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Model Problem

Elliptic PDE in bounded domain Ω ⊂ Rd , d = 2, 3

−∇ · (α∇u) = f + suitable BCs on ∂Ω

Issues adressed even more pronounced in other equations, e.g. transport.

Strongly varying coefficient α(x) ≥ 1 (otherwise rescale eqn.)

(scalar α, or quasi-isotropic tensor α with λmax(α) ∼ λmin(α))

FE discretisation (p.w. lin. V h): a(uh, vh) = (f , vh) ∀vh ∈ Vh

Two possible aims:

h-optimal, α-robust parallel solver (fine mesh T h, α resolved)

H-optimal(?), α-robust approximation in coarse space V H

(α not resolved: “Upscaling” – no scale separation!)

Key Question (for both): Robust coarsening
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Applications: Simulation in Heterogeneous Media

Subsurface flow, e.g. in an oil reservoir
(SPE10 benchmark)

Structural Mechanics, e.g. in bone or carbon fibre composites

... many more ...

Rob Scheichl (Bath) LMS Symposium, Durham, July 2014 Rigorous Numerical Upscaling at High Contrast 4 / 37



Goals (α resolved on fine mesh T h)

Complicated variation of α(x) on many scales (h� diam(Ω))
Hard to resolve by “geometric” coarse mesh!

High contrast: αmin := minx α(x) � maxx α(x) =: αmax

Goal A: Efficient & scalable multilevel parallel solver

robust w.r.t. mesh size h (⇔ w.r.t. problem size n)

robust w.r.t. coefficients α(x) !

+ underpinning theory that guides choice of components My background!

Goal B: Simulate on coarse mesh where α is not resolved!

Discretisation in “special” coarse space V H → Upscaling

But: Quality of approximation depends on (subgrid) variation
& contrast in α ! Strong links, but theory less developed.

Important. Goal B not necessarily cheaper than Goal A
(unless we have periodicity, scale separation, multiple RHSs, (mildly)

nonlinear, or (slowly varying) time-dependent problem)
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Types of Multiscale Methods (incomplete list)

Adaptive FEs ..., [Babuska, Rheinboldt, 1978]

Generalised FEs [Babuska, Osborn, 1983]

Numerical Upscaling ..., [Durlofsky, 1991]

Multiscale Finite Elements [Hou, Wu, 1997], ...

Variational Multiscale Method [Hughes et al, 1998]

Multigrid Based Upscaling [Moulton, Dendy, Hyman, 1998]

Multiscale Finite Volume Methods [Jenny, Lee, Tchelepi, 2003]

Heterogeneous Multiscale Method [E, Engquist, 2003]

Multiscale Mortar Spaces [Arbogast, Wheeler et al, 2007]

(& other DD based methods)

Adaptive Multiscale FVMs/FEs [Durlovsky, Efendiev, Ginting, 2007]

Energy minimising bases [Dubois, Mishev, Zikatanov, 2009]

Locally spectral (Generalised MsFEs) [Efendiev, Galvis, Wu, 2010]

... etc ...
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Simplifying Assumptions & Theory (incomplete list of refs)

1 Periodic ⇒ Homogenisation theory ..., [Hou, Wu, 1997],... (most!)

2 Scale Separation ..., [Abdulle, 2005], ...

3 Inclusions and simple interfaces [Chu, Graham, Hou, 2010]

(high contrast, no periodicity, no scale separation)

4 Bound in special flux norm [Berlyand, Owhadi, 2010]

(high contrast, no periodicity, no scale separation)

5 Low contrast ..., [Babuska, Lipton, 2010], [Owhadi, Zhang, 2011],

[Grasedyck, Greff, Sauter, 2011], [Malqvist, Peterseim, 2012],

[Henning, Peterseim, 2013], ... (no periodicity or scale separation)

6 Weighted L2-norm (using DD theory) [RS, Zikatanov, in prep]

(weighted Poincaré, stable quasi-interpolant, weighted Bramble-Hilbert)

Uniform weighted Poincaré inequalities [Pechstein, RS, 2011+]

Stability and approximation of Clement-type quasi-interpolant
[RS, Vassilevski, Zikatanov, 2012]

Abstract Bramble–Hilbert Lemma [RS, Vassilevski, Zik., 2011]
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A Variational Multiscale Method [Malqvist, Peterseim, 2012]

(coarse) FE mesh TH with mesh width H

associated P1-FE space VH := span{ΦH
j | j = 1, . . . ,N}

Quasi-interpolation operator IH : Vh → VH [Carstensen, 1999]

with

IHv :=
∑
j

(v ,ΦH
j )L2(Ω)

(1,ΦH
j )L2(Ω)

ΦH
j

(IH invertible on VH !)

