Introduction	Discretization	Auxiliary results	Error estimates	Examples	Local estimation

A posteriori error estimators for weighted norms. Adaptivity for point sources and local errors

Pedro Morin

Joint work with Juan Pablo Agnelli and Eduardo Garau

Durham, July 2014

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ● のへぐ

Introduction			
Outline			

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ● のへぐ

- 2 Finite element discretization
- Some results in weighted spaces on simplices
- A posteriori error estimates
- Sumerical experiments
- 6 Local estimation

Introduction			
Problem			

Problem

Find $u: \Omega \to \mathbb{R}$ such that

$$\begin{cases} -\nabla \cdot (\mathcal{A}\nabla u) + \boldsymbol{b} \cdot \nabla u + c\boldsymbol{u} = \delta_{x_0} & \text{in } \Omega \\ \boldsymbol{u} = 0 & \text{on } \partial \Omega \end{cases}$$

イロト (同) (三) (三) (つ) (つ)

where

- $\Omega \subset \mathbb{R}^n$ (*n* = 2, 3) bounded polygonal/polyhedral domain with Lipschitz boundary.
- x_0 : inner point of Ω
- δ_{x_0} : Dirac delta distribution supported at x_0 .

Introduction			
Problem			

Problem

Find $u: \Omega \to \mathbb{R}$ such that

$$\begin{cases} -\nabla \cdot (\mathcal{A}\nabla u) + \boldsymbol{b} \cdot \nabla u + c\boldsymbol{u} = \delta_{x_0} & \text{in } \Omega \\ \boldsymbol{u} = 0 & \text{on } \partial \Omega \end{cases}$$

where

- $\Omega \subset \mathbb{R}^n$ (*n* = 2, 3) bounded polygonal/polyhedral domain with Lipschitz boundary.
- x_0 : inner point of Ω
- δ_{x_0} : Dirac delta distribution supported at x_0 .
- *A* ∈ L[∞](Ω; ℝ^{n×n}) piecewise-W^{1,∞} and uniformly symmetric positive definite over Ω.

• $\boldsymbol{b} \in W^{1,\infty}(\Omega;\mathbb{R}^n), c \in L^{\infty}(\Omega) \text{ with } c - \frac{1}{2}\operatorname{div}(\boldsymbol{b}) \geq 0.$

Introduction				
• 1	Usual test and ar	satz space: $H_0^1(\Omega)$	$P(0) = W_0^{1,2}(\Omega).$	

 $\delta_{x_0} \notin (H_0^1(\Omega))' \quad \Rightarrow \quad u \notin H_0^1$

Introduction			

• Usual test and ansatz space: $H_0^1(\Omega) = W_0^{1,2}(\Omega)$.

$$\delta_{x_0} \notin (H^1_0(\Omega))' \quad \Rightarrow \quad u \notin H^1_0$$

イロト (同) (三) (三) (つ) (つ)

• For n = 2, Araya-Behrens-Rodríguez (2007):

- Test space: $W_0^{1,p'}(\Omega) \subset C(\Omega)$, for some p' > 2.
- Ansatz space: $W_0^{1,p}(\Omega), \frac{1}{p} + \frac{1}{p'} = 1 \implies p < 2).$

Introduction			

• Usual test and ansatz space: $H_0^1(\Omega) = W_0^{1,2}(\Omega)$.

$$\delta_{x_0} \notin (H_0^1(\Omega))' \quad \Rightarrow \quad u \notin H_0^1$$

- For n = 2, Araya-Behrens-Rodríguez (2007):
 - Test space: $W_0^{1,p'}(\Omega) \subset C(\Omega)$, for some p' > 2.
 - Ansatz space: $W_0^{1,p}(\Omega), \frac{1}{p} + \frac{1}{p'} = 1 \implies p < 2$).

• For *n* = 2, *Gaspoz-M-Veeser* (2014, *in prep.*):

- Test space: $H_0^{1+s}(\Omega) \subset C(\Omega)$ if s > 0.
- Ansatz space: $H_0^{1-s}(\Omega)$, for 0 < s < 1.

Introduction			

• Usual test and ansatz space: $H_0^1(\Omega) = W_0^{1,2}(\Omega)$.

$$\delta_{x_0} \notin (H_0^1(\Omega))' \quad \Rightarrow \quad u \notin H_0^1$$

• For n = 2, Araya-Behrens-Rodríguez (2007):

- Test space: $W_0^{1,p'}(\Omega) \subset C(\Omega)$, for some p' > 2.
- Ansatz space: $W_0^{1,p}(\Omega), \frac{1}{p} + \frac{1}{p'} = 1 \implies p < 2$).

• For n = 2, Gaspoz-M-Veeser (2014, in prep.):

- Test space: $H_0^{1+s}(\Omega) \subset C(\Omega)$ if s > 0.
- Ansatz space: $H_0^{1-s}(\Omega)$, for 0 < s < 1.

Goals:

- Not modify the integrability power nor the differentiability order.
- Obtain results also valid for n = 3.

We use weighted spaces -D'Angelo & Quarteroni (2008,2012)-

Introduction			
Weighted sp	aces		

◆□ ▶ ◆昼 ▶ ◆ 重 ▶ ◆ 国 ◆ ○ ● ●

•
$$\mathbf{d}_{x_0}(x) = |x - x_0| \quad \rightsquigarrow \quad \text{distance from } x \text{ to } x_0.$$

Introduction			
Weighted sp	aces		

•
$$d_{x_0}(x) = |x - x_0| \quad \rightsquigarrow \quad \text{distance from } x \text{ to } x_0.$$

• If
$$-\frac{n}{2} < \beta < \frac{n}{2}$$
,
 $\frac{1}{n^2 - (2\beta)^2} \le \sup_{\substack{B = B(y,r) \\ y \in \mathbb{R}^n, r > 0}} \left(\frac{1}{|B|} \int_B d_{x_0}^{2\beta}\right) \left(\frac{1}{|B|} \int_B d_{x_0}^{-2\beta}\right) \le \frac{C_n}{n^2 - (2\beta)^2}$,

・ロト・雪・・雪・・白・ うへの

Introduction			
Weighted sp	aces		

•
$$d_{x_0}(x) = |x - x_0| \quad \rightsquigarrow \quad \text{distance from } x \text{ to } x_0.$$

• If
$$-\frac{n}{2} < \beta < \frac{n}{2}$$
,
 $\frac{1}{n^2 - (2\beta)^2} \le \sup_{\substack{B = B(y,r) \\ y \in \mathbb{R}^n, r > 0}} \left(\frac{1}{|B|} \int_B d_{x_0}^{2\beta}\right) \left(\frac{1}{|B|} \int_B d_{x_0}^{-2\beta}\right) \le \frac{C_n}{n^2 - (2\beta)^2}$,

