Somos sequences in algebra, geometry \& number theory

Andrew Hone
(+ T. Kouloukas \& C. Ward + Y. Fedorov + ...)
University of Kent
Canterbury
United Kingdom, Europe
anwh@kent.ac.uk

Tuesday 2nd August 2016

Outline

(1) Somos/Gale-Robinson recurrences

- History (Laurentness, cluster algebras, Bethe ansatz, QRT, dimers...)
- Prehistory (elliptic divisibility sequences)
- Analytic solution of Somos-4
(2) Discrete KP (Hirota-Miwa, octahedron) equation
- Plane wave reductions (+ gauge) and reduced Lax pair
- Cluster structure: T-systems
- (Pre)symplectic structure \& Poisson brackets
- Liouville integrability: U-systems
- Application: travelling waves of discrete KdV
(3) Discrete BKP (Miwa, cube) equation
- Analytic solution of general Somos-6
- Solution of the initial value problem: Lax pair and Prym variety

History

Somos ('80s) noticed that, choosing six initial 1s, the recurrence

$$
\tau_{n+6} \tau_{n}=\alpha \tau_{n+5} \tau_{n+1}+\beta \tau_{n+4} \tau_{n+2}+\gamma \tau_{n+3}^{2}
$$

with coefficients $\alpha=\beta=\gamma=1$ produces the sequence

$$
1,1,1,1,1,1,3,5,9,23,75,421,1103,5047,41783,281527, \ldots
$$

(A006722 in Sloane's). The key observation was the Laurent property, i.e.

$$
\tau_{n} \in \mathbb{Z}\left[\tau_{0}^{ \pm 1}, \tau_{1}^{ \pm 1}, \ldots, \tau_{5}^{ \pm 1}, \alpha, \beta, \gamma\right] \quad \forall n \in \mathbb{Z}
$$

This property holds for order $k \leq 7$ only in

$$
\text { Somos - k: } \quad \tau_{n+k} \tau_{n}=\sum_{j=1}^{\lfloor k / 2\rfloor} \alpha_{j} \tau_{n+k-j} \tau_{n+j}
$$

if all coefficients α_{j} are non-zero.

Prehistory: elliptic divisibility sequences (EDS)

A special case of Somos-4:

$$
\tau_{n+4} \tau_{n}=\left(\tau_{2}\right)^{2} \tau_{n+3} \tau_{n+1}-\tau_{3} \tau_{1}\left(\tau_{n+2}\right)^{2}
$$

EDS (Ward): choose $\tau_{1}=1, \tau_{2}, \tau_{3}, \tau_{4} \in \mathbb{Z}$, with $\tau_{2} \mid \tau_{4}$. Then

$$
\tau_{n} \in \mathbb{Z} \quad \text { with } \quad \tau_{n} \mid \tau_{m} \quad \text { whenever } \quad n \mid m
$$

- Term $\tau_{n} \leftrightarrow n \cdot P \in E$, elliptic curve (cf. division polynomials)
- Generate large primes (Chudnovsky×2) ...
- ... but only finitely many (Everest-Miller-Stephens)
- Hilbert's 10th problem undecidable over $\mathbb{Z}\left[S^{-1}\right]$ (Poonen)
- Cryptographic applications (Shipsey, Swart, Stange)

Analytic solution of Somos-4

For the general Somos-4 recurrence,

$$
\tau_{n+4} \tau_{n}=\alpha \tau_{n+3} \tau_{n+1}+\beta\left(\tau_{n+2}\right)^{2}
$$

the solution of the initial value problem has the form

$$
\tau_{n}=A B^{n} \frac{\sigma\left(v_{0}+n v\right)}{\sigma(v)^{n^{2}}}
$$

for suitable $A, B \in \mathbb{C}^{*}, v_{0}, v \in \mathbb{C} \bmod \Lambda$, where $\sigma(z ; \Lambda)$ denotes the Weierstrass sigma-function associated with the elliptic curve

$$
E: \quad y^{2}=4 x^{3}-g_{2} x-g_{3}
$$

that is birationally equivalent to the biquadratic defined by

$$
H=u_{0} u_{1}+\frac{\alpha}{u_{0}}+\frac{\alpha}{u_{1}}+\frac{\beta}{u_{0} u_{1}}, \quad \text { with } \quad u_{n}=\frac{\tau_{n+2} \tau_{n}}{\left(\tau_{n+1}\right)^{2}}
$$

