DPG Strategies for the Helmholtz Equation

Leszek Demkowicz Jay Gopalakrishnan Ignacio Muga*

* Pontificia Universidad Católica de Valparaíso (PUCV), Chile

Other collaborators: Nicole Olivares, David Pardo, Jeff Zitelli, Victor Calo.

July 11, 2014, @ LMS-EPSRC Durham Symposium, UK

Outline

Preliminaries

The 1D experience

The 2D and multidimensional experience

The ε-scaling approach

Dispersion analysis for the lowest order method

Conclusions

Preliminaries
 ...

Preliminaries ...

- Solving the Helmholtz equation by standard FEM is subjected to pollution:

Preliminaries ...

- Solving the Helmholtz equation by standard FEM is subjected to pollution:

$$
\frac{\text { D.E. }}{\text { B.A.E. }}=O\left(k^{\alpha}(k h)^{\beta}\right)
$$

Preliminaries ...

- Solving the Helmholtz equation by standard FEM is subjected to pollution:

$$
\frac{\text { D.E. }}{\text { B.A.E. }}=O\left(k^{\alpha}(k h)^{\beta}\right)
$$

- The approximation properties of the trial space will control $(k h)^{\beta}$.

Preliminaries ...

- Solving the Helmholtz equation by standard FEM is subjected to pollution:

$$
\frac{\text { D.E. }}{\text { B.A.E. }}=O\left(k^{\alpha}(k h)^{\beta}\right)
$$

- The approximation properties of the trial space will control $(\mathrm{kh})^{\beta}$.
- But this is not enough to control the error (because of the term k^{α}).

Preliminaries ...

- Solving the Helmholtz equation by standard FEM is subjected to pollution:

$$
\frac{\text { D.E. }}{\text { B.A.E. }}=O\left(k^{\alpha}(k h)^{\beta}\right)
$$

- The approximation properties of the trial space will control $(k h)^{\beta}$.
- But this is not enough to control the error (because of the term k^{α}).
- Usually pollution manifests in terms of dispersion (phase) error.

Preliminaries ...

- Solving the Helmholtz equation by standard FEM is subjected to pollution:

$$
\frac{\text { D.E. }}{\text { B.A.E. }}=O\left(k^{\alpha}(k h)^{\beta}\right)
$$

- The approximation properties of the trial space will control $(k h)^{\beta}$.
- But this is not enough to control the error (because of the term k^{α}).
- Usually pollution manifests in terms of dispersion (phase) error.

Dream:

Preliminaries ...

- Solving the Helmholtz equation by standard FEM is subjected to pollution:

$$
\frac{\text { D.E. }}{\text { B.A.E. }}=O\left(k^{\alpha}(k h)^{\beta}\right)
$$

- The approximation properties of the trial space will control $(k h)^{\beta}$.
- But this is not enough to control the error (because of the term k^{α}).
- Usually pollution manifests in terms of dispersion (phase) error.

Dream: to have a method that delivers the L^{2}-projection.

Theoretical ingredients

$$
\begin{equation*}
u \in(U,\|\cdot\| u) \quad \text { s.t. } \quad b(u, v)=f(v), \quad \forall v \in V . \tag{1}
\end{equation*}
$$

Theoretical ingredients

$$
\begin{equation*}
u \in\left(U,\|\cdot\|_{u}\right) \quad \text { s.t. } \quad b(u, v)=f(v), \quad \forall v \in V \tag{1}
\end{equation*}
$$

For each discrete space $U_{h} \subset U$, define the optimal test space as $T\left(U_{h}\right)$, where $T: U_{h} \rightarrow V$ is determined by means of the equation:

$$
\begin{equation*}
\left(T w_{h}, v\right) v=b\left(w_{h}, v\right), \quad \forall v \in V \tag{2}
\end{equation*}
$$

Theoretical ingredients

$$
\begin{equation*}
u \in\left(U,\|\cdot\|_{u}\right) \quad \text { s.t. } \quad b(u, v)=f(v), \quad \forall v \in V . \tag{1}
\end{equation*}
$$

For each discrete space $U_{h} \subset U$, define the optimal test space as $T\left(U_{h}\right)$, where $T: U_{h} \rightarrow V$ is determined by means of the equation:

$$
\begin{equation*}
\left(T w_{h}, v\right) v=b\left(w_{h}, v\right), \quad \forall v \in V \tag{2}
\end{equation*}
$$

Solving (1) - using U_{h} instead of U and $T\left(U_{h}\right)$ instead of V - will deliver a solution u_{h} satisfying:

$$
\left\|u-u_{h}\right\|_{E}=\min _{w_{h} \in U_{h}}\left\|u-w_{h}\right\|_{E}
$$

Theoretical ingredients

$$
\begin{equation*}
u \in\left(U,\|\cdot\|_{u}\right) \quad \text { s.t. } \quad b(u, v)=f(v), \quad \forall v \in V . \tag{1}
\end{equation*}
$$

For each discrete space $U_{h} \subset U$, define the optimal test space as $T\left(U_{h}\right)$, where $T: U_{h} \rightarrow V$ is determined by means of the equation:

$$
\begin{equation*}
\left(T w_{h}, v\right) v=b\left(w_{h}, v\right), \quad \forall v \in V \tag{2}
\end{equation*}
$$

Solving (1) - using U_{h} instead of U and $T\left(U_{h}\right)$ instead of V - will deliver a solution u_{h} satisfying:

$$
\left\|u-u_{h}\right\|_{E}=\min _{w_{h} \in U_{h}}\left\|u-w_{h}\right\|_{E}, \quad \text { where }\|\cdot\|_{E}:=\sup _{v \in V} \frac{|b(\cdot, v)|}{\|v\|_{V}} .
$$

Theoretical ingredients

$$
\begin{equation*}
u \in\left(U,\|\cdot\|_{u}\right) \quad \text { s.t. } \quad b(u, v)=f(v), \quad \forall v \in V . \tag{1}
\end{equation*}
$$

For each discrete space $U_{h} \subset U$, define the optimal test space as $T\left(U_{h}\right)$, where $T: U_{h} \rightarrow V$ is determined by means of the equation:

$$
\begin{equation*}
\left(T w_{h}, v\right) v=b\left(w_{h}, v\right), \quad \forall v \in V \tag{2}
\end{equation*}
$$

Solving (1) - using U_{h} instead of U and $T\left(U_{h}\right)$ instead of V - will deliver a solution u_{h} satisfying:

$$
\left\|u-u_{h}\right\|_{E}=\min _{w_{h} \in U_{h}}\left\|u-w_{h}\right\|_{E}, \quad \text { where }\|\cdot\|_{E}:=\sup _{v \in V} \frac{|b(\cdot, v)|}{\|v\|_{V}} .
$$

Problems:

Theoretical ingredients

$$
\begin{equation*}
u \in\left(U,\|\cdot\|_{u}\right) \quad \text { s.t. } \quad b(u, v)=f(v), \quad \forall v \in V . \tag{1}
\end{equation*}
$$

For each discrete space $U_{h} \subset U$, define the optimal test space as $T\left(U_{h}\right)$, where $T: U_{h} \rightarrow V$ is determined by means of the equation:

$$
\begin{equation*}
\left(T w_{h}, v\right) v=b\left(w_{h}, v\right), \quad \forall v \in V \tag{2}
\end{equation*}
$$

Solving (1) - using U_{h} instead of U and $T\left(U_{h}\right)$ instead of V - will deliver a solution u_{h} satisfying:

$$
\left\|u-u_{h}\right\|_{E}=\min _{w_{h} \in U_{h}}\left\|u-w_{h}\right\|_{E}, \quad \text { where }\|\cdot\|_{E}:=\sup _{v \in V} \frac{|b(\cdot, v)|}{\|v\|_{V}} .
$$

Problems:

- Problem (2) is infinite-dimensional.

