On approximation classes of adaptive methods

Gantumur Tsogtgerel

McGill University

LMS-EPSRC Durham Symposium
Durham
Wednesday July 9, 2014

Background:

- approximation classes
- Besov spaces
- multilevel approximation

Ongoing work on

- approximation classes of adaptive finite element methods
$\Omega \quad$ polyhedral Lipschitz domain in \mathbb{R}^{n}
$P_{0} \quad$ triangulation of Ω
the family of all conforming triangulations obtained from P_{0} by a sequence of newest vertex bisections
the Lagrange C^{0} finite element space of piecewise polynomials of degree not exceeding m, subordinate to $P \in \mathscr{P}$
$X_{0} \quad$ Examples: $X_{0}=L^{p}(\Omega), X_{0}=H^{1}(\Omega)$
Let

$$
E(u, P)=\min _{v \in S_{P}}\|u-v\|_{X_{0}}, \quad E_{j}(u)=\inf _{\left\{P \in \mathscr{P}: \nexists P \leq 2^{j}\right\}} E(u, P),
$$

and define the approximation class $\mathscr{A}_{\infty}^{s}\left(X_{0}\right)$ for $s>0$ by

$$
u \in \mathscr{A}_{\infty}^{s}\left(X_{0}\right) \quad \Longleftrightarrow \quad E_{j}(u) \lesssim 2^{-j s} \quad \Longleftrightarrow \quad\left[2^{j s} E_{j}(u)\right]_{j \in \mathbb{N}} \in \ell^{\infty} .
$$

Recall
and

$$
E(u, P)=\min _{v \in S_{P}}\|u-v\|_{X_{0}}, \quad E_{j}(u)=\inf _{\left\{P \in \mathscr{P}: \# P \leq 2^{j}\right\}} E(u, P)
$$

$$
u \in \mathscr{A}_{\infty}^{s}\left(X_{0}\right) \quad \Longleftrightarrow \quad E_{j}(u) \lesssim 2^{-j s} \quad \Longleftrightarrow \quad\left[2^{j s} E_{j}(u)\right]_{j \in \mathbb{N}} \in \ell^{\infty}
$$

We extend this definition by introducing $\mathscr{A}_{q}^{s}\left(X_{0}\right)$ for $0<q \leq \infty$ by

$$
u \in \mathscr{A}_{q}^{s}\left(X_{0}\right) \quad \Longleftrightarrow \quad\left[2^{j s} E_{j}(u)\right]_{j \in \mathbb{N}} \in \ell^{q}
$$

We have $\mathscr{A}_{q}^{s}\left(X_{0}\right) \subset \mathscr{A}_{r}^{s}\left(X_{0}\right)$ for $q \leq r$, and $\mathscr{A}_{q}^{s}\left(X_{0}\right) \subset \mathscr{A}_{r}^{\alpha}\left(X_{0}\right)$ for $s>\alpha$ and for any $0<q, r \leq \infty$. In a typical situation, it is a quasi-Banach space.

We would like to compare, say, $\mathscr{A}_{q}^{s}\left(L^{p}(\Omega)\right)$ with known function spaces.

For best N-term approximations in a wavelet basis, we have

$$
\mathscr{A}_{q}^{s}\left(L^{p}(\Omega)\right)=B_{q, q}^{\alpha}(\Omega), \quad \text { for } \quad s=\frac{\alpha}{n}=\frac{1}{q}-\frac{1}{p}>0,
$$

where $B_{q, r}^{\alpha}(\Omega)$ is a Besov space $\left(B_{p, p}^{s} \approx W^{s, p}\right)$.