Decomposition

Vh = VH ⊕ V f
h with V f

h := kernel IH = {v ∈ Vh | IHv = 0}
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u︸︷︷︸
∈Vh

= (IH |VH
)−1IHu︸ ︷︷ ︸
∈VH

+ u − (IH |VH
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∈V f
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Localizable Orthogonal Decomposition

For each v ∈ Vh define the fine scale projection P fv ∈ V f
h by

a(P fv ,w) = a(v ,w) for all w ∈ V f
h

a–Orthogonal Decomposition

Vh = V ms
H ⊕V f

h and a(V ms
H ,V f

h) = 0 with V ms
H := (1−P f)VH
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Modified (multiscale) nodal basis

{ΦH
j | j = 1, . . . ,N} ⊂ VH denotes classical nodal basis

ϕf
j := P fΦH

j ∈ V f
h denotes the fine scale correction of ΦH

j

Ideal multiscale FE space

V ms
H = span

{
ΦH
j − ϕf

j | j = 1, . . . ,N
}

Example

ΦH
j − ϕf

j︸ ︷︷ ︸
∈Vms

H

= ΦH
j︸︷︷︸
∈VH

+ ϕf
j︸︷︷︸

∈V f
h
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Exponential decay and localisation

Define nodal patches ωj ,k of k-th order around vertex xH
j of TH

x

ωj ,1

x

ωj ,2

x

ωj ,3

x

ωj ,4

Lemma

There exists a γ < 1 such that |ϕf
j |H1(Ω\ωj,k ) . γ

k |ϕf
j |H1(Ω) .

Practical multiscale method: Fix k and define the localised
correction ϕf

j ,k ∈ V f
h(ωj ,k) := {v ∈ V f

h | supp v ⊂ ωj ,k} s.t.

a(ϕf
j ,k ,w) = a(ΦH

j ,w) for all w ∈ V f
h(ωj ,k)

Localized multiscale FE spaces

V ms
H,k := span{ΦH

j − ϕf
j ,k | j = 1, . . . ,N}
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The Multiscale Coarse Problem

Multiscale approximation

Seek ums
H,k ∈ V ms

H,k such that

a(ums
H,k , v) = (f , v) for all v ∈ V ms

H,k

dim V ms
H,k = dim VH = N & basis functions have local support

Overlap of the supports is proportional to the parameter k

Theorem (Malqvist & Peterseim, 2012)

|u − ums
H,k |H1(Ω) . kdH−1γk‖f ‖H−1(Ω) + H‖f ‖L2(Ω) + |u − uh|H1(Ω)

Thus, provided k & logγ( 1
H ) and h is suff’ly small we have optimal

O(H) convergence without any assumptions on scales or regularity.

Similarly, O(H2) convergence in L2-norm using an Aubin-Nitsche argument.
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Numerical Experiment (low contrast)
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Numerical Experiment (high contrast)
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But unfortunately γ := exp
(√

αmin
αmax

)
and so γ → 1 as the

contrast αmax
αmin
→∞. The hidden constant depends also on αmax

αmin
.

⇓

Theorem useless for high contrast !
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A contrast-robust theory

Now, instead of

working in standard H1 and L2-norm

and using the simple norm equivalence

αmin|v |H1(Ω) ≤ ‖v‖a ≤ αmax|v |H1(Ω)

we want to work

directly in the energy norm ‖v‖a,ω := (
∫
ω α|∇v |2 dx)1/2 and

the weighted L2-norm ‖v‖0,α,ω := (
∫
ω αv 2 dx)1/2

and use a coefficient–weighted quasi-interpolant

as well as a weighted Poincaré type inequality and a
weighted inverse type inequality
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Main Result (Peterseim & RS, 2013+)

If there exists a linear, continuous quasi-interpolation operator
IH : Vh → VH and two generic constants C2 and C3 such that

(QI1) (IH |VH
)−1IHvH = vH , for all vH ∈ VH

(QI2) H−2
T ‖v − IHv‖2

0,α,T + ‖v − IHv‖2
a,T ≤ C2‖v‖2

a,ωT
,

for all v ∈ Vh and T ∈ TH
(QI3) for all vH ∈ VH there exists a v ∈ Vh, s.t. IHv = vH ,

supp v ⊂ supp vH and ‖v‖a ≤ C3‖vH‖a.

then (with some universal constant m . 1)

‖u−ums
H,k‖a .