Analytic solution of Somos-4 (continued)

Main idea: 2D symplectic map for u_{n}, with first integral H. Explicit formulae:

$$
\begin{gathered}
g_{2}=\frac{H^{4}-8 \beta H^{2}-24 \alpha^{2} H+16 \beta^{2}}{12 \alpha^{2}} \\
g_{3}=-\frac{H^{6}-12 \beta H^{4}-36 \alpha^{2} H^{3}+48 \beta^{2} H^{2}+144 \alpha^{2} \beta H+216 \alpha^{4}-64 \beta^{3}}{216 \alpha^{3}} \\
v \in \mathbb{C} \bmod \Lambda \leftrightarrow\left(\frac{H^{2} / 4-\beta}{3 \alpha}, \sqrt{\alpha}\right) \in E
\end{gathered}
$$

Example: Sequence of points $P_{0}+n \cdot P \in E$ corresponding to

$$
1,1,1,1,2,3,7,23,59,314,1529,8209,83313, \ldots \quad(A 006720 \text { in OEIS })
$$

has $v_{0} \leftrightarrow P_{0}=(-1,1), v \leftrightarrow P=(1,1)$ on $E: y^{2}=4 x^{3}-4 x+1$.

Discrete KP equation

Partial difference equation in three independent variables $\left(n_{1}, n_{2}, n_{3}\right)$:

$$
T_{1} T_{-1}=T_{2} T_{-2}+T_{3} T_{-3}
$$

Notation: $T=T\left(n_{1}, n_{2}, n_{3}\right)$ with $T_{ \pm 1}=T\left(n_{1} \pm 1, n_{2}, n_{3}\right)$ etc.

- Integrability (Lax pair, solitons, algebro-geometric solutions)
- Laurent property (Fomin \& Zelevinsky)
- Cluster structure (Di Francesco \& Kedem, Okubo)

Plane wave solutions

Consider plane wave reductions with a quadratic exponential gauge:

$$
T\left(n_{1}, n_{2}, n_{3}\right)=a_{1}^{n_{1}^{2}} a_{2}^{n_{2}^{2}} a_{3}^{n_{3}^{2}} \tau(n),
$$

where distinct δ_{j} (either all integer or all half-integer) are chosen such that

$$
n=n_{0}+\delta_{1} n_{1}+\delta_{2} n_{2}+\delta_{3} n_{3}, \quad \delta_{1}>\max \left(\delta_{2}, \delta_{3}\right)
$$

Set $\alpha=a_{2}^{2} / a_{1}^{2}, \beta=a_{3}^{2} / a_{1}^{2}$, and $\tau_{n}=\tau(n)$, to find

$$
\tau_{n+\delta_{1}} \tau_{n-\delta_{1}}=\alpha \tau_{n+\delta_{2}} \tau_{n-\delta_{2}}+\beta \tau_{n+\delta_{3}} \tau_{n-\delta_{3}}
$$

which is a 3-term Gale-Robinson/Somos type recurrence, with vanishing algebraic entropy (Mase).

