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This workshop Is In part about new moonshines. What are
these new moonshines”? What are their properties, what kind
of taste and aroma do they have”? How were they brewed?




HISTORY

Umbral Moonshine was inspired by trying to understand
and generalize the observations of Eguchi, Ooguri and
Tachikawa on M24 and the elliptic genus of K3 and by
results of Dabholkar, Murthy and Zagier on Black hole
counting in string theory and mock modular forms.
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Umbral Moonshine

he objects X which classify Umbral Moonshine are
rank 24 root systems with A,D,E components, all with
equal Coxeter number. There are 23 of these:

A‘f;i: A'gza At;- Ag- A?,D-is Aés Aé’Dgs A;- A;Z)D(ie AllDTE()': A?Qa A15D93 A17E7: A24s A—type
D3, Dg, Dg, DwE7, DYy, DigEs, D, D-type
Ei, E? E-type

Given an X there are classical constructions of

L* The Niemeier lattice constructed from X and glue.

G™ = Aut(L™)/Weyl(X) The Umbral groups



Umbral Groups (see SPLAG and Wilson’s talk)

X A% Al? A} A AiDy A A2D?
¢ 2 3 4 5 6 7 8
GX | My 2. M, 2.AGL3(2) GLo(5)/2 GLy(3) SLy(3)  Dihy
GX | My M5 AGL3(2) PGLy(5) PGLy(3) PSLy(3) 22
X A3 A2 Dy A1 D7 Eg Az, AisDg  AynrEq Aoy
¢ 9 10 12 13 16 18 25
G* | Dihg 4 2 4 2 2 2

GX | Sym; 2 1 2 1 1 1
X DS D; D} Dy E? D2, DigEs Doy
¢ 6-+3 10+5 1447 18+9 22+11  30+15 46423

GX | 3.Symq Sym, Sym, 2 2 1 1

GX | Symg Sym, Sym, 2 2 1 1
X E} E}
¢ 12+4  30+6,10,15

G* | GLy(3) Symy

GX | PGLy(3) Sym,




A new element, discovered In the context of Umbral
Moonshine is that a genus zero subgroup of SL(2,R)

and its hauptmodul can be attached to each X.

A-type: The Coxeter numbers appearing are
2,3,4,5,6,7,89,10,12,13,16,18,25
and these are precisely the n for which I'g(n)
IS genus zero.

D-type: The Coxeter numbers appearing are
6,10,14,18,22,30,46
and these are precisely the n for which
['0(2n) +n are genus zero.

E-type: The Coxeter numbers are 12, 30 and
['0(12) + 4, T'x(30) +6,10,15 are genus zero.



The notation is that of Conway-Norton in which
F0<N)—|—€,f,g,"‘

indicates the group obtained from I'g(/NV) by adjoining
Atkin-Lehner involutions We, Wy, Wy, -+ determined by
exact divisors e, f,g,--- of N, I'g(N)is the
congruence subgroup

(ZJ Z) c SL(2,7Z), ¢c=0mod N



The hauptmoduls or principal moduli are constructed
from the Coxeter frame shapes. For each A,D,E
component of X consider the Coxeter element

W =T1T9 Ty

which is the product of retflections in the simple roots. It
has order the Coxeter number m. Let its eigenvalues
(counting multiplicity) be

2miuy /m

o
e e MU, [T

and encode these eigenvalues in the frame shape

[[#} such that the polynomial | [(2"* — 1)* coincides

with the characteristic polynomial H(x — e?mui/my of w
1—=1



Define the Coxeter frame shape of each X to be the

product of these frame shapes for each component and
define a corresponding eta product by

W—Hn — (T Hnnz

Then the hauptmodul T with normahzatlon

T* = g~ — #irreducible comp of X + O(q)
IS given by

T = —
NrX
The proof of this correspondence is by inspection. The

connection with genus zero is suggestive of Monstrous
Moonshine and can be used to label instances of

Umbral Moonshine by the corresponding conjugacy
classes of the Monster (including one ghost element).




