P) \\
 1 & (x_2 - x_P) & (y_2 - y_P) \\
 \vdots & \vdots & \vdots \\
 1 & (x_m - x_P) & (y_m - y_P)
 \end{pmatrix}
 $$

- Diagram of P with nodes labeled 1, 2, 3, m.
Algebraic consistency: matrices \mathbb{N} and \mathbb{R}

Low order setting, $m = 1$, $d = 2$

- **basis of** $\mathbb{P}_1(P) = \left\{ 1, (x - x_P), (y - y_P) \right\} = \{ u_1, u_2, u_3 \}$

 ($ (x_P, y_P) $ is the barycenter of P)

- **matrix \mathbb{N}**: degrees of freedom of the polynomial basis:

\[
\mathbb{N} = \begin{pmatrix}
1 & (x_1 - x_P) & (y_1 - y_P) \\
1 & (x_2 - x_P) & (y_2 - y_P) \\
\vdots & \vdots & \vdots \\
1 & (x_m - x_P) & (y_m - y_P)
\end{pmatrix}
\]

- **matrix \mathbb{R}**: integration-by-parts for the polynomials u_i:

\[
\mathcal{A}_{h,P}(u_{ih,P}, v_{h,P}) = \sum_{f \in P} K \nabla u_i \cdot n_{P,e} \int_e v \, dS = v^T \mathbb{R}_i
\]
Algebraic consistency: $MN = R$

Low order setting, $m = 1$, $d = 2$

RECALL THAT

$$A_{h,P}(u_{ih,P}, v_{h,P}) = \sum_{f \in P} K \nabla u_i \cdot n_{P,e} \int_e v \, dS = v^T R_i$$

SINCE

$$A_{h,P}(u_{ih,P}, v_{h,P}) = v^T M N_i$$

THEN

$$MN_i = R_i \quad i = 1, 2, 3.$$

EQUIVALENTLY,

$$MN = R$$
Algebraic consistency: \(MN = R \)

Low order setting, \(m = 1, \ d = 2 \)

RECALL THAT

\[
\mathcal{A}_{h,P}(u_{ih,P}, v_{h,P}) = \sum_{f \in P} K \nabla u_i \cdot n_{P,e} \int_e v \, dS = v^T R_i
\]

SINCE

\[
\mathcal{A}_{h,P}(u_{ih,P}, v_{h,P}) = v^T MN_i
\]

THEN

\[
MN_i = R_i, \quad i = 1, 2, 3.
\]

EQUIVALENTLY,

\[
MN = R
\]
Algebraic consistency: $\mathbf{M N} = \mathbf{R}$

Low order setting, $m = 1, d = 2$

RECALL THAT

$$\mathcal{A}_{h,P}(u_{ih,P}, v_{h,P}) = \sum_{f \in P} K \nabla u_i \cdot n_{P,e} \int_{e} v \, dS = v^T R_i$$

SINCE

$$\mathcal{A}_{h,P}(u_{ih,P}, v_{h,P}) = v^T \mathbf{M N}_i$$

THEN

$$\mathbf{M N}_i = R_i \quad i = 1, 2, 3.$$

EQUIVALENTLY,

$$\mathbf{M N} = \mathbf{R}$$
Algebraic consistency: $\mathbf{M} \mathbf{N} = \mathbf{R}$

Low order setting, $m = 1$, $d = 2$

RECALL THAT

$$\mathcal{A}_{h,P}(\mathbf{u}_{ih,P}, \mathbf{v}_{h,P}) = \sum_{f \in P} K \nabla u_i \cdot \mathbf{n}_{P,e} \int_e \mathbf{v} \, dS = \mathbf{v}^T \mathbf{R}_i$$

SINCE

$$\mathcal{A}_{h,P}(\mathbf{u}_{ih,P}, \mathbf{v}_{h,P}) = \mathbf{v}^T \mathbf{M} \mathbf{N}_i$$

THEN

$$\mathbf{M} \mathbf{N}_i = \mathbf{R}_i \quad i = 1, 2, 3.$$

EQUIVALENTLY,

$$\mathbf{M} \mathbf{N} = \mathbf{R}$$
Algebraic consistency: $MN = R$

Low order setting, $m = 1$

- The formula $MN = R$ is **ubiquitous** in the MFD method.

- Also,

 $$NT R_{ij} = \int_P K \nabla u_i \cdot \nabla u_j \, dV$$

 where $u_i, u_j \in \{1, x - x_p, y - y_p\}$

- The (one-parameter) formula for the stiffness matrix:

 $$M = R (N^T R)^\dagger R^T + \mu (I - N(N^T N)^{-1} N^T) M_0 + M_1$$

 The second term depends on the parameter μ and gives a (one-parameter) family of methods.
The stiffness matrix formula

The formula for the stiffness matrix:

\[M = R(N^T R)^\dagger R^T + \mu (I - N(N^T N)^{-1} N^T) = M_0 + M_1 \]

Remarks:

- The consistency term \(M_0 \) is responsible for the accuracy of the method.

- The stability term \(M_1 \) ensures the well-posedness of the method.

- The bilinear form \(A_{h,P} \) contains a **stabilization term** that depends on a set of parameters \(\Rightarrow \) **family of schemes**!

