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Outline

1 The construction of an MFD method:

- meshes;
- degrees of freedom;
- approximation of the bilinear form;
- approximation of the loading term.

2. Consistency condition and degrees of freedom:

- the conforming MFD formulation;
- the non-conforming MFD formulation.

3. Building a bridge with VEM.

4. Convergence results and numerical experiments.
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The linear diffusion problem

• Differential formulation:

−div(K∇u) = f in Ω,

u = g on Γ,

(this talk: constant K) S. D. Poisson
(1771-1840)

• Variational formulation:

Find u ∈ H1
g (Ω) such that:∫

Ω

K∇u ·∇v dV =

∫
Ω

fv dV ∀v ∈ H1
0 (Ω),
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Scheme construction in five steps
Steps 1 and 2

1. We decompose Ω into a mesh Ωh of polygons (2-D) or polyhedrons
(3-D);

- admissible meshes may contain ”crazy” cells (non-convex,
”singular” as in AMR);

- we need some regularity assumptions to avoid pathological cases
and perform the convergence analysis;

2. degrees of freedom: Vh

u, v ∈ H1
g (Ω) ∩ Cα(Ω) −→ uh, vh ∈ Vh, numbers!

(with α ≥ 0).
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Scheme construction in five steps
Steps 3 and 4

3. bilinear form: Ah
(
·, ·
)

: Vh × Vh → R

Ah
(
uh, vh

)
≈
∫

Ω

K∇u ·∇v dV ,

it is built by “mimicking” a fundamental relation of calculus
(integration by parts);

4. linear functional:
(
f , ·
)

h : Vh → R

(
f , vh

)
h ≈

∫
Ω

fv dV .
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MFD construction in five steps
Step 5

5. The variational formulation

Find u ∈ H1
g (Ω) such that:∫

Ω
K∇u ·∇v dV =

∫
Ω

fv dV ∀v ∈ H1
0 (Ω),

becomes the “mimetic variational” formulation:

Find uh ∈ Vh,g such that:

Ah
(
uh, vh

)
=
(
f , vh

)
h ∀vh ∈ Vh,0.
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Meshes: why polygonal/polyhedral?

The meshes should be easily adaptable to the geometric characteristics
of the domain, but also to the solution:

I non-conforming meshes (hanging nodes);

I (local) adaptive refinements (AMR);

I highly deformed cells;

I non-convex cells;

I curved faces;

I . . .

Growing interest to use them in scientific applications and commercial
codes, SINTEF, CD-ADAPCO, ANSYS;
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Meshes: academic examples
Examples: convex and non-convex polygonal cells
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Meshes: academic examples
Examples: randomized quads and Adaptive Mesh Refinements (AMR)
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Meshes: academic examples
Examples: locally refined, prismatic and random hexahedral meshes
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Construction of Ah
(
uh, vh

)
• Ah

(
uh, vh

)
must be

• symmetric, bounded and semi-positive;

• locally defined through an assembly process (like FEM):

Ah
(
uh, vh

)
=
∑

P

Ah,P
(
uh,P, vh,P

)
where uh,P = uh|P, vh,P = vh|P;

• Any Ah,P
(
uh,P, vh,P

)
must be a local approximation:

∀P ∈ Ωh : Ah,P
(
uh,P, vh,P

)
≈
∫

P
K∇u ·∇v dV .
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Construction of Ah
(
uh, vh

)
: consistency and stability

PROBLEM: in MFD we do not have an approximation space (as in FEM,
DG, VEM, etc). . . only degrees of freedom!

Consistency: exactness property on polynomials→ accuracy
Let u, v ∈ Pk (P), uh,P, vh,P their dofs:

Ah,P
(
uh,P, vh,P

)
=

∫
P

K∇u · ∇v dV .

