Nonconforming mimetic methods for diffusion problems

Gianmarco Manzini

Joint collaborations with:
K. Lipnikov, M. Shashkov, V. Gyrya, D. Svyatskiy (LANL, New Mexico),
L. Beirao da Veiga, F. Brezzi, A. Cangiani, D. Marini, A. Russo ("volley" team),
A. Buffa (IMATI, Italy), B. Ayuso (KAUST, Saudi Arabia)

Durham, UK, 2014

Outline

1 The construction of an MFD method:

- meshes;
- degrees of freedom;
- approximation of the bilinear form;
- approximation of the loading term.

Consistency condition and degrees of freedom:
the conforming MFD formulation:
the non-conforming MFD formulation

Building a bridge with VEM.

Outline

1 The construction of an MFD method:

- meshes;
- degrees of freedom;
- approximation of the bilinear form;
- approximation of the loading term.

2. Consistency condition and degrees of freedom:

- the conforming MFD formulation;
- the non-conforming MFD formulation.

Building a bridge with VEM.

Convergence results and numerical experiments.

Outline

1 The construction of an MFD method:

- meshes;
- degrees of freedom;
- approximation of the bilinear form;
- approximation of the loading term.

2. Consistency condition and degrees of freedom:

- the conforming MFD formulation;
- the non-conforming MFD formulation.

3. Building a bridge with VEM.

Convergence results and numerical experiments.

Outline

1 The construction of an MFD method:

- meshes;
- degrees of freedom;
- approximation of the bilinear form;
- approximation of the loading term.

2. Consistency condition and degrees of freedom:

- the conforming MFD formulation;
- the non-conforming MFD formulation.

3. Building a bridge with VEM.
4. Convergence results and numerical experiments.

The linear diffusion problem

- Differential formulation:

$$
\begin{aligned}
-\operatorname{div}(\mathrm{K} \nabla u) & =f \\
& \text { in } \Omega \\
u & =g \\
& \text { on } \Gamma
\end{aligned}
$$

(this talk: constant K)

S. D. Poisson (1771-1840)

- Variational formulation:

Find $u \in H_{g}^{1}(\Omega)$ such that:

The linear diffusion problem

- Differential formulation:

$$
\begin{aligned}
-\operatorname{div}(\mathrm{K} \nabla u) & =f \text { in } \Omega, \\
u & =g \text { on } \Gamma,
\end{aligned}
$$

(this talk: constant K)

S. D. Poisson (1771-1840)

- Variational formulation:

Find $u \in H_{g}^{1}(\Omega)$ such that:

$$
\int_{\Omega} \mathrm{K} \nabla u \cdot \nabla v d V=\int_{\Omega} f v d V \quad \forall v \in H_{0}^{1}(\Omega)
$$

Scheme construction in five steps

Steps 1 and 2

1. We decompose Ω into a mesh Ω_{h} of polygons (2-D) or polyhedrons (3-D);

- admissible meshes may contain "crazy" cells (non-convex, "singular" as in AMR);
- we need some regularity assumptions to avoid pathological cases and perform the convergence analysis;
degrees of freedom: \mathcal{V}_{h}

$$
u, v \in H_{g}^{1}(\Omega) \cap C^{\alpha}(\bar{\Omega})
$$

Scheme construction in five steps

Steps 1 and 2

1. We decompose Ω into a mesh Ω_{h} of polygons (2-D) or polyhedrons (3-D);

- admissible meshes may contain "crazy" cells (non-convex, "singular" as in AMR);
- we need some regularity assumptions to avoid pathological cases and perform the convergence analysis;

2. degrees of freedom: \mathcal{V}_{h}

$$
u, v \in H_{g}^{1}(\Omega) \cap C^{\alpha}(\bar{\Omega}) \quad \longrightarrow \quad u_{h}, v_{h} \in \mathcal{V}_{h}, \quad \text { numbers! }
$$

(with $\alpha \geq 0$).

Scheme construction in five steps

Steps 3 and 4
3. bilinear form: $\mathcal{A}_{h}(\cdot, \cdot): \mathcal{V}_{h} \times \mathcal{V}_{h} \rightarrow \mathbb{R}$

$$
\mathcal{A}_{h}\left(u_{h}, v_{h}\right) \approx \int_{\Omega} \mathrm{K} \nabla u \cdot \nabla v d V
$$

it is built by "mimicking" a fundamental relation of calculus (integration by parts);
linear functional:

Scheme construction in five steps

Steps 3 and 4
3. bilinear form: $\mathcal{A}_{h}(\cdot, \cdot): \mathcal{V}_{h} \times \mathcal{V}_{h} \rightarrow \mathbb{R}$

$$
\mathcal{A}_{h}\left(u_{h}, v_{h}\right) \approx \int_{\Omega} \mathrm{K} \nabla u \cdot \nabla v d V
$$

it is built by "mimicking" a fundamental relation of calculus (integration by parts);
4. linear functional: $(f, \cdot)_{h}: \mathcal{V}_{h} \rightarrow \mathbb{R}$

$$
\left(f, v_{h}\right)_{h} \approx \int_{\Omega} f v d V
$$

MFD construction in five steps

Step 5
5. The variational formulation

Find $u \in H_{g}^{1}(\Omega)$ such that:

$$
\int_{\Omega} \mathrm{K} \nabla u \cdot \nabla v d V=\int_{\Omega} f v d V \quad \forall v \in H_{0}^{1}(\Omega)
$$

becomes the "mimetic variational" formulation:
Find $u_{h} \in \mathcal{V}_{h, g}$ such that:

MFD construction in five steps

Step 5

5. The variational formulation

Find $u \in H_{g}^{1}(\Omega)$ such that:

$$
\int_{\Omega} \mathrm{K} \nabla u \cdot \nabla v d V=\int_{\Omega} f v d V \quad \forall v \in H_{0}^{1}(\Omega)
$$

becomes the "mimetic variational" formulation:
Find $u_{h} \in \mathcal{V}_{h, g}$ such that:

$$
\mathcal{A}_{h}\left(u_{h}, v_{h}\right)=\left(f, v_{h}\right)_{h} \quad \forall v_{h} \in \mathcal{V}_{h, 0}
$$

Meshes: why polygonal/polyhedral?

- The meshes should be easily adaptable to the geometric characteristics of the domain, but also to the solution:
- non-conforming meshes (hanging nodes);
- (local) adaptive refinements (AMR);
- highly deformed cells;
- non-convex cells;
- curved faces;
- Growing interest to use them in scientific applications and commercial codes, SINTEF, CD-ADAPCO, ANSYS;

Meshes: why polygonal/polyhedral?

- The meshes should be easily adaptable to the geometric characteristics of the domain, but also to the solution:
- non-conforming meshes (hanging nodes);
- (local) adaptive refinements (AMR);
- highly deformed cells;
- non-convex cells;
- curved faces;
- Growing interest to use them in scientific applications and commercial codes, SINTEF, CD-ADAPCO, ANSYS;

Meshes: why polygonal/polyhedral?

- The meshes should be easily adaptable to the geometric characteristics of the domain, but also to the solution:
- non-conforming meshes (hanging nodes);
- (local) adaptive refinements (AMR);
- highly deformed cells;
- non-convex cells;
- curved faces;
- Growing interest to use them in scientific applications and commercial codes, SINTEF, CD-ADAPCO, ANSYS;

Meshes: why polygonal/polyhedral?

- The meshes should be easily adaptable to the geometric characteristics of the domain, but also to the solution:
- non-conforming meshes (hanging nodes);
- (local) adaptive refinements (AMR);
- highly deformed cells;
- non-convex cells;
- curved faces;
- Growing interest to use them in scientific applications and commercial codes, SINTEF, CD-ADAPCO, ANSYS;

Meshes: why polygonal/polyhedral?

- The meshes should be easily adaptable to the geometric characteristics of the domain, but also to the solution:
- non-conforming meshes (hanging nodes);
- (local) adaptive refinements (AMR);
- highly deformed cells;
- non-convex cells;
- curved faces;
- Growing interest to use them in scientific applications and commercial codes, SINTEF, CD-ADAPCO, ANSYS;

Meshes: why polygonal/polyhedral?

- The meshes should be easily adaptable to the geometric characteristics of the domain, but also to the solution:
- non-conforming meshes (hanging nodes);
- (local) adaptive refinements (AMR);
- highly deformed cells;
- non-convex cells;
- curved faces;
- Growing interest to use them in scientific applications and commercial codes, SINTEF, CD-ADAPCO, ANSYS;

Meshes: why polygonal/polyhedral?