- Both terms can be given the same (algebraic) form of the corresponding terms in the VEM.
The stiffness matrix formula

The formula for the stiffness matrix:

\[M = R(N^T R)\dagger R^T + \mu(I - N(N^T N)^{-1}N^T) = M_0 + M_1 \]

Remarks:

- The consistency term \(M_0 \) is responsible of the accuracy of the method.
- The stability term \(M_1 \) ensures the well-posedness of the method.
- The bilinear form \(A_{h,P} \) contains a stabilization term that depends on a set of parameters \(\Rightarrow \text{family of schemes!} \)
- Both terms can be given the same (algebraic) form of the corresponding terms in the VEM.
The stiffness matrix formula

The formula for the stiffness matrix:

\[M = R (N^T R) \hat{\cdot} R^T + \mu (I - N (N^T N)^{-1} N^T) = M_0 + M_1 \]

Remarks:

- The consistency term \(M_0 \) is responsible of the accuracy of the method.
- The stability term \(M_1 \) ensures the well-posedness of the method.
- The bilinear form \(A_{h,P} \) contains a stabilization term that depends on a set of parameters \(\Rightarrow \) family of schemes!
- Both terms can be given the same (algebraic) form of the corresponding terms in the VEM.
The stiffness matrix formula

The formula for the stiffness matrix:

\[
M = R(N^T R)^\dagger R^T + \mu(I - N(N^T N)^{-1}N^T) = M_0 + M_1
\]

Remarks:

- The consistency term \(M_0\) is responsible of the accuracy of the method.
- The stability term \(M_1\) ensures the well-posedness of the method.
- The bilinear form \(A_{h,P}\) contains a \textit{stabilization term} that depends on a set of parameters \(\Rightarrow\) family of schemes!
- Both terms can be given the same (algebraic) form of the corresponding terms in the VEM.
Three-dimensional case: conforming MFD

The low-order setting, \(m = 1, d = 3 \)

- Recall that \(v_{h|v} := v_v \approx v(x_v') \) and
 \[
 \int_P K \nabla u \cdot \nabla v \, dV = \sum_{f \in \partial P} K \nabla u \cdot n_{P,f} \int_f v \, dS
 \]

- we assume that there exists a **quadrature rule** \(\{(x_{f,v}, \omega_{f,v})_{v \in \partial f}\} \) on each face \(f \in \partial P \) such that
 \[
 \int_f v \, dS \approx \sum_{v \in \partial f} \omega_{f,v} v(x_{f,v})
 \]
 is exact when \(v \) is a linear polynomial;

- we require that for every **linear polynomial** \(u \) and every discrete field \(v_h \) the bilinear form satisfies
 \[
 A_{h,P}(u_{h,P}, v_{h,P}) := \sum_{f \in \partial P} K \nabla u \cdot n_{P,f} \sum_{v \in \partial f} \omega_{f,v} v_v \quad [v_v \text{ represents } v(x_{f,v})].
 \]
Three-dimensional case: non-conforming MFD

The low-order setting, \(m = 1, d = 3 \)

Let \(K \) be constant on \(P \), \(u \) a linear polynomial, and integrate by parts.

- We use the **0-th order moment** of \(v \) as a degree of freedom:

\[
\int_P K \nabla u \cdot \nabla v \, dV = \sum_{f \in \partial P} K \nabla u \cdot n_{P,f} \int_f v \, dS = \sum_{f \in \partial P} K \nabla u \cdot n_{P,e}|e| \mu_{f,0}(v)
\]

where:

\[
\mu_{f,0}(v) = \frac{1}{|f|} \int_f v \, dS.
\]

- The local consistency condition is:

\[
A_{h,P}(u_{h,P}, v_{h,P}) = \sum_{f \in \partial P} K \nabla u \cdot n_{P,e}|f| v_{f,0} \quad [v_{f,0} \text{ represents } \mu_{f,0}(v)]
\]

For both formulations, we do the same as in 2D!
Three-dimensional case: non-conforming MFD

The low-order setting, $m = 1$, $d = 3$

Let K be constant on P, u a linear polynomial, and integrate by parts.

- We use the 0-th order moment of v as a degree of freedom:

$$\int_P K \nabla u \cdot \nabla v \, dV = \sum_{f \in \partial P} K \nabla u \cdot n_{P,f} \int_f v \, dS = \sum_{f \in \partial P} K \nabla u \cdot n_{P,e} \left| e \right| \mu_{f,0}(v)$$

where:

$$\mu_{f,0}(v) = \frac{1}{\left| f \right|} \int_f v \, dS.$$

- The local consistency condition is:

$$A_{h,P} \left(u_{h,P}, v_{h,P} \right) = \sum_{f \in \partial P} K \nabla u \cdot n_{P,e} \left| f \right| v_{f,0} \quad \left[v_{f,0} \text{ represents } \mu_{f,0}(v) \right]$$

For both formulations, we do the same as in 2D!
Summarizing the low-order formulation:

Low order setting, \(m = 1 \)

- Degrees of freedom:

 ![Conforming MFD](image1)
 ![Non-conforming MFD](image2)

- exactness for linear polynomials;

- both 2D and 3D formulations are available (same dofs);

- we only need to implement \(N \) and \(R \) and apply the stiffness matrix formula for \(M \).
Summarizing the low-order formulation:
Low order setting, $m = 1$

- Degrees of freedom:

- exactness for linear polynomials;

- both 2D and 3D formulations are available (same dofs);

- we only need to implement N and R and apply the stiffness matrix formula for M.