Stability: well-posedness property→ continuity and coercivity
There exist two constants σ?, σ? such that

σ?||vh,P||21,h,P ≤ Ah,P
(
vh,P, vh,P

)
≤ σ?||vh,P||21,h,P

(for some suitable norm || · ||1,h,P which mimics the energy norm on P)
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Low order: towards a local consistency condition
The low-order setting, m = 1, d = 2

Let K be constant on P. We integrate by parts on the polygonal cell P.

IF u is a linear polynomial on P =⇒ K∇u is a constant vector;

THEN∫
P

K∇u ·∇v dV = −
∫

P
div(K∇u) v dV︸ ︷︷ ︸

equal to zero!

+
∑

e∈∂P

K∇u ·nP,e︸ ︷︷ ︸
constant

∫
e

v dS

THUS, ∫
P

K∇u ·∇v dV =
∑

e∈∂P

K∇u · nP,e

∫
e

v dS.

G. Manzini Nonconforming MFD methods Durham 2014 13 / 51



The local consistency condition: two options
The low-order setting, m = 1, d = 2

1. we use a numerical integration rule on each edge e = (v′, v′′),
we require the exactness for linear polynomials:∑

e∈∂P

K∇u · nP,e

∫
e

v dS ≈
∑

e∈∂P

K∇u · nP,e |e|
v(xv′) + v(xv′′)

2︸ ︷︷ ︸
trapezoidal rule

.

2. we introduce the 0-th order moment of v as a degree of freedom:∑
e∈∂P

K∇u · nP,e

∫
e

v dS =
∑

e∈∂P

K∇u · nP,e|e|µe,0(v)

where:
µe,0(v) =

1
|e|

∫
e

v dS.

G. Manzini Nonconforming MFD methods Durham 2014 14 / 51



The local consistency condition: two options
The low-order setting, m = 1, d = 2

1. we use a numerical integration rule on each edge e = (v′, v′′),
we require the exactness for linear polynomials:∑

e∈∂P

K∇u · nP,e

∫
e

v dS ≈
∑

e∈∂P

K∇u · nP,e |e|
v(xv′) + v(xv′′)

2︸ ︷︷ ︸
trapezoidal rule

.

2. we introduce the 0-th order moment of v as a degree of freedom:∑
e∈∂P

K∇u · nP,e

∫
e

v dS =
∑

e∈∂P

K∇u · nP,e|e|µe,0(v)

where:
µe,0(v) =

1
|e|

∫
e

v dS.

G. Manzini Nonconforming MFD methods Durham 2014 14 / 51



1. Conforming mimetic discretization
The low-order setting, m = 1, d = 2

1. According to∑
e∈∂P

K∇u · nP,e

∫
e

v dS ≈
∑

e∈∂P

K∇u · nP,e|e|
v(xv′) + v(xv′′)

2
.

we require that

Ah,P
(
uh,P, vh,P

)
=
∑

e∈∂P

K∇u · nP,e|e|
vv′ + vv′′

2
.

when

I uh,P is a discrete representation of the linear polynomial u on P;
I vv′ , vv′′ are the degrees of freedom of vh,P at v′, v′′.

The dofs represent the vertex values of uh,P, vh,P
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2. Non-conforming mimetic discretization
The low-order setting, m = 1, d = 2

2. As |e|µe,0(v) =
∫

e v dS, and according to:

∑
e∈∂P

K∇u · nP,e

∫
e

v dS =
∑

e∈∂P

K∇u · nP,e|e|µe,0(v)

we require that

Ah,P
(
uh,P, vh,P

)
=
∑

e∈∂P

K∇u · nP,e|e| ve,0

when

I uh,P is a discrete representation of the linear polynomial u on P;
I ve,0 is the degree of freedom of vh,P associated with edge e.