۲

$$-\frac{n}{2} < \beta < \frac{n}{2} \qquad \Longleftrightarrow \qquad \mathsf{d}_{x_0}^{2\beta} \in A_2.$$

◆□ ▶ ◆昼 ▶ ◆ 重 ▶ ◆ 国 ◆ ○ ● ●

Introduction			
Weighted sp	aces		

• For
$$-\frac{n}{2} < \beta < \frac{n}{2}$$
,

$$L^2_{\beta}(\Omega) := \{ u \text{ measurable } : \|u\|_{L^2_{\beta}(\Omega)} < \infty \},\$$

where

$$\|u\|_{L^2_{eta}(\Omega)} := \|u\|_{L^2(\Omega, \mathrm{d}^{2eta}_{x_0})} = \left(\int_{\Omega} |u(x)|^2 \,\mathrm{d}_{x_0}(x)^{2eta} dx\right)^{rac{1}{2}}$$

Introduction			
Weighted sp	aces		

• For
$$-\frac{n}{2} < \beta < \frac{n}{2}$$
,

$$L^2_{\beta}(\Omega) := \{ u \text{ measurable } : \|u\|_{L^2_{\beta}(\Omega)} < \infty \},\$$

where

$$\|u\|_{L^2_{\beta}(\Omega)} := \|u\|_{L^2(\Omega, \mathrm{d}^{2\beta}_{x_0})} = \left(\int_{\Omega} |u(x)|^2 \,\mathrm{d}_{x_0}(x)^{2\beta} dx\right)^{\frac{1}{2}}$$

• Weighted Sobolev space:

 $H^1_{\beta}(\Omega) = \{u \text{ weakly differenciable } : \|u\|_{H^1_{\beta}(\Omega)} < \infty\},$

where

$$\|u\|_{H^{1}_{\beta}(\Omega)} := \|u\|_{L^{2}_{\beta}(\Omega)} + \|\nabla u\|_{L^{2}_{\beta}(\Omega)}$$

Introduction			
Weighted sp	aces		

• If $0 < \alpha < \frac{n}{2}$, then $H^1_{-\alpha}(\Omega) \subset H^1(\Omega) \subset H^1_{\alpha}(\Omega)$ with continuity.

Introduction			
Weighted spa	aces		

• If $0 < \alpha < \frac{n}{2}$, then $H^1_{-\alpha}(\Omega) \subset H^1(\Omega) \subset H^1_{\alpha}(\Omega)$ with continuity.

Idea: Use an appropriate subspace of $H^1_{-\alpha}(\Omega)$ for test space and of $H^1_{\alpha}(\Omega)$ for ansatz space.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへの

Introduction			
Weighted sp	aces		

• If $0 < \alpha < \frac{n}{2}$, then $H^1_{-\alpha}(\Omega) \subset H^1(\Omega) \subset H^1_{\alpha}(\Omega)$ with continuity.

Idea: Use an appropriate subspace of $H^1_{-\alpha}(\Omega)$ for test space and of $H^1_{\alpha}(\Omega)$ for ansatz space.

• D'Angelo and Quarteroni (2008) + a weighted Hardy's inequality:

Introduction			

• Define

$$W_{\beta} := \{ u \in H^{1}_{\beta}(\Omega) : u_{|\partial\Omega} = 0 \}, \qquad \|u\|_{W_{\beta}} := \|\nabla u\|_{L^{2}_{\beta}(\Omega)}$$

◆□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction			

Define

$$W_{\beta} := \{ u \in H^{1}_{\beta}(\Omega) : u_{|\partial\Omega} = 0 \}, \qquad \|u\|_{W_{\beta}} := \|\nabla u\|_{L^{2}_{\rho}(\Omega)}$$

• The norm in W_{β} is equivalent to the inherited norm $||u||_{H^{1}_{\beta}(\Omega)}$. The equivalence constant blows up when $|\beta|$ approaches $\frac{n}{2}$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ● のへぐ

Introduction			
Variational	formulation		

• Let
$$\frac{n}{2} - 1 < \alpha < \frac{n}{2}$$
.

Weak form

$$u \in W_{\alpha}$$
: $a(u, v) = \delta_{x_0}(v), \quad \forall v \in W_{-\alpha},$

where

$$a(u,v) = \int_{\Omega} \mathcal{A} \nabla u \quad \cdot \nabla v \quad + \boldsymbol{b} \cdot \nabla u \quad v \quad + c \, u \quad v \quad ,$$

is well-defined and bounded in $W_{\alpha} \times W_{-\alpha}$ due to Hölder inequality.

Introduction			
Variational	formulation		

• Let
$$\frac{n}{2} - 1 < \alpha < \frac{n}{2}$$
.

Weak form

$$u \in W_{\alpha}$$
: $a(u, v) = \delta_{x_0}(v), \quad \forall v \in W_{-\alpha},$

where

$$a(u,v) = \int_{\Omega} \mathcal{A} \nabla u \mathsf{d}_{x_0}^{\alpha} \cdot \nabla v \frac{1}{\mathsf{d}_{x_0}^{\alpha}} + \boldsymbol{b} \cdot \nabla u \mathsf{d}_{x_0}^{\alpha} v \frac{1}{\mathsf{d}_{x_0}^{\alpha}} + c \, u \mathsf{d}_{x_0}^{\alpha} \, v \frac{1}{\mathsf{d}_{x_0}^{\alpha}},$$

is well-defined and bounded in $W_{\alpha} \times W_{-\alpha}$ due to Hölder inequality.

Introduction				
Existence an	d uniqueness of	f the weak soluti	on	

Given $F \in (W_{-\alpha})'$, find $u \in W_{\alpha}$ such that

 $a(u, v) = F(v), \quad \forall v \in W_{-\alpha}.$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

Introduction										
Existence	Existence and uniqueness of the weak solution									

Given $F \in (W_{-\alpha})'$, find $u \in W_{\alpha}$ such that

$$a(u,v) = F(v), \quad \forall v \in W_{-\alpha}.$$

• D'Angelo (2012):

$$\inf_{u\in W_{\alpha}}\sup_{v\in W_{-\alpha}}\frac{\int_{\Omega}\nabla u\cdot\nabla v}{\|u\|_{W_{\alpha}}\|v\|_{W_{-\alpha}}}\geq \frac{1}{2}\quad,\quad\inf_{v\in W_{-\alpha}}\sup_{u\in W_{\alpha}}\frac{\int_{\Omega}\nabla u\cdot\nabla v}{\|u\|_{W_{\alpha}}\|v\|_{W_{-\alpha}}}\geq \frac{1}{2}\quad,$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

Introduction										
Existence	Existence and uniqueness of the weak solution									

Given $F \in (W_{-\alpha})'$, find $u \in W_{\alpha}$ such that

$$a(u,v) = F(v), \quad \forall v \in W_{-\alpha}.$$

• D'Angelo (2012):

$$\inf_{u\in W_{\alpha}}\sup_{v\in W_{-\alpha}}\frac{\int_{\Omega}\mathcal{A}\nabla u\cdot\nabla v}{\|u\|_{W_{\alpha}}\|v\|_{W_{-\alpha}}}\geq \frac{1}{2}\gamma_{1},\quad\inf_{v\in W_{-\alpha}}\sup_{u\in W_{\alpha}}\frac{\int_{\Omega}\mathcal{A}\nabla u\cdot\nabla v}{\|u\|_{W_{\alpha}}\|v\|_{W_{-\alpha}}}\geq \frac{1}{2}\gamma_{1},$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

where γ_1 is the smallest eigenvalue of \mathcal{A} .

