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Kernel-based interpolation

Let K : Rd × R
d → R be a symmetric kernel conditionally

positive definite (cpd) of order s ≥ 0 on R
d (positive definite

when s = 0). Πd
s : polynomials of order s.

For a Πd
s -unisolvent X, the kernel interpolant rX,K ,f in the form

rX,K ,f =
N∑

j=1

ajK (·,xj) +
M∑

j=1

bjpj , aj ,bj ∈ R, M = dim(Πd
s ),

is uniquely determined from the positive definite linear system

rX,K ,f (xk ) =
N∑

j=1

ajK (xk ,xj) +
M∑

j=1

bjpj(xk ) = fk , 1 ≤ k ≤ N,

N∑

j=1

aj pi(xj) = 0, 1 ≤ i ≤ M.
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Kernel-based interpolation

Examples. K (x,y) = φ(‖x − y‖)
(φ : R+ → R is then a radial basis function (RBF))

s ≥ 0: Any φ with positive Fourier transform of Φ(x) = φ(‖x‖)
Gaussian φ(r) = e−r2

inverse quadric 1/(1 + r2)

inverse multiquadric 1/
√

1 + r2

(1 − r)8
+(32r3 + 25r2 + 8r + 1) (for d ≤ 3) (C6 compactly

supported Wendland function)

Matérn kernel Kν(r)r
ν , ν > 0

(Kν(r) modified Bessel function of second kind)
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√

1 + r2

(1 − r)8
+(32r3 + 25r2 + 8r + 1) (for d ≤ 3) (C6 compactly

supported Wendland function)

Matérn kernel Kν(r)r
ν , ν > 0

(Kν(r) modified Bessel function of second kind)

s ≥ 1: multiquadric
√

1 + r2

s ≥ 2: thin plate spline r2 log r

K (εx, εy) are also cpd kernels (ε > 0: shape parameter)
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Kernel-based interpolation

Optimal Recovery

rX,K ,f depends linearly on the data fj = f (xj),

rX,K ,f (z) =

N∑

j=1

w∗
j f (xj), w∗

j ∈ R, j = 1, . . . ,N.

(w∗
j = w∗

j (z) depends on the evaluation point z ∈ R
d )

The weights w∗ = {w∗
j }N

j=1 provide optimal recovery of f (z)
for f in the reproducing kernel Hilbert space FK associated

with K , i.e.,

inf
w∈RN

w⊥Πd
s

sup
‖f‖FK

≤1

∣∣∣f (z)−
N∑

j=1

wj f (xj)
∣∣∣ = sup

‖f‖FK
≤1

∣∣∣f (z)−
N∑

j=1

w∗
j f (xj)

∣∣∣,

w ⊥ Πd
s : exactness for polynomials in Πd

s , e.g. s = 0 or 1.
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Kernel-based interpolation

“Native Space" FK

In the translation-invariant case K (x,y) = Φ(x − y) on R
d ,

FK = {f ∈ L2(R
d) : ‖f‖FK

:=
∥∥∥f̂/

√
Φ̂
∥∥∥

L2(Rd )
<∞}.

Matérn kernel K (x,y) = Kν(‖x − y‖)‖x − y‖ν :

Φ̂(ω) = cν,d (1 + ‖ω‖2)−ν−d/2 =⇒ ‖f‖FK
= cν,d‖f‖Hν+d/2(Rd )

Wendland kernels: ‖f‖FK
equlivalent to a Sobolev norm

Thin plate spline: ‖f‖FK
equlivalent to a Sobolev seminorm

C∞ kernels: spaces of infinitely differentiable functions

Oleg Davydov Kernel Based FD 6



Kernel-based interpolation

Further Info

Kernel-based interpolants exists with no restrictions on the

location of the centres, in contrast to, say, polynomials.
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h = max
x∈Ω

min
1≤i≤N

‖x − xi‖2.

Spectral error bounds if both K and f are analytic functions

However: Dense linear systems to find coefficients.