The dofs represent the zero-th order moments of uh,P, vh,P
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Algebraic consistency: matrices N and R
Low order setting, m = 1, d = 2

basis of P1(P) =
{

1, (x − xP), (y − yP)
}

= {u1,u2,u3}
( (xP, yP) is the barycenter of P)
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m
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matrix R : integration-by-parts for the polynomials ui :

Ah,P
(
ui h,P, vh,P

)
=
∑
f∈P

K∇ui · nP,e

∫
e

v dS = vTRi

G. Manzini Nonconforming MFD methods Durham 2014 17 / 51



Algebraic consistency: MN = R
Low order setting, m = 1, d = 2

RECALL THAT

Ah,P
(
ui h,P, vh,P

)
=
∑
f∈P

K∇ui · nP,e

∫
e

v dS = vTRi

SINCE

Ah,P
(
ui h,P, vh,P

)
= vTMNi

THEN

MNi = Ri i = 1,2,3.

EQUIVALENTLY,

MN = R
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Algebraic consistency: MN = R
Low order setting, m = 1

The formula MN = R is ubiquitous in the MFD method.

Also,

NTR|ij =

∫
P

K∇ui · ∇uj dV where ui ,uj ∈
{

1, x − xP, y − yP
}

The (one-parameter) formula for the stiffness matrix:

M = R(NTR)†RT︸ ︷︷ ︸
MN=R

+µ
(
I− N(NTN)−1NT )︸ ︷︷ ︸

stability

M0 + M1

The second term depends on the parameter µ and gives a
(one-parameter) family of methods.
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The stiffness matrix formula

The formula for the stiffness matrix:

M = R(NTR)†RT︸ ︷︷ ︸
MN=R

+µ
(
I− N(NTN)−1NT )︸ ︷︷ ︸

stability

= M0 + M1

Remarks:

The consistency term M0 is responsible of the accuracy of the method.

The stability term M1 ensures the well-posedness of the method.

The bilinear form Ah,P contains a stabilization term that depends on a
set of parameters⇒ family of schemes!

Both terms can be given the same (algebraic) form of the corresponding
terms in the VEM.
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Three-dimensional case: conforming MFD
The low-order setting, m = 1, d = 3

Recall that vh|v := vv ≈ v(xv′) and∫
P

K∇u ·∇v dV =
∑
f∈∂P

K∇u · nP,f

∫
f
v dS

we assume that there exists a quadrature rule {(xf,v, ωf,v)v∈∂f} on each
face f ∈ ∂P such that ∫

f
v dS ≈

∑
v∈∂f

ωf,vv(xf,v)

is exact when v is a linear polynomial;

we require that for every linear polynomial u and every discrete field vh
the bilinear form satisfies

Ah,P
(
uh,P, vh,P

)
:=
∑
f∈∂P

K∇u · nP,f

∑
v∈∂f

ωf,vvv
[
vv represents v(xf,v)

]
.
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Three-dimensional case: non-conforming MFD
The low-order setting, m = 1, d = 3

Let K be constant on P, u a linear polynomial, and integrate by parts.

We use the 0-th order moment of v as a degree of freedom:∫
P

K∇u ·∇v dV =
∑
f∈∂P

K∇u · nP,f

∫
f
v dS =

∑
f∈∂P

K∇u · nP,e|e|µf,0(v)

where:
µf,0(v) =

1
|f|

∫
f
v dS.

The local consistency condition is:

Ah,P
(
uh,P, vh,P

)
=
∑
f∈∂P

K∇u · nP,e|f| vf,0
[
vf,0 represents µf,0(v)

]
For both formulations, we do the same as in 2D!
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Summarizing the low-order formulation:
Low order setting, m = 1

Degrees of freedom:

Conforming MFD Non-conforming MFD

exactness for linear polynomials;

both 2D and 3D formulations are available (same dofs);

we only need to implement N and R and apply the stiffness matrix
formula for M.
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High order: towards a local consistency condition (2D)
The high-order setting, m > 1, d = 2

Let K be constant and integrate by parts on the polygonal cell P:∫
P

K∇u ·∇v dV = −
∫

P
div(K∇u)︸ ︷︷ ︸
not zero!

v dV +
∑

e∈∂P

∫
e

K∇u ·nP,e︸ ︷︷ ︸
not constant!

v dS.