Introduction										
Existence	Existence and uniqueness of the weak solution									

Given $F \in (W_{-\alpha})'$, find $u \in W_{\alpha}$ such that

$$a(u,v) = F(v), \quad \forall v \in W_{-\alpha}.$$

• D'Angelo (2012):

$$\inf_{u\in W_{\alpha}}\sup_{v\in W_{-\alpha}}\frac{\int_{\Omega}\mathcal{A}\nabla u\cdot\nabla v}{\|u\|_{W_{\alpha}}\|v\|_{W_{-\alpha}}}\geq \frac{1}{2}\gamma_{1},\quad\inf_{v\in W_{-\alpha}}\sup_{u\in W_{\alpha}}\frac{\int_{\Omega}\mathcal{A}\nabla u\cdot\nabla v}{\|u\|_{W_{\alpha}}\|v\|_{W_{-\alpha}}}\geq \frac{1}{2}\gamma_{1},$$

where γ_1 is the smallest eigenvalue of \mathcal{A} .

• $a(\cdot, \cdot) : H_0^1(\Omega) \times H_0^1(\Omega) \to \mathbb{R}$ continuous and coercive.

Introduction				
Existence	and uniqueness	s of the weak sol	ution	

$$\alpha \in \mathbb{I} := \begin{cases} (0,1) & \text{if } n = 2 \text{ and } \mathbf{b} \in W^{1,\infty}(\Omega; \mathbb{R}^2), \ c \in L^{\infty}(\Omega) \\ (\frac{1}{2},1) & \text{if } n = 3 \text{ and } \mathbf{b} \in W^{1,\infty}(\Omega; \mathbb{R}^3), \ c \in L^{\infty}(\Omega) \\ (\frac{1}{2}, \frac{3}{2}) & \text{if } n = 3 \text{ and } \mathbf{b} = 0, \ c = 0 \end{cases}$$

Well-posedness and stability

There exists an unique solution u of the problem and there holds that

$$||u||_{W_{\alpha}} \leq C_* ||F||_{(W_{-\alpha})'}.$$

- Case b = c = 0: $C_* = 2/\gamma_1$.
- Otherwise: $C_* = C_*(\Omega, \mathcal{A}, \boldsymbol{b}, \boldsymbol{c}, \alpha) \to \infty$ when $\alpha \to 1$.

Introduction			
An Inf-Sup	o condition		

Existence and uniqueness of the weak solution

There exists a unique solution of

$$u \in W_{\alpha}$$
: $a(u, v) = \delta_{x_0}(v), \quad \forall v \in W_{-\alpha},$

which satisfies

$$||u||_{W_{\alpha}} \leq C_* ||\delta_{x_0}||_{(W_{-\alpha})'}.$$

An Inf-Sup condition

$$\inf_{u \in W_{\alpha}} \sup_{v \in W_{-\alpha}} \frac{a(u,v)}{\|u\|_{W_{\alpha}} \|v\|_{W_{-\alpha}}} = \frac{1}{C_*}.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ● のへぐ

• Case
$$\boldsymbol{b} = c = 0$$
: $C_* = 2/\gamma_1$.
• Otherwise: $C_* = C_*(\Omega, \mathcal{A}, \boldsymbol{b}, c, \alpha) \to \infty$ when $\alpha \to 1$

Introduction	Discretization		
Outline			

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Problem

- 2 Finite element discretization
- Some results in weighted spaces on simplices
- 4 A posteriori error estimates
- Sumerical experiments
- 6 Local estimation

	Discretization		
Galerkin di	iscretization		

• \mathcal{T} conforming triangulation of Ω .

٢

$$\kappa := \sup_{T \in \mathcal{T}} \frac{\operatorname{diam}(T)}{\rho_T} \quad (\text{mesh regularity})$$

• Lagrange finite elements of degree $\ell \in \mathbb{N}$:

$$\mathbb{V}^{\ell}_{\mathcal{T}} := \{ V \in H^1_0(\Omega) \mid \ V_{|_{T}} \in \mathcal{P}_{\ell}(T), \ \forall \ T \in \mathcal{T} \}$$

	Discretization		
Galerkin	discretization		

Discrete problem
Find
$$U \in \mathbb{V}^{\ell}_{\mathcal{T}}$$
: $a(U, V) = \delta_{x_0}(V), \quad \forall V \in \mathbb{V}^{\ell}_{\mathcal{T}}.$

• The discrete problem has a unique solution for each mesh and

$$||U||_{W_{\alpha}} \leq C ||\delta_{x_0}||_{(W_{-\alpha})'},$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $C = C(\Omega, \mathcal{A}, \boldsymbol{b}, c, \kappa, \ell, \alpha) \rightarrow \infty$ as $\alpha \rightarrow$ right endpoint of \mathbb{I} .

	Auxiliary results		
Outline			

- 2 Finite element discretization
- 3 Some results in weighted spaces on simplices
- A posteriori error estimates
- Sumerical experiments
- 6 Local estimation

		Auxiliary results		
Local Poin	caré inequality	/		

Local Poincaré inequality

Let $\beta \in (-\frac{n}{2}, \frac{n}{2})$. There exists $C_P = C_P(\beta, \kappa) > 0$ such that

$$\|v - v_T\|_{L^2_{\beta}(T)} \le C_P h_T \|\nabla v\|_{L^2_{\beta}(T)}, \quad \forall T \in \mathcal{T}, \ \forall v \in H^1_{\beta}(\Omega)$$

where $v_T := \frac{1}{|T|} \int_T v$. The constant C_P blows up when $|\beta|$ approaches $\frac{n}{2}$.

• $h_T := |T|^{\frac{1}{n}} \simeq \operatorname{diam}(T).$

	Auxiliary results		

Let $0 < \gamma < n$ and $f : \mathbb{R}^n \to \mathbb{R}$ be a measurable function.