For $\frac{\alpha}{n}=\frac{1}{q}-\frac{1}{p}$ we have $B_{q, q}^{\alpha}(\Omega) \subset L^{p}(\Omega)$.
Less sharp characterizations are known for

- nonlinear spline approximations
- wavelet tree approximations
- adaptive finite element approximations

Direct and inverse embeddings

[Binev, Dahmen, DeVore, Petrushev '02], [Gaspoz, Morin '13]

$$
\begin{aligned}
& B_{q, q}^{\alpha}(\Omega) \subset \mathscr{A}_{\infty}^{s}\left(L^{p}(\Omega)\right) \\
& \text { with } s=\frac{\alpha}{n}, \text { if } \\
& \delta=\frac{\alpha}{n}+\frac{1}{p}-\frac{1}{q}>0 \\
& \text { and } 0<\alpha<m+\max \left\{1, \frac{1}{q}\right\} . \\
& \text { On the other hand } \\
& \mathscr{A}_{q}^{s}\left(L^{p}(\Omega)\right) \subset B_{q, q}^{\alpha}(\Omega) \\
& \text { for } \\
& \text { and } \alpha<1+\frac{1}{q} .
\end{aligned}
$$

Direct estimate [BDDP02,GM13]

Let $\delta=\frac{\alpha}{n}+\frac{1}{p}-\frac{1}{q}>0$ and $0<\alpha<m+\max \left\{1, \frac{1}{q}\right\}$. Then for $u \in B_{q, q}^{\alpha}(\Omega)$ and $P \in \mathscr{P}$, there exists $v \in S_{P}$ such that

$$
\|u-v\|_{L^{p}(\Omega)}^{p} \lesssim \sum_{\tau \in P}|\tau|^{p \delta}|u|_{B_{q, q}^{\alpha(\hat{\tau})}}^{p},
$$

where $\hat{\tau}$ is the patch of triangles that touch τ.
Proof: Quasi-interpolator, Whitney estimates, Besov-Sobolev embedding.
Mesh construction [BDDP02]
For any $u \in B_{q, q}^{\alpha}(\Omega)$ and N, there exists $P \in \mathscr{P}$ with $\# P \leq N$ such that

$$
\sum_{\tau \in P}|\tau|^{p \delta}|u|_{B_{q, q}^{\alpha}(\hat{\tau})}^{p} \lesssim N^{-s p}\|u\|_{B_{q, q}^{\alpha}(\Omega)}^{p}
$$

where $s=\frac{\alpha}{n}$.
Proof: Greedy algorithm to reduce $e(\tau, P)=|\tau|^{\delta}|u|_{B_{q, q}^{\alpha}(\hat{\tau})}$.

Inverse estimate [BDDP02]

Let $s=\frac{\alpha}{n}=\frac{1}{q}-\frac{1}{p}>0$ and $\alpha<1+\frac{1}{q}$. Then we have

$$
\|v\|_{B_{q, q}^{\alpha}(\Omega)} \lesssim(\# P)^{s}\|v\|_{L^{p}(\Omega)}, \quad P \in \mathscr{P}, \quad v \in S_{P}
$$

Proof: Multiscale decomposition of ν.
Corollary [BDDP02]
For $s=\frac{\alpha}{n}=\frac{1}{q}-\frac{1}{p}>0$ and $\alpha<1+\frac{1}{q}$ we have $\mathscr{A}_{q}^{s}\left(L^{p}(\Omega)\right) \subset B_{q, q}^{\alpha}(\Omega)$.
Proof: Real interpolation.
The embedding $\mathscr{A}_{q}^{s}\left(L^{p}(\Omega)\right) \subset B_{q, q}^{\alpha}(\Omega)$ cannot hold for $\alpha \geq 1+\frac{1}{q}$ because in this range we have $S_{P} \subsetneq B_{q, q}^{\alpha}(\Omega)$.
This problem was dealt with in [GM13] by introducing generalized Besov spaces $A_{q, q}^{\alpha}(\Omega)$, and showing that $\mathscr{A}_{q}^{s}\left(L^{p}(\Omega)\right) \subset A_{q, q}^{\alpha}(\Omega)$ for all $\alpha>0$. We call $A_{q, q}^{\alpha}(\Omega)$ multilevel approximation spaces.