(
αmax
αmin

)m e−k

H
‖f ‖H−1(Ω) +

H

α
−1/2
min

‖f ‖L2(Ω) +‖u−uh‖a

Thus, provided k & ln(αmax
αmin

1
H ) and h suff’ly small we have optimal

O(H) convergence without assumptions on regularity or contrast.

Again, O(H2) convergence in L2-norm follows by an Aubin-Nitsche argument.
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A suitable quasi-interpolation operator – Assumption (QI2)

Now adapt theory developed for 2-level Schwarz to prove (QI2)

For simplicity assume α p.w. constant w.r.t. some grid Tη, with

h < η < H, but not by TH (TH ⊂ Tη ⊂ TH nested)

For every T ∈ TH define ωT :=
⋃
{T ′ : T ∩ T ′ 6= ∅}.

Lemma (Old) [RS, Vassilevski, Zikatanov, SINUM 2012]

For all T ∈ TH , let CP
K > 0 be the best constant s.t. for all v ∈ Vh

the following weighted Poincaré inequality holds:

infξ∈R ‖v − ξ‖2
0,α,ωT

≤ CP
T diam(ωT )2‖∇v‖2

a,ωT
(WPI)

(with a slight variation near Dirichlet boundaries). Then

H−2
T ‖v − IHv‖2

0,α,T + ‖v − IHv‖2
a,T . C2 ‖v‖2

a,ωT
(QI2)

with IHv =
∑

j

∫
supp(ΦH

j
)
αv dx∫

supp(ΦH
j

)
α dx

ΦH
j and C2 = max

T∈TH
CP
T .
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For simplicity assume α p.w. constant w.r.t. some grid Tη, with

h < η < H, but not by TH (TH ⊂ Tη ⊂ TH nested)

For every T ∈ TH define ωT :=
⋃
{T ′ : T ∩ T ′ 6= ∅}.

Lemma (New) Proof analogous! [Peterseim, RS, 2013+])

For all T ∈ TH , let CP
K > 0 be the best constant s.t. for all v ∈ Vh

the following weighted Poincaré inequality holds:

infξ∈R ‖v − ξ‖2
0,α,ωT

≤ CP
T diam(ωT )2‖∇v‖2

a,ωT
(WPI)

(with a slight variation near Dirichlet boundaries). Then

H−2
T ‖v − IHv‖2

0,α,T + ‖v − IHv‖2
a,T . C2 ‖v‖2

a,ωT
(QI2)

with IHv :=
N∑
j=1

(αv ,ΦH
j )L2(Ω)

(α,ΦH
j )L2(Ω)

ΦH
j and C2 h H

η maxT∈TH CP
T

(price to pay to also get (QI3))
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Approximation result in the weighted L2–norm (p.w. linears)

Corollary [RS, Zikatanov, in prep]

Assume that the PDE solution u ∈ H1+s(Ω), for some s > 0. Then
(under the same assumptions as above)

inf
vH∈VH

‖u − vH‖0,α . C∗H ‖f ‖H−1(Ω) .

Possibly not sharp (w.r.t. H), but needs minimal regularity

Sharp w.r.t. coefficient variation. We can show lower bound:
i.e. C∗ � H−1 ⇒ no approximation!

Constant C∗ can be independent of α
(local quasi-monotonicity; see below)

Extends readily to other “nodal” spaces, such as MsFEs
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When is Poincaré constant independent of contrast in α?

Careful theory in [Pechstein, RS, IMAJNA 2012] linking
robustness to quasi-monotonicity!

Bounds for the effective Poincaré constant CP
T in 3D :

Darker colour means higher permeability.