Fractional Integral

$$T_{\gamma}(f)(x) := \int_{\mathbb{R}^n} \frac{f(y)}{|x-y|^{n-\gamma}} dy$$

Fractional Maximal Function

$$f_{\gamma}^{*}(x) := \sup_{B=B_{x}} \frac{1}{|B|^{1-\gamma/n}} \int_{B} |f(y)| \, dy$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

	Auxiliary results		

Lemma (Muckenhoupt and Wheeden (1974))

Let $0 < \gamma < n$, $w \in A_{\infty} = \cup_{q \ge 1} A_q$, and 1 . Then,

$$\left(\int_{\mathbb{R}^n} |T_{\gamma}(f)|^p w\right)^{\frac{1}{p}} \leq c \left(\int_{\mathbb{R}^n} |f_{\gamma}^*|^p w\right)^{\frac{1}{p}},$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ● のへぐ

for all measurable functions f.

	Auxiliary results		

Lemma (Muckenhoupt and Wheeden (1974))

Let $0 < \gamma < n$, $w \in A_{\infty} = \bigcup_{q \ge 1} A_q$, and 1 . Then,

$$\left(\int_{\mathbb{R}^n} |T_\gamma(f)|^p w
ight)^{rac{1}{p}} \leq c \left(\int_{\mathbb{R}^n} |f_\gamma^*|^p w
ight)^{rac{1}{p}},$$

for all measurable functions f.

Lemma (Fabes, Kenig and Serapioni (1982))

Let $w \in A_p$, for some p, 1 . Then, there exists a constant <math>c > 0, depending only on the A_p constant of w, such that

$$\left(\int_{\mathbb{R}^n} |f_1^*|^p w\right)^{rac{1}{p}} \leq cR\left(\int_{B_R} |f|^p w\right)^{rac{1}{p}},$$

for all ball B_R of radius R > 0, and for all f measurable and supported in B_R .

		Auxiliary results		
Local Poine	caré inequality	7		

Proof. Let $v \in C^1(\overline{\Omega})$. Since *T* is convex,

$$|v(x) - v_T| \leq \frac{\operatorname{diam}(T)^n}{n |T|} \underbrace{\int_T \frac{|\nabla v(z)|}{|x - z|^{n-1}} \, dz}_{=T_1(|\nabla v|\chi_T)(x)} \quad \text{a.e. } x \in T.$$

		Auxiliary results		
Local Poinc	aré inequality	7		

Proof. Let $v \in C^1(\overline{\Omega})$. Since *T* is convex,

$$|v(x) - v_T| \le \frac{\operatorname{diam}(T)^n}{n|T|} \underbrace{\int_T \frac{|\nabla v(z)|}{|x - z|^{n-1}} \, dz}_{=T_1(|\nabla v|\chi_T)(x)} \quad \text{a.e. } x \in T.$$

If $f := |\nabla v| \chi_T$, mesh regularity yields

$$|v(x) - v_T| \lesssim T_1(f)(x), \qquad \text{a.e. } x \in T.$$
(1)

・ロト・日本・モト・モー ショー ショー
		Auxiliary results		
Local Poinca	ré inequality			

Proof. Let $v \in C^1(\overline{\Omega})$. Since *T* is convex,

$$|v(x) - v_T| \le \frac{\operatorname{diam}(T)^n}{n|T|} \underbrace{\int_T \frac{|\nabla v(z)|}{|x - z|^{n-1}} \, dz}_{=T_1(|\nabla v|\chi_T)(x)} \quad \text{a.e. } x \in T.$$

If $f := |\nabla v| \chi_T$, mesh regularity yields

$$|v(x) - v_T| \lesssim T_1(f)(x), \qquad \text{a.e. } x \in T.$$
(1)

Since $d_{x_0}^{2\beta} \in A_2 \subset A_\infty$, due to the lemmas stated above it follows that

$$\|T_1(f)\|_{L^2_{\beta}(\mathbb{R}^n)} \le cR \|f\|_{L^2_{\beta}(B_R)} = cR \|\nabla v\|_{L^2_{\beta}(T)},$$
(2)

for balls $B_R \supset T$.

		Auxiliary results		
Local Poinca	ré inequality			

Proof. Let $v \in C^1(\overline{\Omega})$. Since *T* is convex,

$$|v(x) - v_T| \le \frac{\operatorname{diam}(T)^n}{n |T|} \underbrace{\int_T \frac{|\nabla v(z)|}{|x - z|^{n-1}} \, dz}_{=T_1(|\nabla v|\chi_T)(x)}, \quad \text{a.e. } x \in T.$$

If $f := |\nabla v| \chi_T$, mesh regularity yields

$$|v(x) - v_T| \lesssim T_1(f)(x), \qquad \text{a.e. } x \in T.$$
(1)

Since $d_{x_0}^{2\beta} \in A_2 \subset A_\infty$, due to the lemmas stated above it follows that

$$\|T_1(f)\|_{L^2_{\beta}(\mathbb{R}^n)} \le cR \|f\|_{L^2_{\beta}(B_R)} = cR \|\nabla v\|_{L^2_{\beta}(T)},$$
(2)

for balls $B_R \supset T$. Taking a ball with $R \leq h_T$ and considering (1) and (2), we obtain the result for smooth functions *v*.

		Auxiliary results		
Local Poinca	ré inequality			

Proof. Let $v \in C^1(\overline{\Omega})$. Since *T* is convex,

$$|v(x) - v_T| \le \frac{\operatorname{diam}(T)^n}{n |T|} \underbrace{\int_T \frac{|\nabla v(z)|}{|x - z|^{n-1}} \, dz}_{=T_1(|\nabla v|\chi_T)(x)}, \quad \text{a.e. } x \in T.$$

If $f := |\nabla v| \chi_T$, mesh regularity yields

$$|v(x) - v_T| \lesssim T_1(f)(x), \qquad \text{a.e. } x \in T.$$
(1)

Since $d_{x_0}^{2\beta} \in A_2 \subset A_\infty$, due to the lemmas stated above it follows that

$$\|T_1(f)\|_{L^2_{\beta}(\mathbb{R}^n)} \le cR \|f\|_{L^2_{\beta}(B_R)} = cR \|\nabla v\|_{L^2_{\beta}(T)},$$
(2)

・ロト・日本・ヨト・ヨト・ヨー シタク

for balls $B_R \supset T$. Taking a ball with $R \leq h_T$ and considering (1) and (2), we obtain the result for smooth functions *v*. The assertion of the theorem follows by density arguments. q.e.d.

		Auxiliary results		
Interpolati	on estimates			

• $\mathcal{P}: H^1(\Omega) \to \mathbb{V}^1_{\mathcal{T}}$ Clément or Scott-Zhang interpolation operator.