Extensive literature, recent books: Buhmann; Wendland;

Fasshauer.
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Numerical differentiation

Let D be a linear differential operator of order k . Given z ∈ R
d ,

a numerical differentiation formula

Df (z) ≈
N∑

j=1

wj f (xj)

is defined by the set of centres X = {x1, . . . ,xN} ⊂ R
d and the

weight vector w ∈ R
N .

Formulas on grids are used in the finite difference method.

Irregular X =⇒ generalized finite difference methods.
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Numerical differentiation

Definition

A numerical differentiation formula for an operator D of order k is

said to be polynomially consistent of order m ≥ 1 if it is exact for any

polynomial p of (total) order m + k :

Dp(z) =
N∑

j=1

wj p(xj) for all p ∈ Πd
m+k .

A classical way to work out polynomially consistent

formulas on grids is via truncation of Taylor expansion.

On an irregular set X = {x1, . . . ,xN} such formulas may be

obtained by applying D to the least squares polynomial fit,

or by numerically solving the consistency equations.
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Numerical differentiation

A kernel-based numerical differentiation formula is obtained by

applying D to the kernel interpolant:

Df (z) ≈ DrX,K ,f (z) =
N∑

j=1

w∗
j f (xj).

Polynomial consistency order is just s.

The weights w∗
j can be calculated by solving the system

N∑

j=1

w∗
j K (xk ,xj) +

M∑

j=1

cjpj(xk ) = [DK (·,xk )](z), 1 ≤ k ≤ N,

N∑

j=1

w∗
j pi(xj) + 0 = Dpi(z), 1 ≤ i ≤ M.
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Numerical differentiation

The weights w∗ = {w∗
j }N

j=1 provide optimal recovery of

Df (z) from f (xj), j = 1, . . . ,N, for f ∈ FK ,

inf
w∈RN

w⊥Πs

sup
‖f‖FK

≤1

∣∣∣Df (z)−
N∑

j=1

wj f (xj)
∣∣∣ = sup

‖f‖FK
≤1

∣∣∣Df (z)−
N∑

j=1

w∗
j f (xj)

∣∣∣,
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∣∣∣Df (z)−
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j=1

w∗
j f (xj)

∣∣∣,

E.g. Matérn kernel-based formula with s = 0 gives the best

possible estimate of Df (z) if we only know that f belongs to

the respective Sobolev space

In particular, the optimal formula does not need to be exact

for any polynomials.

Whenever centres x1, . . . ,xN admit a good formula

Df (z) ≈ ∑N
j=1 wj f (xj), the kernel-based formula will also

perfom well.
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Numerical differentiation

Example: Five point stencil for Laplace operator ∆ in 2D

∆u(ζ) ≈ ∑5
i=1 wiu(ξi)

Ξ = {ζ, ζ ± (h,0), ζ ± (0,h)} = {ξ1, . . . , ξ5}
By symmetry, w2 = w3 = w4 = w5 =: w

For RBF interpolant with a constant term, w1 + 4w = 0

By substituting w = −w1/4, arrive at

w1

(
2φ(h)− 5

4
φ(0)− φ(2h) + 2φ(

√
2h)

4

)
= ∆Φ(h)−∆Φ(0)

For scaled Gaussian φ(r) = e−(εr)2
, w1 = − 4

h2 +O(ε2h2)
(same consistency order as the classical five point stencil)
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Numerical differentiation

Error bound for kernel-based formulas

(K is cpd of order s, D of order k)

Theorem [D. & Schaback, preprint]

Let q ≥ max{s, k + 1}. Assume that

∂α,βK (x,y) ∈ C(Ω × Ω), |α|, |β| ≤ q,

where Ω ⊃ {z} ∪ X is star-shaped w.r.t. z. Then

|Df (z)− DrX,K ,f (z)| ≤ ρq,D(z,X)MK ,q‖f‖FK
, f ∈ FK .
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Dp(z) : p ∈ Πd
q , |p(xi)| ≤ ‖xi − z‖q

2 ,

i = 1, . . . ,N
}

is a polynomial growth function,

MK ,q :=
1

q!