Theoretical ingredients

$$
\begin{equation*}
u \in\left(U,\|\cdot\|_{u}\right) \quad \text { s.t. } \quad b(u, v)=f(v), \quad \forall v \in V . \tag{1}
\end{equation*}
$$

For each discrete space $U_{h} \subset U$, define the optimal test space as $T\left(U_{h}\right)$, where $T: U_{h} \rightarrow V$ is determined by means of the equation:

$$
\begin{equation*}
\left(T w_{h}, v\right) v=b\left(w_{h}, v\right), \quad \forall v \in V \tag{2}
\end{equation*}
$$

Solving (1) - using U_{h} instead of U and $T\left(U_{h}\right)$ instead of V - will deliver a solution u_{h} satisfying:

$$
\left\|u-u_{h}\right\|_{E}=\min _{w_{h} \in U_{h}}\left\|u-w_{h}\right\|_{E}, \quad \text { where }\|\cdot\|_{E}:=\sup _{v \in V} \frac{|b(\cdot, v)|}{\|v\|_{V}} .
$$

Problems:

- Problem (2) is infinite-dimensional.
- The numerical approximation of (2) needs to be cheap.

Theoretical ingredients

$$
\begin{equation*}
u \in\left(U,\|\cdot\|_{u}\right) \quad \text { s.t. } \quad b(u, v)=f(v), \quad \forall v \in V . \tag{1}
\end{equation*}
$$

For each discrete space $U_{h} \subset U$, define the optimal test space as $T\left(U_{h}\right)$, where $T: U_{h} \rightarrow V$ is determined by means of the equation:

$$
\begin{equation*}
\left(T w_{h}, v\right) v=b\left(w_{h}, v\right), \quad \forall v \in V \tag{2}
\end{equation*}
$$

Solving (1) - using U_{h} instead of U and $T\left(U_{h}\right)$ instead of V - will deliver a solution u_{h} satisfying:

$$
\left\|u-u_{h}\right\|_{E}=\min _{w_{h} \in U_{h}}\left\|u-w_{h}\right\|_{E}, \quad \text { where }\|\cdot\|_{E}:=\sup _{v \in V} \frac{|b(\cdot, v)|}{\|v\|_{V}} .
$$

Problems:

- Problem (2) is infinite-dimensional.
- The numerical approximation of (2) needs to be cheap.
- We want error estimates in the original U-norm.

Theoretical ingredients

$$
\begin{equation*}
u \in\left(U,\|\cdot\|_{u}\right) \quad \text { s.t. } \quad b(u, v)=f(v), \quad \forall v \in V . \tag{1}
\end{equation*}
$$

For each discrete space $U_{h} \subset U$, define the optimal test space as $T\left(U_{h}\right)$, where $T: U_{h} \rightarrow V$ is determined by means of the equation:

$$
\begin{equation*}
\left(T w_{h}, v\right) v=b\left(w_{h}, v\right), \quad \forall v \in V \tag{2}
\end{equation*}
$$

Solving (1) - using U_{h} instead of U and $T\left(U_{h}\right)$ instead of V - will deliver a solution u_{h} satisfying:

$$
\left\|u-u_{h}\right\|_{E}=\min _{w_{h} \in U_{h}}\left\|u-w_{h}\right\|_{E}, \quad \text { where }\|\cdot\|_{E}:=\sup _{v \in V} \frac{|b(\cdot, v)|}{\|v\|_{V}} .
$$

Problems:

- Problem (2) is infinite-dimensional.
- The numerical approximation of (2) needs to be cheap.
- We want error estimates in the original U-norm.

DPG overcoming:

Theoretical ingredients

$$
\begin{equation*}
u \in\left(U,\|\cdot\|_{u}\right) \quad \text { s.t. } \quad b(u, v)=f(v), \quad \forall v \in V . \tag{1}
\end{equation*}
$$

For each discrete space $U_{h} \subset U$, define the optimal test space as $T\left(U_{h}\right)$, where $T: U_{h} \rightarrow V$ is determined by means of the equation:

$$
\begin{equation*}
\left(T w_{h}, v\right) v=b\left(w_{h}, v\right), \quad \forall v \in V \tag{2}
\end{equation*}
$$

Solving (1) - using U_{h} instead of U and $T\left(U_{h}\right)$ instead of V - will deliver a solution u_{h} satisfying:

$$
\left\|u-u_{h}\right\|_{E}=\min _{w_{h} \in U_{h}}\left\|u-w_{h}\right\|_{E}, \quad \text { where }\|\cdot\|_{E}:=\sup _{v \in V} \frac{|b(\cdot, v)|}{\|v\|_{V}} .
$$

Problems:

- Problem (2) is infinite-dimensional.
- The numerical approximation of (2) needs to be cheap.
- We want error estimates in the original U-norm.

DPG overcoming:

- The test space V must be a broken Sobolev space.

Theoretical ingredients

$$
\begin{equation*}
u \in\left(U,\|\cdot\|_{u}\right) \quad \text { s.t. } \quad b(u, v)=f(v), \quad \forall v \in V . \tag{1}
\end{equation*}
$$

For each discrete space $U_{h} \subset U$, define the optimal test space as $T\left(U_{h}\right)$, where $T: U_{h} \rightarrow V$ is determined by means of the equation:

$$
\begin{equation*}
\left(T w_{h}, v\right) v=b\left(w_{h}, v\right), \quad \forall v \in V \tag{2}
\end{equation*}
$$

Solving (1) - using U_{h} instead of U and $T\left(U_{h}\right)$ instead of V - will deliver a solution u_{h} satisfying:

$$
\left\|u-u_{h}\right\|_{E}=\min _{w_{h} \in U_{h}}\left\|u-w_{h}\right\|_{E}, \quad \text { where }\|\cdot\|_{E}:=\sup _{v \in V} \frac{|b(\cdot, v)|}{\|v\|_{V}} .
$$

Problems:

- Problem (2) is infinite-dimensional.
- The numerical approximation of (2) needs to be cheap.
- We want error estimates in the original U-norm.

DPG overcoming:

- The test space V must be a broken Sobolev space.
- We numerically approach (2) using a discrete space $V_{r} \subset V$.

Recipe

Recipe

$$
\left\{\begin{array}{l}
\text { Find } u \in(U,\|\cdot\| u) \text { such that: } \\
b(u, v)=f(v), \quad \forall v \in V .
\end{array}\right.
$$

Recipe

$$
\left\{\begin{array}{l}
\text { Find } u \in(U,\|\cdot\| u) \text { such that: } \\
b(u, v)=f(v), \quad \forall v \in V .
\end{array}\right.
$$

Discrete spaces

$$
\begin{aligned}
& U_{h} \subset U \\
& V_{r} \subset V
\end{aligned}
$$

Recipe

$$
\left\{\begin{array}{l}
\text { Find } u \in(U,\|\cdot\| u) \text { such that: } \\
b(u, v)=f(v), \quad \forall v \in V
\end{array}\right.
$$

Discrete spaces

$$
\begin{aligned}
& U_{h} \subset U \\
& V_{r} \subset V
\end{aligned}
$$

H1 (Inyectivity) $w \longmapsto b(w, \cdot)$ is inyective from U to V^{\prime}.