Example: $\left(\delta_{1}, \delta_{2}, \delta_{3}\right)=(2,1,0)$ gives Somos-4:

$$
\tau_{n+4} \tau_{n}=\alpha \tau_{n+3} \tau_{n+1}+\beta \tau_{n+2}^{2}
$$

Reductions of discrete KP Lax pair

Scalar linear system for $\Psi=\Psi\left(n_{1}, n_{2}, n_{3}\right)$:

$$
\begin{aligned}
\Psi_{-1,2}+F \Psi_{2,-3} & =\Psi, \quad \text { with } \quad F=T_{-1,3} T_{2,-3} /\left(T T_{-1,2}\right) ; \\
G \Psi_{1,2}+\Psi_{2,3} & =\Psi, \quad \text { with } \quad G=T_{-1,3} T_{1,2} /\left(T T_{2,3}\right)
\end{aligned}
$$

Compatibility condition:

$$
R_{1,-3}=R, \quad R=\left(T_{1} T_{-1}-T_{3} T_{-3}\right) /\left(T_{2} T_{-2}\right)
$$

Now set $\Psi\left(n_{1}, n_{2}, n_{3}\right)=\lambda_{1}^{n_{1}} \lambda_{2}^{n_{2}} \lambda_{3}^{n_{3}} \phi(n)$, and apply the plane wave reduction, taking $\zeta=\lambda_{2} \lambda_{1}^{-1}, \xi=\left(a_{1}^{2} \lambda_{1} \lambda_{2}\right)^{-1}, \lambda_{3}=a_{3}^{2} \lambda_{2}$ to find

$$
\begin{aligned}
\phi_{n+\delta_{1}-\delta_{2}}-X_{n} \phi_{n+\delta_{1}-\delta_{3}} & =\zeta \phi_{n} \\
Y_{n} \phi_{n+\delta_{1}+\delta_{2}}+\beta \zeta \phi_{n+\delta_{2}+\delta_{3}} & =\xi \phi_{n}
\end{aligned}
$$

with $X_{n}=\tau_{n+2 \delta_{1}-2 \delta_{3}} \tau_{n+\delta_{1}-\delta_{2}} /\left(\tau_{n+2 \delta_{1}-\delta_{2}-\delta_{3}} \tau_{n+\delta_{1}-\delta_{3}}\right)$, and $Y_{n}=\tau_{n+2 \delta_{1}+\delta_{2}-\delta_{3}} \tau_{n} /\left(\tau_{n+2 \delta_{1}-\delta_{2}-\delta_{3}} \tau_{n+\delta_{1}-\delta_{3}}\right)$, which is a scalar Lax pair with two spectral parameters ζ, ξ.

Reductions of discrete KP Lax pair (continued)

Extra freedom: The coefficient α does not appear in the scalar Lax pair

$$
\begin{aligned}
\phi_{n+\delta_{1}-\delta_{2}}-X_{n} \phi_{n+\delta_{1}-\delta_{3}} & =\zeta \phi_{n} \\
Y_{n} \phi_{n+\delta_{1}+\delta_{2}}+\beta \zeta \phi_{n+\delta_{2}+\delta_{3}} & =\xi \phi_{n} .
\end{aligned}
$$

The general compatibility condition has a periodic coefficient:

$$
\tau_{n+\delta_{1}} \tau_{n-\delta_{1}}=\alpha_{n} \tau_{n+\delta_{2}} \tau_{n-\delta_{2}}+\beta \tau_{n+\delta_{3}} \tau_{n-\delta_{3}}, \quad \alpha_{n+\delta_{1}-\delta_{3}}=\alpha_{n}
$$

The scalar Lax pair is equivalent to a matrix linear system of size $K=\max \left(\delta_{1}-\delta_{2}, \delta_{1}-\delta_{3}\right)$, of the form

$$
\mathbf{L}_{n}(\zeta) \boldsymbol{\Phi}_{n}=\xi \boldsymbol{\Phi}_{n}, \quad \boldsymbol{\Phi}_{n+1}=\mathbf{M}_{n}(\zeta) \boldsymbol{\Phi}_{n}
$$

This yields the discrete Lax equation

$$
\mathbf{L}_{n+1} \mathbf{M}_{n}=\mathbf{M}_{n} \mathbf{L}_{n}
$$

preserving the spectral curve

$$
P(\zeta, \xi) \equiv \operatorname{det}\left(\mathbf{L}_{n}(\zeta)-\xi \mathbf{1}\right)=0
$$