*

*

X

X

min

H

η
min

η

X*

min
η

O(1) O(1 + log(Hη )) O(Hη ) O(ηh )

CP
T &

α2
α1

(i.e. not robust!)
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Poincaré’s inequality

Domain Ω ⊂ Rd (open, bounded, connected set). ∃C > 0 s.t.

inf
γ∈R
‖u − γ‖2

L2(Ω) ≤ C diam (Ω)2 |u|2H1(Ω) ∀u ∈ H1(Ω).

C depends only on shape of Ω, not on diam (Ω)

Infimum attained at

γ∗ = uΩ :=
1

|Ω|

∫
Ω

u dx

Inequality (with different constant C) also works for

γ = uX :=
1

|X |

∫
X

u dx

where X ⊂ Ω subset or (d − 1)-dimensional manifold
(with positive volume/surface measure)
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Weighted Poincaré type inequality

For α ∈ L∞(Ω) uniformly positive, we define

‖v‖2
L2(Ω),α :=

∫
Ω
α |v |2dx and |v |2H1(Ω),α :=

∫
Ω
α |∇v |2dx

Clearly,

‖u − uΩ‖2
L2(Ω),α ≤ C max

x ,y∈Ω

α(x)

α(y)
diam (Ω)2 |u|2H1(Ω),α

Question

Can we find CP independent of variation & contrast in α
such that

inf
γ∈R
‖u − γ‖2

L2(Ω),α ≤ CP |u|2H1(Ω),α

for some class of weights α : Ω→ R+ ?
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Model Case #1

Assume Ω = Ω1 ∪ Ω2 (Ωk “well-shaped”)

with interface Γ12 := ∂Ω1 ∩ ∂Ω2

and α|Ωk
= αk = const

Ω
Γ

1

12

2
Ω

Apply standard Poincaré type inequality on Ω1 and Ω2, i.e.

‖u − uΓ12‖2
L2(Ωk ) ≤ C diam (Ωk)2 |u|2H1(Ωk ) ∀ u ∈ H1(Ωk)

Then multiplying by αk and adding implies

‖u − uΓ12‖2
L2(Ω),α ≤ C diam (Ω)2 |u|2H1(Ω),α

with C depending on (the shape of) Ωk and Γ12 but not on α !
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Model Case #2

Assume Ω = Ω1 ∪ Ω2 ∪ Ω3 (Ωk “well-shaped”)

s.t. α|Ωk
= αk = const and α3 ≥ α2 ≥ α1

Define manifold X ∗ := ∂Ω1 ∩ ∂Ω3 Ω

X*

1
Ω

2

Ω
3

Treat Ω1 and Ω3 as before, and

‖u − uX∗
‖2
L2(Ω2),α = α2 ‖u − uX∗

‖2
L2(Ω2∪Ω3)

≤ α2 C diam (Ω)2 |u|2H1(Ω2∪Ω3)

≤ C diam (Ω)2
{∫

Ω2

α2 |∇u|dx +

∫
Ω3

α2︸︷︷︸
≤α3

|∇u|dx
}

≤ C diam (Ω)2 |u|2H1(Ω2∪Ω3),α

Again C depends on (the shape of) Ωk and X ∗, but not on α !
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Model Case #2

Assume Ω = Ω1 ∪ Ω2 ∪ Ω3 (Ωk “well-shaped”)

s.t. α|Ωk
= αk = const and α3 ≥ α2 ≥ α1

Define manifold X ∗ := ∂Ω1 ∩ ∂Ω3 Ω

X*

1
Ω

2

Ω
3

However, if α1, α2 � α3 then such an inequality cannot exist:

Ω Ω Ω

ε 1

1 3 2

1

α

u

0 1 x1

Counter example:
α1 = α2 = 1 and α3 = ε� 1

‖u‖2
L2(Ω),α ∼ 1

|u|2H1(Ω),α ∼ ε
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Model Case #3

Assume Ω = Ω1 ∪ · · · ∪ Ω4 (Ωk “well-shaped”)

s.t. α|Ωk
= αk = const (arbitrary!)

Define “manifold” X ∗ :=
⋃4

k=1 ∂Ωk

(non-empty!)

X*

1
Ω

Ω
3

Ω
4 Ω

2

Here we can use discrete Poincaré (or Sobolev) inequalities:

Let V h be p.w. linear FEs (quasi-uniform T h) and Ωk union of a
few (coarse) simplices (quasi-uniform of size O(η)). Then (in 2D):

‖u − uX∗‖2
L2(Ωk ) ≤ C

(
1 + log

(η
h

))
η2 |u|2H1(Ωk ) ∀u ∈ V h(Ωk)

where η := maxk diam (Ωk) and uX∗ := u(X ∗).