Conforming MFD

Non-conforming MFD

Summarizing the low-order formulation:
Low order setting, $m = 1$

- Degrees of freedom:

![Conforming MFD](image1)
![Non-conforming MFD](image2)

- exactness for linear polynomials;
- both 2D and 3D formulations are available (same dofs);
- we only need to implement N and R and apply the stiffness matrix formula for M.
Summarizing the low-order formulation:
Low order setting, \(m = 1 \)

- Degrees of freedom:

 ![Diagram of degrees of freedom](image)

 - exactness for linear polynomials;
 - both 2D and 3D formulations are available (same dofs);
 - we only need to implement \(N \) and \(R \) and apply the stiffness matrix formula for \(M \).
High order: towards a local consistency condition (2D)

The high-order setting, $m > 1$, $d = 2$

Let K be constant and integrate by parts on the polygonal cell P:

$$
\int_P K \nabla u \cdot \nabla v \, dV = - \int_P \text{div}(K \nabla u) \, v \, dV + \sum_{e \in \partial P} \int_e K \nabla u \cdot n_{P,e} \, v \, dS.
$$

not zero!

not constant!

If u is a polynomial of degree m on P:

- $\text{div}(K \nabla u)$ is a polynomial of degree $m - 2$;
- $K \nabla u \cdot n_{P,e}$ is a polynomial of degree $m - 1$;
Divergence term
Internal degrees of freedom, $m > 1, d = 2$

- For the **conforming** and **non-conforming case**, we use the **moments** of v to express the integral over P:

 if
 $$\text{div}(K \nabla u) = a_0 1 + a_1 x + a_2 y + \ldots \in \mathbb{P}_{m-2}(P)$$

 then
 $$\int_P \text{div}(K \nabla u) \, v \, dV = a_0 \int_P 1 \, v \, dV + a_1 \int_P x \, v \, dV + a_2 \int_P y \, v \, dV + \ldots$$

 $$= a_0 \hat{v}_{P,0} + a_1 \hat{v}_{P,1,x} + a_2 \hat{v}_{P,1,y} + \ldots$$

This choice suggests us to define

- $m(m - 1)/2$ **internal** degrees of freedom $\approx \hat{v}_{P,0}, \hat{v}_{P,1,x}, \hat{v}_{P,1,y}, \ldots$
Edge terms: conforming MFD
Nodal degrees of freedom, \(m > 1, d = 2 \)

- **We use a Gauss-Lobatto formula** with \(m + 1 \) nodes and weights \(\{(x_{e,q}, w_{e,q})\} \) on every (2D) edge \(e \in \partial P \) for:

\[
\int_e K \nabla u \cdot n_{P,e} \nu \, dS \approx \sum_{q=1}^{m+1} w_{e,q} K \nabla u(x_{e,q}) \cdot n_{P,e} \nu(x_{e,q}).
\]

This choice suggests us to define:

- **one degree of freedom per vertex**, \(\nu_{e,1} = \nu_{v'} \approx \nu(x_{v'}) \), \(\nu_{e,m+1} = \nu_{v''} \approx \nu(x_{v''}) \);

- **\((m-1)\) nodal degrees of freedom per edge of** \(P \), \(\nu_{e,q} \approx \nu(x_{e,q}) \) for \(q = 2, \ldots, m \).
High-order conforming MFD
The high-order setting, $m > 1$, $d = 2$

Local Consistency Condition:

Let K be constant.

- For every $u \in \mathbb{P}_m(P)$ ($m \geq 1$) and every discrete field $v_{h,P} \in \mathcal{V}_h$ we require that:

\[
A_{h,P}(u_{h,P}, v_{h,P}) := -\sum_{j=0}^{m(m-1)/2-1} a_j \hat{v}_{P,j} + \sum_{e \in \partial P} \sum_{q=1}^{m+1} w_{e,q} K \nabla u(x_{e,q}) \cdot n_{P,e} v_{e,q}.
\]

(divergence) \(a_j \hat{v}_{P,j}\) \(\sum_{j=0}^{m(m-1)/2-1}\)

(boundary) \(\sum_{e \in \partial P} \sum_{q=1}^{m+1} w_{e,q} K \nabla u(x_{e,q}) \cdot n_{P,e} v_{e,q}\).

(u_{h,P} are the dofs of u for P; terms $a_j \hat{v}_{P,j}$ are conveniently renumbered).
Edge terms: non-conforming MFD

Edge degrees of freedom, $m > 1$, $d = 2$

We use the moments of \mathbf{v} to express the integral over $e \in \partial P$:

If

$$(K \nabla u)_{|e} \cdot \mathbf{n}_{P,e} = b_0 1 + b_1 \xi + b_2 \xi^2 + \ldots \in P_{m-1}(e)$$

then

$$\int_e K \nabla u \cdot \mathbf{n}_{P,e} \, \mathbf{v} \, dS = b_0 \int_e 1 \, \mathbf{v} \, dS + b_1 \int_e \xi \, v \, dS + b_2 \int_e \xi^2 \, v \, dS + \ldots$$

$$= b_0 \hat{\mathbf{v}}_{e,0} + b_1 \hat{\mathbf{v}}_{e,1} + b_2 \hat{\mathbf{v}}_{e,2} + \ldots$$

This choice suggests us to define

- m degrees of freedom per edge $\approx \hat{\mathbf{v}}_{e,0}, \hat{\mathbf{v}}_{e,1}, \hat{\mathbf{v}}_{e,2}, \ldots$
High-order non-conforming MFD
The high-order setting, \(m > 1, d = 2 \)

Local Consistency Condition:

Let \(K \) be constant.