Cluster algebras

Somos/Gale-Robinson recurrences are a special case of T-systems, which arise from mutations in a cluster algebra, defined as follows:-
Quiver Q (no 1- or 2-cycles) $\leftrightarrow B=\left(b_{j \ell}\right) \in \operatorname{Mat}_{r}(\mathbb{Z})$, skew-symmetric. Matrix mutation: $B \mapsto B^{\prime}=\mu_{k} B=\left(b_{j \ell}^{\prime}\right)$, where

$$
b_{j \ell}^{\prime}=\left\{\begin{array}{lc}
-b_{j \ell}, & j=k \text { or } \ell=k, \\
b_{j \ell}+\left[-b_{j k}\right]_{+} b_{k \ell}+b_{j k}\left[b_{k \ell}\right]_{+} \quad \text { otherwise }
\end{array}\right.
$$

with $[b]_{+}=\max (b, 0)$. Cluster mutation: $\mathbf{x}=\left(x_{j}\right) \mapsto \mathbf{x}^{\prime}=\mu_{k}(\mathbf{x})=\left(x_{j}^{\prime}\right)$, where $x_{j}^{\prime}=x_{j}$ for $j \neq k$ and

$$
x_{k}^{\prime} x_{k}=\prod_{j=1}^{r} x_{j}^{\left[b_{j k}\right]_{+}}+\prod_{j=1}^{r} x_{j}^{\left[-b_{j k}\right]_{+}}
$$

The (coefficient-free) cluster algebra $\mathcal{A}(\mathbf{x}, B)$ is the \mathbb{Z}-algebra generated by the cluster variables produced by all possible mutations of the initial \mathbf{x}.

Cluster algebras with periodicity

In special cases, the action of a sequence of matrix mutations is equivalent to a permutation. For $\rho:(1,2,3, \ldots, r) \mapsto(r, 1,2, \ldots, r-1)$, the case $\mu_{1} B=\rho B$ (period 1) was completely classified by Fordy \& Marsh: the entries of B must satisfy $b_{j, r}=b_{1, j+1}$ and
$b_{j+1, k+1}=b_{j, k}+b_{1, j+1}\left[-b_{1, k+1}\right]_{+}-b_{1, k+1}\left[-b_{1, j+1}\right]_{+}, \quad 1 \leq j, k \leq r-1$.
Then the cluster map $\varphi=\rho^{-1} \cdot \mu_{1}$ is equivalent to iterating the recurrence

$$
x_{n+r} x_{n}=\prod_{j} x_{n+j}^{\left[b_{1, j+1}\right]_{+}}+\prod_{j} x_{n+j}^{\left[-b_{1, j+1}\right]_{+}}
$$

which has palindromic exponents, and preserves the presymplectic form

$$
\omega=\sum_{j<k} b_{j k} \mathrm{~d} \log x_{j} \wedge \mathrm{~d} \log x_{k}
$$

Symplectic form and U-system

For $\mathbf{w} \in \operatorname{ker} B, \lambda \in \mathbb{C}^{*}$ consider the scaling action

$$
\mathbf{x} \longrightarrow \lambda^{\mathbf{w}} \cdot \mathbf{x}=\left(\lambda^{w_{j}} x_{j}\right), \quad \mathbf{x}^{\mathbf{v}}=\prod_{j} x_{j}^{v_{j}} \longrightarrow \lambda^{(\mathbf{v}, \mathbf{w})} \mathbf{x}^{\mathbf{v}}
$$

So $\mathbb{Q}^{r}=\operatorname{im} B \oplus \operatorname{ker} B \Longrightarrow$ basis of $\operatorname{im} B$ provides full set of invariants

$$
\mathbf{u}=\left(u_{1}, \ldots, u_{2 m}\right), \quad m=\frac{1}{2} \operatorname{rk} B
$$

and φ projects down to a symplectic map $\hat{\varphi}$ for \mathbf{u}, with

$$
\hat{\omega}=\sum_{j<k} \hat{b}_{j k} \mathrm{~d} \log u_{j} \wedge \mathrm{~d} \log u_{k}, \quad \mathcal{M}^{-T} B \mathcal{M}^{-1}=\left(\begin{array}{cc}
\hat{B} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right) .
$$

Furthermore, can always choose \mathcal{M} with a "palindromic basis" for $\operatorname{im} B$ so the map $\hat{\phi}$ can be written as a recurrence, called the U-system.