- The meshes should be easily adaptable to the geometric characteristics of the domain, but also to the solution:
- non-conforming meshes (hanging nodes);
- (local) adaptive refinements (AMR);
- highly deformed cells;
- non-convex cells;
- curved faces;
- Growing interest to use them in scientific applications and commercial codes, SINTEF, CD-ADAPCO, ANSYS;

Meshes: academic examples

Examples: convex and non-convex polygonal cells

Meshes: academic examples

Examples: randomized quads and Adaptive Mesh Refinements (AMR)

Meshes: academic examples

Examples: locally refined, prismatic and random hexahedral meshes

Construction of $\mathcal{A}_{h}\left(u_{h}, v_{h}\right)$

- $\mathcal{A}_{h}\left(u_{h}, v_{h}\right)$ must be

- symmetric, bounded and semi-positive;

- Iocally definad through an assambly process (like FEM):

where $u_{h, \mathrm{P}}=u_{h \mid \mathrm{P}}, v_{h, \mathrm{P}}=v_{h \mid \mathrm{P}} ;$

Construction of $\mathcal{A}_{h}\left(u_{h}, v_{h}\right)$

- $\mathcal{A}_{h}\left(u_{h}, v_{h}\right)$ must be
- symmetric, bounded and semi-positive;
- Iocally defined through an assembly process (like FEM):

where $u_{h, \mathrm{P}}=u_{h \mid \mathrm{P}}, v_{h, \mathrm{P}}=v_{h \mid \mathrm{P}} ;$
- Any $\mathcal{A}_{h, \mathrm{P}}\left(u_{h, \mathrm{P}}, v_{h, \mathrm{P}}\right)$ must be a local approximation:

Construction of $\mathcal{A}_{h}\left(u_{h}, v_{h}\right)$

- $\mathcal{A}_{h}\left(u_{h}, v_{h}\right)$ must be
- symmetric, bounded and semi-positive;
- locally defined through an assembly process (like FEM):

$$
\mathcal{A}_{h}\left(u_{h}, v_{h}\right)=\sum_{\mathrm{P}} \mathcal{A}_{h, \mathrm{P}}\left(u_{h, \mathrm{P}}, v_{h, \mathrm{P}}\right)
$$

where $u_{h, \mathrm{P}}=u_{h \mid \mathrm{P}}, v_{h, \mathrm{P}}=v_{h \mid \mathrm{P}}$;

Construction of $\mathcal{A}_{h}\left(u_{h}, v_{h}\right)$

- $\mathcal{A}_{h}\left(u_{h}, v_{h}\right)$ must be
- symmetric, bounded and semi-positive;
- locally defined through an assembly process (like FEM):

$$
\mathcal{A}_{h}\left(u_{h}, v_{h}\right)=\sum_{\mathrm{P}} \mathcal{A}_{h, \mathrm{P}}\left(u_{h, \mathrm{P}}, v_{h, \mathrm{P}}\right)
$$

where $u_{h, \mathrm{P}}=u_{h \mid \mathrm{P}}, v_{h, \mathrm{P}}=v_{h \mid \mathrm{P}}$;

- Any $\mathcal{A}_{h, \mathrm{P}}\left(u_{h, \mathrm{P}}, v_{h, \mathrm{P}}\right)$ must be a local approximation:

$$
\forall \mathrm{P} \in \Omega_{h}: \quad \mathcal{A}_{h, \mathrm{P}}\left(u_{h, \mathrm{P}}, v_{h, \mathrm{P}}\right) \approx \int_{\mathrm{P}} \mathrm{~K} \nabla u \cdot \nabla v d V .
$$

Construction of $\mathcal{A}_{h}\left(u_{h}, v_{h}\right)$: consistency and stability

- PROBLEM: in MFD we do not have an approximation space (as in FEM, DG, VEM, etc)... only degrees of freedom!

Stability: well-posedness property \rightarrow continuity and coercivity There exist two constants $\sigma_{\star}, \sigma^{\star}$ such that (for some suitable norm $\|\cdot\|_{1, h, \mathrm{P}}$ which mimics the energy norm on P)

Construction of $\mathcal{A}_{h}\left(u_{h}, v_{h}\right)$: consistency and stability

- PROBLEM: in MFD we do not have an approximation space (as in FEM, DG, VEM, etc)... only degrees of freedom!
- Consistency: exactness property on polynomials \rightarrow accuracy Let $u, v \in \mathbb{P}_{k}(\mathrm{P}), u_{h, \mathrm{P}}, v_{h, \mathrm{P}}$ their dofs:

$$
\mathcal{A}_{h, \mathrm{P}}\left(u_{h, \mathrm{P}}, v_{h, \mathrm{P}}\right)=\int_{\mathrm{P}} \mathrm{~K} \nabla u \cdot \nabla v d V
$$

- Stability: well-posedness property \rightarrow continuity and coercivity There exist two constants $\sigma_{\star}, \sigma^{*}$ such that (for some suitable norm \|. \| $\|_{1, h, \mathrm{P}}$ which mimics the energy norm on P)

Construction of $\mathcal{A}_{h}\left(u_{h}, v_{h}\right)$: consistency and stability

- PROBLEM: in MFD we do not have an approximation space (as in FEM, DG, VEM, etc)... only degrees of freedom!
- Consistency: exactness property on polynomials \rightarrow accuracy Let $u, v \in \mathbb{P}_{k}(\mathrm{P}), u_{h, \mathrm{P}}, v_{h, \mathrm{P}}$ their dofs:

$$
\mathcal{A}_{h, \mathrm{P}}\left(u_{h, \mathrm{P}}, v_{h, \mathrm{P}}\right)=\int_{\mathrm{P}} \mathrm{~K} \nabla u \cdot \nabla v d V .
$$

- Stability: well-posedness property \rightarrow continuity and coercivity There exist two constants $\sigma_{\star}, \sigma^{\star}$ such that

$$
\sigma_{\star}\left\|v_{h, \mathrm{P}}\right\|_{1, h, \mathrm{P}}^{2} \leq \mathcal{A}_{h, \mathrm{P}}\left(v_{h, \mathrm{P}}, v_{h, \mathrm{P}}\right) \leq \sigma^{\star}\left\|v_{h, \mathrm{P}}\right\|_{1, h, \mathrm{P}}^{2}
$$

(for some suitable norm $\|\cdot\|_{1, h, P}$ which mimics the energy norm on P)

Low order: towards a local consistency condition

 The low-order setting, $m=1, d=2$Let K be constant on P . We integrate by parts on the polygonal cell P.

- IF u is a linear polynomial on $P \Longrightarrow K \nabla u$ is a constant vector;

THEN

$$
\int_{\mathrm{P}} \mathrm{~K} \nabla u \cdot \nabla v d V=-\underbrace{\int_{\mathrm{P}} \operatorname{div}(\mathrm{~K} \nabla u) v d V}_{\text {equal to zero! }}+\sum_{\mathrm{e} \in \partial \mathrm{P}} \underbrace{\mathrm{~K} \nabla u \cdot \mathbf{n}_{\mathrm{P}, \mathrm{e}}}_{\text {constant }} \int_{\mathrm{e}} v d S
$$

THUS,

$$
\int_{\mathrm{P}} \mathrm{~K} \nabla u \cdot \nabla v d V=\sum_{\mathrm{e} \in \partial \mathrm{P}} \mathrm{~K} \nabla u \cdot \mathbf{n}_{\mathrm{P}, \mathrm{e}} \int_{\mathrm{e}} v d S .
$$

The local consistency condition: two options

The low-order setting, $m=1, d=2$

1. we use a numerical integration rule on each edge $e=\left(v^{\prime}, v^{\prime \prime}\right)$, we require the exactness for linear polynomials:

$$
\sum_{\mathrm{e} \in \partial \mathrm{P}} \mathrm{~K} \nabla u \cdot \mathbf{n}_{\mathrm{P}, \mathrm{e}} \int_{\mathrm{e}} v d S \approx \sum_{\mathrm{e} \in \partial \mathrm{P}} \mathrm{~K} \nabla u \cdot \mathbf{n}_{\mathrm{P}, \mathrm{e}} \underbrace{\mathrm{e} \left\lvert\, \frac{v\left(\mathbf{x}_{\mathrm{v}^{\prime}}\right)+v\left(\mathbf{x}_{\mathrm{v}^{\prime \prime}}\right)}{2}\right.}_{\text {trapezoidal rule }}
$$

2. we introduce the 0 -th order moment of v as a degree of freedom: where:

The local consistency condition: two options

The low-order setting, $m=1, d=2$

1. we use a numerical integration rule on each edge $e=\left(v^{\prime}, v^{\prime \prime}\right)$, we require the exactness for linear polynomials:

$$
\sum_{\mathrm{e} \in \partial \mathrm{P}} \mathrm{~K} \nabla u \cdot \mathbf{n}_{\mathrm{P}, \mathrm{e}} \int_{\mathrm{e}} v d S \approx \sum_{\mathrm{e} \in \partial \mathrm{P}} \mathrm{~K} \nabla u \cdot \mathbf{n}_{\mathrm{P}, \mathrm{e}} \underbrace{|\mathrm{e}| \frac{v\left(\mathbf{x}_{\mathrm{V}^{\prime}}\right)+v\left(\mathbf{x}_{\mathrm{v}^{\prime \prime}}\right)}{2}}_{\text {trapezoidal rule }}
$$

2. we introduce the 0 -th order moment of v as a degree of freedom:

$$
\sum_{\mathrm{e} \in \partial \mathrm{P}} \mathrm{~K} \nabla u \cdot \mathbf{n}_{\mathrm{P}, \mathrm{e}} \int_{\mathrm{e}} v d S=\sum_{\mathrm{e} \in \partial \mathrm{P}} \mathrm{~K} \nabla u \cdot \mathbf{n}_{\mathrm{P}, \mathrm{e}}|\mathrm{e}| \mu_{\mathrm{e}, 0}(v)
$$

where:

$$
\mu_{\mathrm{e}, 0}(v)=\frac{1}{|\mathrm{e}|} \int_{\mathrm{e}} v d S .
$$

1. Conforming mimetic discretization

The low-order setting, $m=1, d=2$

1. According to

$$
\sum_{\mathrm{e} \in \partial \mathrm{P}} \mathrm{~K} \nabla u \cdot \mathbf{n}_{\mathrm{P}, \mathrm{e}} \int_{\mathrm{e}} v d S \approx \sum_{\mathrm{e} \in \partial \mathrm{P}} \mathrm{~K} \nabla u \cdot \mathbf{n}_{\mathrm{P}, \mathrm{e}}|\mathrm{e}| \frac{v\left(\mathbf{x}_{\mathrm{V}^{\prime}}\right)+v\left(\mathbf{x}_{\mathrm{v}^{\prime \prime}}\right)}{2}
$$

we require that

$$
\mathcal{A}_{h, \mathrm{P}}\left(u_{h, \mathrm{P}}, v_{h, \mathrm{P}}\right)=\sum_{\mathrm{e} \in \partial \mathrm{P}} \mathrm{~K} \nabla u \cdot \mathbf{n}_{\mathrm{P}, \mathrm{e}}|\mathrm{e}| \frac{v_{\mathrm{v}^{\prime}}+v_{\mathrm{v}^{\prime \prime}}}{2}
$$

when

- $u_{h, \mathrm{P}}$ is a discrete representation of the linear polynomial u on P;
- $v_{\mathrm{v}^{\prime}}, v_{\mathrm{v}^{\prime \prime}}$ are the degrees of freedom of $v_{h, \mathrm{P}}$ at $\mathrm{v}^{\prime}, \mathrm{v}^{\prime \prime}$.