Table 2: Niemeier Root Systems and Principal Moduli

X A% AL? A3 AS AiD, Ag A2D?
/ 2 3 4 5 6 7 8
X 024 312 48 56 2165 74 2284
T 127 112 18 16 1531 14 1442
x| 2B 3B 4C 5B 6E 7B 8E
X A AZDg AnD:Eg A%, A;sDy A E; Asy
/ 9 10 12 13 16 18 25
7rX g3 21103 2231193 132 21162 2131182 251
13 1351 134162 12 1281 126191 10
rx| oB 10E 121 13B  16B 18D (25Z)
X Dg Dg Dg DmE—? D%Q DigFEs Doy
/ 6+3 10+5 1447 184+9 22+11  30+15  46+23
7l.X 2666 24104 23143 2332183 22992 223151302 21461
1636 1954 1373 136293 12112 1261101152 11231
rX | 6C 108 14B 18C 228 30G 46 AB
X Ej E3
¢ | 12+4 30+6,10,15
7l.X 2134194 233353303
114464 1363103154
X | 12B 30A




The main claim is that to each X we can associate a
(vector-valued) mock modular form of weight 1/2 and
its shadow, a weight 3/2 unary theta function, (F*, 5%)

and that they “exhibit moonshine for G* .”

This means, among other things, that for each g € G*

there should be “twined” analogs (F1;",S;") with

prescribed (mock) modular properties under the
congruence subgroup I'p(ordg).

The construction of the shadows from X Is concrete
while obtaining the mock modular forms is more subtle.



Recall that index m (mock) Jacobi forms admit a theta
expansion

O(T,2) = Z P (T)Om,r (T, 2) = By - Oy

r mod 27/ \
k% /2m, k

vector-valued (mock) d o gh Py
modular form Rel

k=r mod 2m

Let 7, S§ be the 2m by 2m matrices specifying the
modular transformation of 6,, , under the generators

O (—1/7, —2/7) = /—iTe2™ M= /780, (T, 2)
Hm(T + 17 Z) — Tem(Tv Z)

and let Q.. ,» be the components of a 2m by 2m matrix
() obeying the following conditions:




® sas=7TT =90
® O, -0 = non-negative integer
® 0,0 =1

Then h,,-Q-0,, = h,, - 0,, isalso a (mock) Jacobi
form and the components of h,, are positive integer
inear combinations of the components of hy,. This
transformation can be formulated in terms of Eichler-
Zagier involutions acting on Jacobi forms.

(Capelli, Iltzykson, Zuber): There is an ADE classification
of such matrices in that for X an ADE root system with
Coxeter number m(X) there is a 2m by 2m matrix Q*
such that

er — Qf_,r = multiplicity of r as a Coxeter exponent of X



We extend this to unions of A,D,E root systems like X
it X = U, X, then define (X _— Z X

This “folding” procedure also extends to the shadows
of the mock modular forms of Umbral Moonshine.
These are linear combinations of weight 3/2 unary theta
functions

Son(r) = — 2o (. 2)

— : m,r
2m1 0%

and for each X we define a shadow

SE*=0*.5



Finally, for each X we define 2m-component mock
modular forms H* = {H’*} which appear in the theta
decompositions mock Jacobi forms which in turn are
given by the decomposition of meromorphic Jacobi
forms into its Polar and Finite parts.

%D(T» Z) — ¢P(T» Z) T ZDF(T» Z)
N

/

weight 1 index m weight one index m mock
meromorphic Jacobi form Jacobi form
with first order pole in z

The mock modular forms obey a growth condition

¢/ HX (1) = 0(1), T — ioco, allr

However it Is not manifest that these forms should exhibit
moonshine for G*.