If u is a polynomial of degree m on P:

• div(K∇u) is a polynomial of degree m − 2;

• K∇u ·nP,e is a polynomial of degree m − 1;
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Divergence term
Internal degrees of freedom, m > 1, d = 2

For the conforming and non-conforming case, we use the moments
of v to express the integral over P:

if
div(K∇u) = a01 + a1x + a2y + . . . ∈ Pm−2(P)

then∫
P

div(K∇u) v dV = a0

∫
P

1v dV︸ ︷︷ ︸
v̂P,0

+a1

∫
P

xv dV︸ ︷︷ ︸
v̂P,1,x

+a2

∫
P

yv dV︸ ︷︷ ︸
v̂P,1,y

+ . . .

= a0v̂P,0 + a1v̂P,1,x + a2v̂P,1,y + . . .

This choice suggests us to define

- m(m − 1)/2 internal degrees of freedom ≈ v̂P,0, v̂P,1,x, v̂P,1,y, . . .
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Edge terms: conforming MFD
Nodal degrees of freedom, m > 1, d = 2

We use a Gauss-Lobatto formula with m + 1 nodes and weights
{(xe,q ,we,q)} on every (2D) edge e ∈ ∂P for:

∫
e

K∇u ·nP,e v dS ≈
m+1∑
q=1

we,qK∇u(xe,q) · nP,e v(xe,q).

This choice suggests us to define:

- one degree of freedom per vertex,
ve,1 = vv′ ≈ v(xv′), ve,m+1 = vv′′ ≈ v(xv′′);

- (m − 1) nodal degrees of freedom per edge of P,
ve,q ≈ v(xe,q) for q = 2, . . .m.
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High-order conforming MFD
The high-order setting, m > 1, d = 2

Local Consistency Condition:

Let K be constant.

For every u ∈ Pm(P) (m ≥ 1) and every discrete field vh,P ∈ Vh we
require that:

Ah,P
(
uh,P, vh,P

)
:= −

m(m−1)/2−1∑
j=0

aj v̂P,j︸ ︷︷ ︸
divergence

+
∑

e∈∂P

m+1∑
q=1

we,qK∇u(xe,q)·nP,e ve,q .︸ ︷︷ ︸
boundary

(uh,P are the dofs of u for P; terms aj v̂P,j are conveniently renumbered).
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Edge terms: non-conforming MFD
Edge degrees of freedom, m > 1, d = 2

We use the moments of v to express the integral over e ∈ ∂P:

if

(K∇u)|e · nP,e = b01 + b1ξ + b2ξ
2 + . . . ∈ Pm−1(e)

then∫
e

K∇u ·nP,e v dS = b0

∫
e

1v dS︸ ︷︷ ︸
v̂f,0

+b1

∫
e
ξv dS︸ ︷︷ ︸
v̂f,1

+b2

∫
e
ξ2v dS︸ ︷︷ ︸
v̂f,2

+ . . .

= b0v̂e,0 + b1v̂e,1 + b2v̂e,2 + . . .

This choice suggests us to define

- m degrees of freedom per edge ≈ v̂e,0, v̂e,1, v̂e,2, . . .
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High-order non-conforming MFD
The high-order setting, m > 1, d = 2

Local Consistency Condition:

Let K be constant.

For every u ∈ Pm(P) (m ≥ 1) and every discrete field vh,P ∈ Vh we
require that:

Ah,P
(
uh,P, vh,P

)
:= −

m(m−1)/2−1∑
j=0

aj v̂P,j︸ ︷︷ ︸
divergence

+
∑

e∈∂P

m−1∑
j=0

bj v̂e,j .︸ ︷︷ ︸
boundary

(uh,P are the dofs of u for P; terms aj v̂P,j are conveniently renumbered).
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Degrees of freedom
Conforming/non-conforming case

Conforming
m=1 m=2 m=3

Non-Conforming
m=1 m=2 m=3
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Algebraic consistency condition: MN = R
Let M be a symmetric and semi-positive definite matrix such that

Ah,P
(
uh,P, vh,P

)
= vT

h,PMuh,P.