The dofs represent the vertex values of $u_{h, \mathrm{P}}, v_{h, \mathrm{P}}$

2. Non-conforming mimetic discretization

The low-order setting, $m=1, d=2$
2. As $|\mathrm{e}| \mu_{\mathrm{e}, 0}(v)=\int_{\mathrm{e}} v d S$, and according to:

$$
\sum_{\mathrm{e} \in \partial \mathrm{P}} \mathrm{~K} \nabla u \cdot \mathbf{n}_{\mathrm{P}, \mathrm{e}} \int_{\mathrm{e}} v d S=\sum_{\mathrm{e} \in \partial \mathrm{P}} \mathrm{~K} \nabla u \cdot \mathbf{n}_{\mathrm{P}, \mathrm{e}}|\mathrm{e}| \mu_{\mathrm{e}, 0}(v)
$$

we require that

$$
\mathcal{A}_{h, \mathrm{P}}\left(u_{h, \mathrm{P}}, v_{h, \mathrm{P}}\right)=\sum_{\mathrm{e} \in \partial \mathrm{P}} \mathrm{~K} \nabla u \cdot \mathbf{n}_{\mathrm{P}, \mathrm{e}}|\mathrm{e}| v_{\mathrm{e}, 0}
$$

when

- $u_{h, \mathrm{P}}$ is a discrete representation of the linear polynomial u on P ;
- $v_{\mathrm{e}, 0}$ is the degree of freedom of $v_{h, \mathrm{P}}$ associated with edge e .

The dofs represent the zero-th order moments of $u_{h, \mathrm{P},} v_{h, \mathrm{P}}$

Algebraic consistency: matrices \mathbb{N} and \mathbb{R}

Low order setting, $m=1, d=2$

- basis of $\mathbb{P}_{1}(P)=\left\{1,\left(x-x_{P}\right),\left(y-y_{P}\right)\right\}=\left\{u_{1}, u_{2}, u_{3}\right\}$ $\left(\left(x_{P}, y_{P}\right)\right.$ is the barycenter of $\left.P\right)$

Algebraic consistency: matrices \mathbb{N} and \mathbb{R}

Low order setting, $m=1, d=2$

- basis of $\mathbb{P}_{1}(P)=\left\{1,\left(x-x_{P}\right),\left(y-y_{P}\right)\right\}=\left\{u_{1}, u_{2}, u_{3}\right\}$ ($\left(x_{\mathrm{P}}, y_{\mathrm{P}}\right)$ is the barycenter of P)
- matrix \mathbb{N} : degrees of freedom of the polynomial basis:

Algebraic consistency: matrices \mathbb{N} and \mathbb{R}

Low order setting, $m=1, d=2$

- basis of $\mathbb{P}_{1}(P)=\left\{1,\left(x-x_{P}\right),\left(y-y_{P}\right)\right\}=\left\{u_{1}, u_{2}, u_{3}\right\}$ ($\left(x_{\mathrm{P}}, y_{\mathrm{P}}\right)$ is the barycenter of P)
- matrix \mathbb{N} : degrees of freedom of the polynomial basis:

$$
\mathbb{N}=\left(\begin{array}{ccc}
1 & \left(x_{1}-x_{P}\right) & \left(y_{1}-y_{P}\right) \\
1 & \left(x_{2}-x_{P}\right) & \left(y_{2}-y_{P}\right) \\
\vdots & \vdots & \vdots \\
1 & \left(x_{m}-x_{P}\right) & \left(y_{m}-y_{P}\right)
\end{array}\right)
$$

Algebraic consistency: matrices \mathbb{N} and \mathbb{R}

Low order setting, $m=1, d=2$

- basis of $\mathbb{P}_{1}(P)=\left\{1,\left(x-x_{P}\right),\left(y-y_{P}\right)\right\}=\left\{u_{1}, u_{2}, u_{3}\right\}$ ($\left(x_{\mathrm{P}}, y_{\mathrm{P}}\right)$ is the barycenter of P)
- matrix \mathbb{N} : degrees of freedom of the polynomial basis:

$$
\mathbb{N}=\left(\begin{array}{ccc}
1 & \left(x_{1}-x_{\mathrm{P}}\right) & \left(y_{1}-y_{\mathrm{P}}\right) \\
1 & \left(x_{2}-x_{\mathrm{P}}\right) & \left(y_{2}-y_{\mathrm{P}}\right) \\
\vdots & \vdots & \vdots \\
1 & \left(x_{m}-x_{\mathrm{P}}\right) & \left(y_{m}-y_{\mathrm{P}}\right)
\end{array}\right)
$$

Algebraic consistency: matrices \mathbb{N} and \mathbb{R}

Low order setting, $m=1, d=2$

- basis of $\mathbb{P}_{1}(P)=\left\{1,\left(x-x_{P}\right),\left(y-y_{P}\right)\right\}=\left\{u_{1}, u_{2}, u_{3}\right\}$ ($\left(x_{\mathrm{P}}, y_{\mathrm{P}}\right)$ is the barycenter of P)
- matrix \mathbb{N} : degrees of freedom of the polynomial basis:

$$
\mathbb{N}=\left(\begin{array}{ccc}
1 & \left(x_{1}-x_{\mathrm{P}}\right) & \left(y_{1}-y_{\mathrm{P}}\right) \\
1 & \left(x_{2}-x_{\mathrm{P}}\right) & \left(y_{2}-y_{\mathrm{P}}\right) \\
\vdots & \vdots & \vdots \\
1 & \left(x_{m}-x_{\mathrm{P}}\right) & \left(y_{m}-y_{\mathrm{P}}\right)
\end{array}\right)
$$

Algebraic consistency: matrices \mathbb{N} and \mathbb{R}

Low order setting, $m=1, d=2$

- basis of $\mathbb{P}_{1}(P)=\left\{1,\left(x-x_{P}\right),\left(y-y_{P}\right)\right\}=\left\{u_{1}, u_{2}, u_{3}\right\}$ ($\left(x_{\mathrm{P}}, y_{\mathrm{P}}\right)$ is the barycenter of P)
- matrix \mathbb{N} : degrees of freedom of the polynomial basis:

$$
\mathbb{N}=\left(\begin{array}{ccc}
1 & \left(x_{1}-x_{\mathrm{P}}\right) & \left(y_{1}-y_{\mathrm{P}}\right) \\
1 & \left(x_{2}-x_{\mathrm{P}}\right) & \left(y_{2}-y_{\mathrm{P}}\right) \\
\vdots & \vdots & \vdots \\
1 & \left(x_{m}-x_{\mathrm{P}}\right) & \left(y_{m}-y_{\mathrm{P}}\right)
\end{array}\right)
$$

- matrix \mathbb{R} : integration-by-parts for the polynomials u_{i} :

$$
\mathcal{A}_{h, \mathrm{P}}\left(u_{i h, \mathrm{P}}, v_{h, \mathrm{P}}\right)=\sum_{\mathrm{f} \in \mathrm{P}} \mathrm{~K} \nabla u_{i} \cdot \mathbf{n}_{\mathrm{P}, \mathrm{e}} \int_{\mathrm{e}} v d S=\mathbf{v}^{\boldsymbol{T}} \mathbb{R}_{i}
$$

Algebraic consistency: $\mathbb{M} \mathbb{N}=\mathbb{R}$

Low order setting, $m=1, d=2$

RECALL THAT

$$
\mathcal{A}_{h, \mathrm{P}}\left(u_{i h, \mathrm{P}}, v_{h, \mathrm{P}}\right)=\sum_{\mathrm{f} \in \mathrm{P}} \mathrm{~K} \nabla u_{i} \cdot \mathbf{n}_{\mathrm{P}, \mathrm{e}} \int_{\mathrm{e}} v d S=\mathbf{v}^{T} \mathbb{R}_{i}
$$

Algebraic consistency: $\mathbb{M} \mathbb{N}=\mathbb{R}$

Low order setting, $m=1, d=2$

RECALL THAT

$$
\mathcal{A}_{h, \mathrm{P}}\left(u_{i h, \mathrm{P}}, v_{h, \mathrm{P}}\right)=\sum_{\mathrm{f} \in \mathrm{P}} \mathrm{~K} \nabla u_{i} \cdot \mathbf{n}_{\mathrm{P}, \mathrm{e}} \int_{\mathrm{e}} v d S=\mathbf{v}^{T} \mathbb{R}_{i}
$$

SINCE

$$
\mathcal{A}_{h, \mathrm{P}}\left(u_{i h, \mathrm{P}}, v_{h, \mathrm{P}}\right)=\mathbf{v}^{\boldsymbol{T}} \mathbb{M} \mathbb{N}_{i}
$$

Algebraic consistency: $\mathbb{M} \mathbb{N}=\mathbb{R}$

Low order setting, $m=1, d=2$

RECALL THAT

$$
\mathcal{A}_{h, \mathrm{P}}\left(u_{i h, \mathrm{P}}, v_{h, \mathrm{P}}\right)=\sum_{\mathrm{f} \in \mathrm{P}} \mathrm{~K} \nabla u_{i} \cdot \mathbf{n}_{\mathrm{P}, \mathrm{e}} \int_{\mathrm{e}} v d S=\mathbf{v}^{T} \mathbb{R}_{i}
$$