Recipe

$$
\left\{\begin{array}{l}
\text { Find } u \in(U,\|\cdot\| u) \text { such that: } \\
b(u, v)=f(v), \quad \forall v \in V .
\end{array}\right.
$$

Discrete spaces
$U_{h} \subset U$
$V_{r} \subset V$

H1 (Inyectivity) $w \longmapsto b(w, \cdot)$ is inyective from U to V^{\prime}.
H2 (Inf-Sup and Continuity) There exist $\gamma>0$ and $M>0$ such that:

$$
\gamma\|v\| v \leq \underbrace{\sup _{w \in U} \frac{|b(w, v)|}{\|w\| U}}_{\|v\|_{\text {opt }}} \leq M\|v\| v, \quad \forall v \in V
$$

Recipe

$$
\left\{\begin{array}{l}
\text { Find } u \in(U,\|\cdot\| u) \text { such that: } \\
b(u, v)=f(v), \quad \forall v \in V .
\end{array}\right.
$$

Discrete spaces
$U_{h} \subset U$
$V_{r} \subset V$

H1 (Inyectivity) $w \longmapsto b(w, \cdot)$ is inyective from U to V^{\prime}.
H2 (Inf-Sup and Continuity) There exist $\gamma>0$ and $M>0$ such that:

$$
\gamma\|v\| v \leq \underbrace{\sup _{w \in U} \frac{|b(w, v)|}{\|w\| u}}_{\|v\|_{\text {opt }}} \leq M\|v\| v, \quad \forall v \in V
$$

H3 (Fortin operator) \exists bounded linear operator $\Pi: V \rightarrow V_{r}$ such that:

$$
b\left(w_{h}, \Pi v-v\right)=0, \quad \forall w_{h} \in U_{h}
$$

Recipe

$$
\left\{\begin{array}{l}
\text { Find } u \in(U,\|\cdot\| u) \text { such that: } \\
b(u, v)=f(v), \quad \forall v \in V .
\end{array}\right.
$$

> Discrete spaces $\begin{aligned} & U_{h} \subset U \\ & V_{r} \subset V\end{aligned}$

H1 (Inyectivity) $w \longmapsto b(w, \cdot)$ is inyective from U to V^{\prime}.
H2 (Inf-Sup and Continuity) There exist $\gamma>0$ and $M>0$ such that:

$$
\gamma\|v\| v \leq \underbrace{\sup _{w \in U} \frac{|b(w, v)|}{\|w\|_{U}}}_{\|v\|_{\text {opt }}} \leq M\|v\| v, \quad \forall v \in V
$$

H3 (Fortin operator) \exists bounded linear operator $\Pi: V \rightarrow V_{r}$ such that:

$$
b\left(w_{h}, \Pi v-v\right)=0, \quad \forall w_{h} \in U_{h}
$$

DPG w/optimal test functions implies:

$$
\left\|u-u_{h}\right\| u \leq\|\Pi\| \frac{M}{\gamma} \inf _{w_{h} \in U_{h}}\left\|u-w_{h}\right\| u
$$

The 1D experience ...

The 1D experience ...

$$
\text { Model Problem }\left\{\begin{aligned}
i k p+u^{\prime}=f & \text { in }(a, b) \\
i k u+p^{\prime}=0 & \text { in }(a, b) \\
u(a)=u_{a} & \\
p(b)-z u(b)=0 &
\end{aligned}\right.
$$

The 1D experience ...

Model Problem $\left\{\begin{aligned} i k p+u^{\prime}=f & \text { in }(a, b) \\ i k u+p^{\prime}=0 & \text { in }(a, b) \\ u(a)=u_{a} & \\ p(b)-z u(b)=0 & \end{aligned}\right.$

UWVF

$$
\sum_{K \in \Omega_{h}}\left(-\int_{K} u \overline{u\left(i k v+\eta^{\prime}\right)}-\int_{K} p \overline{\left(i k v+\eta^{\prime}\right)}+\left.\hat{u} \bar{v}\right|_{K}+\left.\hat{p} \bar{\eta}\right|_{K}\right)=\sum_{K \in \Omega_{h}} \int_{K} f \bar{\eta}
$$

The 1D experience ...

Model Problem $\left\{\begin{aligned} i k p+u^{\prime}=f & \text { in }(a, b) \\ i k u+p^{\prime}=0 & \text { in }(a, b) \\ u(a)=u_{a} & \\ p(b)-z u(b)=0 & \end{aligned}\right.$

UWVF

$$
\sum_{K \in \Omega_{h}}\left(-\int_{K} u \overline{u\left(i k v+\eta^{\prime}\right)}-\int_{K} p \overline{p\left(i k v+\eta^{\prime}\right)}+\left.\hat{u} \bar{v}\right|_{K}+\left.\hat{\rho} \bar{\eta}\right|_{K}\right)=\sum_{K \in \Omega_{h}} \int_{K} f \bar{\eta}
$$

Functional Spaces $\left\{\begin{array}{l}(u, p, \hat{u}, \hat{p}) \in U:=L^{2}(\Omega) \times L^{2}(\Omega) \times \mathbb{C}^{n} \times \mathbb{C}^{n} \\ (v, \eta) \in V:=\left[H^{1}\left(\Omega_{h}\right)\right]^{2}\end{array}\right.$

1D Test norm

1D Test norm

Recall that (in the abstract setting)

$$
\begin{equation*}
\gamma\|v\| v \leq \underbrace{\sup _{w \in U} \frac{|b(w, v)|}{\|w\| u}}_{\|v\|_{\text {opt }}} \leq M\|v\| v, \quad \forall v \in V \tag{3}
\end{equation*}
$$

1D Test norm

Recall that (in the abstract setting)

$$
\begin{equation*}
\gamma\|v\| v \leq \sup _{w \in U} \frac{|b(w, v)|}{\|w\| u} \leq M\|v\| v, \quad \forall v \in V \tag{3}
\end{equation*}
$$

The optimal test norm is:

$$
\|(v, \eta)\|_{\text {opt }}^{2}=\left\|i k v+\eta^{\prime}\right\|_{0, \Omega}^{2}+\left\|i k \eta+v^{\prime}\right\|_{0, \Omega}^{2}+\sum_{\partial K}|[v]|^{2}+|[\eta]|^{2}
$$

1D Test norm

Recall that (in the abstract setting)

$$
\begin{equation*}
\gamma\|v\| v \leq \underbrace{\sup _{w \in U} \frac{|b(w, v)|}{\|w\| U}}_{\|v\|_{\text {opt }}} \leq M\|v\| v, \quad \forall v \in V \tag{3}
\end{equation*}
$$

The optimal test norm is:

$$
\|(v, \eta)\|_{\text {opt }}^{2}=\left\|i k v+\eta^{\prime}\right\|_{0, \Omega}^{2}+\left\|i k \eta+v^{\prime}\right\|_{0, \Omega}^{2}+\sum_{\partial K}|[v]|^{2}+|[\eta]|^{2}
$$

So we define the V-norm as:

$$
\|(v, \eta)\|_{v}^{2}=\left\|i k v+\eta^{\prime}\right\|_{0, \Omega}^{2}+\left\|i k \eta+v^{\prime}\right\|_{0, \Omega}^{2}+\|v\|_{0, \Omega}^{2}+\|\eta\|_{0, \Omega}^{2}
$$

1D Test norm

Recall that (in the abstract setting)

$$
\begin{equation*}
\gamma\|v\| v \leq \sup _{w \in U} \frac{|b(w, v)|}{\|w\| u} \leq M\|v\| v, \quad \forall v \in V \tag{3}
\end{equation*}
$$

The optimal test norm is:

$$
\|(v, \eta)\|_{\text {opt }}^{2}=\left\|i k v+\eta^{\prime}\right\|_{0, \Omega}^{2}+\left\|i k \eta+v^{\prime}\right\|_{0, \Omega}^{2}+\sum_{\partial K}|[v]|^{2}+|[\eta]|^{2}
$$

So we define the V-norm as:

$$
\|(v, \eta)\|_{V}^{2}=\left\|i k v+\eta^{\prime}\right\|_{0, \Omega}^{2}+\left\|i k \eta+v^{\prime}\right\|_{0, \Omega}^{2}+\|v\|_{0, \Omega}^{2}+\|\eta\|_{0, \Omega}^{2}
$$

Then (3) holds with wavenumber independent $M>0$ and $\gamma>0$. Moreover
$\left\|u-u_{h}\right\|_{0, \Omega}^{2}+\left\|p-p_{h}\right\|_{0, \Omega}^{2}+\left\|\hat{u}-\hat{u}_{h}\right\|_{2}^{2}+\left\|\hat{p}-\hat{p}_{h}\right\|_{2}^{2} \leq \frac{M^{2}}{\gamma^{2}}\left(\inf _{w_{h}}\left\|u-w_{h}\right\|_{0, \Omega}^{2}+\inf _{q_{h}}\left\|p-q_{h}\right\|_{0, \Omega}^{2}\right)$

1D Numerical experiments

1D Numerical experiments

2D and multidimensional experience ...