Example: For m=3 we have X = A G* =2.M 5

HY =2¢7/"2(—1 + 16q + 55¢> + 144¢° + - - -)
HQX — 2q2/3(10 + 44q + 11()q2 + 280q3 4+ )

10,44,110,120,160 are dimensions of faithful irreps

16,55,144 are irreps with trivial Z/2Z action

-or each conjugacy class we have MT series HX and
most of these can be identified either with eta functions
(when the twined shadow vanishes) or with order 3
mock theta functions of Ramanujan:

Results of Zwegers can be used to verify
3 — —2¢ V12 £(4 the existence of a two-dimensional rep
23 &) s : To(2) — GL(2,C)
such that this pair defines a vector-valued
mock modular form for I'0(2)

H3? = —4¢?Pw(—q)



The main conjecture:

Conjecture 6.1. Let X be a Niemeier root system and let m be the Cozeter number of X.

There exists a naturally defined Z/2mZ x Q-graded super-module

X _ X _ X
K= @ K= @ D Ko 61)
r mod 2m r mod 2m DeZ
D=r* mod 4m

for G* such that the graded super-character attached to an element g € G* coincides with the

vector-valued mock modular form

C,D,Hto — XXH ()= ), strgx (g)g P, (6.2)
ap pear D:-r'“pri?;d 4m

has been proven for X = A7* by Gannon and for the
remaining cases by Duncan, Gritfin and Ono. Explicit
constructions of the modules remains an open question
except for X = E7 (J. Duncan and JH).



Discriminant Property

Umbral Moonshine contains a new element that i1s not
oresent in Monstrous Moonshine which relates the

discriminants of the mock modular forms

to the number

fields over which the irreducible representations of G*

attached to the discriminants are defined.

This

discriminant property is perhaps best explained using
the Mathieu Moonshine example of Umbral Moonshine.




Table 8: Character table of G2 ~ My,

lg] | FS 1A 2A 2B 3A 3B 4A 4B 4C 5A 6A 6B 7TA 7B 8A 10A 11A 12A 12B 14A 14B 15A 15B 21A 21B 23A 23B
19%] 1A 1A 1A 3A 3B2A 2A 2B 5A 3A 3B 7TA 7TB4B 5A 11A 6A 6B 7A 7B 15A 15B 21A 21B 23A 23B
[9%] 1A 2A 2B 1A 1A 4A 4B 4C 5A 2A 2B 7B 7A 8A 10A 11A 4A 4C 14B 14A 5A 5A 7B T7A 23A 23B
[9°] 1A 2A 2B 3A 3B 4A 4B 4C 1A 6A 6B 7B 7A 8A 2B 11A 12A 12B 14B 14A 3A 3A 21B 21A 23B 23A
(97] 1A 2A 2B 3A 3B 4A 4B 4C 5A 6A 6B 1A 1A 8A 10A 11A 12A 12B 2A 2A 15B 15A 3B 3B 23B 23A
(9" 1A 2A 2B 3A 3B 4A 4B 4C 5A 6A 6B 7TA 7B 8A 10A 1A 12A 12B 14A 14B 15B 15A 21A 21B 23B 23A
(93] 1A 2A 2B 3A 3B 4A 4B 4C 5A 6A 6B 7A 7B 8A 10A 11A 12A 12B 14A 14B 15A 15B 21A 21B 1A 1A
x1 | + 1 1 1 11111111111 1 1 1 1 1 1 1 1 1 1 1 1
X2 | + 23 7 -1 5-1-1 3-1 3 1-1 2m2 1 -1 1 -1 -1 B0 0 0 —lo=1 0 O
X3 | o 45 -3 5 0 3-3 1 1 0 0-1/b; b~1 0 1 0 145b;-bp O O (b7 by —1 -1
Xa | o 45 -3 5 0 3-3 1 1 0 0-1Tbz b1 0 1 0 1<bs by 0up0 b7 b7 -1 -1
X5 | o 231 7 -9 -3 0-1-1 3 1 1 0 0°0-1 1 0 -1 0 O 0y b5 00 1 1
X6 | © 231 7 -9 -3 0-1-1 3 1 1 0 0 0-1 1 0 -1 0 0 0%y bys 0 0 1 1
x7 | + | 252 28 12 9 0 4 4 0 2 1 0 0 00 2 -1 1 0 0 0-1=1 0 0 -1 -1
xs | + | 253 13-1 10 1-3 11 3-2 1 1 1-1 -1 0 O 1 -1-1 0 O 1 1 0 O
xo | + | 483 35 3 6 0 3 3 3-2 2 0 0 0-1 -2 -1 0 O O O 1 1 0 O