- For every \(u \in \mathbb{P}_m(P) \) (\(m \geq 1 \)) and every discrete field \(v_{h,P} \in \mathcal{V}_h \) we require that:

\[
\mathcal{A}_{h,P}(u_{h,P}, v_{h,P}) := - \sum_{j=0}^{m(m-1)/2-1} a_j \hat{v}_{P,j} + \sum_{e \in \partial P} \sum_{j=0}^{m-1} b_j \hat{v}_{e,j}.
\]

\((u_{h,P} \) are the dofs of \(u \) for \(P \); terms \(a_j \hat{v}_{P,j} \) are conveniently renumbered).
Degrees of freedom
Conforming/non-conforming case

Conforming

\(m=1 \)

\(m=2 \)

\(m=3 \)

Non-Conforming

\(m=1 \)

\(m=2 \)

\(m=3 \)
Algebraic consistency condition: $MN = R$

Let M be a **symmetric** and **semi-positive definite** matrix such that

$$A_{h,P}(u_{h,P}, v_{h,P}) = v_{h,P}^T M u_{h,P}.$$

- For any $u \in \{1, x, y, x^2, xy, y^2, \ldots \}$ and any discrete field $v_{h,P}$
 - we write
 $$A_{h,P}(v_{h,P}, u_{h,P}) = v^T M N_u \quad \text{where} \quad N_u = [u_{h,P}] \quad \text{("dofs" of } u);$$
 - we impose the *local consistency condition*:
 $$A_{h,P}(u_{h,P}, v_{h,P}) = \ldots = v^T R_u$$
 - we obtain by comparison:
 $$M N_u = R_u$$
A family of schemes

- Using $\mathbf{N} = [N_1, N_2, \ldots], \mathbf{R} = [R_1, R_2, \ldots]$, we have:

\[
\mathbf{M N} = \mathbf{R} \quad \text{and} \quad (\mathbf{R}^T \mathbf{N})_{ij} = \int P K \nabla u_i \cdot \nabla u_j dV \quad \text{where} \quad u_i, u_j \in \{1, x, y, x^2, \ldots\}.
\]

- \mathbf{M} (symmetric and semi-positive definite) is given by

\[
\mathbf{M} = \mathbf{R} (\mathbf{R}^T \mathbf{N})^{-1} \mathbf{R}^T + \hat{\mathbf{M}} \quad \text{with} \quad \mathbf{MN} = \mathbf{R} + \hat{\mathbf{M}},
\]

where $\hat{\mathbf{M}}$ is a symmetric matrix of parameters.

- A one-parameter (γ) choice for $\hat{\mathbf{M}}$ is given by:

\[
\hat{\mathbf{M}} = \gamma (\mathbb{I} - \mathbf{N} (\mathbf{N}^T \mathbf{N})^{-1} \mathbf{N}^T).
\]
The linear functional \((f, v_h)_h\)

The low-order case \(m = 1\)

Recall that \((f, v_h)_h \approx \int_{\Omega} fv \, dV\).

- We assemble \((f, v_h)_h\) from local contribution:

\[
(f, v_h)_h := \sum_P (f, v_h)_{h,P} \quad \text{where} \quad (f, v_h)_{h,P} \approx \int_P fv \, dV
\]

- We approximate the forcing term by its average on \(P\):

\[
f \approx \frac{1}{|P|} \int_P f \, dV =: \bar{f}_P;
\]

- We use a (first-order) quadrature based on vertex (conforming) or edge (non-conforming) values. Example: let \(\{(x_v, w_{P,v})\}\):

\[
\int_P fv \, dV \approx \bar{f}_P \int_P v \, dV \approx |P| \bar{f}_P \sum_{v \in \partial P} w_{P,v} v(x_v) \quad [\text{conforming}]
\]
The linear functional \((f, v_h)_h\)

The low-order case \(m = 1\)

- Recall that \((f, v_h)_h := \sum_P (f, v_h)_{h,P}\), where

\[(f, v_h)_{h,P} \approx \int_P fv \, dV, \quad \text{and} \quad \int_P fv \, dV \approx |P| \bar{f}_P \sum_{v \in \partial P} w_{P,v} v_v\]

- Thus, for every cell \(P\) we define

\[(f, v_h)_{h,P} := |P| \bar{f}_P \sum_{v \in \partial P} w_{P,v} v_v \quad \forall v_h \in V_h\]

\[|P| \bar{f}_P = \int_P f \, dV\]

\(w_{P,v}\) 1-st order integration weights.
The linear functional \((f, v_h)_h\)

High-order case \(m > 1\)

1. Again,
 \[
 (f, v_h)_h := \sum_P (f, v_h)_{h,P} \quad \text{where} \quad (f, v_h)_{h,P} \approx \int_P f v \, dV.
 \]

2. For \(m > 1\) we consider the **orthogonal projection** of \(f\) onto the polynomials of degree \(m - 2\):
 \[
 f \approx c_0 1 + c_1 x + c_2 y + \ldots \in \mathbb{P}_{m-2}(P)
 \]