• For any u ∈
{

1, x , y , x2, xy , y2, . . .
}

and any discrete field vh,P

- we write

Ah,P
(
vh,P,uh,P

)
= vTMNu where Nu =

[
uh,P

]
(”dofs” of u);

- we impose the local consistency condition:

Ah,P
(
uh,P, vh,P

)
= . . . = vT Ru

- we obtain by comparison:

MNu = Ru
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A family of schemes

Using N = [N1,N2, . . .], R = [R1,R2, . . .], we have:

MN = R and

(RTN)ij =

∫
P

K∇ui ·∇uj dV where ui ,uj ∈ {1, x , y , x2, . . .}.

M (symmetric and semi-positive definite) is given by

M = R(RTN)−1RT︸ ︷︷ ︸
MN=R

+ δM︸︷︷︸
stability

with δMN = 0,

where δM is a symmetric matrix of parameters.

A one-parameter (γ) choice for δM is given by:

δM = γ
(
I− N(NTN)−1NT ).
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The linear functional (f ,vh)h
The low-order case m = 1

Recall that
(
f , vh

)
h ≈

∫
Ω

fv dV .

We assemble
(
f , vh

)
h from local contribution:

(
f , vh

)
h :=

∑
P

(
f , vh

)
h,P where

(
f , vh

)
h,P ≈

∫
P

fv dV

We approximate the forcing term by its average on P:

f ≈ 1
|P|

∫
P

f dV =: f̄P;

We use a (first-order) quadrature based on vertex (conforming) or
edge (non-conforming) values. Example: let {(xv,wP,v)}:∫

P
fv dV ≈ f̄P

∫
P

v dV ≈ |P| f̄P
∑
v∈∂P

wP,vv(xv)
[
conforming

]
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The linear functional (f ,vh)h
The low-order case m = 1

Recall that
(
f , vh

)
h :=

∑
P

(
f , vh

)
h,P, where

(
f , vh

)
h,P ≈

∫
P

fv dV , and
∫

P
fv dV ≈ |P| f̄P

∑
v∈∂P

wP,vvv

Thus, for every cell P we define(
f , vh

)
h,P := |P| f̄P

∑
v∈∂P

wP,vvv ∀vh ∈ Vh

|P| f̄P =

∫
P

f dV

wP,v 1-st order integration weights.
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The linear functional (f ,vh)h
High-order case m > 1

Again,

(
f , vh

)
h :=

∑
P

(
f , vh

)
h,P where

(
f , vh

)
h,P ≈

∫
P

fv dV .

For m > 1 we consider the orthogonal projection of f onto the
polynomials of degree m − 2:

f ≈ c01 + c1x + c2y + . . . ∈ Pm−2(P)

and use the moments of v to express the r.h.s. integral:∫
P

f v dV ≈ c0

∫
P

1v dV︸ ︷︷ ︸
v̂P,0

+c1

∫
P

xv dV︸ ︷︷ ︸
v̂P,1,x

+c2

∫
P

yv dV︸ ︷︷ ︸
v̂P,1,y

+ . . .

= c0v̂P,0 + c1v̂P,1,x + c2v̂P,1,y + . . .
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The linear functional (f ,vh)h
High-order case m > 1

Recall that(
f , vh

)
h :=

∑
P

(
f , vh

)
h,P where

(
f , vh

)
h,P ≈

∫
P

fv dV .

thus, for every cell P we define(
f , vh

)
h,P :=

∑
j

cj v̂P,j ∀vh ∈ Vh

f ≈ c01 + c1x + c2y + . . . ∈ Pm−2(P)

(cj ) projection coefficients

v̂j moments, degrees of freedom of vh

(The terms cj v̂P,j are conveniently renumbered).
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Extension to 3D and variable coefficients

3D formulation

The 3D conforming formulation should have degrees of freedom
associated to vertices, edges, faces and cells: too many!
For the 3D non-conforming formulation: we use moments on the
faces and on the cells as for the VEM method.