Classical Interpolation Estimates

$$\begin{aligned} \|v - \mathcal{P}v\|_{L^{2}(T)} &\lesssim h_{T} \|\nabla v\|_{L^{2}(S_{T})}, \quad \forall T \in \mathcal{T}, \\ \|\nabla (v - \mathcal{P}v)\|_{L^{2}(T)} &\lesssim \|\nabla v\|_{L^{2}(S_{T})}, \qquad \forall T \in \mathcal{T}. \end{aligned}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

		Auxiliary results		
Interpolati	on estimates			

• $\mathcal{P}: H^1(\Omega) \to \mathbb{V}^1_{\mathcal{T}}$ Clément or Scott-Zhang interpolation operator.

Classical Interpolation Estimates

$$\begin{aligned} \|v - \mathcal{P}v\|_{L^{2}(T)} &\lesssim h_{T} \|\nabla v\|_{L^{2}(S_{T})}, \quad \forall T \in \mathcal{T}, \\ \|\nabla (v - \mathcal{P}v)\|_{L^{2}(T)} &\lesssim \|\nabla v\|_{L^{2}(S_{T})}, \qquad \forall T \in \mathcal{T}. \end{aligned}$$

P is well defined in H¹_{-α}(Ω), since H¹_{-α}(Ω) ⊂ H¹(Ω), for α > 0.

Weighted Interpolation Estimates

$$\begin{aligned} \|v - \mathcal{P}v\|_{L^{2}_{-\alpha}(T)} &\leq C_{I}h_{T} \|\nabla v\|_{L^{2}_{-\alpha}(S_{T})}, \quad \forall T \in \mathcal{T}, \\ \|\nabla(v - \mathcal{P}v)\|_{L^{2}_{-\alpha}(T)} &\leq C_{I} \|\nabla v\|_{L^{2}_{-\alpha}(S_{T})}, \qquad \forall T \in \mathcal{T}. \end{aligned}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

Here, $C_I = C_I(\kappa, \alpha) \to \infty$ as $\alpha \to \frac{n}{2}$.

		Auxiliary results		
A local bou	and for δ_{r_0}			

A precise bound of δ_{x_0}

Let $\frac{n}{2} - 1 < \alpha < \frac{n}{2}$ and $T \in \mathcal{T}$ such that $x_0 \in T$. Then

$$\begin{aligned} |\delta_{x_0}(v)| \lesssim h_T^{\alpha-\frac{n}{2}} \|v\|_{L^2_{-\alpha}(T)} + C_{\alpha} h_T^{\alpha+1-\frac{n}{2}} \|\nabla v\|_{L^2_{-\alpha}(T)}, & \forall v \in H^1_{-\alpha}(T), \end{aligned}$$

where $C_{\alpha} := \frac{\alpha^{\frac{\alpha-1}{2}}}{(\alpha+1)^{\frac{\alpha+1}{2}}}$ if $n = 2$ and $C_{\alpha} := \frac{(2\alpha-1)^{\frac{\alpha-2}{3}}}{(2\alpha+2)^{\frac{\alpha+1}{3}}}$ if $n = 3$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

		Auxiliary results		
A local bo	und for δ_{r_0}			

A precise bound of δ_{x_0}

Let $\frac{n}{2} - 1 < \alpha < \frac{n}{2}$ and $T \in \mathcal{T}$ such that $x_0 \in T$. Then

$$\begin{aligned} |\delta_{x_0}(v)| \lesssim h_T^{\alpha - \frac{n}{2}} \|v\|_{L^2_{-\alpha}(T)} + C_{\alpha} h_T^{\alpha + 1 - \frac{n}{2}} \|\nabla v\|_{L^2_{-\alpha}(T)}, & \forall v \in H^1_{-\alpha}(T), \end{aligned}$$

where $C_{\alpha} := \frac{\alpha^{\frac{\alpha - 1}{2}}}{(\alpha + 1)^{\frac{\alpha + 1}{2}}} \text{ if } n = 2 \text{ and } C_{\alpha} := \frac{(2\alpha - 1)^{\frac{\alpha - 2}{3}}}{(2\alpha + 2)^{\frac{\alpha + 1}{3}}} \text{ if } n = 3. \end{aligned}$

 C_{α} blows up as α approaches $\frac{n}{2} - 1 \iff \delta_{x_0} \in (H^1_{-\alpha}(\Omega))'$, for $\alpha > \frac{n}{2} - 1$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

		Error estimates	
Outline			

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Problem

- 2 Finite element discretization
- Some results in weighted spaces on simplices
- 4 A posteriori error estimates
- Sumerical experiments
- 6 Local estimation

			Error estimates	
A posterior	ri error estima	tes		

 $U \in \mathbb{V}_{\mathcal{T}}^{\ell}$: solution of discrete problem.

• The element residual R

$$R_{|_{T}} = -\nabla \cdot [\mathcal{A}\nabla U] + \mathbf{b} \cdot \nabla U + cU, \qquad \forall T \in \mathcal{T}$$

• The jump residual J

$$J_{|s} = egin{cases} rac{1}{2} \left[(\mathcal{A}
abla U)_{|_{T_1}} \cdot ec{n}_1 + (\mathcal{A}
abla U)_{|_{T_2}} \cdot ec{n}_2
ight] & ext{ if } S \in \mathcal{E}_\Omega \ 0 & ext{ if } S \in \mathcal{E}_{\partial \Omega} \end{cases}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

			Error estimates	
A posterio	ori error estima	tes		

A posteriori local error estimators

$$\eta_T^2 := \begin{cases} h_T^2 D_T^{2\alpha} \left\| R \right\|_{L^2(T)}^2 + h_T D_T^{2\alpha} \left\| J \right\|_{L^2(\partial T)}^2 + h_T^{2\alpha+2-n}, & \text{if } x_0 \in T \\ \\ h_T^2 D_T^{2\alpha} \left\| R \right\|_{L^2(T)}^2 + h_T D_T^{2\alpha} \left\| J \right\|_{L^2(\partial T)}^2, & \text{if } x_0 \notin T \end{cases}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

where $D_T := \max_{x \in T} |x - x_0|$.

			Error estimates	
A posterio	ori error estima	tes		

A posteriori local error estimators

$$\eta_T^2 := \begin{cases} h_T^2 D_T^{2\alpha} \left\| R \right\|_{L^2(T)}^2 + h_T D_T^{2\alpha} \left\| J \right\|_{L^2(\partial T)}^2 + h_T^{2\alpha+2-n}, & \text{if } x_0 \in T \\ \\ h_T^2 D_T^{2\alpha} \left\| R \right\|_{L^2(T)}^2 + h_T D_T^{2\alpha} \left\| J \right\|_{L^2(\partial T)}^2, & \text{if } x_0 \notin T \end{cases}$$

where
$$D_T := \max_{x \in T} |x - x_0|$$
.