2D and multidimensional experience ...

Model Problem $\left\{\begin{array}{r}i k \mathbf{u}+\nabla \phi=0 \text { in } \Omega \\ i k \phi+\operatorname{div} \mathbf{u}=f \text { in } \Omega\end{array}+\right.$ homogeneous B.C.

$$
\text { Model Problem } \quad\left\{\begin{array}{rl}
i k \mathbf{u}+\nabla \phi & =0 \text { in } \Omega \\
i k \phi+\operatorname{div} \mathbf{u} & =f \text { in } \Omega
\end{array}+\right.\text { homogeneous B.C. }
$$

We define the "wave" operator $A: H(\operatorname{div}, \Omega) \times H^{1}(\Omega) \rightarrow L^{2}(\Omega)^{n} \times L^{2}(\Omega)$ s.t.

$$
A(\mathbf{u}, \phi)=(i k \mathbf{u}+\nabla \phi, i k \phi+\operatorname{div} \mathbf{u})
$$

$$
\text { Model Problem } \quad\left\{\begin{array}{rl}
i k \mathbf{u}+\nabla \phi & =0 \text { in } \Omega \\
i k \phi+\operatorname{div} \mathbf{u} & =f \text { in } \Omega
\end{array}+\right.\text { homogeneous B.C. }
$$

We define the "wave" operator $A: H(\operatorname{div}, \Omega) \times H^{1}(\Omega) \rightarrow L^{2}(\Omega)^{n} \times L^{2}(\Omega)$ s.t.

$$
A(\mathbf{u}, \phi)=(i k \mathbf{u}+\nabla \phi, i k \phi+\operatorname{div} \mathbf{u})
$$

Model Problem Find $(\mathbf{u}, \phi)+$ B.C. such that $A(\mathbf{u}, \phi)=(0, f)$.

2D and multidimensional experience ...

Model Problem $\left\{\begin{array}{rl}i k \mathbf{u}+\nabla \phi & =0 \text { in } \Omega \\ i k \phi+\operatorname{div} \mathbf{u} & =f \text { in } \Omega\end{array}+\right.$ homogeneous B.C.

We define the "wave" operator $A: H(\operatorname{div}, \Omega) \times H^{1}(\Omega) \rightarrow L^{2}(\Omega)^{n} \times L^{2}(\Omega)$ s.t.

$$
A(\mathbf{u}, \phi)=(i k \mathbf{u}+\nabla \phi, i k \phi+\operatorname{div} \mathbf{u})
$$

Model Problem Find $(\mathbf{u}, \phi)+$ B.C. such that $A(\mathbf{u}, \phi)=(0, f)$.

UWVF $-\left((\mathbf{u}, \phi), A_{h}(\mathbf{v}, \eta)\right)_{\Omega_{h}}+\langle(\hat{u}, \hat{\phi}),(\eta, \mathbf{v} \cdot \mathbf{n})\rangle_{\partial \Omega_{h}}=(f, v)_{\Omega}$

2D and multidimensional experience ...

Model Problem $\left\{\begin{array}{r}i k \mathbf{u}+\nabla \phi=0 \text { in } \Omega \\ i k \phi+\operatorname{div} \mathbf{u}=f \text { in } \Omega\end{array}+\right.$ homogeneous B.C.

We define the "wave" operator $A: H(\operatorname{div}, \Omega) \times H^{1}(\Omega) \rightarrow L^{2}(\Omega)^{n} \times L^{2}(\Omega)$ s.t.

$$
A(\mathbf{u}, \phi)=(i k \mathbf{u}+\nabla \phi, i k \phi+\operatorname{div} \mathbf{u})
$$

Model Problem Find $(\mathbf{u}, \phi)+$ B.C. such that $A(\mathbf{u}, \phi)=(0, f)$.

UWVF

$$
-\left((\mathbf{u}, \phi), A_{h}(\mathbf{v}, \eta)\right)_{\Omega_{h}}+\langle(\hat{u}, \hat{\phi}),(\eta, \mathbf{v} \cdot \mathbf{n})\rangle_{\partial \Omega_{h}}=(f, v)_{\Omega}
$$

Functional Spaces $\left\{\begin{array}{l}U:=L^{2}(\Omega)^{N} \times L^{2}(\Omega) \times \underbrace{\operatorname{Tr}_{\partial \Omega_{h}}\left(H(\operatorname{div}, \Omega) \times H^{1}(\Omega)+B . C .\right)}_{=: Q} \\ V:=H\left(\operatorname{div}, \Omega_{h}\right) \times H^{1}\left(\Omega_{h}\right),\end{array}\right.$

The stability result

$$
\left\|\hat{w}_{n}, \hat{q}\right\|_{Q}=\inf _{\operatorname{Tr}_{\partial \Omega_{h}}(\mathbf{z}, \varphi)=\left(\hat{w}_{n}, \hat{q}\right)}\|A(\mathbf{z}, \varphi)\|_{0, \Omega}
$$

The stability result

$$
\begin{gathered}
\left\|\hat{w}_{n}, \hat{a}\right\|_{Q}=\inf _{\operatorname{Tr}_{\partial \Omega_{h}}^{(z, \varphi)=\left(\hat{w}_{n}, \hat{q}\right)}}\|A(\mathbf{z}, \varphi)\|_{0, \Omega} \\
\text { Opt test norm }\|(\mathbf{v}, \eta)\|_{\text {opt }}^{2}=\left\|A_{h}(\mathbf{v}, \eta)\right\|_{0, \Omega}^{2}+\left(\sup _{\left(\hat{w}_{n}, \hat{q}\right) \in Q} \frac{\left\langle\left(\hat{w}_{n}, \hat{p}\right),(\eta, \mathbf{v} \cdot \mathbf{n})\right\rangle_{\partial \Omega_{h}}}{\left\|\left(\hat{w}_{n}, \hat{p}\right)\right\|_{Q}}\right)^{2} .
\end{gathered}
$$

The stability result

$$
\begin{gathered}
\left\|\hat{w}_{n}, \hat{q}\right\|_{Q}=\inf _{\operatorname{Tr}_{\partial \Omega_{h}(\mathbf{z}, \varphi)=\left(\hat{w}_{n}, \hat{q}\right)}\|A(\mathbf{z}, \varphi)\|_{0, \Omega}} \\
\text { Opt test norm } \left.\|(\mathbf{v}, \eta)\|_{\text {opt }}^{2}=\left\|A_{h}(\mathbf{v}, \eta)\right\|_{0, \Omega}^{2}+\sup _{\left(\hat{w}_{n}, \hat{q}\right) \in Q} \frac{\left\langle\left(\hat{w}_{n}, \hat{p}\right),(\eta, \mathbf{v} \cdot \mathbf{n})\right\rangle_{\partial \Omega_{h}}}{\left\|\left(\hat{w}_{n}, \hat{p}\right)\right\|_{Q}}\right)^{2} .
\end{gathered}
$$