( ∑

|α|,|β|=q

(
q

α

)(
q

β

)
max
x,y∈Ω

|∂α,βK (x,y)|2
)1/4
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Numerical differentiation

Discussion

|Df (z)− DrX,K ,f (z)| ≤ min
q≥k+1

{
ρq,D(z,X)MK ,q

}
‖f‖FK

,

ρq,D(z,X) := sup
{

Dp(z) : p ∈ Πd
q , |p(xi)| ≤ ‖xi − z‖q

2 , ∀i
}
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ρ5,∆(z,X) = ∞. Hence consistency order 2:
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Kernel-based methods for PDEs

RBF numerical differentiation in explicit methods for time

dependent problems (e.g. Iske & Sonar, 1996; Fuselier &

Wright, 2013)

Collocation of
∑n

i=1 aiK (·,xi) (Kansa, 1990). “Symmetric”

collocation (Fasshauer, 1997; Franke & Schaback, 1998;

Schaback, 2014): spectral convergence, optimal recovery.

However: dense system matrices

Weak form methods: Compactly supported kernels K (·,xi)
as shape functions (Wendland, 1999). Problems: high

bandwidth of system matrices; the need for the integration

of non-polynomial functions on unusual domains;

difficulties to impose essential boundary conditions.
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Kernel-based methods for PDEs

Pseudospectral methods (Fasshauer, 2005; Fornberg et al)

∆u = f on Ω, u|∂Ω = g.

Generate numerical differentiation formulas (Ξ ⊂ Ω)

∆u(ξi) ≈
N∑

j=1

wi ,ju(ξj) for all ξi ∈ Ξ \ ∂Ω

Find a discrete approximate solution û defined on Ξ s.t.

N∑

j=1

wi ,j û(ξj) = f (ξi) for ξi ∈ Ξ \ ∂Ω

û(ξi) = g(ξi) for ξi ∈ ∂Ω

Good results for small problems. Dense system matrix.
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Kernel-based methods for PDEs

Generalized finite differences

∆u = f on Ω, u|∂Ω = g.

Localized numerical differentiation (Ξ ⊂ Ω):

∆u(ξi) ≈
∑

j∈Ξi⊂Ξ

wi ,ju(ξj) for all ξi ∈ Ξ \ ∂Ω

Find a discrete approximate solution û defined on Ξ s.t.

∑

j∈Ξi

wi ,j û(ξj) = f (ξi) for ξi ∈ Ξ \ ∂Ω

û(ξi) = g(ξi) for ξi ∈ ∂Ω

Sparse system matrix {wi ,j}.
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Generalized finite differences

Pro

efficient numerics of sparse linear systems

meshless

no integration

very flexible, easily made locally adaptive:

location of centres (irregularity, movement)
size of “stencils" Ξi (local approximation order)

choice of kernels (to reflect local variations in smoothness)

isogeometric: bare centres ξi fit into any geometry
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meshless

no integration

very flexible, easily made locally adaptive:

location of centres (irregularity, movement)
size of “stencils" Ξi (local approximation order)

choice of kernels (to reflect local variations in smoothness)

isogeometric: bare centres ξi fit into any geometry

Contra

strong form method

lack of theory (at least we now understand numerical

differentiation error)

sophisticated algorithms needed to handle so many

parameters.
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Generalized finite differences

History

Polynomial stencils: obtained from polynomial interpolation

or least squares.

Jensen, 1972; Liszka & Orkisz, 1980; Kuhnert, 1999;

Schönauer & Adolph, 2001; Benito, Urena, Gavete &

Alvares, 2003; Perazzo, Löhner & Perez-Poro, 2008;

Seibold, 2008; . . .
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Jensen, 1972; Liszka & Orkisz, 1980; Kuhnert, 1999;

Schönauer & Adolph, 2001; Benito, Urena, Gavete &

Alvares, 2003; Perazzo, Löhner & Perez-Poro, 2008;

Seibold, 2008; . . .