- For $j=1,2, \ldots$, let P_{j} be the uniform refinement of P_{j-1}.
- Let $G \subset \Omega$ be a domain consisting of elements from some P_{j}.
- With $S_{j}=S_{P_{j}}$, and $0<p<\infty$, we let

$$
E\left(u, S_{j}, G\right)_{p}=\inf _{v \in S_{j}}\|u-v\|_{L^{p}(G)}, \quad u \in L^{p}(G)
$$

- Define the multilevel approximation spaces $A_{p, q}^{\alpha}(G)=A_{p, q}^{\alpha}\left(\left\{S_{j}\right\}, G\right)$ by

$$
u \in A_{p, q}^{\alpha}\left(\left\{S_{j}\right\}, G\right) \quad \Longleftrightarrow \quad\left(\lambda^{j \alpha} E\left(u, S_{j}, G\right)_{p}\right)_{j \geq 0} \in \ell^{q},
$$

where $\lambda=\sqrt[n]{2}$.

- Note that $u \in A_{p, q}^{\alpha}(G)$ implies $E\left(u, S_{j}, G\right)_{p} \lesssim 2^{-\alpha j / n} \sim h_{j}^{\alpha}$, with h_{j} the typical meshwidth of P_{j}.
- We have $B_{q, q}^{\alpha}(\Omega) \subset A_{q, q}^{\alpha}(\Omega)$ for $0<q<\infty$ and $0<\alpha<m+\max \left\{1, \frac{1}{q}\right\}$.
- In the other direction, we have $A_{q, q}^{\alpha}(\Omega) \subset B_{q, q}^{\alpha}(\Omega)$ for $0<q<\infty$ and $0<\alpha<1+\frac{1}{q}$.
- So in most interesting situations, we have $B_{q, q}^{\alpha}(\Omega) \subsetneq A_{q, q}^{\alpha}(\Omega)$.
- Gaspoz-Morin's inverse theorem says that $\mathscr{A}_{q}^{s}\left(L^{p}(\Omega)\right) \subset A_{q, q}^{\alpha}(\Omega)$ for $s=\frac{\alpha}{n}=\frac{1}{q}-\frac{1}{p}>0$. Recall the inclusion $\mathscr{A}_{q}^{s}\left(L^{p}(\Omega)\right) \subset B_{q, q}^{\alpha}(\Omega)$ cannot hold above the red line.
- Their direct theorem says that $B_{q, q}^{\alpha}(\Omega) \subset \mathscr{A}_{\infty}^{s}\left(L^{p}(\Omega)\right)$ for $\frac{\alpha}{n}>\frac{1}{q}-\frac{1}{p}$ and $0<\alpha<m+\max \left\{1, \frac{1}{q}\right\}$.
- Question I: What is the difference between $A_{q, q}^{\alpha}$ and $B_{q, q}^{\alpha}$?
- Question II: Do we have $A_{q, q}^{\alpha}(\Omega) \subset \mathscr{A}_{\infty}^{s}\left(L^{p}(\Omega)\right)$?

Conjecture: If $u \in A_{p, q}^{\alpha}\left(\left\{S_{j}\right\}, \Omega\right)$ for all possible initial triangulations P_{0} of Ω, then $u \in B_{p, q}^{\alpha}(\Omega)$.

Lemma

Let $\phi \in S_{k}$ be such that $\phi \notin C^{1}(\Omega)$ for some k. Then there exists an initial triangulation \bar{P}_{0} of Ω, such that $E\left(\phi, \bar{S}_{j}\right)_{p} \gtrsim \lambda^{-\left(1+\frac{1}{p}\right) j}$ for $0<p<\infty$, where $\left\{\bar{S}_{j}\right\}$ is the sequence analogous to $\left\{S_{j}\right\}$ with P_{0} replaced by \bar{P}_{0}.
Proof ($n=2$):

- There is an edge e of P_{k}, such that $|\phi(x, y)| \sim \max \{0, y\}$ under suitable transformation, where y is the coordinate normal to e.
- We choose \bar{P}_{0} so that e cuts through the "middle" of each triangle in any refinement of \bar{P}_{0}.