So we choose the V-norm as:

$$
\|(\mathbf{v}, \eta)\|_{V}^{2}=\left\|A_{h}(\mathbf{v}, \eta)\right\|_{0, \Omega}^{2}+\|(\mathbf{v}, \eta)\|_{0, \Omega}^{2} .
$$

The stability result

$$
\left\|\hat{w}_{n}, \hat{q}\right\|_{Q}=\inf _{\operatorname{Tr}_{\partial \Omega_{h}}(\mathbf{z}, \varphi)=\left(\hat{w}_{n}, \hat{q}\right)}\|A(\mathbf{z}, \varphi)\|_{0, \Omega}
$$

Opt test norm $\|(\mathbf{v}, \eta)\|_{\text {opt }}^{2}=\left\|A_{h}(\mathbf{v}, \eta)\right\|_{0, \Omega}^{2}+\left(\sup _{\left(\hat{w}_{n}, \hat{q}\right) \in Q} \frac{\left\langle\left(\hat{w}_{n}, \hat{p}\right),(\eta, \mathbf{v} \cdot \mathbf{n})\right\rangle_{\partial \Omega_{h}}}{\left\|\left(\hat{w}_{n}, \hat{p}\right)\right\|_{Q}}\right)^{2}$.

So we choose the V-norm as: $\quad\|(\mathbf{v}, \eta)\|_{V}^{2}=\left\|A_{h}(\mathbf{v}, \eta)\right\|_{0, \Omega}^{2}+\|(\mathbf{v}, \eta)\|_{0, \Omega}^{2}$.

Theorem: There are constants $M>0$ and $\gamma>0$, independent of wavenumbers $k>k_{0}$, s.t.

$$
\gamma\|(\mathbf{v}, \eta)\|_{v} \leq\|(\mathbf{v}, \eta)\|_{\mathrm{opt}} \leq M\|(\mathbf{v}, \eta)\|_{v}
$$

The stability result

$$
\left\|\hat{w}_{n}, \hat{q}\right\|_{Q}=\inf _{\operatorname{Tr}_{\partial \Omega_{h}}(\mathbf{z}, \varphi)=\left(\hat{w}_{n}, \hat{q}\right)}\|A(\mathbf{z}, \varphi)\|_{0, \Omega}
$$

Opt test norm $\|(\mathbf{v}, \eta)\|_{\text {opt }}^{2}=\left\|A_{h}(\mathbf{v}, \eta)\right\|_{0, \Omega}^{2}+\left(\sup _{\left(\hat{w}_{n}, \hat{q}\right) \in Q} \frac{\left\langle\left(\hat{w}_{n}, \hat{p}\right),(\eta, \mathbf{v} \cdot \mathbf{n})\right\rangle_{\partial \Omega_{h}}}{\left\|\left(\hat{w}_{n}, \hat{p}\right)\right\|_{Q}}\right)^{2}$.

So we choose the V-norm as: $\quad\|(\mathbf{v}, \eta)\|_{V}^{2}=\left\|A_{h}(\mathbf{v}, \eta)\right\|_{0, \Omega}^{2}+\|(\mathbf{v}, \eta)\|_{0, \Omega}^{2}$.

Theorem: There are constants $M>0$ and $\gamma>0$, independent of wavenumbers $k>k_{0}$, s.t.

$$
\gamma\|(\mathbf{v}, \eta)\| v \leq\|(\mathbf{v}, \eta)\|_{\mathrm{opt}} \leq M\|(\mathbf{v}, \eta)\|_{v}
$$

Moreover,

$$
\begin{aligned}
& \left\|\left(\mathbf{u}-\mathbf{u}_{h}, \phi-\phi_{h}\right)\right\|_{0, \Omega}^{2}+\left\|\left(\hat{u}-\hat{u}_{h}, \hat{\phi}-\hat{\phi}_{h}\right)\right\|_{Q}^{2} \\
& \quad \leq \frac{M^{2}}{\gamma^{2}}\left(\inf _{\left(\mathbf{w}_{h}, q_{h}\right)}\left\|\left(\mathbf{u}-\mathbf{w}_{h}, \phi-q_{h}\right)\right\|_{0, \Omega}^{2}+\inf _{\left(\hat{w}_{h}, \hat{q}_{h}\right)}\left\|\left(\hat{u}-\hat{w}_{h}, \hat{\phi}-\hat{q}_{h}\right)\right\|_{Q}^{2}\right)
\end{aligned}
$$

Error estimation

Conforming p-optimal H^{1}-interpolant (Demkowicz,Gopalakrishnan,Schöberl)

$$
\left\|\psi-\Pi_{h p} \psi\right\|_{0, \Omega}+h\left\|\nabla\left(\psi-\Pi_{h p} \psi\right)\right\|_{0, \Omega} \leq C \frac{\ln (\tilde{p})^{2}}{\tilde{p}^{s}} h^{s+1}|\psi|_{H^{s+1}(\Omega)}, \quad s+1 \in\left(\frac{3}{2}, p+1\right]
$$

Error estimation

Conforming p-optimal H^{1}-interpolant (Demkowicz,Gopalakrishnan,Schöberl)

$$
\left\|\psi-\Pi_{h p} \psi\right\|_{0, \Omega}+h\left\|\nabla\left(\psi-\Pi_{h p} \psi\right)\right\|_{0, \Omega} \leq C \frac{\ln (\tilde{p})^{2}}{\tilde{p}^{s}} h^{s+1}|\psi|_{H^{s+1}(\Omega)}, \quad s+1 \in\left(\frac{3}{2}, p+1\right]
$$

Error estimation (for traces \& fluxes of globally continuous polynomials of degree $p+1$)

$$
\inf _{\left(\hat{w}_{h}, \hat{q}_{h}\right)}\left\|\left(\hat{u}_{n}-\hat{w}_{h}, \hat{\phi}-\hat{q}_{h}\right)\right\|_{Q}
$$

Error estimation

Conforming p-optimal H^{1}-interpolant (Demkowicz,Gopalakrishnan,Schöberl)

$$
\left\|\psi-\Pi_{h p} \psi\right\|_{0, \Omega}+h\left\|\nabla\left(\psi-\Pi_{h p} \psi\right)\right\|_{0, \Omega} \leq C \frac{\ln (\tilde{p})^{2}}{\tilde{p}^{s}} h^{s+1}|\psi|_{H^{s+1}(\Omega)}, \quad s+1 \in\left(\frac{3}{2}, p+1\right]
$$

Error estimation (for traces \& fluxes of globally continuous polynomials of degree $p+1$)

$$
\inf _{\left(\hat{w}_{h}, \hat{q}_{h}\right)}\left\|\left(\hat{u}_{n}-\hat{w}_{h}, \hat{\phi}-\hat{q}_{h}\right)\right\|_{Q} \leq\left\|A\left(\mathbf{u}-\Pi_{h p} \mathbf{u}, \phi-\Pi_{h p} \phi\right)\right\|_{0, \Omega}
$$

Error estimation

Conforming p-optimal H^{1}-interpolant (Demkowicz,Gopalakrishnan,Schöberl)

$$
\left\|\psi-\Pi_{h p} \psi\right\|_{0, \Omega}+h\left\|\nabla\left(\psi-\Pi_{h p} \psi\right)\right\|_{0, \Omega} \leq C \frac{\ln (\tilde{p})^{2}}{\tilde{p}^{s}} h^{s+1}|\psi|_{H^{s+1}(\Omega)}, \quad s+1 \in\left(\frac{3}{2}, p+1\right]
$$