Kernel stencils attract growing attention since 2003.

Early papers: Lee, Liu & Fan, 2003; Shu, Ding & Yeo,

2003; Tolstykh & Shirobokov, 2003; Wright & Fornberg,

2006; Sarler & Vertnik, 2006
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Generalized finite differences

Current research topics

PDEs on surfaces (Fornberg; Wright; Flyer; Larsson;
Lehto,...)
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Current research topics
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Lehto,...)

Kernels on a surface in R
3 are easily obtained by restricting

3D kernels

Optimal recovery properties hold

Any quasi-unformly distributed centres (e.g. minimal energy
points) can be used as replacement for grids

Promising numerical results, e.g. shallow water equations,

global electric circuit, mantle convection
Focus on high and spectral order stencils

Adaptive centres for elliptic equations (D. & Oahn;

Phu, D. & Oahn)

Adaptive scaling parameter
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Pointwise discretisation of Poisson equation

Dirichlet problem for the Poisson equation

∆u = f on Ω

u|∂Ω = g.

Ω ⊂ R
d : bounded

domain

f ,g: given functions

Discretised problem: find û such that
∑

ξ∈Ξζ

wζ,ξû(ξ) =
∑

θ∈Θζ

σζ,θf (θ), ζ ∈ Ξ \ ∂Ξ

û(ξ) = g(ξ), ξ ∈ ∂Ξ
Ξ ⊂ Ω: ‘discretisation centres’

Θ ⊂ Ω: ‘collocation centres’

û defined on Ξ

∂Ξ := Ξ ∩ ∂Ω
Ξ =

⋃
ζ∈Ξ\∂Ξ Ξζ

Θζ ⊂ Θ, ζ ∈ Ξ
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Pointwise discretisation of Poisson equation

Discretised problem: find û such that
∑

ξ∈Ξζ

wζ,ξû(ξ) =
∑

θ∈Θζ

σζ,θf (θ), ζ ∈ Ξ \ ∂Ξ

û(ξ) = g(ξ), ξ ∈ ∂Ξ
Ξ ⊂ Ω: ‘discretisation centres’

Θ ⊂ Ω: ‘collocation centres’

û defined on Ξ

∂Ξ := Ξ ∩ ∂Ω
Ξ =

⋃
ζ∈Ξ\∂Ξ Ξζ

Θζ ⊂ Θ, ζ ∈ Ξ

Classical finite differences

Θζ = {ζ}, σζ,ζ = 1

Five point stencil: Ξζ = {ζ, ζ ± (h,0), ζ ± (0,h)};

wζ,ζ = −4/h2 and wζ,ξ = 1/h2 for ξ ∈ Ξζ \ {ζ}
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Pointwise discretisation of Poisson equation

Discretised problem: find û such that
∑

ξ∈Ξζ

wζ,ξû(ξ) =
∑

θ∈Θζ

σζ,θf (θ), ζ ∈ Ξ \ ∂Ξ

û(ξ) = g(ξ), ξ ∈ ∂Ξ
Ξ ⊂ Ω: ‘discretisation centres’

Θ ⊂ Ω: ‘collocation centres’

û defined on Ξ

∂Ξ := Ξ ∩ ∂Ω
Ξ =

⋃
ζ∈Ξ\∂Ξ Ξζ

Θζ ⊂ Θ, ζ ∈ Ξ

Linear triangle finite elements with midpoint rule quadrature

Θζ : barycentres of the triangles Tθ attached to ζ,

σζ,θ = area(Tθ)/3

Ξζ : ζ and the vertices of the triangles Tθ, θ ∈ Θζ

wζ,ξ = −
∫
Ω∇φξ∇φζ , ξ ∈ Ξζ ; φξ: hat functions
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Pointwise discretisation of Poisson equation