SINCE

$$
\mathcal{A}_{h, \mathrm{P}}\left(u_{i h, \mathrm{P}}, v_{h, \mathrm{P}}\right)=\mathbf{v}^{\boldsymbol{T}} \mathbb{M} \mathbb{N}_{i}
$$

THEN

$$
\mathbb{M} \mathbb{N}_{i}=\mathbb{R}_{i} \quad i=1,2,3
$$

Algebraic consistency: $\mathbb{M} \mathbb{N}=\mathbb{R}$

Low order setting, $m=1, d=2$

RECALL THAT

$$
\mathcal{A}_{h, \mathrm{P}}\left(u_{i h, \mathrm{P}}, v_{h, \mathrm{P}}\right)=\sum_{\mathrm{f} \in \mathrm{P}} \mathrm{~K} \nabla u_{i} \cdot \mathbf{n}_{\mathrm{P}, \mathrm{e}} \int_{\mathrm{e}} v d S=\mathbf{v}^{T} \mathbb{R}_{i}
$$

SINCE

$$
\mathcal{A}_{h, \mathrm{P}}\left(u_{i h, \mathrm{P}}, v_{h, \mathrm{P}}\right)=\mathbf{v}^{\boldsymbol{T}} \mathbb{M} \mathbb{N}_{i}
$$

THEN

$$
\mathbb{M} \mathbb{N}_{i}=\mathbb{R}_{i} \quad i=1,2,3
$$

EQUIVALENTLY,

$$
\mathbb{M} \mathbb{N}=\mathbb{R}
$$

Algebraic consistency: $\mathbb{M} \mathbb{N}=\mathbb{R}$

Low order setting, $m=1$

- The formula $\mathbb{M} \mathbb{N}=\mathbb{R}$ is ubiquitous in the MFD method.
- Also,

$$
\mathbb{N}^{T} \mathbb{R}_{1 j}=\int_{\mathrm{P}} \mathrm{~K} \nabla u_{i} \cdot \nabla u_{j} d V \quad \text { where } \quad u_{i}, u_{j} \in\left\{1, x-x_{\mathrm{P}}, y-y_{\mathrm{P}}\right\}
$$

- The (one-parameter) formula for the stiffness matrix:

$$
\mathbb{M}=\underbrace{\mathbb{R}\left(\mathbb{N}^{T} \mathbb{R}\right)^{\dagger} \mathbb{R}^{T}}_{\mathbb{M} \mathbb{N}=\mathbb{R}}+\underbrace{\mu\left(\mathbb{I}-\mathbb{N}\left(\mathbb{N}^{T} \mathbb{N}\right)^{-1} \mathbb{N}^{T}\right)}_{\text {stability }} \mathbb{M}_{0}+\mathbb{M}_{1}
$$

The second term depends on the parameter μ and gives a (one-parameter) family of methods.

The stiffness matrix formula

The formula for the stiffness matrix:

$$
\mathbb{M}=\underbrace{\mathbb{R}\left(\mathbb{N}^{T} \mathbb{R}\right)^{\dagger} \mathbb{R}^{T}}_{\mathbb{M} \mathbb{N}=\mathbb{R}}+\underbrace{\mu\left(\mathbb{I}-\mathbb{N}\left(\mathbb{N}^{T} \mathbb{N}\right)^{-1} \mathbb{N}^{T}\right)}_{\text {stability }}=\mathbb{M}_{0}+\mathbb{M}_{1}
$$

Remarks:

- The consistency term \mathbb{M}_{0} is responsible of the accuracy of the method.
- The stability term \mathbb{M}_{1} ensures the well-posedness of the method.
- The bilinear form $\mathcal{A}_{h, \mathrm{P}}$ contains a stabilization term that depends on a set of parameters \Rightarrow family of schemes!
- Both terms can be given the same (algebraic) form of the corresponding terms in the VEM.

The stiffness matrix formula

The formula for the stiffness matrix:

$$
\mathbb{M}=\underbrace{\mathbb{R}\left(\mathbb{N}^{T} \mathbb{R}\right)^{\dagger} \mathbb{R}^{T}}_{\mathbb{M} \mathbb{N}=\mathbb{R}}+\underbrace{\mu\left(\mathbb{I}-\mathbb{N}\left(\mathbb{N}^{T} \mathbb{N}\right)^{-1} \mathbb{N}^{T}\right)}_{\text {stability }}=\mathbb{M}_{0}+\mathbb{M}_{1}
$$

Remarks:

- The consistency term \mathbb{M}_{0} is responsible of the accuracy of the method.
- The stability term \mathbb{M}_{1} ensures the well-posedness of the method.
- The bilinear form $\mathcal{A}_{h, \mathrm{P}}$ contains a stabilization term that depends on a set of parameters \Rightarrow family of schemes!
- Both terms can be given the same (algebraic) form of the corresponding terms in the VEM.

The stiffness matrix formula

The formula for the stiffness matrix:

$$
\mathbb{M}=\underbrace{\mathbb{R}\left(\mathbb{N}^{T} \mathbb{R}\right)^{\dagger} \mathbb{R}^{T}}_{\mathbb{M} \mathbb{N}=\mathbb{R}}+\underbrace{\mu\left(\mathbb{I}-\mathbb{N}\left(\mathbb{N}^{T} \mathbb{N}\right)^{-1} \mathbb{N}^{T}\right)}_{\text {stability }}=\mathbb{M}_{0}+\mathbb{M}_{1}
$$

Remarks:

- The consistency term \mathbb{M}_{0} is responsible of the accuracy of the method.
- The stability term \mathbb{M}_{1} ensures the well-posedness of the method.
- The bilinear form $\mathcal{A}_{h, \mathrm{P}}$ contains a stabilization term that depends on a set of parameters \Rightarrow family of schemes!
- Both terms can be given the same (algebraic) form of the corresponding terms in the VEM.

The stiffness matrix formula

The formula for the stiffness matrix:

$$
\mathbb{M}=\underbrace{\mathbb{R}\left(\mathbb{N}^{T} \mathbb{R}\right)^{\dagger} \mathbb{R}^{T}}_{\mathbb{M} \mathbb{N}=\mathbb{R}}+\underbrace{\mu\left(\mathbb{I}-\mathbb{N}\left(\mathbb{N}^{T} \mathbb{N}\right)^{-1} \mathbb{N}^{T}\right)}_{\text {stability }}=\mathbb{M}_{0}+\mathbb{M}_{1}
$$

Remarks:

- The consistency term \mathbb{M}_{0} is responsible of the accuracy of the method.
- The stability term \mathbb{M}_{1} ensures the well-posedness of the method.
- The bilinear form $\mathcal{A}_{h, \mathrm{P}}$ contains a stabilization term that depends on a set of parameters \Rightarrow family of schemes!
- Both terms can be given the same (algebraic) form of the corresponding terms in the VEM.

Three-dimensional case: conforming MFD

The low-order setting, $m=1, d=3$

- Recall that $v_{h \mid v}:=v_{v} \approx v\left(\mathbf{x}_{\mathrm{v}^{\prime}}\right)$ and

$$
\int_{\mathrm{P}} \mathrm{~K} \nabla u \cdot \nabla v d V=\sum_{\mathrm{f} \in \partial \mathrm{P}} \mathrm{~K} \nabla u \cdot \mathbf{n}_{\mathrm{P}, \mathrm{f}} \int_{\mathrm{f}} v d S
$$

- we assume that there exists a quadrature rule $\left\{\left(\mathbf{x}_{\mathrm{f}, \mathrm{v}}, \omega_{\mathrm{f}, \mathrm{v}}\right)_{\mathrm{v} \in \partial \mathrm{f}}\right\}$ on each face $f \in \partial P$ such that

$$
\int_{f} v d S \approx \sum_{v \in \partial f} \omega_{f, v} v\left(\mathbf{x}_{f, v}\right)
$$

is exact when v is a linear polynomial;

- we require that for every linear polynomial u and every discrete field v_{h} the bilinear form satisfies

$$
\mathcal{A}_{h, \mathrm{P}}\left(u_{h, \mathrm{P}}, v_{h, \mathrm{P}}\right):=\sum_{\mathrm{f} \in \partial \mathrm{P}} \mathrm{~K} \nabla u \cdot \mathbf{n}_{\mathrm{P}, \mathrm{f}} \sum_{\mathrm{v} \in \partial \mathrm{f}} \omega_{\mathrm{f}, \mathrm{v}} v_{\mathrm{v}} \quad\left[v_{\mathrm{v}} \text { represents } v\left(\mathbf{x}_{\mathrm{f}, \mathrm{v}}\right)\right]
$$

Three-dimensional case: non-conforming MFD

The low-order setting, $m=1, d=3$
Let K be constant on P, u a linear polynomial, and integrate by parts.

- We use the 0-th order moment of v as a degree of freedom:

$$
\int_{\mathrm{P}} \mathrm{~K} \nabla u \cdot \nabla v d V=\sum_{\mathrm{f} \in \partial \mathrm{P}} \mathrm{~K} \nabla u \cdot \mathbf{n}_{\mathrm{P}, \mathrm{f}} \int_{\mathrm{f}} v d S=\sum_{\mathrm{f} \in \partial \mathrm{P}} \mathrm{~K} \nabla u \cdot \mathbf{n}_{\mathrm{P}, \mathrm{e}}|\mathrm{e}| \mu_{\mathrm{f}, 0}(v)
$$

where:

$$
\mu_{\mathrm{f}, 0}(v)=\frac{1}{|f|} \int_{\mathrm{f}} v d S .
$$

- The local consistency condition is:

$$
\begin{aligned}
& \mathcal{A}_{h, \mathrm{P}}\left(u_{h, \mathrm{P}}, v_{h, \mathrm{P}}\right)=\sum_{\mathrm{f} \in \partial \mathrm{P}} \mathrm{~K} \nabla u \cdot \mathbf{n}_{\mathrm{P}, \mathrm{e}}|\mathrm{f}| v_{\mathrm{f}, 0} \quad\left[v_{\mathrm{f}, 0} \text { represents } \mu_{\mathrm{f}, 0}(v)\right] \\
& \text { For both formulations, we do the same as in } 2 \mathrm{D}!
\end{aligned}
$$

Three-dimensional case: non-conforming MFD

The low-order setting, $m=1, d=3$
Let K be constant on P, u a linear polynomial, and integrate by parts.