Proof ($n=2$):

- There is an edge e of P_{k}, such that $|\phi(x, y)| \sim \max \{0, y\}$ under a suitable transformation, where y is the coordinate normal to e.
- We choose \bar{P}_{0} so that e cuts through the "middle" of each triangle in any refinement of \bar{P}_{0}.

We have

$$
\|\phi\|_{L^{p}\left(V_{j}\right)}^{p} \sim \int_{0}^{h_{j}} y^{p} \mathrm{~d} y \sim h_{j}^{p+1} \sim \lambda^{-j(p+1)}
$$

where V_{j} is the shaded area, and

$$
E\left(\phi, \bar{S}_{j}\right)_{p} \gtrsim\|\phi\|_{L^{p}\left(V_{j}\right)} \sim \lambda^{-j\left(1+\frac{1}{p}\right)}
$$

Direct embeddings II

Theorem: We have $A_{q, q}^{\alpha}(\Omega) \subset \mathscr{A}_{\infty}^{s}\left(L^{p}(\Omega)\right)$ for $s=\frac{\alpha}{n}>\frac{1}{q}-\frac{1}{p} \geq 0$.
Proof: The two ingredients are the same as before.
Mesh construction
For any $u \in A_{q, q}^{\alpha}(\Omega)$ and N, there exists $P \in \mathscr{P}$ with $\# P \leq N$ such that

$$
\sum_{\tau \in P}|\tau|^{p \delta}|u|_{A_{q, q}^{\alpha}(\hat{\tau})}^{p} \lesssim N^{-s p}\|u\|_{A_{q, q}^{\alpha}(\Omega)}^{p}
$$

where $s=\frac{\alpha}{n}$.
Proof: The same argument works basically because the spaces $A_{q, q}^{\alpha}(G)$ enjoy the locality property

$$
\sum_{\tau \in P}|u|_{A_{q, q}^{\alpha}(\hat{\tau})}^{q} \lesssim\|u\|_{A_{q, q}^{\alpha}(\Omega)}^{q} .
$$

Lemma: Let $\delta=\frac{\alpha}{n}+\frac{1}{p}-\frac{1}{q}>0$. Then for $u \in A_{q, q}^{\alpha}(\Omega)$ and $P \in \mathscr{P}$ we have

$$
\left\|u-Q_{P} u\right\|_{L^{p}(\Omega)}^{p} \lesssim \sum_{\tau \in P}|\tau|^{p \delta}|u|_{A_{q, q}^{\alpha}(\hat{\tau})}^{p}
$$

where Q_{P} is the quasi-interpolation operator from [GM13].
Proof ($q \leq 1$): We have

$$
\left\|u-Q_{P} u\right\|_{L^{p}(\Omega)}^{p}=\sum_{\tau \in P}\left\|u-Q_{P} u\right\|_{L^{p}(\tau)}^{p} \lesssim \sum_{\tau \in P} \inf _{v \in S_{P}}\|u-v\|_{L^{p}(\hat{\tau})}^{p} .
$$

Every triangle $\sigma \in P$ belongs to a unique P_{j}. Given $\tau \in P$ denote by $j(\tau)$ the highest index j that occurs in the local patch surrounding τ. We have

$$
\inf _{v \in S_{P}}\|u-v\|_{L^{p}(\hat{\tau})} \leq \inf _{v \in S_{j(\tau)}}\|u-v\|_{L^{p}(\hat{\tau})}
$$

because in $\hat{\tau}, P_{j(\tau)}$ is more refined that P.