Discretised problem: find û such that
∑

ξ∈Ξζ

wζ,ξû(ξ) =
∑

θ∈Θζ

σζ,θf (θ), ζ ∈ Ξ \ ∂Ξ

û(ξ) = g(ξ), ξ ∈ ∂Ξ
Ξ ⊂ Ω: ‘discretisation centres’

Θ ⊂ Ω: ‘collocation centres’

û defined on Ξ

∂Ξ := Ξ ∩ ∂Ω
Ξ =

⋃
ζ∈Ξ\∂Ξ Ξζ

Θζ ⊂ Θ, ζ ∈ Ξ

Generalised finite differences

For each ζ ∈ Ξ \ ∂Ξ, choose Θζ , {σζ,θ, θ ∈ Θζ} and Ξζ

Find the stencil coefficients {wζ,ξ, ξ ∈ Ξζ} from a

numerical differentiation formula
∑

θ∈Θζ

σζ,θ∆u(θ) ≈
∑

ξ∈Ξζ

wζ,ξu(ξ)
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Numerical differentiation stencils on irregular centres

Low order RBF stencils (D. & Oanh, 2011)

Look for stencils of small support, typically Ξζ consisting of
ζ and up to 6 nearby points.

Sparse matrices

Expect h2 approximation order for ‖û − u|Ξ‖ as with linear
finite elements
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Numerical differentiation stencils on irregular centres

Low order RBF stencils (D. & Oanh, 2011)

Look for stencils of small support, typically Ξζ consisting of
ζ and up to 6 nearby points.

Sparse matrices

Expect h2 approximation order for ‖û − u|Ξ‖ as with linear
finite elements

Given ζ and Ξζ , select the collocation centres Θζ and

weights σζ,θ. Then find the stencil coefficients wζ,ξ by RBF

numerical differentiation.
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Numerical differentiation stencils on irregular centres

Low order RBF stencils (D. & Oanh, 2011)

Look for stencils of small support, typically Ξζ consisting of
ζ and up to 6 nearby points.

Sparse matrices

Expect h2 approximation order for ‖û − u|Ξ‖ as with linear
finite elements

Given ζ and Ξζ , select the collocation centres Θζ and

weights σζ,θ. Then find the stencil coefficients wζ,ξ by RBF

numerical differentiation.

Single point stencil (FD like)

Θζ = {ζ}, σζ,ζ = 1

∆u(ζ) ≈
∑

ξ∈Ξζ

wζ,ξu(ξ)
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Numerical differentiation stencils on irregular centres

Low order RBF stencils (D. & Oanh, 2011)

Look for stencils of small support, typically Ξζ consisting of
ζ and up to 6 nearby points.

Sparse matrices

Expect h2 approximation order for ‖û − u|Ξ‖ as with linear
finite elements

Given ζ and Ξζ , select the collocation centres Θζ and

weights σζ,θ. Then find the stencil coefficients wζ,ξ by RBF

numerical differentiation.

Multipoint stencil (FEM like)

Θζ : barycentres θi of the triangles Ti formed

by ζ, ξi , ξi+1, σζ,θi
= area(Ti)/3∑

θ∈Θζ

σζ,θ∆u(θ) ≈
∑

ξ∈Ξζ

wζ,ξu(ξ)
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Stencil support selection

Need to select Ξζ for each ζ ∈ Ξ \ ∂Ξ

ζ

ζ

Ξζ

Θζ

Ξζ is ‘stencil support’ or ‘set of influence’
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Stencil support selection

Test problem to compare various algorithms

Dirichlet problem in a circle sector −3π/4 ≤ ψ ≤ 3π/4
RHS: f = 0 (Laplace equation)

Boundary conditions g(r , ψ) = cos(2ψ/3) along the arc,

and g(r , ψ) = 0 along the straight lines

Exact solution u(r , ψ) = r2/3 cos(2ψ/3)
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Stencil support selection