Adding up  robust weighted discrete Poincaré type inequality
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Let V h be p.w. linear FEs (quasi-uniform T h) and Ωk union of a
few (coarse) simplices (quasi-uniform of size O(η)). Then (in 2D):

‖u − uX∗‖2
L2(Ωk ) ≤ C

(
1 + log

(η
h

))
η2 |u|2H1(Ωk ) ∀u ∈ V h(Ωk)

where η := maxk diam (Ωk) and uX∗ := u(X ∗).

Adding up  robust weighted discrete Poincaré type inequality
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Theorem (Weighted Poincaré Ineq.) [Pechstein, RS, IMAJNA’12]

Let xmax ∈ ω be the point where k(x) attains its maximum on ω.
If there exists a path P from every point x ∈ ω to xmax such that k never
decreases along P (quasi-monotonicity), then there exists a constant
CP > 0 independent of h, k(x) and diam(ω) such that

inf
γ∈R

∫
ω

α(x)(v − γ)2 ≤ CP diam(ω)2

∫
ω

α(x)|∇v |2 ∀v ∈ Vh .

min
η

CP,m & α2
α1

More details in [Pechstein, RS, IMAJNA 2012].
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Theorem (Weighted Poincaré Ineq.) [Pechstein, RS, IMAJNA’12]

Let xmax ∈ ω be the point where k(x) attains its maximum on ω.
If there exists a path P from every point x ∈ ω to xmax such that k never
decreases along P (quasi-monotonicity), then there exists a constant
CP > 0 independent of h, k(x) and diam(ω) such that

inf
γ∈R

∫
ω

α(x)(v − γ)2 ≤ CP diam(ω)2

∫
ω

α(x)|∇v |2 ∀v ∈ Vh .

min
η

CP,m & α2
α1

More details in [Pechstein, RS, IMAJNA 2012].

Rob Scheichl (Bath) LMS Symposium, Durham, July 2014 Rigorous Numerical Upscaling at High Contrast 26 / 37



RECALL: Main Theorem (Peterseim & RS, 2013+)

If there exists a linear, continuous quasi-interpolation operator
IH : Vh → VH and two generic constants C2 and C3 such that

(QI1) (IH |VH
)−1IHvH = vH , for all vH ∈ VH

(QI2) H−2
T ‖v − IHv‖2

0,α,T + ‖v − IHv‖2
a,T ≤ C2‖v‖2

a,ωT
,

for all v ∈ Vh and T ∈ TH
(QI3) for all vH ∈ VH there exists a v ∈ Vh, s.t. IHv = vH ,

supp v ⊂ supp vH and ‖v‖a ≤ C3‖vH‖a.

then (with some universal constant m . 1)

‖u−ums
H,k‖a .

(
αmax
αmin

)m e−k

H
‖f ‖H−1(Ω) +

H

α
−1/2
min

‖f ‖L2(Ω) +‖u−uh‖a

Thus, provided k & ln(αmax
αmin

1
H ) and h suff’ly small we have optimal

O(H) convergence without assumptions on regularity or contrast.

Again, O(H2) convergence in L2-norm follows by an Aubin-Nitsche argument.
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Assumptions (QI1) and (QI3)

(QI1): Let vH :=
∑

j γjΦ
H
j ∈ VH . Then IHvH =

∑
j(M̃γ)jΦ

H
j

where M̃ is a scaled mass matrix on VH which is invertible.

(QI3) is more difficult, but under the above assumptions on
the coefficient (i.e. p.w. const. w.r.t. Tη), it can be shown similar

to Lemma 1 in [Malqvist, Peterseim ’12] with C3 h
(
H
η

)2
.