- We use the 0-th order moment of v as a degree of freedom:

$$
\int_{\mathrm{P}} \mathrm{~K} \nabla u \cdot \nabla v d V=\sum_{\mathrm{f} \in \partial \mathrm{P}} \mathrm{~K} \nabla u \cdot \mathbf{n}_{\mathrm{P}, \mathrm{f}} \int_{\mathrm{f}} v d S=\sum_{\mathrm{f} \in \partial \mathrm{P}} \mathrm{~K} \nabla u \cdot \mathbf{n}_{\mathrm{P}, \mathrm{e}}|\mathrm{e}| \mu_{\mathrm{f}, 0}(v)
$$

where:

$$
\mu_{\mathrm{f}, 0}(v)=\frac{1}{|f|} \int_{\mathrm{f}} v d S .
$$

- The local consistency condition is:

$$
\mathcal{A}_{h, \mathrm{P}}\left(u_{h, \mathrm{P}}, v_{h, \mathrm{P}}\right)=\sum_{\mathrm{f} \in \partial \mathrm{P}} \mathrm{~K} \nabla u \cdot \mathbf{n}_{\mathrm{P}, \mathrm{e}}|\mathrm{f}| v_{\mathrm{f}, 0} \quad\left[v_{\mathrm{f}, 0} \text { represents } \mu_{\mathrm{f}, 0}(v)\right]
$$

For both formulations, we do the same as in 2D!

Summarizing the low-order formulation:

Low order setting, $m=1$

- Degrees of freedom:

Conforming MFD

Non-conforming MFD

- exactness for linear polynomials;
- both 2D and 3D formulations are available (same dofs);
- we only need to implement \mathbb{N} and \mathbb{R} and apply the stiffness matrix formula for \mathbb{M}.

Summarizing the low-order formulation:

Low order setting, $m=1$

- Degrees of freedom:

Conforming MFD

Non-conforming MFD

- exactness for linear polynomials;
- both 2D and 3D formulations are available (same dofs);
- we only need to implement \mathbb{N} and \mathbb{R} and apply the stiffness matrix formula for \mathbb{M}.

Summarizing the low-order formulation:

Low order setting, $m=1$

- Degrees of freedom:

Conforming MFD

Non-conforming MFD

- exactness for linear polynomials;
- both 2D and 3D formulations are available (same dofs);
- we only need to implement \mathbb{N} and \mathbb{R} and apply the stiffness matrix formula for \mathbb{M}.

Summarizing the low-order formulation:

Low order setting, $m=1$

- Degrees of freedom:

Conforming MFD

Non-conforming MFD

- exactness for linear polynomials;
- both 2D and 3D formulations are available (same dofs);
- we only need to implement \mathbb{N} and \mathbb{R} and apply the stiffness matrix formula for \mathbb{M}.

High order: towards a local consistency condition (2D) The high-order setting, $m>1, d=2$

Let K be constant and integrate by parts on the polygonal cell P :

$$
\int_{\mathrm{P}} \mathrm{~K} \nabla u \cdot \nabla v d V=-\int_{\mathrm{P}} \underbrace{\operatorname{div}(\mathrm{~K} \nabla u)}_{\text {not zero! }} v d V+\sum_{\mathrm{e} \in \partial \mathrm{P}} \int_{\mathrm{e}} \underbrace{\mathrm{~K} \nabla u \cdot \mathbf{n}_{\mathrm{P}, \mathrm{e}}}_{\text {not constant! }} v d S .
$$

If u is a polynomial of degree m on P :

- $\operatorname{div}(\mathrm{K} \nabla u)$ is a polynomial of degree $m-2$;
- $\mathrm{K} \nabla u \cdot \mathbf{n}_{\mathrm{P}, \mathrm{e}}$ is a polynomial of degree $m-1$;

Divergence term

Internal degrees of freedom, $m>1, d=2$

- For the conforming and non-conforming case, we use the moments of \mathbf{v} to express the integral over P :
if

$$
\operatorname{div}(\mathrm{K} \nabla u)=a_{0} 1+a_{1} x+a_{2} y+\ldots \in \mathbb{P}_{m-2}(\mathrm{P})
$$

then

$$
\begin{aligned}
\int_{P} \operatorname{div}(\mathrm{~K} \nabla u) v d V & =a_{0} \underbrace{\int_{P} 1 v d V}_{\hat{v}_{P, 0}}+a_{1} \underbrace{\int_{P} x v d V}_{\hat{v}_{P, 1, x}}+a_{2} \underbrace{\int_{P} y v d V}_{\hat{v}_{P, 1, y}}+\ldots \\
& =a_{0} \hat{\mathbf{v}}_{P, 0}+a_{1} \hat{\mathbf{v}}_{P, 1, x}+a_{2} \hat{\mathbf{v}}_{P, \mathbf{1}, \mathbf{y}}+\ldots
\end{aligned}
$$

This choice suggests us to define

- $m(m-1) / 2$ internal degrees of freedom $\approx \hat{\mathbf{v}}_{\mathrm{P}, \mathbf{0}}, \hat{\mathbf{v}}_{\mathrm{P}, 1, \mathrm{x}}, \hat{\mathbf{v}}_{\mathrm{P}, \mathbf{1}, \mathrm{y}}, \ldots$

Edge terms: conforming MFD

Nodal degrees of freedom, $m>1, d=2$

- We use a Gauss-Lobatto formula with $m+1$ nodes and weights $\left\{\left(\mathbf{x}_{e}, q, w_{e}, q\right)\right\}$ on every (2D) edge $\mathrm{e} \in \partial \mathrm{P}$ for:

$$
\int_{\mathrm{e}} \mathrm{~K} \nabla u \cdot \mathbf{n}_{\mathrm{P}, \mathrm{e}} v d S \approx \sum_{q=1}^{m+1} w_{\mathrm{e}, q} \mathrm{~K} \nabla u\left(\mathbf{x}_{\mathrm{e}, q}\right) \cdot \mathbf{n}_{\mathrm{P}, \mathrm{e}} v\left(\mathbf{x}_{\mathrm{e}, q}\right)
$$

This choice suggests us to define:

- one degree of freedom per vertex,

$$
v_{\mathrm{e}, 1}=v_{\mathrm{v}^{\prime}} \approx v\left(\mathbf{x}_{\mathrm{v}^{\prime}}\right), v_{\mathrm{e}, m+1}=v_{\mathrm{v}^{\prime \prime}} \approx v\left(\mathbf{x}_{\mathrm{v}^{\prime \prime}}\right)
$$

- $(m-1)$ nodal degrees of freedom per edge of P,

$$
v_{\mathrm{e}, q} \approx v\left(\mathbf{x}_{\mathrm{e}, q}\right) \text { for } q=2, \ldots m
$$

High-order conforming MFD

The high-order setting, $m>1, d=2$

Local Consistency Condition:

Let K be constant.

- For every $u \in \mathbb{P}_{m}(P)(m \geq 1)$ and every discrete field $v_{h, \mathrm{P}} \in \mathcal{V}_{h}$ we require that:

$$
\mathcal{A}_{h, \mathrm{P}}\left(u_{h, \mathrm{P}}, v_{h, \mathrm{P}}\right):=\underbrace{-\sum_{j=0}^{m(m-1) / 2-1} a_{j} \hat{v}_{\mathrm{P}, j}}_{\text {divergence }}+\underbrace{\sum_{\mathrm{e} \in \partial \mathrm{P}} \sum_{q=1}^{m+1} w_{\mathrm{e}, q} \mathrm{~K} \nabla u\left(\mathbf{x}_{\mathrm{e}, q}\right) \cdot \mathbf{n}_{\mathrm{P}, \mathrm{e}} v_{\mathrm{e}, q}}_{\text {boundary }} .
$$

($u_{h, \mathrm{P}}$ are the dofs of u for P ; terms $\mathrm{a}_{j} \hat{\mathrm{~V}}_{\mathrm{P}, j}$ are conveniently renumbered).

Edge terms: non-conforming MFD

Edge degrees of freedom, $m>1, d=2$

- We use the moments of \mathbf{v} to express the integral over $\mathrm{e} \in \partial \mathrm{P}$:
if

$$
(K \nabla u)_{\mid e} \cdot \mathbf{n}_{\mathrm{P}, \mathrm{e}}=b_{0} 1+b_{1} \xi+b_{2} \xi^{2}+\ldots \in \mathbb{P}_{m-1}(\mathrm{e})
$$

then

$$
\begin{aligned}
\int_{\mathrm{e}} \mathrm{~K} \nabla u \cdot \mathbf{n}_{\mathrm{P}, \mathrm{e}} v d S & =b_{0} \underbrace{\int_{\mathrm{e}} 1 v d S}_{\hat{v}_{\mathrm{f}, 0}}+b_{1} \underbrace{\int_{\mathrm{e}} \xi v d S}_{\hat{v}_{\mathrm{t}, 1}}+b_{2} \underbrace{\int_{\mathrm{e}}^{\xi^{2} v d S}}_{\hat{v}_{\mathrm{t}, 2}}+\ldots \\
& =b_{0} \hat{\mathbf{v}}_{\mathrm{e}, 0}+b_{1} \hat{\mathbf{v}}_{\mathrm{e}, 1}+b_{2} \hat{\mathbf{v}}_{\mathrm{e}, 2}+\ldots
\end{aligned}
$$

This choice suggests us to define

- m degrees of freedom per edge $\approx \hat{\mathbf{v}}_{e, 0}, \hat{\mathbf{v}}_{\mathrm{e}, 1}, \hat{\mathbf{v}}_{\mathrm{e}, 2}, \ldots$

High-order non-conforming MFD

The high-order setting, $m>1, d=2$

Local Consistency Condition:

Let K be constant.