Example: $u_{n+2} u_{n+1}^{2} u_{n}=\alpha u_{n+1}+\beta$ is the U-system for Somos-4.

Liouville integrability of U-systems

Conjecture: The U-systems obtained from the plane wave reductions of the discrete Hirota equation are integrable in the Liouville sense.

This is easy to verify in low dimensions, by checking directly that the coefficients of the spectral curve are in involution with respect to the \log-canonical Poisson bracket given by the Toeplitz matrix $C=\hat{B}^{-1}$.

Various examples: Lyness maps, discrete reductions of modified Bogoyavlensky lattices, DTKQ systems,...

Main example: Two-parameter family associated with reductions of the discrete KdV lattice, corresponding to

$$
\left(\delta_{1}, \delta_{2}, \delta_{3}\right)=\left(N+\frac{1}{2} M, \frac{1}{2} M,\left|N-\frac{1}{2} M\right|\right) \text { or }\left(M+\frac{1}{2} N, \frac{1}{2} N,\left|M-\frac{1}{2} N\right|\right) .
$$

Reductions of discrete KdV

The version of the discrete KdV equation due to Hirota can be written

$$
v_{j+1, k+1}-v_{j k}=\alpha\left(\frac{1}{v_{j+1, k}}-\frac{1}{v_{j, k+1}}\right) .
$$

Taking $v_{j k} \rightarrow v_{n}, n=N j+M k$ yields the $(M,-N)$-reduction

$$
v_{n+M+N}-v_{n}=\alpha\left(\frac{1}{v_{n+N}}-\frac{1}{v_{n+M}}\right) .
$$

Henceforth assume $N>M, \operatorname{gcd}(M, N)=1$. Hirota's tau-function gives

$$
v_{n}=\frac{\tau_{n} \tau_{n+N+M}}{\tau_{n+M} \tau_{n+N}}
$$

leading to a trilinear form which integrates in two different ways to produce

$$
\begin{aligned}
& \tau_{n+2 N+M} \tau_{n}=-\alpha \tau_{n+2 N} \tau_{n+M}+\beta_{n} \tau_{n+N+M} \tau_{n+N} \\
& \tau_{n+2 M+N} \tau_{n}=\alpha \tau_{n+2 M} \tau_{n+N}+\tilde{\beta}_{n} \tau_{n+N+M} \tau_{n+M}
\end{aligned}
$$

where $\beta_{n+M}=\beta_{n}, \tilde{\beta}_{n+N}=\tilde{\beta}_{n}$.

Bi-Hamiltonian structures: example $(2,3)$

Example: Setting $(M, N)=(2,3)$ and dropping n, the first bilinear equation is a Somos-8,

$$
\tau_{8} \tau_{0}=-\alpha \tau_{6} \tau_{2}+\beta_{0} \tau_{5} \tau_{3}, \quad \beta_{n+2}=\beta_{n}
$$

The exchange matrix is

$$
B=\left(\begin{array}{cccccccc}
0 & 0 & 1 & -1 & 0 & -1 & 1 & 0 \\
& 0 & 0 & 1 & -1 & 0 & -1 & 1 \\
& & 0 & 1 & 1 & 0 & 0 & -1 \\
& & & 0 & 1 & 1 & -1 & 0 \\
& & & & 0 & 1 & 1 & -1 \\
& & * & & & 0 & 0 & 1 \\
& & & & & & 0 & 0 \\
& & & & & & 0
\end{array}\right)
$$

and its rows are spanned by the palindromic basis given by $(1,-1,0,-1,1,0,0,0)$ and its three shifts.