3. and use the moments of \(v\) to express the r.h.s. integral:
 \[
 \int_P f v \, dV \approx c_0 \int_P 1 v \, dV + c_1 \int_P x v \, dV + c_2 \int_P y v \, dV + \ldots
 \]
 \[
 = c_0 \hat{v}_{P,0} + c_1 \hat{v}_{P,1,x} + c_2 \hat{v}_{P,1,y} + \ldots
 \]
The linear functional \((f, \mathbf{v}_h)_h\)

High-order case \(m > 1\)

- Recall that

\[
(f, \mathbf{v}_h)_h := \sum_{P} (f, \mathbf{v}_h)_{h,P} \quad \text{where} \quad (f, \mathbf{v}_h)_{h,P} \approx \int_P f \mathbf{v} \, dV.
\]

- thus, for every cell \(P\) we define

\[
(f, \mathbf{v}_h)_{h,P} := \sum_j c_j \hat{\mathbf{v}}_{P,j} \quad \forall \mathbf{v}_h \in \mathcal{V}_h
\]

\[
f \approx c_0 1 + c_1 x + c_2 y + \ldots \in \mathbb{P}_{m-2}(P)
\]

\[
(c_j) \quad \text{projection coefficients}
\]

\[
\hat{\mathbf{v}}_j \quad \text{moments, degrees of freedom of } \mathbf{v}_h
\]

(The terms \(c_j \hat{\mathbf{v}}_{P,j}\) are conveniently renumbered).
Extension to 3D and variable coefficients

3D formulation

- The 3D conforming formulation should have degrees of freedom associated to vertices, edges, faces and cells: too many!
- For the 3D non-conforming formulation: we use moments on the faces and on the cells as for the VEM method.

Variable coefficients (conforming/non-conforming)

- Modified consistency condition.
 If $u \in \mathbb{P}_m(P)$ and $K(X)$ is variable in P:

$$\int_P K(x) \nabla u \cdot \nabla v \, dV \approx \int_P \Pi_{m-1}(K(x) \nabla u) \cdot \nabla v \, dV = \ldots$$

There exists a VEM counterpart using a modified projector $\tilde{\Pi} \nabla$.
Extension to 3D and variable coefficients

3D formulation

- The **3D conforming** formulation should have degrees of freedom associated to *vertices*, *edges*, *faces* and *cells*: too many!
- For the **3D non-conforming** formulation: we use moments on the *faces* and on the *cells* as for the VEM method.

Variable coefficients (conforming/non-conforming)

- Modified consistency condition.
 If \(u \in \mathbb{P}_m(P) \) and \(K(X) \) is variable in \(P \):

\[
\int_P K(x) \nabla u \cdot \nabla v \, dV \approx \int_P \Pi_{m-1}(K(x) \nabla u) \cdot \nabla v \, dV = \ldots
\]

There exists a VEM counterpart using a **modified projector** \(\tilde{\Pi} \nabla \).
3D formulation

- The **3D conforming** formulation should have degrees of freedom associated to *vertices*, *edges*, *faces* and *cells*: too many!
- For the **3D non-conforming** formulation: we use moments on the *faces* and on the *cells* as for the VEM method.

Variable coefficients (conforming/non-conforming)

- **Modified consistency condition.**
 If \(u \in \mathbb{P}_m(P) \) and \(K(X) \) is variable in \(P \):

 \[
 \int_P K(x) \nabla u \cdot \nabla v \, dV \approx \int_P \Pi_{m-1}(K(x) \nabla u) \cdot \nabla v \, dV = \ldots
 \]

 There exists a VEM counterpart using a **modified projector** \(\tilde{\Pi} \nabla \).
Building a bridge with the VEM

Conforming/non-conforming MFD, $m \leq 1$

- Let $\mathbf{N} = [1, \hat{N}], \mathbf{R} = [0, \hat{R}]$;

\[
\mathbf{N}^T \mathbf{R} = \begin{pmatrix}
0 & 0 \\
0 & \hat{N}^T \hat{R}
\end{pmatrix}
\quad \text{and} \quad
(\mathbf{N}^T \mathbf{R})^\dagger = \begin{pmatrix}
0 & 0 \\
0 & (\hat{N}^T \hat{R})^{-1}
\end{pmatrix}
\]

where $\hat{N}^T \hat{R}$ is symmetric and positive definite.

- Let $\mathbf{G} = -[|\mathbf{P}| \hat{N}^T \hat{R}]^{-\frac{1}{2}} \mathbf{R}^T$. Then,

\[
\mathbf{M}_0 = \mathbf{R}(\mathbf{N}^T \mathbf{R})^\dagger \mathbf{R}^T = \hat{R}(\hat{N}^T \hat{R})^{-1} \hat{R}^T = \mathbf{G}^T \mathbf{G} |\mathbf{P}|.
\]

- $\mathbf{G} u_{h,P} \approx -K \nabla u$ is the flux operator such that

\[
\mathbf{u}^T \mathbf{M}_0 \mathbf{v} = (\mathbf{G} u_{h,P})^T \mathbf{G} v_{h,P} |\mathbf{P}| \approx \int_{\mathbf{P}} K \nabla \nabla (u) \cdot \nabla \nabla (v) \, dV
\]
Building a bridge with the VEM

Conforming/non-conforming MFD, \(m \leq 1 \)

- Let \(N = [1, \hat{N}], \ R = [0, \hat{R}] \);

\[
N^T R = \begin{pmatrix} 0 & 0 \\ 0 & \hat{N}^T \hat{R} \end{pmatrix}
\quad \text{and} \quad
(N^T R)^\dagger = \begin{pmatrix} 0 & 0 \\ 0 & (\hat{N}^T \hat{R})^{-1} \end{pmatrix}
\]

where \(\hat{N}^T \hat{R} \) is symmetric and positive definite.