X106 | o 770-14 10 5-7 2-2-2 0 1 1. 0 0O O O-1 1 O O O O O O

xu | o 77M0-14 10 5-7 2-2-2 0 1 1 &m0 0 0 0 -1 1 OO0 0 0 Qw0

X | o 990 -18 -10 0 3 6 2-2 0 0-1/b; .0 0 0 0 1 [(by by O O [by by

xi3 | © 990 -18—-10 0 3 6 2-2 0 0-1'by B 0O O O O 1 by by O O ‘b by 1 1
x4 | + | 1035 27 35 0 6 3-1 3 0 0 2—-k=1 1 0 1 0 0 —-1"=1 0 0 —¥==1 0 O
X3 | o | 1035-21 -5 0-3 3 3-1 0 0 126;26—1 O 1 0 -1 O O O O+4b;-b; 0 O
x| o |1035-21 -5 0-3 3 3-1 0 0 120;2:—1 0 1 0 -1 0 0 0 O0=b;-b; 0 O
xi7| + | 1265 49-15 5 8-7 1-3 01 0-2-2 1 0 O0-1 0 O O O O 11 0 O
x| + | 1771 -21 11 16 7 3-5-1 1 0-1 0 0-1 1 O O -1 O O 1 1 O O O O
X9 | + 12024 8 24 -1 8 8 0 0-1-1 01 10-1 0-1 0 1 1-1-1 1 1 0 0
x20 | + | 2277 21-19 0 6-3 1-3-3 0 2 2 2-1 1 O O O O O O O -1-1 0 O
xo1 | + | 3312 48 16 0-6 0 0 0-3 0-2 1 10 1 1 O O0-1-1 0 O 1 1 0 O
xe2 | + | 3520 64 0 10-8 0 0 0 0-2 0-1-1 0 0 0 O O 1 1 0 0 -1-1 1 1
Xo3 | + | 5313 49 9-15 0 1-3-3 3 1. 0 0 0-1 -1 0 1 O O O O O O O O O
Xxo4 | + | 5544 -56 24 9 0-8 0 0-1 1 0 0 0 0O -1 0 1 O O O -1-1 0 0 1 1
x5 | + | 5796 —-28 36 -9 0-4 4 0 1-1 0 0 0O 1 -1 -1 0 O O 1 1 O O 0 O
x26 | + /10395 -21-45 0 0 3-1 3 0 0 0O O OO1 O O O O O O O O O 0 -1 —1




n/8 QlvV-T]

Q[v—15]

Qlv—23]

q
Table 48: Decomposition of K §2)