Test problem to compare various algorithms

Dirichlet problem in a circle sector −3π/4 ≤ ψ ≤ 3π/4
RHS: f = 0 (Laplace equation)

Boundary conditions g(r , ψ) = cos(2ψ/3) along the arc,

and g(r , ψ) = 0 along the straight lines

Exact solution u(r , ψ) = r2/3 cos(2ψ/3)

Adaptive centres generated by PDE Toolbox (MATLAB)
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Stencil support selection

Using FEM stencil supports Ξζ (ζ and vertices connected to ζ

in the triangulation): rms error
(

1
N

∑
ξ∈Ξ\∂Ξ |u(ξ)− û(ξ)|2

)1/2

for RBF-FD with single point stencil
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Stencil support selection

Using FEM stencil supports Ξζ (ζ and vertices connected to ζ

in the triangulation): rms error
(

1
N

∑
ξ∈Ξ\∂Ξ |u(ξ)− û(ξ)|2

)1/2

for RBF-FD with multipoint stencil
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Stencil support selection

Further stencil support selection algorithms

6near: six nearest neighbours; nn: natural neighbours;

4quad: four quadrants criterium; LLF: Lee, Liu & Fun, 2003;

SLS: Shen, Lv, Shen, 2009
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density: average size of Ξζ
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Stencil support selection

Our stencil support selection (D. & Oanh, 2011)

for RBF-FD with single point stencil
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Stencil support selection

Our stencil support selection (D. & Oanh, 2011)

for RBF-FD with multipoint stencil

10
-2

10
-4

10
-3

10
-2

(number of interior centres)-1

rm
s 

er
ro

r

 

 
FEM
G
IMQ
W33

Oleg Davydov Kernel Based FD 27



Stencil support selection

Our stencil support selection (D. & Oanh, 2011)

System matrix density
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Stencil support selection

Algorithm

For Ξζ = {ζ, ξ1, . . . , ξk} define

µ :=

k∑

i=1

α2
i , α := min{α1, . . . , αk}, α := max{α1, . . . , αk}

where αi denotes the angle between the rays ζξi , ζξi+1

(ξi counterclockwise).
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Stencil support selection

Algorithm

For Ξζ = {ζ, ξ1, . . . , ξk} define

µ :=

k∑

i=1

α2
i , α := min{α1, . . . , αk}, α := max{α1, . . . , αk}

where αi denotes the angle between the rays ζξi , ζξi+1

(ξi counterclockwise).

Start with six closests points ξ1, . . . , ξ6 ∈ Ξ \ {ζ}
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Stencil support selection

Algorithm

For Ξζ = {ζ, ξ1, . . . , ξk} define

µ :=

k∑

i=1

α2
i , α := min{α1, . . . , αk}, α := max{α1, . . . , αk}

where αi denotes the angle between the rays ζξi , ζξi+1

(ξi counterclockwise).

Start with six closests points ξ1, . . . , ξ6 ∈ Ξ \ {ζ}
Go over ξ7, ξ8, . . . , ξ30 replacing one of the points in

Ξζ \ {ζ} if this makes µ smaller.

(Then the angles αi are more uniformly distributed.)
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Stencil support selection

Algorithm

For Ξζ = {ζ, ξ1, . . . , ξk} define

µ :=

k∑

i=1

α2
i , α := min{α1, . . . , αk}, α := max{α1, . . . , αk}

where αi denotes the angle between the rays ζξi , ζξi+1

(ξi counterclockwise).

Start with six closests points ξ1, . . . , ξ6 ∈ Ξ \ {ζ}
Go over ξ7, ξ8, . . . , ξ30 replacing one of the points in

Ξζ \ {ζ} if this makes µ smaller.

(Then the angles αi are more uniformly distributed.)