- Let \(G = -[|P| \hat{N}^T \hat{R}]^{-\frac{1}{2}} R^T \). Then,

\[
M_0 = R (N^T R)^\dagger R^T = \hat{R} (\hat{N}^T \hat{R})^{-1} \hat{R}^T = G^T G |P|.
\]

- \(G u_{h,P} \approx -K \nabla u \) is the flux operator such that

\[
u^T M_0 v = (G u_{h,P})^T G v_{h,P} |P| \approx \int_P K \nabla \nabla (u) \cdot \nabla \nabla (v) \, dV
\]
Building a bridge with the VEM
Conforming/non-conforming MFD, $m \leq 1$

- Let $N = [1, \hat{N}]$, $R = [0, \hat{R}]$;

$$N^T R = \begin{pmatrix} 0 & 0 \\ 0 & \hat{N}^T \hat{R} \end{pmatrix} \quad \text{and} \quad (N^T R)^\dagger = \begin{pmatrix} 0 & 0 \\ 0 & (\hat{N}^T \hat{R})^{-1} \end{pmatrix}$$

where $\hat{N}^T \hat{R}$ is symmetric and positive definite.

- Let $G = -[|P| \hat{N}^T \hat{R}]^{-\frac{1}{2}} R^T$. Then,

$$M_0 = R(N^T R)^\dagger R^T = \hat{R}(\hat{N}^T \hat{R})^{-1} \hat{R}^T = G^T G |P|.$$

- $G u_{h,P} \approx -K \nabla u$ is the flux operator such that

$$u^T M_0 v = (G u_{h,P})^T G v_{h,P} |P| \approx \int_P K \nabla \nabla (u) \cdot \nabla \nabla (v) \, dV$$
Building a bridge with the VEM

Similarities and differences:

For both the conforming and the non-conforming MFD and VEM formulations we can prove that:

- the **degrees of freedom** are the same;

- the **consistency** term is the same:
 - in the MFD setting it relates to an exactness property;
 - in the VEM setting it is the projection of the bilinear form on polynomials;

- the **stabilization** term of VEM forms a **subset** of those of MFD:
 - in the MFD setting it gives the proper rank of the stiffness matrix;
 - in the VEM setting it relates to the non-computable part of the bilinear form;

- the formulation is different: VEM has the advantage of being a FEM!
Building a bridge with the VEM

Similarities and differences:

For both the conforming and the non-conforming MFD and VEM formulations we can prove that:

- **the degrees of freedom** are the same;

- **the consistency** term is the same:
 - in the MFD setting it relates to an exactness property;
 - in the VEM setting it is the projection of the bilinear form on polynomials;

- **the stabilization** term of VEM forms a **subset** of those of MFD:
 - in the MFD setting it gives the proper rank of the stiffness matrix;
 - in the VEM setting it relates to the non-computable part of the bilinear form;

- the formulation is different: VEM has the advantage of being a FEM!
Building a bridge with the VEM

Similarities and differences:

For both the conforming and the non-conforming MFD and VEM formulations we can prove that:

- the **degrees of freedom** are the same;

- the **consistency** term is the same:
 - in the MFD setting it relates to an exactness property;
 - in the VEM setting it is the projection of the bilinear form on polynomials;

- the **stabilization** term of VEM forms a **subset** of those of MFD:
 - in the MFD setting it gives the proper rank of the stiffness matrix;
 - in the VEM setting it relates to the non-computable part of the bilinear form;

- the formulation is different: VEM has the advantage of being a FEM!
Building a bridge with the VEM

Similarities and differences:

For both the conforming and the non-conforming MFD and VEM formulations we can prove that:

- the **degrees of freedom** are the same;

- the **consistency** term is the same:
 - in the MFD setting it relates to an exactness property;
 - in the VEM setting it is the projection of the bilinear form on polynomials;

- the **stabilization** term of VEM forms a **subset** of those of MFD:
 - in the MFD setting it gives the proper rank of the stiffness matrix;
 - in the VEM setting it relates to the non-computable part of the bilinear form;

- the formulation is different: VEM has the advantage of being a FEM!
Building a bridge with the VEM

Similarities and differences:

For both the conforming and the non-conforming MFD and VEM formulations we can prove that:

- the **degrees of freedom** are the same;

- the **consistency** term is the same:
 - in the MFD setting it relates to an exactness property;
 - in the VEM setting it is the projection of the bilinear form on polynomials;

- the **stabilization** term of VEM forms a **subset** of those of MFD:
 - in the MFD setting it gives the proper rank of the stiffness matrix;
 - in the VEM setting it relates to the non-computable part of the bilinear form;

- the formulation is different: VEM has the advantage of being a FEM!
MFD and VEM: much more than a bridge!