Global error estimator

$$\eta := \left(\sum_{T \in \mathcal{T}} \eta_T^2\right)^{\frac{1}{2}}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

			Error estimates	
Reliability o	of the globar o	error estimator		

Global upper bound

- $\alpha \in \mathbb{I}$.
- $u \in W_{\alpha}$ solution of continuous problem.
- $U \in \mathbb{V}^{\ell}_{\mathcal{T}}$ solution of discrete problem.

There exists $C_{\mathcal{U}} = C_{\mathcal{U}}(\operatorname{diam}(\Omega), \kappa, \alpha) > 0$ such that

$$||U-u||_{H^1_\alpha(\Omega)} \leq C_* C_{\mathcal{U}} \eta,$$

where C_* is the continuous inf-sup constant. The constant C_*C_U blows up when α approaches an endpoint of \mathbb{I} .

イロト (同) (三) (三) (つ) (つ)

			Error estimates	
A remark	about the test f	functions		

Previous test functions:

- $W_0^{1,p'}(\Omega) \subset \mathcal{C}(\Omega).$
- $H_0^{1+s}(\Omega) \subset \mathcal{C}(\Omega).$

 \implies The usual proof for the upper bound of the error can be done resorting to the Lagrange interpolant.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ● のへぐ

			Error estimates	
A remark	about the test f	functions		

Previous test functions:

- $W_0^{1,p'}(\Omega) \subset \mathcal{C}(\Omega).$
- $H_0^{1+s}(\Omega) \subset \mathcal{C}(\Omega).$

 \implies The usual proof for the upper bound of the error can be done resorting to the Lagrange interpolant.

< □ > < 同 > < Ξ > < Ξ > ... Ξ ... のQQ

Our test functions:

• $W_{-\alpha}$ = Test space $\not\subset C(\Omega)$.

But $\delta_{x_0}(v)$ is well defined for all functions in the test space.

			Error estimates	
Aromark	about the test f	functions		
AICHIAIK	about the test i	uncuons		

Previous test functions:

- $W_0^{1,p'}(\Omega) \subset \mathcal{C}(\Omega).$
- $H_0^{1+s}(\Omega) \subset \mathcal{C}(\Omega).$

 \implies The usual proof for the upper bound of the error can be done resorting to the Lagrange interpolant.

Our test functions:

• $W_{-\alpha}$ = Test space $\not\subset C(\Omega)$.

But $\delta_{x_0}(v)$ is well defined for all functions in the test space.

We are not able to use Lagrange interpolation. Instead, we resort to Clément or Scott-Zhang operator. \rightsquigarrow No need to define a new operator.

Introduction		Error estimates	
Local effici	iencv		

Local lower bound

- $\alpha \in \mathbb{I}$.
- $u \in W_{\alpha}$ solution of continuous problem.
- $U \in \mathbb{V}^{\ell}_{\mathcal{T}}$ solution of discrete problem.

There exists $C_{\mathcal{L}} = C_{\mathcal{L}}(\kappa, \alpha) > 0$ such that

$$C_{\mathcal{L}}\eta_T \leq C_a \|U - u\|_{H^1_{\alpha}(S_T)} + \operatorname{osc}_T, \quad \forall T \in \mathcal{T}.$$

The constant $C_{\mathcal{L}}$ goes to zero if α approaches $\frac{n}{2}$.

Here, $C_a := \max\{\gamma_2, \|\boldsymbol{b}\|_{L^{\infty}}, \|\boldsymbol{c}\|_{L^{\infty}}\}$, with γ_2 the biggest eigenvalue of \mathcal{A} .

Introduction		Error estimates	
Local effic	iency		

Local lower bound

- $\alpha \in \mathbb{I}$.
- $u \in W_{\alpha}$ solution of continuous problem.
- $U \in \mathbb{V}^{\ell}_{\mathcal{T}}$ solution of discrete problem.

< □ > < 同 > < Ξ > < Ξ > ... Ξ ... のQQ

There exists $C_{\mathcal{L}} = C_{\mathcal{L}}(\kappa, \alpha) > 0$ such that

$$C_{\mathcal{L}}\eta_T \leq C_a \|U - u\|_{H^1_{\alpha}(S_T)} + \operatorname{osc}_T, \quad \forall T \in \mathcal{T}.$$

The constant $C_{\mathcal{L}}$ goes to zero if α approaches $\frac{n}{2}$.

Here, $C_a := \max\{\gamma_2, \|\boldsymbol{b}\|_{L^{\infty}}, \|\boldsymbol{c}\|_{L^{\infty}}\}$, with γ_2 the biggest eigenvalue of \mathcal{A} .

		Error estimates	
Remarks			

• Our results hold for *general elliptic problems*.

		Error estimates	
Remarks			

- Our results hold for general elliptic problems.
- In contrast to the norms used in previous works, when considering the weighted spaces a discrete inf-sup condition can be proved, allowing us to conclude convergence of adaptive methods by resorting to the general theory developed by Morin, Siebert and Veeser (2008).

		Error estimates	
Remarks			

- Our results hold for *general elliptic problems*.
- In contrast to the norms used in previous works, when considering the weighted spaces a discrete inf-sup condition can be proved, allowing us to conclude convergence of adaptive methods by resorting to the general theory developed by Morin, Siebert and Veeser (2008).
- The weight only weakens the norm around x_0 , but behaves as the usual H^1 norm in subsets at a positive distance to x_0 . The H^1 error over such sets converges to zero.

・ロト・日本・ヨト・ヨト・ヨー シタク

		Error estimates	
Remarks			

- Our results hold for *general elliptic problems*.
- In contrast to the norms used in previous works, when considering the weighted spaces a discrete inf-sup condition can be proved, allowing us to conclude convergence of adaptive methods by resorting to the general theory developed by Morin, Siebert and Veeser (2008).
- The weight only weakens the norm around x_0 , but behaves as the usual H^1 norm in subsets at a positive distance to x_0 . The H^1 error over such sets converges to zero.
- Our estimates are valid in two and three dimensions, whereas the results from previous works cannot be immediately extended to the three dimensional case.

		Examples	
Outline			

Problem

- Pinite element discretization
- Some results in weighted spaces on simplices
- 4 A posteriori error estimates
- S Numerical experiments

b Local estimation

			Examples	
Adaptive a	lgorithm			

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

SOLVE: Compute the solution of the discrete problem.

			Examples	
Adaptive a	lgorithm			

SOLVE \longrightarrow **ESTIMATE** \longrightarrow MARK \longrightarrow REFINE

SOLVE: Compute the solution of the discrete problem.