- For every $u \in \mathbb{P}_{m}(P)(m \geq 1)$ and every discrete field $v_{h, P} \in \mathcal{V}_{h}$ we require that:

$$
\mathcal{A}_{h, \mathrm{P}}\left(u_{h, \mathrm{P}}, v_{h, \mathrm{P}}\right):=-\underbrace{\sum_{j=0}^{m(m-1) / 2-1} a_{j} \hat{v}_{\mathrm{P}, j}}_{\text {divergence }}+\underbrace{\sum_{\mathrm{e} \in \partial \mathrm{P}} \sum_{j=0}^{m-1} b_{j} \hat{\mathrm{v}}_{\mathrm{e}, j}}_{\text {boundary }} .
$$

($u_{h, \mathrm{P}}$ are the dofs of u for P ; terms $\mathrm{a}_{j} \hat{\mathrm{~V}}_{\mathrm{P}, j}$ are conveniently renumbered).

Degrees of freedom

Conforming/non-conforming case

Conforming

Non-Conforming

Algebraic consistency condition: $\mathbb{M} \mathbb{N}=\mathbb{R}$

Let M be a symmetric and semi-positive definite matrix such that

$$
\mathcal{A}_{h, \mathrm{P}}\left(u_{h, \mathrm{P}}, v_{h, \mathrm{P}}\right)=v_{h, \mathrm{P}}^{T} \mathbb{M} u_{h, \mathrm{P}}
$$

- For any $u \in\left\{1, x, y, x^{2}, x y, y^{2}, \ldots\right\}$ and any discrete field $v_{h, \mathrm{P}}$
- we write

$$
\mathcal{A}_{h, \mathrm{P}}\left(v_{h, \mathrm{P}}, u_{h, \mathrm{P}}\right)=\mathbf{v}^{T} \mathbb{M} \mathbb{N}_{u} \quad \text { where } \quad \mathbb{N}_{u}=\left[u_{h, \mathrm{P}}\right] \quad(\text { "dofs" of } u) ;
$$

- we impose the local consistency condition:

$$
\mathcal{A}_{h, \mathrm{P}}\left(u_{n, \mathrm{P}}, v_{h, \mathrm{P}}\right)=\ldots=\mathbf{v}^{\top} \mathbb{R}_{u}
$$

- we obtain by comparison:

$$
\mathbb{M} \mathbb{N}_{u}=\mathbb{R}_{u}
$$

A family of schemes

- Using $\mathbb{N}=\left[\mathbb{N}_{1}, \mathbb{N}_{2}, \ldots\right], \mathbb{R}=\left[\mathbb{R}_{1}, \mathbb{R}_{2}, \ldots\right]$, we have:

$$
\mathbb{M} \mathbb{N}=\mathbb{R} \text { and }
$$

$$
\left(\mathbb{R}^{T} \mathbb{N}\right)_{i j}=\int_{\mathrm{P}} \mathrm{~K} \nabla u_{i} \cdot \nabla u_{j} d V \quad \text { where } u_{i}, u_{j} \in\left\{1, x, y, x^{2}, \ldots\right\}
$$

- \mathbb{M} (symmetric and semi-positive definite) is given by

$$
\mathbb{M}=\underbrace{\mathbb{R}\left(\mathbb{R}^{T} \mathbb{N}\right)^{-1} \mathbb{R}^{T}}_{\mathbb{M} \mathbb{N}=\mathbb{R}}+\underbrace{\delta \mathbb{M}}_{\text {stability }} \quad \text { with } \quad \delta \mathbb{M} \mathbb{N}=0
$$

where $\delta \mathbb{M}$ is a symmetric matrix of parameters.

- A one-parameter (γ) choice for $\delta \mathbb{M}$ is given by:

$$
\delta \mathbb{M}=\gamma\left(\mathbb{I}-\mathbb{N}\left(\mathbb{N}^{T} \mathbb{N}\right)^{-1} \mathbb{N}^{T}\right)
$$

The linear functional $\left(f, \mathbf{v}_{h}\right)_{h}$

The low-order case $m=1$
Recall that $\left(f, v_{h}\right)_{h} \approx \int_{\Omega} f v d V$.

- We assemble $\left(f, v_{h}\right)_{h}$ from local contribution:

$$
\left(f, v_{h}\right)_{h}:=\sum_{\mathrm{P}}\left(f, v_{h}\right)_{h, \mathrm{P}} \quad \text { where } \quad\left(f, v_{h}\right)_{h, \mathrm{P}} \approx \int_{\mathrm{P}} f v d V
$$

- We approximate the forcing term by its average on P :

$$
f \approx \frac{1}{|\mathrm{P}|} \int_{\mathrm{P}} f d V=: \bar{f}_{\mathrm{P}} ;
$$

- We use a (first-order) quadrature based on vertex (conforming) or edge (non-conforming) values. Example: let $\left\{\left(\mathbf{x}_{\mathrm{v}}, w_{\mathrm{P}, \mathrm{v}}\right)\right\}$:

$$
\left.\int_{\mathrm{P}} f v d V \approx \bar{f}_{\mathrm{P}} \int_{\mathrm{P}} v d V \approx|\mathrm{P}| \bar{f}_{\mathrm{P}} \sum_{\mathrm{v} \in \partial \mathrm{P}} w_{\mathrm{P}, \mathrm{~V}} v\left(\mathbf{x}_{\mathrm{V}}\right) \quad \text { [conforming }\right]
$$

The linear functional $\left(f, \mathbf{v}_{h}\right)_{h}$

The low-order case $m=1$

- Recall that $\left(f, v_{h}\right)_{h}:=\sum_{\mathrm{P}}\left(f, v_{h}\right)_{h, \mathrm{P}}$, where

$$
\left(f, v_{h}\right)_{h, \mathrm{P}} \approx \int_{\mathrm{P}} f v d V, \quad \text { and } \quad \int_{\mathrm{P}} f v d V \approx|\mathrm{P}| \bar{f}_{\mathrm{P}} \sum_{\mathrm{v} \in \partial \mathrm{P}} w_{\mathrm{P}, \mathrm{v}} v_{\mathrm{v}}
$$

- Thus, for every cell P we define

$$
\begin{aligned}
& \left(f, v_{h}\right)_{h, \mathrm{P}}:=|\mathrm{P}| \bar{f}_{\mathrm{P}} \sum_{\mathrm{v} \in \partial \mathrm{P}} w_{\mathrm{P}, \mathrm{v}} v_{\mathrm{v}} \quad \forall v_{h} \in \mathcal{V}_{h} \\
& |\mathrm{P}| \bar{f}_{\mathrm{P}}=\int_{\mathrm{P}} f d V
\end{aligned}
$$

$W_{P, v} 1$-st order integration weights.

The linear functional $\left(f, \mathbf{v}_{h}\right)_{h}$

High-order case $m>1$

- Again,

$$
\left(f, v_{h}\right)_{h}:=\sum_{\mathrm{P}}\left(f, v_{h}\right)_{h, \mathrm{P}} \text { where }\left(f, v_{h}\right)_{h, \mathrm{P}} \approx \int_{\mathrm{P}} f v d V
$$

- For $m>1$ we consider the orthogonal projection of f onto the polynomials of degree $m-2$:

$$
f \approx c_{0} 1+c_{1} x+c_{2} y+\ldots \in \mathbb{P}_{m-2}(\mathrm{P})
$$

- and use the moments of v to express the r.h.s. integral:

$$
\begin{aligned}
\int_{P} f v d V & \approx c_{0} \underbrace{\int_{P} 1 v d V}_{\hat{v}_{P, 0}}+c_{1} \underbrace{\int_{P} x v d V}_{\hat{v}_{P, 1, x}}+c_{2} \underbrace{\int_{P} y v d V}_{\hat{V}_{P, 1, y}}+\ldots \\
& =c_{0} \hat{\mathbf{v}}_{P, 0}+c_{1} \hat{v}_{P, 1, x}+c_{2} \hat{v}_{P, 1, y}+\ldots
\end{aligned}
$$

The linear functional $\left(f, \mathbf{v}_{h}\right)_{h}$

High-order case $m>1$

- Recall that

$$
\left(f, v_{h}\right)_{h}:=\sum_{\mathrm{P}}\left(f, v_{h}\right)_{h, \mathrm{P}} \text { where }\left(f, v_{h}\right)_{h, \mathrm{P}} \approx \int_{\mathrm{P}} f v d V \text {. }
$$

- thus, for every cell P we define

$$
\begin{aligned}
& \left(f, v_{h}\right)_{h, \mathrm{P}}:=\sum_{j} c_{j} \hat{v}_{P, j} \quad \forall v_{h} \in \mathcal{V}_{h} \\
& f \approx c_{0} 1+c_{1} x+c_{2} y+\ldots \in \mathbb{P}_{m-2}(\mathrm{P}) \\
& \left(c_{j}\right) \quad \text { projection coefficients } \\
& \hat{v}_{j} \quad \text { moments, degrees of freedom of } v_{h}
\end{aligned}
$$

(The terms $c_{j} \hat{v}_{P, j}$ are conveniently renumbered).

Extension to 3D and variable coefficients

3D formulation

- The 3D conforming formulation should have degrees of freedom associated to vertices, edges, faces and cells: too many!
- For the 3D non-conforming formulation: we use moments on the faces and on the cells as for the VEM method.