X1X2X3X4 X5 X6 X7 X8 X9 X0 X11 X12 X13 X14 X15 X16 X17 X18 X19 X20 X21 X22 X23 X24 X25  X26
-1(-2 000 0 0 0 0 0 0 0O 0 0 O 0O 0 O 0 0 0 0 0 0 0 0 0
7 0 0l1f1 0 0 0 0 O 0 0 0 0 0 0 0 0 0 O 0 0 0 0 0 0 0
5/ 000011 0 0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23| 0 0OOO O O O 0 O 1 1 0O 0 O 0O 0 O 0 0 0 0 0O 0 0 0 0
31, 0000 0O O O 0 O 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0
39( 0000 O O O O O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0
47 0 0 0 0 O O O 0 O 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2
| 0000 O O O O O o0 o0 0O 0 O 0O 0 O 2 2 0 0 0O 2 2 2 2
63( 0 0O OO O O O O O 0 0 1 1 0 1 1 2 0 0 2 2 2 4 2 2 6
71| 000 O0 O O O 0 2 2 2 0 0 2 2 2 0 2 2 2 4 4 4 8 8 10
79| 00 0O0 2 2 0 2 2 0 0 2 2 2 2 2 4 4 4 6 6 8 12 10 10 24
8% ( 0 0 OO O O O O O 4 4 4 4 6 4 4 2 8 10 8 14 12 22 24 26 40
9% 0 2 00 2 2 2 4 4 6 6 8 8 4 8 8 12 12 12 18 26 30 40 38 40 80
103, 0 022 2 2 4 2 6 10 10 14 14 18 14 14 16 26 30 28 44 44 70 80 84 136
111 0 0 0 0 8 8 4 6 14 16 16 24 24 22 24 24 34 38 46 58 80 86 128 126 132 254
119 0 0 2 2 8 8 12 8 18 38 38 40 40 46 44 44 46 78 86 88 138 144 218 238 246 424
127 0 2 2 2 18 18 18 22 36 50 50 72 72 68 72 72 100 122 140 170 232 252 378 382 400 742
135( 0 2 8 8 25 25 30 26 54 94 94 116 116 130 124 124 140 212 246 262 392 410 630 670 704 1222
143| 0 6 6 6 50 50 50 58 100 148 148 194 194 192 202 202 256 342 388 454 654 704 1044 1074 1120 2058
151 0 41818 68 68 80 72150 252 252 318 318 346 332 332 394 582 664 722 1062 1116 1702 1800 1880 3320
159 0 14 20 20 126 126 128 138 254 390 390 516 516 520 536 536 676 904 1036 1196 1716 1836 2764 2846 2980 5408
167| 2 20 40 40 182 182 214 200 396 652 652 814 814 872 860 860 1020 1476 1684 1862 2742 2902 4384 4622 4828 8572
175 2 32 55‘55 314 314 328 346 640 988 988 1298 1298 1336 1348 1348 1686 2302 2630 3000 4324 4616 6950 7204 7532 13620
183 | 2 40 98 98 460 460 512 496 972 1590 1590 2020 2020 2144 2118 2118 2546 3638 4162 4624 6768 7166 10856 11376 11898 21204

63 =23%x7

135 = 3% x 15

175 = 5% x 7



The Discriminant property for Umbral Moonshine in
detall

H®) (1) =2 (—1q7 /8 + 45¢"/8 + 231¢'%/8 4 770¢%3/8 + - . .)

Proposition 5.7. Let £ € A. If n > 1 is an integer satisfying
1. there exists an element of G\9) of order n, and

2. there exists an integer \ that is co-prime to n such that D = —nl\? is a discriminant of
H®,

then there exists at least one pair of irreducible representations p and o* of G\ and at least one

element g € G\*) such that tr,(g) is not rational but

tro(g), tre- (9) € Q(V—n) (5.7)

and n divides o(g).



n (0, 0%)

73 153 23 (X3) X4)a (XSa XG)’ (XlOa X11)3 (X12’ X13)) (XIS) X16)
5,8,11,20 (x4, X5)s (X165 X17)s (X205 X21)s (X225 X23), (X255 X26)

~ Ct s LW NS

3,7 (Xz, X3)3 (X13, X14), (X15, X16)
4 (x85X9)s (X105 X11); (X125 X13)
3 (x2,x3), (X6, X7)
13 4 (X35 X4)

Table 7: The irreducible representations of type n.