ESTIMATE: Compute the *a posteriori error estimators* η_T for a given α .

イロト (同) (三) (三) (つ) (つ)

			Examples	
Adaptive a	lgorithm			

SOLVE \longrightarrow ESTIMATE \longrightarrow MARK \longrightarrow REFINE

SOLVE: Compute the solution of the discrete problem.

ESTIMATE: Compute the *a posteriori error estimators* η_T for a given α .

イロト (同) (三) (三) (つ) (つ)

MARK: Select in \mathcal{M} for refinement those elements T with largest estimators η_T . We used the *Dörfler strategy* with parameter 0.5.

			Examples	
Adaptive a	lgorithm			

SOLVE \longrightarrow ESTIMATE \longrightarrow MARK \longrightarrow REFINE

SOLVE: Compute the solution of the discrete problem.

ESTIMATE: Compute the *a posteriori error estimators* η_T for a given α .

MARK: Select in \mathcal{M} for refinement those elements T with largest estimators η_T . We used the *Dörfler strategy* with parameter 0.5.

REFINE: Perform two bisections to each marked element, and refine some extra elements in order to keep conformity of the mesh.

イロト (同) (三) (三) (つ) (つ)

			Examples	
A problem	with two sing	ularities		

Poisson problem in L-shaped domain				
$\int -\Delta u = \delta_{x_0}$	in Ω			
$\int u = g$	on $\partial \Omega$,			

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

where $\Omega = (-1, 1)^2 \setminus [0, 1) \times (-1, 0]$ and $x_0 = (0.5, 0.5)$.

			Examples	
A problem	with two sing	ularities		

Poisson problem in L-shaped domain				
$\int -\Delta u = \delta_{x_0}$	in Ω			
u = g	on $\partial\Omega$,			

where $\Omega = (-1, 1)^2 \setminus [0, 1) \times (-1, 0]$ and $x_0 = (0.5, 0.5)$.

- Exact solution $u(x) = -\frac{1}{2\pi} \log |x (0.5, 0.5)| + |x|^{2/3} \sin(2\theta/3).$
- Goals:

- Test the behavior of the adaptive method guided by the a posteriori estimators η_T for different values of α .

- Compare the behavior of adaptive algorithms guided by different error estimators.

			Examples	
Exact errors	5			

			Examples	
Exact error	`S			

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

			Examples	
Effectivity	indices			

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ● のへぐ

Introduction			Examples	
Meshes after	4 iterations			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Introduction		Auxiliary results	Examples	Local estimation
Meshes afte	er 8 iterations			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

iter = 10

#T = 616

iter = 10

#T = 612

iter = 13

#T = 590

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで
Introduction				Examples	
Compariso	n with algoritl	hms guided by o	ther error estin	nators	

 \parallel u - U $\parallel_{L^2(\Omega)}$

◆□ ▶ ◆圖 ▶ ◆ 臣 ▶ ◆臣 ▶ ○臣 ○ � � �

◆□ ▶ ◆■ ▶ ◆ ■ ▶ ◆ ■ ● ● ● ●

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ - のへで

			Local estimation
Outline			

Problem

- Pinite element discretization
- Some results in weighted spaces on simplices
- A posteriori error estimates
- Sumerical experiments

			Local estimation
Local estin	nation		

We are interested in $||u - U||_{H^1(\Omega_0)}$ with $\Omega_0 \subset \Omega$

(ロ)、(型)、(型)、(型)、(型)、(の)、(の)

Local estimation	Introduction			Local estimation
	Local estin	nation		

We are interested in $\|u - U\|_{H^1(\Omega_0)}$ with $\Omega_0 \subset \Omega$

$$\|u - U\|_{H^1(\Omega_0)} \lesssim \sum_{T \subset \Omega_1} \eta_{H^1}^2(T) + \|u - U\|_{L^2(\Omega_1 \setminus \Omega_0)}$$

・ロト・聞ト・ヨト・ヨト ヨー りへぐ

			Local estimation
Local esti	mation		

We are interested in $||u - U||_{H^1(\Omega_0)}$ with $\Omega_0 \subset \Omega$

$$\|u-U\|_{H^1(\Omega_0)} \lesssim \sum_{T \subset \Omega_1} \eta_{H^1}^2(T) + \|u-U\|_{L^2(\Omega_1 \setminus \Omega_0)}$$

• Liao and Nochetto (2003)

$$\|u-U\|_{H^1(\Omega_0)}^2 \lesssim \sum_{T \subset \Omega_1} \eta_{H^1}^2(T) + a \text{ posteriori estimators for } \|u-U\|_{L^2(\Omega,\omega)}$$

 $\omega(x)$ is a weight that blows up in re-entrant corners. ($\omega \equiv 1$ if Ω is convex or smooth)

• Demlow (2010)

$$\|u - U\|_{H^1(\Omega_0)}^2 \lesssim \sum_{T \subset \Omega_1} \eta_{H^1}^2(T) + a \text{ posteriori estimators for } \|u - U\|_{L^p(\Omega)}$$

for some p > 2. (p = 2 if Ω is convex or smooth)

				Local estimation
Local esti	mation. New si	mple idea		

Let

$$\varphi(x) = \varphi_0(\operatorname{dist}(x, \Omega_0))$$

with $\varphi_0 > 0$ a decreasing function such that $\varphi_0(0) = 1$ Let

$$\omega(x) = \min\left\{\varphi(x), \left(\frac{|x-x_0|}{\operatorname{dist}(x_0, \Omega_0)}\right)^{2\alpha}\right\}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

				Local estimation
Local esti	mation. New si	mple idea		

Let

$$\varphi(x) = \varphi_0(\operatorname{dist}(x, \Omega_0))$$

with $\varphi_0 > 0$ a decreasing function such that $\varphi_0(0) = 1$ Let

$$\omega(x) = \min\left\{\varphi(x), \left(\frac{|x-x_0|}{\operatorname{dist}(x_0, \Omega_0)}\right)^{2\alpha}\right\}$$

$$\|u - U\|_{H^1(\Omega_0)}^2 \le \|u - U\|_{H^1(\Omega,\omega)}^2$$

≡ •**ગ ૧** ભ

				Local estimation
Local estin	mation. New sin	nple idea		

Then

$$u \in H_0^1(\Omega, \omega)$$
: $a(u, v) = \delta_{x_0}(v), \quad \forall v \in H_0^1(\Omega, \omega^{-1})$

A posteriori estimation

$$\sum_{T} \eta_{\omega}^{2}(T) - \operatorname{osc} \lesssim \|u - U\|_{H^{1}(\Omega,\omega)}^{2} \lesssim \sum_{T} \eta_{\omega}^{2}(T)$$