For the Poisson equation (in primal form) we have:

- **Conforming MFD**
 - 2009 *low-order, 2D-3D*: Brezzi, Buffa, Lipnikov (M2AN);
 - 2011 *high-order, 2D*: Beirao da Veiga, Lipnikov, M. (SINUM);

- **Conforming VEM**
 - 2013 *any order, 2D*: ”volley” team (M3AS);

- **Non-conforming MFD**
 - 2014 *any order, 2D-3D*: Lipnikov, M., (JCP);

- **Non-conforming VEM**
A mesh-dependent norm

Conforming case

We consider the mesh-dependent norm

$$\| v_h \|_{1,h}^2 = \sum_{P \in \Omega_h} \| v_h \|_{1,h,P}^2$$

that mimics the \(| \cdot |_{1,\Omega} \) semi-norm;

- for the low-order method \((m = 1, d = 2, 3), e = (v', v'')\) being an edge,

$$\| v_h \|_{1,h,P}^2 = \| \text{GRAD}_h(v_h) \|_{h,P}^2 = h_P \sum_{e \in \partial P} | v_{v''} - v_v |^2 ;$$

- for the high-order method \((m > 1, d = 2), e = (v', v'')\) being an edge,

$$\| v_h \|_{1,h,P}^2 = h_P \sum_{e \in \partial P} \left\| \frac{\partial v_h}{\partial S} \right\|_{L^2(e)}^2 + \left[\text{"moments"} \right]$$
Convergence results

Conforming case

The **consistency** and the **stability** conditions allow us to determine a **family of mimetic schemes**:

- for the **low-order** method $m = 1$:
 \[
 \| u^I - u_h \|_{1,h} < Ch(|f|_{0,\Omega} + |u|_{1,\Omega} + |u|_{2,\Omega});
 \]
 \((\text{Brezzi, Buffa, Lipnikov, M2AN (2009)})\),

- for the **high-order** method $m > 1$:
 \[
 \| u^I - u_h \|_{1,h} < Ch^m \| u \|_{m+1,\Omega};
 \]
 \((\text{Beirao da Veiga, Lipnikov, M., SINUM (2011); VEM, Brezzi et. al. M3AS ("volley" paper)})\)

(For the non-conforming case refer to the talk of Blanca A.).
Conforming MFD method

Meshes with randomized quadrilaterals

- **Meshes:**

- **Exact solution:** \(u(x, y) = (x - e^{2(x-1)})(y^2 - e^{3(y-1)}) \)

- **Diffusion tensor**

\[
K = \begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
\]
Conforming MFD method

Randomized quadrilaterals, $||\cdot||_{1,h}$ errors, constant K

<table>
<thead>
<tr>
<th>n</th>
<th>h</th>
<th>$m = 2$</th>
<th>Rate</th>
<th>$m = 3$</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.922×10^{-1}</td>
<td>1.416×10^{-1}</td>
<td>$--$</td>
<td>7.454×10^{-2}</td>
<td>$--$</td>
</tr>
<tr>
<td>1</td>
<td>9.705×10^{-2}</td>
<td>2.441×10^{-2}</td>
<td>2.57</td>
<td>8.632×10^{-3}</td>
<td>3.15</td>
</tr>
<tr>
<td>2</td>
<td>4.838×10^{-2}</td>
<td>5.366×10^{-3}</td>
<td>2.18</td>
<td>1.536×10^{-3}</td>
<td>2.48</td>
</tr>
<tr>
<td>3</td>
<td>2.467×10^{-2}</td>
<td>1.399×10^{-3}</td>
<td>1.99</td>
<td>1.739×10^{-4}</td>
<td>3.23</td>
</tr>
<tr>
<td>4</td>
<td>1.263×10^{-2}</td>
<td>3.524×10^{-4}</td>
<td>2.06</td>
<td>2.227×10^{-5}</td>
<td>3.07</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n</th>
<th>h</th>
<th>$m = 4$</th>
<th>Rate</th>
<th>$m = 5$</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.922×10^{-1}</td>
<td>1.031×10^{-2}</td>
<td>$--$</td>
<td>4.567×10^{-3}</td>
<td>$--$</td>
</tr>
<tr>
<td>1</td>
<td>9.705×10^{-2}</td>
<td>1.690×10^{-3}</td>
<td>2.65</td>
<td>2.674×10^{-4}</td>
<td>4.15</td>
</tr>
<tr>
<td>2</td>
<td>4.838×10^{-2}</td>
<td>1.273×10^{-4}</td>
<td>3.71</td>
<td>1.336×10^{-5}</td>
<td>4.30</td>
</tr>
<tr>
<td>3</td>
<td>2.467×10^{-2}</td>
<td>8.279×10^{-6}</td>
<td>4.06</td>
<td>4.586×10^{-7}</td>
<td>5.01</td>
</tr>
<tr>
<td>4</td>
<td>1.263×10^{-2}</td>
<td>5.545×10^{-7}</td>
<td>4.04</td>
<td>$--$</td>
<td>$--$</td>
</tr>
</tbody>
</table>
Conforming MFD method

Meshes with non-convex polygons

- Meshes:

 \[\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \]

- Exact solution: \(u(x, y) = e^{-2\pi y} \sin(2\pi x) \)