Error estimation (for traces \& fluxes of globally continuous polynomials of degree $p+1$)

$$
\begin{aligned}
\inf _{\left(\hat{w}_{h}, \hat{q}_{h}\right)}\left\|\left(\hat{u}_{n}-\hat{w}_{h}, \hat{\phi}-\hat{q}_{h}\right)\right\|_{Q} & \leq\left\|A\left(\mathbf{u}-\Pi_{h p} \mathbf{u}, \phi-\Pi_{h p} \phi\right)\right\|_{0, \Omega} \\
& \lesssim\left\|i k\left(\mathbf{u}-\Pi_{h p} \mathbf{u}\right)+\nabla\left(\phi-\Pi_{h p} \phi\right)\right\|_{0, \Omega}
\end{aligned}
$$

Error estimation

Conforming p-optimal H^{1}-interpolant (Demkowicz, Gopalakrishnan,Schöberl)

$$
\left\|\psi-\Pi_{h p} \psi\right\|_{0, \Omega}+h\left\|\nabla\left(\psi-\Pi_{h p} \psi\right)\right\|_{0, \Omega} \leq C \frac{\ln (\tilde{p})^{2}}{\tilde{p}^{s}} h^{s+1}|\psi|_{H^{s+1}(\Omega)}, \quad s+1 \in\left(\frac{3}{2}, p+1\right]
$$

Error estimation (for traces \& fluxes of globally continuous polynomials of degree $p+1$)

$$
\begin{aligned}
\inf _{\left(\hat{w}_{h}, \hat{q}_{h}\right)}\left\|\left(\hat{u}_{n}-\hat{w}_{h}, \hat{\phi}-\hat{q}_{h}\right)\right\|_{Q \leq} \leq & \left\|A\left(\mathbf{u}-\Pi_{h p} \mathbf{u}, \phi-\Pi_{h p} \phi\right)\right\|_{0, \Omega} \\
\lesssim & \left\|i k\left(\mathbf{u}-\Pi_{h p} \mathbf{u}\right)+\nabla\left(\phi-\Pi_{h p} \phi\right)\right\|_{0, \Omega} \\
& +\left\|i k\left(\phi-\Pi_{h p} \phi\right)+\operatorname{div}\left(\mathbf{u}-\Pi_{h p} \mathbf{u}\right)\right\|_{0, \Omega}
\end{aligned}
$$

Error estimation

Conforming p-optimal H^{1}-interpolant (Demkowicz, Gopalakrishnan,Schöberl)

$$
\left\|\psi-\Pi_{h p} \psi\right\|_{0, \Omega}+h\left\|\nabla\left(\psi-\Pi_{h p} \psi\right)\right\|_{0, \Omega} \leq C \frac{\ln (\tilde{p})^{2}}{\tilde{p}^{s}} h^{s+1}|\psi|_{H^{s+1}(\Omega)}, \quad s+1 \in\left(\frac{3}{2}, p+1\right]
$$

Error estimation (for traces \& fluxes of globally continuous polynomials of degree $p+1$)

$$
\begin{aligned}
\inf _{\left(\hat{w}_{h}, \hat{q}_{h}\right)}\left\|\left(\hat{u}_{n}-\hat{w}_{h}, \hat{\phi}-\hat{q}_{h}\right)\right\|_{Q} \leq & \left\|A\left(\mathbf{u}-\Pi_{h p} \mathbf{u}, \phi-\Pi_{h p} \phi\right)\right\|_{0, \Omega} \\
\lesssim & \left\|i k\left(\mathbf{u}-\Pi_{h p} \mathbf{u}\right)+\nabla\left(\phi-\Pi_{h p} \phi\right)\right\|_{0, \Omega} \\
& +\left\|i k\left(\phi-\Pi_{h p} \phi\right)+\operatorname{div}\left(\mathbf{u}-\Pi_{h p} \mathbf{u}\right)\right\|_{0, \Omega} \\
\leq & C \frac{\ln (\tilde{p})^{2}}{\tilde{p}^{s}} h^{s}\left(\|\mathbf{u}\|_{s+1, k, \Omega}+\|\phi\|_{s+1, k, \Omega}\right)
\end{aligned}
$$

Error estimation

Conforming p-optimal H^{1}-interpolant (Demkowicz,Gopalakrishnan,Schöberl)

$$
\left\|\psi-\Pi_{h p} \psi\right\|_{0, \Omega}+h\left\|\nabla\left(\psi-\Pi_{h p} \psi\right)\right\|_{0, \Omega} \leq C \frac{\ln (\tilde{p})^{2}}{\tilde{p}^{s}} h^{s+1}|\psi|_{H^{s+1}(\Omega)}, \quad s+1 \in\left(\frac{3}{2}, p+1\right]
$$

Error estimation (for traces \& fluxes of globally continuous polynomials of degree $p+1$)

$$
\begin{aligned}
\inf _{\left(\hat{w}_{h}, \hat{q}_{h}\right)}\left\|\left(\hat{u}_{n}-\hat{w}_{h}, \hat{\phi}-\hat{q}_{h}\right)\right\|_{Q \leq} \leq & \left\|A\left(\mathbf{u}-\Pi_{h p} \mathbf{u}, \phi-\Pi_{h p} \phi\right)\right\|_{0, \Omega} \\
\lesssim & \left\|i k\left(\mathbf{u}-\Pi_{h p} \mathbf{u}\right)+\nabla\left(\phi-\Pi_{h p} \phi\right)\right\|_{0, \Omega} \\
& +\left\|i k\left(\phi-\Pi_{h p} \phi\right)+\operatorname{div}\left(\mathbf{u}-\Pi_{h p} \mathbf{u}\right)\right\|_{0, \Omega} \\
\leq & C \frac{\ln (\tilde{p})^{2}}{\tilde{p}^{s}} h^{s}\left(\|\mathbf{u}\|_{s+1, k, \Omega}+\|\phi\|_{s+1, k, \Omega}\right)
\end{aligned}
$$

where

$$
\|\psi\|_{s+1, k, \Omega}^{2}=\sum_{j=0}^{s+1} k^{2(s+1-j)}|\psi|_{H^{j}(\Omega)}^{2}, \quad \forall s=1, \ldots, p
$$

The ε-scaling approach

$$
\|(\mathbf{v}, \eta)\|_{V, \varepsilon}:=\left\|A_{h}(\mathbf{v}, \eta)\right\|_{0, \Omega}^{2}+\varepsilon^{2}\|(\mathbf{v}, \eta)\|_{0, \Omega}^{2}
$$

What happens in the eyeball norm ?

Exact solution

Figure : Numerical traces of a plane wave propagating at angle $\pi / 8$

The ε-scaling approach

$$
\|(\mathbf{v}, \eta)\|_{V, \varepsilon}:=\left\|A_{h}(\mathbf{v}, \eta)\right\|_{0, \Omega}^{2}+\varepsilon^{2}\|(\mathbf{v}, \eta)\|_{0, \Omega}^{2}
$$

What happens in the eyeball norm ?

Figure : Numerical traces of a plane wave propagating at angle $\pi / 8$

The ε-scaling approach

$$
\|(\mathbf{v}, \eta)\|_{V, \varepsilon}:=\left\|A_{h}(\mathbf{v}, \eta)\right\|_{0, \Omega}^{2}+\varepsilon^{2}\|(\mathbf{v}, \eta)\|_{0, \Omega}^{2}
$$

What happens in the eyeball norm ?