In summary, we do get optimal, contrast independent
convergence rates, but so far only under fairly stringent

assumptions on the type of coefficient variation
(i.e. locally quasi-monotone & p.w. constant w.r.t. Tη for moderate H/η)
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Numerical Experiment I

f ≡ 1 and u|∂Ω ≡ 0
H = 2−1, 2−2, . . . , 2−5

h = 2−7, k = 2

|u − ums
H,k |H1(Ω)

|u|H1(Ω)
vs. #dofs

(black = unweighted; red = weighted)
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Numerical Experiment II

f ≡ 1 and u|∂Ω ≡ 0
H = 2−1, 2−2, . . . , 2−5

h = 2−7, k = 2

|u − ums
H,k |H1(Ω)

|u|H1(Ω)
vs. #dofs

(black = unweighted; red = weighted)

Rob Scheichl (Bath) LMS Symposium, Durham, July 2014 Rigorous Numerical Upscaling at High Contrast 29 / 37



Ideas for non-quasi-monotone coefficients

For high permeability inclusions should be able to use
MsFEM instead of VH as initial coarse space. Analysis
based on “XZ-identity” [Xu, Zikatanov, 2002] and
[Graham, Lechner, RS ’07].

IsoValue
-57893.7
28948.3
86843
144738
202632
260527
318422
376316
434211
492106
550000
607895
665790
723685
781579
839474
897369
955263
1.01316e+06
1.15789e+06

But in general when α is not quasi-monotone on all ωK

−→ need to adapt grid/supports or “enrich” the space !

Rob Scheichl (Bath) LMS Symposium, Durham, July 2014 Rigorous Numerical Upscaling at High Contrast 30 / 37



Ideas for non-quasi-monotone coefficients

For high permeability inclusions should be able to use
MsFEM instead of VH as initial coarse space. Analysis
based on “XZ-identity” [Xu, Zikatanov, 2002] and
[Graham, Lechner, RS ’07].

IsoValue
-57893.7
28948.3
86843
144738
202632
260527
318422
376316
434211
492106
550000
607895
665790
723685
781579
839474
897369
955263
1.01316e+06
1.15789e+06

But in general when α is not quasi-monotone on all ωK

−→ need to adapt grid/supports or “enrich” the space !

Rob Scheichl (Bath) LMS Symposium, Durham, July 2014 Rigorous Numerical Upscaling at High Contrast 30 / 37



Ideas for non-quasi-monotone coefficients

For high permeability inclusions should be able to use
MsFEM instead of VH as initial coarse space. Analysis
based on “XZ-identity” [Xu, Zikatanov, 2002] and
[Graham, Lechner, RS ’07].

IsoValue
-57893.7
28948.3
86843
144738
202632
260527
318422
376316
434211
492106
550000
607895
665790
723685
781579
839474
897369
955263
1.01316e+06
1.15789e+06

But in general when α is not quasi-monotone on all ωK

−→ need to adapt grid/supports or “enrich” the space !

Rob Scheichl (Bath) LMS Symposium, Durham, July 2014 Rigorous Numerical Upscaling at High Contrast 30 / 37



Local energy minimising coarse spaces (incl. GMsFEM)

Suppose {Ω`}L`=1 is overlapping partition of Ω.

Local Energy Minimization subject to Functional Constraints

For each subdomain Ω`, assume that we have a collection of linear
functionals {f`,j}m`j=1 ⊂ Vh(Ω`)

′ and let

Ψ`,j = arg min
v∈Vh(Ω`)

‖v‖2
a,Ω`

subject to f`,k(Ψ`,j) = δjk .

Now define global coarse space

VH = span
{

Φ`,j := Ih (χ`Ψ`,j) : ` = 1, L, j = 1,m`

}
i.e. glue together local energy minimising bases via partition of unity {χ`}
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Local energy minimising coarse spaces

Theorem [RS, Vassilevski, Zikatanov, MMS 2011]

Let v ∈ Vh. Then

H−2
T ‖v − IHv‖2

0,α,T + ‖v − IHv‖2
a,T . ‖v‖2

a,ωT

where IHv =
∑L

`=1

∑m`
j=1 f`,j(v)ΦH

`,j is the quasi-interpolant.

Proof follows from a (new) abstract approximation result
related to the Bramble-Hilbert Lemma applied locally on
each Ω` to the local quasi-interpolant Π`v =

∑
j f`,j(v)Ψ`,j .