So far, we have

$$
\left\|u-Q_{P} u\right\|_{L^{p}(\Omega)}^{p} \lesssim \sum_{\tau \in P} \inf _{v \in S_{j(\tau)}}\|u-v\|_{L^{p}(\hat{\tau})}^{p} .
$$

For each j, let $u_{j} \in S_{j}$ be such that $\left\|u-u_{j}\right\|_{L^{p}(\hat{\tau})}=\inf _{v \in S_{j}}\|u-v\|_{L^{p}(\hat{)}}$. We have

$$
\left\|u-u_{j(\tau)}\right\|_{L^{p}(\hat{\tau})}^{p^{*}} \leq \sum_{j=j(\tau)}^{\infty}\left\|u_{j+1}-u_{j}\right\|_{L^{p}(\hat{\hat{\prime}}}^{p^{*}} \lesssim \sum_{j=j(\tau)}^{\infty} \lambda^{\left(\frac{1}{q}-\frac{1}{p}\right) j n p^{*}}\left\|u_{j+1}-u_{j}\right\|_{L^{g}(\hat{\jmath})}^{p^{*}}
$$

with $p^{*}=\min \{1, p\}$. Putting $\frac{1}{q}-\frac{1}{p}=\frac{\alpha}{n}-\delta$, we get

$$
\begin{aligned}
\left\|u-u_{j(\tau)}\right\|_{L^{p}(\hat{\tau})}^{p^{*}} & \lesssim \sum_{j=j(\tau)}^{\infty} \lambda^{-j n \delta p^{*}} \lambda^{j \alpha p^{*}}\left\|u-u_{j}\right\|_{L^{q}(\hat{\tau})}^{p^{*}} \\
& \leq \lambda^{-j(\tau) n \delta p^{*}} \sum_{j=j(\tau)}^{\infty} \lambda^{j \alpha p^{*}}\left\|u-u_{j}\right\|_{L^{q}(\hat{\tau})}^{p^{*}} \lesssim|\tau|^{\delta p^{*}}|u|_{A_{p, p^{*}}^{\alpha}}^{p^{*}}
\end{aligned}
$$

Consider the boundary value problem

$$
\Delta u=f \quad \text { in } \quad \Omega, \quad u=0 \quad \text { on } \quad \partial \Omega
$$

A typical a posteriori error estimate satisfies

$$
[\eta(u, P)]^{2} \sim\left\|u-u_{P}\right\|_{H^{1}(\Omega)}^{2}+\sum_{\tau \in P} h_{\tau}^{2}\left\|f-\Pi_{\tau} f\right\|_{L^{2}(\tau)}^{2}
$$

where $u_{P} \in S_{P}$ is the Galerkin solution on P, and $\Pi_{\tau}: L^{2}(\tau) \rightarrow \mathbb{P}_{d}$ is the $L^{2}(\tau)$-orthogonal projection onto $\mathbb{P}_{d}, d \geq m-2$.

It is known that certain practical adaptive FEM converges optimally w.r.t. approximation classes associated to

$$
E(u, P)=\left(\min _{v \in S_{P}}\|u-v\|_{H^{1}(\Omega)}^{2}+\sum_{\tau \in P} h_{\tau}^{2}\left\|f-\Pi_{\tau} f\right\|_{L^{2}(\tau)}^{2}\right)^{\frac{1}{2}}
$$

Generalized approximation classes

Let

$$
\rho(u, v, P)=\left(\|u-v\|_{H^{1}(\Omega)}^{2}+\sum_{\tau \in P} h_{\tau}^{2}\left\|f-\Pi_{\tau} f\right\|_{L^{2}(\tau)}^{2}\right)^{\frac{1}{2}},
$$

and define

$$
E(u, P)=\min _{v \in S_{P}} \rho(u, v, P), \quad E_{j}(u)=\inf _{\left\{P \in \mathscr{P}: \nexists P \leq 22^{j}\right\}} E(u, P) .
$$

We introduce the approximation class $\mathscr{A}_{q}^{s}(\rho)$ given by

$$
u \in \mathscr{A}_{q}^{s}(\rho) \quad \Longleftrightarrow \quad\left[2^{j s} E_{j}(u)\right]_{j \in \mathbb{N}} \in \ell^{q} .
$$