Variable coefficients (conforming/non-conforming)

Modified consistency condition.
If u ∈ Pm(P) and K(X ) is variable in P:∫

P
K(x)∇u · ∇v dV ≈

∫
P

Πm−1(K(x)∇u) · ∇v dV = . . .

There exists a VEM counterpart using a modified projector Π̃∇.
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Building a bridge with the VEM
Conforming/non-conforming MFD, m ≤ 1

Let N =
[
1, N̂

]
, R =

[
0, R̂

]
;

NTR =

(
0 0

0 N̂T R̂

)
and

(
NTR

)†
=

(
0 0

0 (N̂T R̂)−1

)

where N̂T R̂ is symmetric and positive definite.

Let G = −
[
|P| N̂T R̂

]− 1
2 RT . Then,

M0 = R(NTR)†RT = R̂(N̂T R̂)−1R̂T = GTG |P| .

Guh,P ≈ −K∇u is the flux operator such that

uTM0v = (Guh,P)TGvh,P |P| ≈
∫

P
K∇Π∇(u) · ∇Π∇(v) dV
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Building a bridge with the VEM
Similarities and differences:

For both the conforming and the non-conforming MFD and VEM formulations
we can prove that:

the degrees of freedom are the same;

the consistency term is the same:
I in the MFD setting it relates to an exactness property;
I in the VEM setting it is the projection of the bilinear form on

polynomials;

the stabilization term of VEM forms a subset of those of MFD:
I in the MFD setting it gives the proper rank of the stiffness matrix;
I in the VEM setting it relates to the non-computable part of the

bilinear form;

the formulation is different: VEM has the advantage of being a FEM!
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MFD and VEM: much more than a bridge!

For the Poisson equation (in primal form) we have:

Conforming MFD

2009 low-order, 2D-3D: Brezzi, Buffa, Lipnikov (M2AN);
2011 high-order, 2D: Beirao da Veiga, Lipnikov, M. (SINUM);

Conforming VEM

2013 any order, 2D: ”volley” team (M3AS);

Non-conforming MFD

2014 any order, 2D-3D: Lipnikov, M., (JCP);

Non-conforming VEM

2014 any order, 2D-3D: Ayuso, Lipnikov, M. (submitted).
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A mesh-dependent norm
Conforming case

We consider the mesh-dependent norm

||vh||21,h =
∑

P∈Ωh

||vh||21,h,P

that mimics the | · |1,Ω semi-norm;

• for the low-order method (m = 1, d = 2,3), e = (v′, v′′) being an edge,

||vh||21,h,P = ||GRADh(vh)||2h,P = hP

∑
e∈∂P

|vv′′ − vv′ |2 ;

• for the high-order method (m > 1, d = 2), e = (v′, v′′) being an edge,

||vh||21,h,P = hP

∑
e∈∂P

∣∣∣∣∣∣ ∂vh,f

∂s

∣∣∣∣∣∣2
L2(e)

+
[
”moments”

]
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Convergence results
Conforming case

The consistency and the stability conditions allow us to determine a family
of mimetic schemes:

for the low-order method m = 1:

||uI − uh||1,h < Ch
(
|f |0,Ω + |u|1,Ω + |u|2,Ω

)
;

(Brezzi, Buffa, Lipnikov, M2AN (2009)),

for the high-order method m > 1:

||uI − uh||1,h < Chm||u||m+1,Ω;

(Beirao da Veiga, Lipnikov, M., SINUM (2011); VEM, Brezzi et. al. M3AS
(”volley” paper)

(For the non-conforming case refer to the talk of Blanca A.).
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Conforming MFD method
Meshes with randomized quadrilaterals

• Meshes:

• Exact solution: u(x , y) =
(

x − e2(x−1)
)(

y2 − e3(y−1)
)