Armed with the preceding discussion we are now ready to state our main observation for the
discriminant property of umbral moonshine. For the purpose of stating this we temporarily write

K,(,g for the ordinary representation of G\*) with character g — cfﬁ(d) where the coefficients

cg} (d) are assumed to be those given in §C|

Proposition 5.10. Let n be one of the integers in Table|7 and let A, be the smallest positive
integer such that D = —n\?2 is a discriminant of H*). Then K ,(.fl p/ae = OnDQy, where on and o},
are dual irreducible representations of type n. Conversely, if o is an irreducible representation

of type n and —D 1is the smallest positive integer such that K ,,(,fl D/ has o as an irreducible

constituent then there exists an integer A such that D = —n)°.



Conjecture 5.11. If D is a discriminant of H'Y) which satisfies D = —n)? for some integer \
then the representation K ,(ﬁ D/4é has at least one dual pair of irreducible representations of type

n arising as irreducible constituents.

Conjecture 5.12. For{ € A = {2,3,4,5,7,13} the representation Kfﬁmu s a doublet if and

only if D # —nA\? for any integer A for any n satisfying the conditions of Proposition|5.7.

To see some evidence for Conjecture[5.12| one can inspect the proposed decompositions of

the representations K '(.2 in the tables in §D| for the following discriminants:

e —D=1715,23,63,135,175,207 for £ = 2,

For ¢ =2, X = A7* the discriminant property was
oroved by Creutzig, Hohn and Miezaki



Features of and relations between Moonshines

Classic Moonshine: Monstrous Moonshine and Conway
moonshine and relatives. These involve weight zero
modular functions, genus zero subgroups of SL(2,R) and
nave known CFT/VOA constructions with c=24,12.

Umbral Moonshine: Involves weight 1/2 mock modular
forms but also characterized by genus zero groups.

Unnamed Moonshine: (B. Rayhaun and JH and JD, JH
and BR, to appear) Involves weight 1/2 weakly
holomorphic modular forms, genus zero groups




hese are all characterized by “modular forms of
minimal exponential growth.” For example, modular
functions that are polynomials in J have a basis

Jo(7) =1 no growth

Ji(T) =q ' +196884q + - - -

Jo(T) = ¢~ % + 42987520q + - - - Exponential growth
In(7) =q¢" " + O(q) cm(n) ~ exp(4dmy/mn)

so J(r) has "minimal exponential growth™ and exhibits
moonshine for the Monster group. The theta function

0(r) =Y q" =1+20+2¢" +2¢" + -
nez
t Is also part of an infinite family of modular functions
investigated by Borcherds and Zagier with the same

modular behavior but with different growth conditions:




fo=142q+ 2¢* +2¢” +2¢'° + - -- no growth . |
3 A - < minimal exponential

f3=q > —248q + 26752¢" — 85995¢° + 1707264¢° + - - - qrowth

fa = q % +492q + 143376¢* + 565760¢7 + 18473000¢° + - - -

fr =

fs =

and exhibits moonshine for the Thompson group:

2fs 4 248fy = (1 + 1)g~> + 248 + (27000 + 27000)¢* — (85995 + 85995)¢° + - -

/

Decomposition into irreducible representations
of the Thompson sporadic group

We saw earlier that the mock modular forms ot UM also
obey this principle of minimal exponential growth.



Other common characteristics are the prominence of
genus zero groups enforcing rigidity and the relation of
the coefficients of modular forms to traces of singular
moduli (Zagier, Ono&Rolen&Trebat-Leder, Rayhaun and
JH).

An important common structural element Is that the
modular functions of moonshine and their twined
versions can be constructed as Rademacher sums
(Duncan and Frenkel, Cheng and Duncan) and these
have a structure very reminiscent of computations in
physics in the context of the AdS/CFT correspondence.




This presence of these common features suggests
that there is a unified theory of moonshine to be found
which will incorporate all the known examples and
orobably more as well and may incorporate aspects of
pohysics like the AdS/CFT correspondence and the
counting of Black Holes and BPS states.




THANK YOU