An example of a functional is f`,j(v) =
∫

Ω`
αΨ`,jv dx

which leads to local eigensolves (GMsFEM) [Efendiev et al ’10]

But also other functionals possible [RS, Vassilevski, Zikatanov ’12]
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An abstract Bramble–Hilbert Lemma

Suppose V ⊂ H with Hilbert space
(
H, ‖ · ‖

)
, a(·, ·) an abstract

symmetric continuous bilinear form on V×V and {fk}mk=1⊂V ′ .

Define for all v ∈ V

ψk = arg min
v∈V
|v |2a, subject to fj(ψk) = δjk j , k = 1, . . . ,m .

Make the following assumptions:

A1. a is positive semi-definite and s.t. | · |a and
√
‖v‖2 + |v |2a

define a semi-norm and a norm on V , respectively.

A2. For all q ∈ Rm there exists a vq ∈ V with

fk(vq) = qk , and ‖vq‖ . cq‖q‖l2(Rm).

A3. ‖v‖2 ≤ ca|v |2a + cf
∑m

k=1 |fk(v)|2 , for all v ∈ V .
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An abstract Bramble–Hilbert Lemma

Theorem (RS, Vassilevski, Zikatanov, MMS 2011)

Let Assumptions A1-3 hold. Then πu =
∑

k fk(u)ψk satisfies

|πu|a ≤ |u|a and ‖u − πu‖ ≤
√

ca|u|a for all u ∈ V .

(Note that this is independent of the constants cq and cf in A2 and A3.)

Proof.

1 Given u ∈ V , πu minimizes energy subject to fk(v) = fk(u).
Thus it is a projection and |πu|a ≤ |u|a.

2 It follows from A3 and the fact that fk(v − πv) = 0 that

‖v − πv‖2 ≤ ca|v − πv |2a + cf

m∑
l=1

|f (v − πv)|2 = ca|v − πv |2a

≤ ca|I − π|2a|v |2a ≤ ca|π|2a|v |2a ≤ ca|v |2a .
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In our specific model problem considered above

Assumption A1 is naturally satisfied on any subdomain Ω`

with H = L2(Ω`) and ‖v‖ =
∫

Ω`
αv 2 dx .

Assumption A2 simply means the functionals {fk} should be
continuous and linearly independent.

Coarse space robustness reduced to verifying Assumption A3

For one functional reduces to (WPI) and quasi-monotonicity.

For more then one functional opens possibility of coefficient
robustness even for non-quasi-monotone coefficients.

More importantly: can be applied also to other problems,
e.g. elasticity, Stokes, ...
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Conclusions & Outlook

Upscaling for model elliptic problem at high contrast
(extends to more complicated problems)

Analysis difficult without scale separation and at high contrast

Robust variational multiscale method
(analysis for locally quasi-monotone coefficients)

Philosophy & New theoretical tools:

Start with VH that has uniform, stable L2-approx. properties

Find stable, weighted quasi-interpolator (weighted Poincaré)

a-orthogonalise basis fcts. (local) → new multiscale space V ms
H

Leads to uniform H-optimal convergence (in energy & L2)

Bramble-Hilbert: uniform L2-approx. with VH =GMsFEM
(for general coefficients)

Question is how to (formulate and) prove (QI2-4) in that case.
Start by doing more practical investigations!

Some (sub-optimal) energy-norm estimates for GMsFEM in
[Efendiev, Galvis, Wu, JCP ’11], [Efendiev, Galvis, Li, Presho ’13]
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a-orthogonalise basis fcts. (local) → new multiscale space V ms
H

Leads to uniform H-optimal convergence (in energy & L2)

Bramble-Hilbert: uniform L2-approx. with VH =GMsFEM
(for general coefficients)

Question is how to (formulate and) prove (QI2-4) in that case.
Start by doing more practical investigations!

Some (sub-optimal) energy-norm estimates for GMsFEM in
[Efendiev, Galvis, Wu, JCP ’11], [Efendiev, Galvis, Li, Presho ’13]

Rob Scheichl (Bath) LMS Symposium, Durham, July 2014 Rigorous Numerical Upscaling at High Contrast 36 / 37



Conclusions & Outlook

Upscaling for model elliptic problem at high contrast
(extends to more complicated problems)

Analysis difficult without scale separation and at high contrast

Robust variational multiscale method
(analysis for locally quasi-monotone coefficients)

Philosophy & New theoretical tools:

Start with VH that has uniform, stable L2-approx. properties

Find stable, weighted quasi-interpolator (weighted Poincaré)
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