With

$$\eta_{\omega}(T)^{2} := \begin{cases} h_{T}^{2} \omega_{T}^{2\alpha} \left\| R \right\|_{L^{2}(T)}^{2} + h_{T} \omega_{T}^{2\alpha} \left\| J \right\|_{L^{2}(\partial T)}^{2} + h_{T}^{2\alpha+2-n}, & \text{if } x_{0} \in T \\ \\ h_{T}^{2} \omega_{T}^{2\alpha} \left\| R \right\|_{L^{2}(T)}^{2} + h_{T} \omega_{T}^{2\alpha} \left\| J \right\|_{L^{2}(\partial T)}^{2}, & \text{if } x_{0} \notin T \end{cases}$$

and $\omega_T = \sup_{x \in S_T} \omega(x)$

			Local estimation
Numerical	experiments		

Poisson problem in L-shaped c	lomain	
$\int -\Delta u = \delta_{x_0}$	in Ω	
$\int u = g$	on $\partial \Omega$,	

where:

- $\Omega = (-1, 1)^2 \setminus [0, 1) \times (-1, 0]$
- $x_0 = (0.5, 0.5).$
- $\Omega_0 = (-1, -0.5) \times (-1, 1)$
- Exact solution $u(x) = -\frac{1}{2\pi} \log |x (0.5, 0.5)| + |x|^{2/3} \sin(2\theta/3).$

< □ > < 同 > < Ξ > < Ξ > ... Ξ ... のQQ

			Local estimation
Exact errors	$\ u-U\ _{H^1(\Omega_0)}$		

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

				Local estimation
Initial mes	h and Ω_0 . 225	DOFs		

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ⊙

			Local estimation
Iteration 4	4. 321 DOFs		

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ④ ● ●

			Local estimation
Itoration 8 1			

◆□▶ ◆圖▶ ◆国▶ ◆国▶ ◆□ ◆

			Local estimation
Iteration 12.	643 DOFs		

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQ@

*		
	ruei	

Discretization

Auxiliary results

Error estimates

Examples

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

Local estimation

Iteration 16. 1251 DOFs

ntrod	luct	ion		

retization

Auxiliary results

Error estimates

Example

Local estimation

Iteration 20. 3523 DOFs

Introduction			

Discretization

Auxiliary results

Error estimates

Example

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

Local estimation

Iteration 24. 13790 DOFs

Introduction			

Discretization

Auxiliary results

Error estimates

Examples

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

Local estimation

Iteration 28. 52386 DOFs

			Local estimation
Numerical e	experiments		

Poisson problem with discontinuous coefficients $\begin{cases} -\nabla \cdot (a\nabla u) = 0 & \text{in } \Omega \\ u = g & \text{on } \partial\Omega, \end{cases}$

イロト (同) (三) (三) (つ) (つ)

where:

- $\Omega = (-1, 1)^2$ • $a(x_1, x_2) = \begin{cases} 25, & \text{if } x_1 x_2 > 0 \\ 0, & \text{otherwise} \end{cases}$ • $\Omega_0 = (-1, 1) \times (-1, -0.75)$
- Exact solution $u(x) \cong |x|^{1.07}$.

Local estimation Solution of the discontinuous coefficient example

			Local estimation
Exact errors	$\ u-U\ _{H^1(\Omega_0)}$		

◆□ ▶ ◆圖 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ � � � �

Introduction

Discretization

.

Auxiliary results

Error estimates

Examples

Local estimation

Initial mesh and Ω_0 . 1089 DOFs

Auxiliary results

Error estimates

Exa

Local estimation

Iteration 4. 1373 DOFs

<□> <圖> < ≧> < ≧> < ≧> < ≧ > ○ < ♡ < ♡

			Local estimation
Iteration 8	. 2266 DOFs		

		Local estimation

Iteration 12. 20559 DOFs

Introduction			

Discretization

Auxiliary results

Error estimates

Exa

Local estimation

Iteration 16. 82653 DOFs

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

			Local estimation
Numerical	experiments		

Poisson problem with discontinuous coefficients $\begin{cases}
-\nabla \cdot (a\nabla u) = 0 & \text{in } \Omega \\
u = g & \text{on } \partial\Omega,
\end{cases}$

イロト (同) (三) (三) (つ) (つ)

where:

• $\Omega = (-1, 1)^2$ • $a(x_1, x_2) = \begin{cases} 121, & \text{if } x_1 x_2 > 0 \\ 0, & \text{otherwise} \end{cases}$ • $\Omega_0 = (-1, 1) \times (-1, -0.75)$ • Exact solution $u(x) \cong |x|^{1.007}$.

			Local estimation
Exact errors	$\ u-U\ _{H^1(\Omega_0)}$		

◆□ ▶ ◆圖 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ � � � �

			Local estimation
Example 2			

Diffusion-advection-reaction equation

$$\begin{cases} -0.02\Delta u + \begin{bmatrix} 2\\\sin(5x_1) \end{bmatrix} \cdot \nabla u + 0.1u = \delta_{(0.2,0.4)} & \text{in } \Omega = (0,3) \times (0,1) \\ u = 0 & \text{on } \partial\Omega \cap \{x_1 < 3\} \\ \frac{\partial u}{\partial n} = 0 & \text{on } \partial\Omega \cap \{x_1 = 3\} \end{cases}$$

• Final mesh obtained by the adaptive loop and the W_{α} norm after 20 iterations on a mesh with 22256 elements and 11212 DOFs.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

Introduction				Local estimation
Solution of	the diffusion-	advection-reaction	on equation	

• Final solution obtained by the adaptive loop and the W_{α} norm after 20 iterations on a mesh with 22256 elements and 11212 DOFs.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

Introduction

Discretization

Auxiliary result

Error estimates

Example

Local estimation

Initial mesh and Ω_0 . 833 DOFs

Discretization

Auxiliary result

Error estimates

Examr

Local estimation

Iteration 4. 929 DOFs

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction

Discretization

Auxiliary resu

Error estimates

Example

Local estimation

Iteration 8. 1025 DOFs

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
Discretization

Auxiliary results

Error estimates

Examp

Local estimation

Iteration 12. 1121 DOFs

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Discretization

Auxiliary results

Error estimates

Exa

Local estimation

Iteration 16. 1316 DOFs

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Discretization

Auxiliary results

Error estimates

Exan

Local estimation

Iteration 20. 2473 DOFs

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Discretization

Auxiliary result

Error estimate:

Examples

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Local estimation

Iteration 24. 31623 DOFs

Discretization

Auxiliary results

Error estimates

Examples

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへの

Local estimation

Iteration 25. 126181 DOFs

			Local estimation
Estimator			