Figure: Numerical traces of a plane wave propagating at angle $\pi / 8$

The ε-scaling approach

$$
\|(\mathbf{v}, \eta)\|_{V, \varepsilon}:=\left\|A_{h}(\mathbf{v}, \eta)\right\|_{0, \Omega}^{2}+\varepsilon^{2}\|(\mathbf{v}, \eta)\|_{0, \Omega}^{2}
$$

What happens in the eyeball norm ?

Figure: Numerical traces of a plane wave propagating at angle $\pi / 8$

The ε-scaling approach

$$
\|(\mathbf{v}, \eta)\|_{V, \varepsilon}:=\left\|A_{h}(\mathbf{v}, \eta)\right\|_{0, \Omega}^{2}+\varepsilon^{2}\|(\mathbf{v}, \eta)\|_{0, \Omega}^{2}
$$

What happens in the eyeball norm ?

Figure : Numerical traces of a plane wave propagating at angle $\pi / 8$

The ε-scaling approach

$$
\|(\mathbf{v}, \eta)\|_{V, \varepsilon}:=\left\|A_{h}(\mathbf{v}, \eta)\right\|_{0, \Omega}^{2}+\varepsilon^{2}\|(\mathbf{v}, \eta)\|_{0, \Omega}^{2}
$$

What happens in the eyeball norm ?

Figure : Numerical traces of a plane wave propagating at angle $\pi / 8$

The ε-scaling approach

$$
\|(\mathbf{v}, \eta)\|_{V, \varepsilon}:=\left\|A_{h}(\mathbf{v}, \eta)\right\|_{0, \Omega}^{2}+\varepsilon^{2}\|(\mathbf{v}, \eta)\|_{0, \Omega}^{2}
$$

What happens in the eyeball norm ?

Figure : Numerical traces of a plane wave propagating at angle $\pi / 8$

The ε-scaling approach

$$
\|(\mathbf{v}, \eta)\|_{V, \varepsilon}:=\left\|A_{h}(\mathbf{v}, \eta)\right\|_{0, \Omega}^{2}+\varepsilon^{2}\|(\mathbf{v}, \eta)\|_{0, \Omega}^{2}
$$

What happens in the eyeball norm ?

Figure : Numerical traces of a plane wave propagating at angle $\pi / 8$

The ε-scaling approach

Theorem
Let ($\hat{u}_{h}^{\varepsilon}, \hat{\phi}_{h}^{\varepsilon}$) be the discrete DPG solution of fluxes and traces using the ε-scaling approach. If $\varepsilon \rightarrow 0^{+}$, then

$$
\left\|(\hat{u}, \hat{\phi})-\left(\hat{u}_{h}^{\varepsilon}, \phi_{h}^{\varepsilon}\right)\right\|_{Q} \longrightarrow \inf _{\left(\hat{w}_{h}, \hat{q}_{h}\right)}\left\|(\hat{u}, \hat{\phi})-\left(\hat{w}_{h}, \hat{q}_{h}\right)\right\|_{Q}
$$

Dispersion of the lowest order method

Dispersion of the lowest order method
Recall that

$$
U:=L^{2}(\Omega)^{N} \times L^{2}(\Omega) \times \underbrace{\operatorname{Tr}_{\operatorname{Tr} \Omega_{h}}\left(H(\operatorname{div}, \Omega) \times H^{1}(\Omega)+\text { B.C. }\right)}_{=: Q}
$$

Dispersion of the lowest order method
Recall that

$$
U:=L^{2}(\Omega)^{N} \times L^{2}(\Omega) \times \underbrace{\operatorname{Tr}_{\partial \Omega_{n}}\left(H(\operatorname{div}, \Omega) \times H^{1}(\Omega)+\text { B.C. }\right)}_{=: Q}
$$

Hence, the lowest order choice is:

Dispersion of the lowest order method

Recall that

$$
U:=L^{2}(\Omega)^{N} \times L^{2}(\Omega) \times \underbrace{\operatorname{Tr}_{\partial \Omega_{n}}\left(H(\operatorname{div}, \Omega) \times H^{1}(\Omega)+\text { B.C. }\right)}_{=: Q}
$$

Hence, the lowest order choice is:

- Piecewise constants for field variable u (on each element K).

Dispersion of the lowest order method

Recall that

$$
U:=L^{2}(\Omega)^{N} \times L^{2}(\Omega) \times \underbrace{\operatorname{Tr} \partial \Omega_{h}\left(H(\operatorname{div}, \Omega) \times H^{1}(\Omega)+\text { B.C. }\right)}_{=: Q}
$$

Hence, the lowest order choice is:

- Piecewise constants for field variable u (on each element K).
- Piecewise constants for field variable ϕ (on each element K).

Dispersion of the lowest order method

Recall that

$$
U:=L^{2}(\Omega)^{N} \times L^{2}(\Omega) \times \underbrace{\operatorname{Tr}_{\partial \Omega_{h}}\left(H(\operatorname{div}, \Omega) \times H^{1}(\Omega)+\text { B.C. }\right)}_{=: Q}
$$

Hence, the lowest order choice is:

- Piecewise constants for field variable \mathbf{u} (on each element K).
- Piecewise constants for field variable ϕ (on each element K).
- Piecewise constants for fluxes \hat{u} (on each edge of ∂K).

Dispersion of the lowest order method

Recall that

$$
U:=L^{2}(\Omega)^{N} \times L^{2}(\Omega) \times \underbrace{\operatorname{Tr}_{\partial \Omega_{h}}\left(H(\operatorname{div}, \Omega) \times H^{1}(\Omega)+\text { B.C. }\right)}_{=: Q}
$$

Hence, the lowest order choice is:

- Piecewise constants for field variable \mathbf{u} (on each element K).
- Piecewise constants for field variable ϕ (on each element K).
- Piecewise constants for fluxes \hat{u} (on each edge of ∂K).
- Piecewise linear (on each edge of ∂K) and globally continuous for traces $\hat{\phi}$.

Dispersion of the lowest order method

Recall that

$$
U:=L^{2}(\Omega)^{N} \times L^{2}(\Omega) \times \underbrace{\operatorname{Tr}_{\partial \Omega_{n}}\left(H(\operatorname{div}, \Omega) \times H^{1}(\Omega)+\text { B.C. }\right)}_{=: Q}
$$

Hence, the lowest order choice is:

- Piecewise constants for field variable u (on each element K).
- Piecewise constants for field variable ϕ (on each element K).
- Piecewise constants for fluxes \hat{u} (on each edge of ∂K).
- Piecewise linear (on each edge of ∂K) and globally continuous for traces $\hat{\phi}$.

For the numerical results that will be shown later, the enriched space approaching $V=H\left(\operatorname{div}, \Omega_{h}\right) \times H^{1}\left(\Omega_{h}\right)$ for the computation of optimal test functions is

$$
V^{r}=\left\{(\mathbf{v}, \eta):\left.(\mathbf{v}, \eta)\right|_{K} \in\left(\mathcal{Q}_{r, r-1} \times \mathcal{Q}_{r-1, r}\right) \times \mathcal{Q}_{r, r}\right\}, \quad \text { where } r \geq 2
$$

Dispersion Analysis

(Discontinuous field variables are condensed out)

(a) 21-point stencil
(b) 13-point stencil
(c) 13-point stencil

Dispersion Analysis

(Discontinuous field variables are condensed out)

(a) 21-point stencil
(b) 13-point stencil
(c) 13-point stencil

- Plane waves $A e^{k\left(x_{1} \cos \theta+x_{2} \sin \theta\right)}$ are exact solutions with zero sources.