- Diffusion tensor

 \[K = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad K(x, y) = \begin{pmatrix} (x + 1)^2 + y^2 & -xy \\ -xy & (x + 1)^2 \end{pmatrix} \]
Conforming MFD method
Non-convex polygons, $\| \cdot \|_1, h$ errors, constant K

<table>
<thead>
<tr>
<th>n</th>
<th>h</th>
<th>Error Rate</th>
<th>m = 2</th>
<th>Error Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.458×10^{-1}</td>
<td>2.858</td>
<td>1.007</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>7.289×10^{-2}</td>
<td>7.867</td>
<td>2.819</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3.644×10^{-2}</td>
<td>2.049</td>
<td>5.597</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.822×10^{-2}</td>
<td>5.289</td>
<td>8.897</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>m = 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error Rate</td>
</tr>
<tr>
<td>1.95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n</th>
<th>h</th>
<th>Error Rate</th>
<th>m = 4</th>
<th>Error Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.458×10^{-1}</td>
<td>1.943</td>
<td>2.282</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>7.289×10^{-2}</td>
<td>1.276</td>
<td>1.128</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3.644×10^{-2}</td>
<td>7.075</td>
<td>4.406</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.822×10^{-2}</td>
<td>3.950</td>
<td>4.16</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>m = 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error Rate</td>
</tr>
<tr>
<td>4.16</td>
</tr>
</tbody>
</table>

G. Manzini
Conforming MFD method
Non-convex polygons, $\| \cdot \|_{1,h}$ errors, non-constant K

$m = 2$

<table>
<thead>
<tr>
<th>n</th>
<th>h</th>
<th>Error</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.458×10^{-1}</td>
<td>3.007</td>
<td>--</td>
</tr>
<tr>
<td>1</td>
<td>7.289×10^{-2}</td>
<td>8.081</td>
<td>1.89</td>
</tr>
<tr>
<td>2</td>
<td>3.644×10^{-2}</td>
<td>2.071</td>
<td>1.96</td>
</tr>
<tr>
<td>3</td>
<td>1.822×10^{-2}</td>
<td>5.303</td>
<td>1.97</td>
</tr>
</tbody>
</table>

$m = 3$

<table>
<thead>
<tr>
<th>n</th>
<th>h</th>
<th>Error</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>9.873×10^{-1}</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>1</td>
<td>2.760×10^{-1}</td>
<td>1.84</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5.621×10^{-2}</td>
<td>2.29</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>9.083×10^{-3}</td>
<td>2.63</td>
<td></td>
</tr>
</tbody>
</table>

$m = 4$

<table>
<thead>
<tr>
<th>n</th>
<th>h</th>
<th>Error</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.458×10^{-1}</td>
<td>2.059</td>
<td>--</td>
</tr>
<tr>
<td>1</td>
<td>7.289×10^{-2}</td>
<td>1.367</td>
<td>3.92</td>
</tr>
<tr>
<td>2</td>
<td>3.644×10^{-2}</td>
<td>7.562</td>
<td>4.18</td>
</tr>
<tr>
<td>3</td>
<td>1.822×10^{-2}</td>
<td>4.210</td>
<td>4.17</td>
</tr>
</tbody>
</table>

$m = 5$

<table>
<thead>
<tr>
<th>n</th>
<th>h</th>
<th>Error</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.988×10^{-2}</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>1</td>
<td>1.016×10^{-3}</td>
<td>4.29</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3.924×10^{-5}</td>
<td>4.69</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
Non-conforming MFD method

Meshes with random hexahedra

- Meshes:

- Exact solution: \(u(x, y, z) = x^3 y^2 z + x \sin(2\pi xy) \sin(2\pi yz) \sin(2\pi z) \)

- Diffusion tensor

\[
K = \begin{pmatrix}
1 + y^2 + z^2 & -xy & -xz \\
-xz & 1 + x^2 + z^2 & -yz \\
-xy & -yz & 1 + x^2 + y^2
\end{pmatrix}
\]
Non-conforming MFD method

Meshes with random hexahedra

\[L^2(\Omega) \text{ relative error} \]

\[H^1(\Omega) \text{ relative error} \]

The error is given by \(u - \Pi_m^\nabla(u_h) \).
Conclusions

The conforming and non-conforming MFD methods are such that:

(i) the low-order formulation uses either vertex or edge values to represent linear polynomials; it works in 2-D and 3-D;

(ii) the high-order formulation uses edge nodal values and moments to represent m-degree polynomials; it works in 2-D and 3-D (only non-conforming).

(iii) a reformulation as finite element exists in the virtual element framework.

Possible future developments:

(i) more complex operators (+convection, +reaction);
(ii) exploit the strong connection with the VEM;
(iii) curved faces;
(iv) …
Conclusions

- The conforming and non-conforming MFD methods are such that:

 (i) the low-order formulation uses either vertex or edge values to represent linear polynomials; it works in 2-D and 3-D;

 (ii) the high-order formulation uses edge nodal values and moments to represent m-degree polynomials; it works in 2-D and 3-D (only non-conforming).

 (iii) a reformulation as finite element exists in the virtual element framework.

- Possible future developments:

 (i) more complex operators (+convection, +reaction);

 (ii) exploit the strong connection with the VEM;

 (iii) curved faces;

 (iv) …
A few references...