Variable coefficients (conforming/non-conforming)

- Modificd consistenc. condition

There exists a VEM counterpart using a modified projector $\tilde{\Pi}^{\nabla}$

Extension to 3D and variable coefficients

3D formulation

- The 3D conforming formulation should have degrees of freedom associated to vertices, edges, faces and cells: too many!
- For the 3D non-conforming formulation: we use moments on the faces and on the cells as for the VEM method.

Variable coefficients (conforming/non-conforming)

- Modificd consistenc. condition If $u \in \mathbb{P}_{m}(P)$ and $K(X)$ is variable in P

There exists a VEM counterpart using a modified projector $\tilde{\Pi}^{\nabla}$

Extension to 3D and variable coefficients

3D formulation

- The 3D conforming formulation should have degrees of freedom associated to vertices, edges, faces and cells: too many!
- For the 3D non-conforming formulation: we use moments on the faces and on the cells as for the VEM method.

Variable coefficients (conforming/non-conforming)

- Modified consistency condition.

If $u \in \mathbb{P}_{m}(\mathrm{P})$ and $\mathrm{K}(X)$ is variable in P :

$$
\int_{\mathrm{P}} \mathrm{~K}(\mathbf{x}) \nabla u \cdot \nabla v d V \approx \int_{\mathrm{P}} \Pi_{m-1}(\mathrm{~K}(\mathbf{x}) \nabla u) \cdot \nabla v d V=\ldots
$$

There exists a VEM counterpart using a modified projector $\tilde{\Pi}^{\nabla}$.

Building a bridge with the VEM

Conforming/non-conforming MFD, $m \leq 1$

- Let $\mathbb{N}=[\mathbf{1}, \hat{\mathbb{N}}], \mathbb{R}=[\mathbf{0}, \hat{\mathbb{R}}]$;

$$
\mathbb{N}^{T} \mathbb{R}=\left(\begin{array}{cc}
0 & 0 \\
0 & \hat{\mathbb{N}}^{T} \hat{\mathbb{R}}
\end{array}\right) \quad \text { and } \quad\left(\mathbb{N}^{T} \mathbb{R}\right)^{\dagger}=\left(\begin{array}{cc}
0 & 0 \\
0 & \left(\hat{\mathbb{N}}^{T} \hat{\mathbb{R}}\right)^{-1}
\end{array}\right)
$$

where $\hat{\mathbb{N}}^{T} \hat{\mathbb{R}}$ is symmetric and positive definite.

- $\mathbb{G} u_{h, \mathrm{P}} \approx-\mathrm{K} \nabla u$ is the flux operator such that

Building a bridge with the VEM

Conforming/non-conforming MFD, $m \leq 1$

- Let $\mathbb{N}=[\mathbf{1}, \hat{\mathbb{N}}], \mathbb{R}=[\mathbf{0}, \hat{\mathbb{R}}]$;

$$
\mathbb{N}^{T} \mathbb{R}=\left(\begin{array}{cc}
0 & 0 \\
0 & \hat{\mathbb{N}}^{T} \hat{\mathbb{R}}
\end{array}\right) \quad \text { and } \quad\left(\mathbb{N}^{T} \mathbb{R}\right)^{\dagger}=\left(\begin{array}{cc}
0 & 0 \\
0 & \left(\hat{\mathbb{N}}^{T} \hat{\mathbb{R}}\right)^{-1}
\end{array}\right)
$$

where $\hat{\mathbb{N}}^{T} \hat{\mathbb{R}}$ is symmetric and positive definite.

- Let $\mathbb{G}=-\left[|\mathrm{P}| \hat{\mathbb{N}}^{T} \hat{\mathbb{R}}\right]^{-\frac{1}{2}} \mathbb{R}^{T}$. Then,

$$
\mathbb{M}_{0}=\mathbb{R}\left(\mathbb{N}^{T} \mathbb{R}\right)^{\dagger} \mathbb{R}^{T}=\hat{\mathbb{R}}\left(\hat{\mathbb{N}}^{T} \hat{\mathbb{R}}\right)^{-1} \hat{\mathbb{R}}^{T}=\mathbb{G}^{T} \mathbb{G}|\mathrm{P}|
$$

Building a bridge with the VEM

Conforming/non-conforming MFD, $m \leq 1$

- Let $\mathbb{N}=[\mathbf{1}, \hat{\mathbb{N}}], \mathbb{R}=[\mathbf{0}, \hat{\mathbb{R}}]$;

$$
\mathbb{N}^{T} \mathbb{R}=\left(\begin{array}{cc}
0 & 0 \\
0 & \hat{\mathbb{N}}^{T} \hat{\mathbb{R}}
\end{array}\right) \quad \text { and } \quad\left(\mathbb{N}^{T} \mathbb{R}\right)^{\dagger}=\left(\begin{array}{cc}
0 & 0 \\
0 & \left(\hat{\mathbb{N}}^{T} \hat{\mathbb{R}}\right)^{-1}
\end{array}\right)
$$

where $\hat{\mathbb{N}}^{T} \hat{\mathbb{R}}$ is symmetric and positive definite.

- Let $\mathbb{G}=-\left[|\mathrm{P}| \hat{\mathbb{N}}^{T} \hat{\mathbb{R}}\right]^{-\frac{1}{2}} \mathbb{R}^{T}$. Then,

$$
\mathbb{M}_{0}=\mathbb{R}\left(\mathbb{N}^{T} \mathbb{R}\right)^{\dagger} \mathbb{R}^{T}=\hat{\mathbb{R}}\left(\hat{\mathbb{N}}^{T} \hat{\mathbb{R}}\right)^{-1} \hat{\mathbb{R}}^{T}=\mathbb{G}^{T} \mathbb{G}|\mathrm{P}|
$$

- $\mathbb{G} u_{h, \mathrm{P}} \approx-\mathrm{K} \nabla u$ is the flux operator such that

$$
\mathbf{u}^{T} \mathbb{M}_{0} \mathbf{v}=\left(\mathbb{G} u_{h, \mathrm{P}}\right)^{T} \mathbb{G} v_{n, \mathrm{P}}|\mathrm{P}| \approx \int_{\mathrm{P}} \mathrm{~K} \nabla \Pi^{\nabla}(u) \cdot \nabla \Pi^{\nabla}(v) d V
$$

Building a bridge with the VEM

Similarities and differences:
For both the conforming and the non-conforming MFD and VEM formulations we can prove that:

- the degrees of freedom are the same; - the consistency term is the same
- in the MFD setting it rolates to a exactness property, - in the VEM setting it is the projection of the bilinear form on

Building a bridge with the VEM

Similarities and differences:
For both the conforming and the non-conforming MFD and VEM formulations we can prove that:

- the degrees of freedom are the same;
- the consistency term is the same
- in the MFD setting it relates to an exactness property;
- in the VEM setting it is the projection of the bilinear form on polynomials;
- the stabilization term of VEM forms a subset of those of MFD:
- in the MFD setting it gives the proper rank of the stiffness matrix;
- in the VEM setting it relates to the non-computable part of the bilinear form

Building a bridge with the VEM

Similarities and differences:

For both the conforming and the non-conforming MFD and VEM formulations we can prove that:

- the degrees of freedom are the same;
- the consistency term is the same:
- in the MFD setting it relates to an exactness property;
- in the VEM setting it is the projection of the bilinear form on polynomials;
- the stabilization term of VEM forms a subset of those of MFD: in the MFD setting it gives the proper rank of the stiffness matrix;
in the VEM setting it relates to the non-computable part of the
bilinear form; - the formulation is different: VEM has the advantage of being a FEM!

Building a bridge with the VEM

Similarities and differences:

For both the conforming and the non-conforming MFD and VEM formulations we can prove that:

- the degrees of freedom are the same;
- the consistency term is the same:
- in the MFD setting it relates to an exactness property;
- in the VEM setting it is the projection of the bilinear form on polynomials;
- the stabilization term of VEM forms a subset of those of MFD:
- in the MFD setting it gives the proper rank of the stiffness matrix;
- in the VEM setting it relates to the non-computable part of the bilinear form;
- the formulation is different: VEM has the advantage of being a FEM!

Building a bridge with the VEM

Similarities and differences:

For both the conforming and the non-conforming MFD and VEM formulations we can prove that:

- the degrees of freedom are the same;
- the consistency term is the same:
- in the MFD setting it relates to an exactness property;
- in the VEM setting it is the projection of the bilinear form on polynomials;
- the stabilization term of VEM forms a subset of those of MFD:
- in the MFD setting it gives the proper rank of the stiffness matrix;
- in the VEM setting it relates to the non-computable part of the bilinear form;
- the formulation is different: VEM has the advantage of being a FEM!

MFD and VEM: much more than a bridge!

For the Poisson equation (in primal form) we have:

- Conforming MFD

2009 low-order, 2D-3D: Brezzi, Buffa, Lipnikov (M2AN);
2011 high-order, 2D: Beirao da Veiga, Lipnikov, M. (SINUM);

- Conforming VEM

2013 any order, 2D: "volley" team (M3AS);

- Non-conforming MFD

2014 any order, 2D-3D: Lipnikov, M., (JCP);

- Non-conforming VEM

2014 any order, 2D-3D: Ayuso, Lipnikov, M. (submitted).