Dispersion Analysis

(Discontinuous field variables are condensed out)

(a) 21-point stencil
(b) 13-point stencil
(c) 13-point stencil

- Plane waves $A e^{k\left(x_{1} \cos \theta+x_{2} \sin \theta\right)}$ are exact solutions with zero sources.
- We work with the assumption that the discrete solution is interpolating a plane wave of the type

$$
\hat{p}(\vec{x})=\alpha e^{i \vec{k}_{h \cdot \vec{x}}}, \quad \widehat{u}_{n h}(\vec{x})=\beta e^{i \vec{k}_{h} \cdot \vec{x}}, \quad \widehat{u}_{n v}(\vec{x})=\gamma e^{i \vec{k}_{h \cdot} \cdot \vec{x}} .
$$

Dispersion Analysis

(Discontinuous field variables are condensed out)

(a) 21-point stencil
(b) 13-point stencil
(c) 13-point stencil

- Plane waves $A e^{k\left(x_{1} \cos \theta+x_{2} \sin \theta\right)}$ are exact solutions with zero sources.
- We work with the assumption that the discrete solution is interpolating a plane wave of the type

$$
\hat{p}(\vec{x})=\alpha e^{i \vec{k}_{h \cdot \vec{x}}}, \quad \widehat{u}_{n h}(\vec{x})=\beta e^{i \vec{k}_{h} \cdot \vec{x}}, \quad \widehat{u}_{n v}(\vec{x})=\gamma e^{i \vec{k}_{h \cdot} \cdot \vec{x}} .
$$

where $\vec{k}_{h}=k_{h}(\cos (\theta), \sin (\theta))$ for some $0 \leq \theta<2 \pi$ representing the direction of propagation and α, β, γ are unknown amplitudes.

Dispersion Analysis

(Discontinuous field variables are condensed out)

(a) 21-point stencil
(b) 13-point stencil
(c) 13-point stencil

- Plane waves $A e^{k\left(x_{1} \cos \theta+x_{2} \sin \theta\right)}$ are exact solutions with zero sources.
- We work with the assumption that the discrete solution is interpolating a plane wave of the type

$$
\hat{p}(\vec{x})=\alpha e^{i \vec{k}_{h \cdot \vec{x}}}, \quad \widehat{u}_{n h}(\vec{x})=\beta e^{i \vec{k}_{h} \cdot \vec{x}}, \quad \widehat{u}_{n v}(\vec{x})=\gamma e^{i \vec{k}_{h \cdot} \cdot \vec{x}} .
$$

where $\vec{k}_{h}=k_{h}(\cos (\theta), \sin (\theta))$ for some $0 \leq \theta<2 \pi$ representing the direction of propagation and α, β, γ are unknown amplitudes.

- We want to compute k_{h} as a function of the exact wavenumber k,

Dispersion Analysis

(Discontinuous field variables are condensed out)

(a) 21-point stencil
(b) 13-point stencil
(c) 13-point stencil

- Plane waves $A e^{k\left(x_{1} \cos \theta+x_{2} \sin \theta\right)}$ are exact solutions with zero sources.
- We work with the assumption that the discrete solution is interpolating a plane wave of the type

$$
\hat{p}(\vec{x})=\alpha e^{i \vec{k}_{h \cdot \vec{x}}}, \quad \widehat{u}_{n h}(\vec{x})=\beta e^{i \vec{k}_{h} \cdot \vec{x}}, \quad \widehat{u}_{n v}(\vec{x})=\gamma e^{i \vec{k}_{h \cdot} \cdot \vec{x}} .
$$

where $\vec{k}_{h}=k_{h}(\cos (\theta), \sin (\theta))$ for some $0 \leq \theta<2 \pi$ representing the direction of propagation and α, β, γ are unknown amplitudes.

- We want to compute k_{h} as a function of the exact wavenumber k, the direction of propagation θ

Dispersion Analysis

(Discontinuous field variables are condensed out)

(a) 21-point stencil
(b) 13-point stencil
(c) 13-point stencil

- Plane waves $A e^{k\left(x_{1} \cos \theta+x_{2} \sin \theta\right)}$ are exact solutions with zero sources.
- We work with the assumption that the discrete solution is interpolating a plane wave of the type

$$
\hat{p}(\vec{x})=\alpha e^{i \vec{k}_{h \cdot \vec{x}}}, \quad \widehat{u}_{n h}(\vec{x})=\beta e^{i \vec{k}_{h} \cdot \vec{x}}, \quad \widehat{u}_{n v}(\vec{x})=\gamma e^{i \vec{k}_{h \cdot} \cdot \vec{x}} .
$$

where $\vec{k}_{h}=k_{h}(\cos (\theta), \sin (\theta))$ for some $0 \leq \theta<2 \pi$ representing the direction of propagation and α, β, γ are unknown amplitudes.

- We want to compute k_{h} as a function of the exact wavenumber k, the direction of propagation θ and some of the discretization and stabilization parameters ($k h, r$ and ε).

Numerical results: dependence on θ

Figure: The curves traced out by the discrete wavevectors \vec{k}_{h} as θ goes from 0 to $\pi / 2$. These plots were obtained using $k=1$ and $h=2 \pi / 4$.

Numerical results: dispersive errors $\rho=\max _{\theta}\left|\mathfrak{R e}\left(k_{h}\right)-k\right|$

(a) Dispersive errors: Plots of ρ vs. ε

Figure: The discrepancies between exact and discrete wavenumbers as a function of ε, when $k=1$ and $h=2 \pi / 8$.

Numerical results: dissipative errors $\eta=\max _{\theta}\left|\Im m\left(k_{h}\right)\right|$

(a) Dissipative errors: Plots of η vs. ε

Figure: The discrepancies between exact and discrete wavenumbers as a function of ε, when $k=1$ and $h=2 \pi / 8$.

Figure: Rates of convergence of $\left|k_{h} h-k h\right|$ to zero for small $k h$, in the case of propagation angle $\theta=0$.

Observe that $\left|k_{h} h-k h\right|=O(k h)^{\alpha+1}$ means $\left|k_{h}-k\right|=k O(k h)^{\alpha}$.

(a) $\mathfrak{R e}\left(k_{h} h\right)$ as a function of $k h$

(b) $\Im m\left(k_{h} h\right)$ as a function of $k h$

Figure: A comparison of discrete wavenumbers obtained by three lowest order methods in the case of propagation angle $\theta=0$.

Conclusions

Conclusions

- As other LS methods do, DPG also suffers from dissipation and dispersion.

Conclusions

- As other LS methods do, DPG also suffers from dissipation and dispersion.
- Disperssion and dissipation can be reduced using small ε parameter.

Conclusions

- As other LS methods do, DPG also suffers from dissipation and dispersion.
- Disperssion and dissipation can be reduced using small ε parameter.
- For the same amount of d.o.f, the lower order DPG method performs badly wrt biquadratic FEM, but much better compared to standard LS.

Conclusions

- As other LS methods do, DPG also suffers from dissipation and dispersion.
- Disperssion and dissipation can be reduced using small ε parameter.
- For the same amount of d.o.f, the lower order DPG method performs badly wrt biquadratic FEM, but much better compared to standard LS.
- DPG is a Least-Squares method, so it has a Hermitian Positive Definite stiffness matrix.

Conclusions

- As other LS methods do, DPG also suffers from dissipation and dispersion.
- Disperssion and dissipation can be reduced using small ε parameter.
- For the same amount of d.o.f, the lower order DPG method performs badly wrt biquadratic FEM, but much better compared to standard LS.
- DPG is a Least-Squares method, so it has a Hermitian Positive Definite stiffness matrix.
- In order to be competitive the future approaches must explore hp adaptivity, solvers and/or plane waves.