Terminate early if α ≤ 3α. If this condition is never

satisfied, remove ‘the worst point’ (the one next to αi = α).
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Stencil support selection

Algorithm

For Ξζ = {ζ, ξ1, . . . , ξk} define

µ :=

k∑

i=1

α2
i , α := min{α1, . . . , αk}, α := max{α1, . . . , αk}

where αi denotes the angle between the rays ζξi , ζξi+1

(ξi counterclockwise).

Start with six closests points ξ1, . . . , ξ6 ∈ Ξ \ {ζ}
Go over ξ7, ξ8, . . . , ξ30 replacing one of the points in

Ξζ \ {ζ} if this makes µ smaller.

(Then the angles αi are more uniformly distributed.)

Terminate early if α ≤ 3α. If this condition is never

satisfied, remove ‘the worst point’ (the one next to αi = α).

The whole procedure is meshless.
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Adaptive meshless refinement of centres

Need a meshless method to generate the set of centres Ξ.
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Adaptive meshless refinement of centres

Need a meshless method to generate the set of centres Ξ.

Try obtaining it by adaptive refinement.

Error indicator: ε(ζ, ξ) := |û(ζ)− û(ξ)|, ζ ∈ Ξ, ξ ∈ Ξζ .

An ‘edge’ ζξ is marked for refinement if

ε(ζ, ξ) ≥ γ max{ε(ζ, ξ) : ζ ∈ Ξ, ξ ∈ Ξζ}

γ ∈ (0,1] is a user specified tolerance (γ = 0.3 in our

tests).
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Adaptive meshless refinement of centres

Need a meshless method to generate the set of centres Ξ.

Try obtaining it by adaptive refinement.

Error indicator: ε(ζ, ξ) := |û(ζ)− û(ξ)|, ζ ∈ Ξ, ξ ∈ Ξζ .

An ‘edge’ ζξ is marked for refinement if

ε(ζ, ξ) ≥ γ max{ε(ζ, ξ) : ζ ∈ Ξ, ξ ∈ Ξζ}

γ ∈ (0,1] is a user specified tolerance (γ = 0.3 in our

tests).

Refine ζξ by inserting a new centre at (ζ + ξ)/2

Problem: This new point may be located very close to an

existing centre ξ′ ∈ Ξ, or to a new centre already created

by the refinement of a different edge.
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Adaptive meshless refinement of centres

Need a meshless method to generate the set of centres Ξ.

Try obtaining it by adaptive refinement.

Error indicator: ε(ζ, ξ) := |û(ζ)− û(ξ)|, ζ ∈ Ξ, ξ ∈ Ξζ .

An ‘edge’ ζξ is marked for refinement if

ε(ζ, ξ) ≥ γ max{ε(ζ, ξ) : ζ ∈ Ξ, ξ ∈ Ξζ}

γ ∈ (0,1] is a user specified tolerance (γ = 0.3 in our

tests).

Refine ζξ by inserting a new centre at (ζ + ξ)/2

Problem: This new point may be located very close to an

existing centre ξ′ ∈ Ξ, or to a new centre already created

by the refinement of a different edge.

Considered for polynomial stencils: Benito, Urena, Gavete

& Alvares, 2003; Perazzo, Löhner & Perez-Poro, 2008
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Adaptive meshless refinement of centres

Algorithm (D. & Oanh, 2011)

Define local separation

sepζ(Ξ) :=
1

4

4∑

i=1

dist(ξi ,Ξ \ {ξi}), ζ /∈ Ξ,

where ξ1, . . . , ξ4 are the four closest points in Ξ to ζ.
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Adaptive meshless refinement of centres

Algorithm (D. & Oanh, 2011)

Define local separation

sepζ(Ξ) :=
1

4

4∑

i=1

dist(ξi ,Ξ \ {ξi}), ζ /∈ Ξ,

where ξ1, . . . , ξ4 are the four closest points in Ξ to ζ.

Loop over marked edges ξζ, inserting a new centre

ξ′ = (ζ + ξ)/2 only if

dist(ξ′,Ξ) ≥ µ sepξ′(Ξ).