Also, define the oscillation class \mathscr{O}^{s} by

$$
f \in \mathscr{O}_{q}^{s} \quad \Longleftrightarrow \quad \inf _{\{P \in \mathscr{P}: \# P \leq 2 j\}} \sum_{\tau \in P} h_{\tau}^{2}\left\|f-\Pi_{\tau} f\right\|_{L^{2}(\tau)}^{2} \lesssim 2^{-2 j s}
$$

Lemma: If $u \in \mathscr{A}_{\infty}^{s}\left(H_{0}^{1}(\Omega)\right)$ and $f \in \mathscr{O}^{s}$ then $u \in \mathscr{A}_{\infty}^{s}(\rho)$.
Proof: Overlay of meshes.
Example:
$H^{\alpha}(\Omega) \subset \mathscr{O}^{1+\alpha}$ for $\alpha \geq 0$, so $\mathscr{A}_{\infty}^{s}\left(H_{0}^{1}(\Omega)\right) \cap \Delta^{-1}\left(H^{s-1}(\Omega)\right) \subset \mathscr{A}_{\infty}^{s}(\rho)$ for $s \geq 1$.

Direct embeddings III

Morally, $\mathscr{O}^{s} \approx \mathscr{A}_{\infty}^{s}\left(H^{-1}(\Omega)\right)$, so we expect $B_{q, q}^{\alpha}(\Omega) \subset \mathscr{O}^{1+\alpha}$.
Theorem: We have $B_{q, q}^{\alpha}(\Omega) \subset \mathscr{O}^{1+\alpha}$ for $\frac{\alpha}{n} \geq \frac{1}{q}-\frac{1}{2}$, hence $\mathscr{A}_{\infty}^{s}\left(H_{0}^{1}(\Omega)\right) \cap \Delta^{-1}\left(B_{q, q}^{s-1}(\Omega)\right) \subset \mathscr{A}_{\infty}^{s}(\rho)$ for $\frac{s-1}{n} \geq \frac{1}{q}-\frac{1}{2}$.

Theorem: We have $B_{q, q}^{\alpha}(\Omega) \subset \mathscr{O}^{1+\alpha}$ for $\frac{\alpha}{n} \geq \frac{1}{q}-\frac{1}{2}$,
hence $\mathscr{A}_{\infty}^{s}\left(H_{0}^{1}(\Omega)\right) \cap \Delta^{-1}\left(B_{q, q}^{s-1}(\Omega)\right) \subset \mathscr{A}_{\infty}^{s}(\rho)$ for $\frac{s-1}{n} \geq \frac{1}{q}-\frac{1}{2}$.
Proof: The mesh construction part works the same as before. For the direct estimate, with $\delta=\frac{\alpha}{n}-\frac{1}{q}+\frac{1}{2} \geq 0$, we have

$$
\left\|f-\Pi_{\tau} f\right\|_{L^{2}(\tau)} \leq\|f-p\|_{L^{2}(\tau)} \lesssim|\tau|^{\delta}\|f-p\|_{L^{q}(\tau)}+|\tau|^{\delta}|f|_{B_{q, q}^{\alpha}(\tau)},
$$

for any $p \in \mathbb{P}_{d}$, and

$$
\min _{p \in \mathbb{P}_{d}}\|f-p\|_{L^{q}(\tau)} \lesssim \omega_{d+1}(f, \tau)_{q} \lesssim|f|_{B_{q, q}^{\alpha}(\tau)},
$$

which gives

$$
\sum_{\tau \in P} h_{\tau}^{2}\left\|f-\Pi_{\tau} f\right\|_{L^{2}(\tau)}^{2} \lesssim \sum_{\tau \in P}|\tau|^{2 \delta+2 / n}|f|_{B_{q, q}(\tau)}^{2} .
$$

Concluding remarks

The arguments can be adapted to

- red refinements,
- splines,
- higher order problems,
- Stokes equations, etc.
- Variable coefficients.

Plans:

- inverse theorems for adaptive FEM
- boundary elements
- finite element exterior calculus