• Diffusion tensor

K =

(
1 0
0 1

)
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Conforming MFD method
Randomized quadrilaterals, || · ||1,h errors, constant K

m = 2 m = 3
n h Error Rate Error Rate
0 1.922 10−1 1.416 10−1 −− 7.454 10−2 −−
1 9.705 10−2 2.441 10−2 2.57 8.632 10−3 3.15
2 4.838 10−2 5.366 10−3 2.18 1.536 10−3 2.48
3 2.467 10−2 1.399 10−3 1.99 1.739 10−4 3.23
4 1.263 10−2 3.524 10−4 2.06 2.227 10−5 3.07

m = 4 m = 5
n h Error Rate Error Rate
0 1.922 10−1 1.031 10−2 −− 4.567 10−3 −−
1 9.705 10−2 1.690 10−3 2.65 2.674 10−4 4.15
2 4.838 10−2 1.273 10−4 3.71 1.336 10−5 4.30
3 2.467 10−2 8.279 10−6 4.06 4.586 10−7 5.01
4 1.263 10−2 5.545 10−7 4.04 – –
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Conforming MFD method
Meshes with non-convex polygons

• Meshes:

• Exact solution: u(x , y) = e−2πy sin(2πx)

• Diffusion tensor

K =

(
1 0
0 1

)
and K(x , y) =

(
(x + 1)2 + y2 −xy
−xy (x + 1)2

)
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Conforming MFD method
Non-convex polygons, || · ||1,h errors, constant K

m = 2 m = 3
n h Error Rate Error Rate
0 1.458 10−1 2.858 −− 1.007 −−
1 7.289 10−2 7.867 10−1 1.86 2.819 10−1 1.84
2 3.644 10−2 2.049 10−1 1.94 5.597 10−2 2.33
3 1.822 10−2 5.289 10−2 1.95 8.897 10−3 2.65

m = 4 m = 5
n h Error Rate Error Rate
0 1.458 10−1 1.943 10−1 −− 2.282 10−2 −−
1 7.289 10−2 1.276 10−2 3.93 1.128 10−3 4.34
2 3.644 10−2 7.075 10−4 4.17 4.406 10−5 4.68
3 1.822 10−2 3.950 10−5 4.16 – –
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Conforming MFD method
Non-convex polygons, || · ||1,h errors, non-constant K

m = 2 m = 3
n h Error Rate Error Rate
0 1.458 10−1 3.007 −− 9.873 10−1 −−
1 7.289 10−2 8.081 10−1 1.89 2.760 10−1 1.84
2 3.644 10−2 2.071 10−1 1.96 5.621 10−2 2.29
3 1.822 10−2 5.303 10−2 1.97 9.083 10−3 2.63

m = 4 m = 5
n h Error Rate Error Rate
0 1.458 10−1 2.059 10−1 −− 1.988 10−2 −−
1 7.289 10−2 1.367 10−2 3.92 1.016 10−3 4.29
2 3.644 10−2 7.562 10−4 4.18 3.924 10−5 4.69
3 1.822 10−2 4.210 10−5 4.17 – –
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Non-conforming MFD method
Meshes with random hexahedra

• Meshes:

• Exact solution: u(x , y , z) = x3y2z + x sin(2πxy) sin(2πyz) sin(2πz)

• Diffusion tensor

K =

 1 + y2 + z2 −xy −xz
−xy 1 + x2 + z2 −yz
−xz −yz 1 + x2 + y2



G. Manzini Nonconforming MFD methods Durham 2014 48 / 51



Non-conforming MFD method
Meshes with random hexahedra
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The error is given by u − Π∇m (uh)
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Conclusions

The conforming and non-conforming MFD methods are such that:

(i) the low-order formulation uses either vertex or edge values to
represent linear polynomials; it works in 2-D and 3-D;

(ii) the high-order formulation uses edge nodal values and moments to
represent m-degree polynomials; it works in 2-D and 3-D (only
non-conforming).

(iii) a reformulation as finite element exists in the virtual element
framework.

Possible future developments:

(i) more complex operators (+convection, +reaction);
(ii) exploit the strong connection with the VEM;
(iii) curved faces;
(iv) . . .
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