µ is another tolerance, we take µ = 0.7.
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Adaptive meshless refinement of centres

Algorithm (D. & Oanh, 2011)

Define local separation

sepζ(Ξ) :=
1

4

4∑

i=1

dist(ξi ,Ξ \ {ξi}), ζ /∈ Ξ,

where ξ1, . . . , ξ4 are the four closest points in Ξ to ζ.

Loop over marked edges ξζ, inserting a new centre

ξ′ = (ζ + ξ)/2 only if

dist(ξ′,Ξ) ≥ µ sepξ′(Ξ).

µ is another tolerance, we take µ = 0.7.

Boundary is also refined if ξ ∈ ∂Ξ.
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Adaptive meshless refinement of centres

Algorithm (D. & Oanh, 2011)

Define local separation

sepζ(Ξ) :=
1

4

4∑

i=1

dist(ξi ,Ξ \ {ξi}), ζ /∈ Ξ,

where ξ1, . . . , ξ4 are the four closest points in Ξ to ζ.

Loop over marked edges ξζ, inserting a new centre

ξ′ = (ζ + ξ)/2 only if

dist(ξ′,Ξ) ≥ µ sepξ′(Ξ).

µ is another tolerance, we take µ = 0.7.

Boundary is also refined if ξ ∈ ∂Ξ.

Postprocessing to refine excessively long edges.

Repeat with µ = 0.9µ if no new centres have been created.
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Adaptive meshless refinement of centres

Adaptive centres generated by the above meshless method
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Adaptive meshless refinement of centres

Meshless refinement and stencil support selection:

RBF-FD with single point stencil
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Adaptive meshless refinement of centres

Meshless refinement and stencil support selection:

RBF-FD with multipoint stencil
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Adaptive meshless refinement of centres

Meshless refinement and stencil support selection:

System matrix density
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Adaptive meshless refinement of centres

Recent improvements [Phu, D., Oanh, in preparation]

Improved stencil support selection (more effective

optimisation)
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Adaptive meshless refinement of centres

Recent improvements [Phu, D., Oanh, in preparation]

Improved stencil support selection (more effective

optimisation)

Improved refinement (in addition to ξ′ = (ζ + ξ)/2 add up

to 2 more points on the direction perpendicular to the edge

ζξ; the ”postprocessing" is not needed anymore)
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Adaptive meshless refinement of centres

Numerical results for single point stencils [Phu, D. & Oanh]

The above test problem (rms error vs. (#centres)−1)
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Adaptive meshless refinement of centres

Dirichlet problem for the Laplace equation ∆u = 0 in the

domain Ω = (0.01,1.01)2 with boundary conditions chosen

such that the exact solution is u(x , y) = log(x2 + y2).
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Adaptive meshless refinement of centres

Dirichlet problem for the Helmholz equation

−∆u − 1
(α+r)4 = f , r =

√
x2 + y2 in the domain Ω = (0,1)2.

RHS and the boundary conditions chosen such that the exact

solution is sin( 1
α+r ), where α = 1

10π .
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Adaptive meshless refinement of centres

The same Helmholz problem −∆u − 1
(α+r)4 = f with exact

solution sin( 1
α+r ), where α = 1

50π .

Exact solution RBF-FD (5782 centres)
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Adaptive meshless refinement of centres

The same Helmholz problem −∆u − 1
(α+r)4 = f with exact

solution sin( 1
α+r ), where α = 1

50π .

Exact solution FEM (5937 centres)
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Adaptive meshless refinement of centres

The same Helmholz problem −∆u − 1
(α+r)4 = f with exact

solution sin( 1
α+r ), where α = 1

50π .

FEM centres RBF centres
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Conclusion

Kernel-FD methods lead to sparse system matrices, unlike

the more traditional kernel-based methods
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Numerical differentiation error estimates [D.& Schaback]

give conditions for consistency of the discretization

Good opportunities for adaptive algorithms

Competitive with FEM in our numerical tests
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