A mesh-dependent norm

Conforming case

We consider the mesh-dependent norm

$$
\left\|v_{h}\right\|_{1, h}^{2}=\sum_{\mathrm{P} \in \Omega_{h}}\left\|v_{h}\right\|_{1, h, \mathrm{P}}^{2}
$$

that mimics the $|\cdot|_{1, \Omega}$ semi-norm;

- for the low-order method ($m=1, d=2,3$), $\mathrm{e}=\left(\mathrm{v}^{\prime}, \mathrm{v}^{\prime \prime}\right)$ being an edge,

$$
\left\|v_{h}\right\|_{1, h, \mathrm{P}}^{2}=\left\|\mathcal{G} \mathcal{R} \mathcal{A} \mathcal{D}_{h}\left(v_{h}\right)\right\|_{h, \mathrm{P}}^{2}=h_{\mathrm{P}} \sum_{\mathrm{e} \in \partial \mathrm{P}}\left|v_{\mathrm{v}^{\prime \prime}}-v_{\mathrm{v}^{\prime}}\right|^{2}
$$

- for the high-order method ($m>1, d=2$), $\mathrm{e}=\left(\mathrm{v}^{\prime}, \mathrm{v}^{\prime \prime}\right)$ being an edge,

$$
\left\|v_{h}\right\|_{1, h, \mathrm{P}}^{2}=h_{\mathrm{P}} \sum_{\mathrm{e} \in \partial \mathrm{P}}\left\|\frac{\partial v_{h, f}}{\partial s}\right\|_{L^{2}(\mathrm{e})}^{2}+[\text { "moments" }]
$$

Convergence results

Conforming case

The consistency and the stability conditions allow us to determine a family of mimetic schemes:

- for the low-order method $m=1$:

$$
\left\|u^{\prime}-u_{h}\right\|_{1, h}<\operatorname{Ch}\left(|f|_{0, \Omega}+|u|_{1, \Omega}+|u|_{2, \Omega}\right) ;
$$

(Brezzi, Buffa, Lipnikov, M2AN (2009)),

- for the high-order method $m>1$:

$$
\left\|u^{\prime}-u_{h}\right\|_{1, h}<C h^{\mathbf{m}}\|u\|_{m+1, \Omega}
$$

(Beirao da Veiga, Lipnikov, M., SINUM (2011); VEM, Brezzi et. al. M3AS ("volley" paper)
(For the non-conforming case refer to the talk of Blanca A.).

Conforming MFD method

Meshes with randomized quadrilaterals

- Meshes:

- Exact solution: $u(x, y)=\left(x-e^{2(x-1)}\right)\left(y^{2}-e^{3(y-1)}\right)$
- Diffusion tensor

$$
K=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Conforming MFD method

Randomized quadrilaterals, \|| $\|_{1, h}$ errors, constant K

		$\mathbf{m}=\mathbf{2}$		$\mathbf{m}=\mathbf{3}$	
n	h	Error	Rate	Error	Rate
0	1.92210^{-1}	1.41610^{-1}	--	7.45410^{-2}	--
1	9.70510^{-2}	2.44110^{-2}	2.57	8.63210^{-3}	3.15
2	4.83810^{-2}	5.36610^{-3}	2.18	1.53610^{-3}	2.48
3	2.46710^{-2}	1.39910^{-3}	1.99	1.73910^{-4}	3.23
4	1.26310^{-2}	3.52410^{-4}	$\mathbf{2 . 0 6}$	2.22710^{-5}	$\mathbf{3 . 0 7}$

		$\mathbf{m}=\mathbf{4}$		$\mathbf{m}=\mathbf{5}$	
n	h	Error	Rate	Error	Rate
0	1.92210^{-1}	1.03110^{-2}	--	4.56710^{-3}	--
1	9.70510^{-2}	1.69010^{-3}	2.65	2.67410^{-4}	4.15
2	4.83810^{-2}	1.27310^{-4}	3.71	1.33610^{-5}	4.30
3	2.46710^{-2}	8.27910^{-6}	4.06	4.58610^{-7}	5.01
4	1.26310^{-2}	5.54510^{-7}	4.04	-	-

Conforming MFD method

Meshes with non-convex polygons

- Meshes:

- Exact solution: $u(x, y)=e^{-2 \pi y} \sin (2 \pi x)$
- Diffusion tensor

$$
\mathrm{K}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \text { and } \quad \mathrm{K}(x, y)=\left(\begin{array}{cc}
(x+1)^{2}+y^{2} & -x y \\
-x y & (x+1)^{2}
\end{array}\right)
$$

Conforming MFD method

Non-convex polygons, \| • $\|_{1, h}$ errors, constant K

		$\mathbf{m}=\mathbf{2}$		$\mathbf{m}=\mathbf{3}$	
n	h	Error	Rate	Error	Rate
0	1.45810^{-1}	2.858	--	1.007	--
1	7.28910^{-2}	7.86710^{-1}	1.86	2.81910^{-1}	1.84
2	3.64410^{-2}	2.04910^{-1}	1.94	5.59710^{-2}	2.33
3	1.82210^{-2}	5.28910^{-2}	$\mathbf{1 . 9 5}$	8.89710^{-3}	$\mathbf{2 . 6 5}$

		$\mathbf{m}=\mathbf{4}$		$\mathbf{m}=\mathbf{5}$	
n	h	Error	Rate	Error	Rate
0	1.45810^{-1}	1.94310^{-1}	--	2.28210^{-2}	--
1	7.28910^{-2}	1.27610^{-2}	3.93	1.12810^{-3}	4.34
2	3.64410^{-2}	7.07510^{-4}	4.17	4.40610^{-5}	4.68
3	1.82210^{-2}	3.95010^{-5}	4.16	-	-

Conforming MFD method

Non-convex polygons, $\|\cdot\|_{1, h}$ errors, non-constant K

		$\mathbf{m}=\mathbf{2}$		$\mathbf{m}=\mathbf{3}$	
n	h	Error	Rate	Error	Rate
0	1.45810^{-1}	3.007	--	9.87310^{-1}	--
1	7.28910^{-2}	8.08110^{-1}	1.89	2.76010^{-1}	1.84
2	3.64410^{-2}	2.07110^{-1}	1.96	5.62110^{-2}	2.29
3	1.82210^{-2}	5.30310^{-2}	$\mathbf{1 . 9 7}$	9.08310^{-3}	$\mathbf{2 . 6 3}$

		$\mathbf{m}=\mathbf{4}$		$\mathbf{m}=\mathbf{5}$	
n	h	Error	Rate	Error	Rate
0	1.45810^{-1}	2.05910^{-1}	--	1.98810^{-2}	--
1	7.28910^{-2}	1.36710^{-2}	3.92	1.01610^{-3}	4.29
2	3.64410^{-2}	7.56210^{-4}	4.18	3.92410^{-5}	4.69
3	1.82210^{-2}	4.21010^{-5}	4.17	-	-

Non-conforming MFD method

Meshes with random hexahedra

- Meshes:

- Exact solution: $u(x, y, z)=x^{3} y^{2} z+x \sin (2 \pi x y) \sin (2 \pi y z) \sin (2 \pi z)$
- Diffusion tensor

$$
\mathrm{K}=\left(\begin{array}{ccc}
1+y^{2}+z^{2} & -x y & -x z \\
-x y & 1+x^{2}+z^{2} & -y z \\
-x z & -y z & 1+x^{2}+y^{2}
\end{array}\right)
$$

Non-conforming MFD method

Meshes with random hexahedra

The error is given by $u-\Pi_{m}^{\nabla}\left(u_{h}\right)$

Conclusions

- The conforming and non-conforming MFD methods are such that:
(i) the low-order formulation uses either vertex or edge values to represent linear polynomials; it works in 2-D and 3-D;
(ii) the high-order formulation uses edge nodal values and moments to represent m-degree polynomials; it works in 2-D and 3-D (only non-conforming).
(iii) a reformulation as finite element exists in the virtual element framework.
- Possible future developments:
more complex operators (+convection, +reaction) exploit the strong connection with the VEM; curved faces;

Conclusions

- The conforming and non-conforming MFD methods are such that:
(i) the low-order formulation uses either vertex or edge values to represent linear polynomials; it works in 2-D and 3-D;
(ii) the high-order formulation uses edge nodal values and moments to represent m-degree polynomials; it works in 2-D and 3-D (only non-conforming).
(iii) a reformulation as finite element exists in the virtual element framework.
- Possible future developments:
(i) more complex operators (+convection, +reaction);
(ii) exploit the strong connection with the VEM;
(iii) curved faces;
(iv) \ldots

A few references...

+ B. Ayuso da Dios, K. Lipnikov, G. M. The non-conforming virtual element method. Submitted; arXiv preprint arXiv:1405.3741, 2014.
+ K. Lipnikov, G. M., M. Shashkov. Mimetic Finite Difference Method. Journal of Computational Physics, 257, 1163-1227, 2014.
+ K. Lipnikov, G. M. High-order mimetic methods for unstructured polyhedral meshes. Journal of Computational Physics 272, 360-385, 2014.
+ F. Brezzi, A. Buffa, G. M. Mimetic inner products for discrete differential forms. Journal of Computational Physics, 24:08, 1621-1663, 2014.
+ L. Beirao da Veiga, G. M., and M. Putti. Post-processing of solution and flux for the nodal mimetic finite difference method. To appear in Numerical Methods for PDEs, 2014.
+ L. Beirao da Veiga, F. Brezzi, C. Cangiani, G. M., L. D. Marini, A. Russo. Basic principles of the Virtual Element Method. Mathematical Models and Methods in Applied Sciences 23(1): 119-214, 2013.
+ L. Beirao da Veiga, K. Lipnikov, and G. M.. Arbitrary order nodal mimetic discretizations of elliptic problems on polygonal meshes. SIAM Journal on Numerical Analysis 49(5):1737-1760, 2011.
+ F Brezzi, A Buffa, K Lipnikov. Mimetic finite differences for elliptic problems. ESAIM: Mathematical Modelling and Numerical Analysis 43:2, 277-295, 2009.
+ A. Cangiani and G. M.. Flux reconstruction and solution post-processing in mimetic finite difference methods. Computer Methods in Applied Mechanics and Engineering, 197(9-12):933-945, 2008.

Volume 11

The Mimetic Finite Difference Method for Elliptic Problems

Lourenço Beirão da Veiga - Konstantin Lipnikov Gianmarco Manzini

MS\&A

Modeling, Simulation \& Applications