Bi-Hamiltonian structures: example $(2,3)$ (continued)

The symplectic coordinates are $u_{j}=\frac{\tau_{j} \tau_{j+4}}{\tau_{j+1} \tau_{j+3}}, j=0,1,2,3$.

$$
\text { 1st } \mathrm{U}-\text { system : } \quad u_{4} u_{3} u_{2} u_{1} u_{0}=-\alpha u_{2}+\beta_{0}, \quad \beta_{n+2}=\beta_{n},
$$

with the Poisson bracket in 4D being

$$
\left\{u_{j}, u_{j+1}\right\}_{1}=0, \quad\left\{u_{j}, u_{j+2}\right\}_{1}=u_{j} u_{j+2}, \quad\left\{u_{j}, u_{j+3}\right\}_{1}=-u_{j} u_{j+3}
$$

For the $\mathrm{dK} \mathrm{V} V$ map

$$
v_{5}-v_{0}=\alpha\left(v_{3}^{-1}-v_{2}^{-1}\right), \quad \text { with } \quad v_{0}=\frac{\tau_{0} \tau_{5}}{\tau_{2} \tau_{3}}
$$

we have

$$
v_{0}=u_{0} u_{1}, v_{1}=u_{1} u_{2}, v_{2}=u_{2} u_{3}, v_{3}=\frac{\beta_{0}-\alpha u_{2}}{u_{0} u_{1} u_{2}}, v_{4}=\frac{\beta_{1}-\alpha u_{1}}{u_{1} u_{2} u_{3}}
$$

Bi-Hamiltonian structures: example $(2,3)$ (continued)

Thus the log-canonical bracket for u_{j} lifts to
$\left\{v_{0}, v_{1}\right\}_{1}=v_{0} v_{1},\left\{v_{0}, v_{2}\right\}_{1}=v_{0} v_{2},\left\{v_{0}, v_{3}\right\}_{1}=-v_{0} v_{3}-\alpha,\left\{v_{0}, v_{4}\right\}_{1}=-v_{0} v_{4}$.
The second bilinear equation is a Somos-7, which for $\tilde{u}_{j}=\frac{\tau_{j} \tau_{j+3}}{\tau_{j+1} \tau_{j+2}}$ leads to

$$
\text { 2nd } \quad \mathrm{U}-\text { system : } \quad \tilde{u}_{4} \tilde{u}_{3} \tilde{u}_{2}^{2} \tilde{u}_{1} \tilde{u}_{0}=\tilde{\beta}_{0} \tilde{u}_{2}+\alpha, \quad \tilde{\beta}_{n+3}=\tilde{\beta}_{n},
$$

and the bracket $\{,\}_{2}$ for \tilde{u}_{j} in 4D has the same coefficients as that for u_{j}. From $v_{j}=\tilde{u}_{j} \tilde{u}_{j+1} \tilde{u}_{j+2}$ the lift of this bracket gives

$$
\begin{array}{ll}
\left\{v_{0}, v_{1}\right\}_{2}=v_{0} v_{1}, & \left\{v_{0}, v_{2}\right\}_{2}=v_{0} v_{2}-\alpha, \\
\left\{v_{0}, v_{3}\right\}_{2}=-v_{0} v_{3}-\alpha, & \left\{v_{0}, v_{4}\right\}_{2}=-v_{0} v_{4}+\frac{\alpha^{2}}{v_{2}^{2}}
\end{array}
$$

These two brackets for the dKdV reduction are compatible; the difference $\{,\}_{1}-\{,\}_{2}$ comes from a Lagrangian structure (Tran).

Bi-Hamiltonian structures: general case

For general coprime $(M, N), \operatorname{rk} B=2\left\lfloor\frac{N+M-1}{2}\right\rfloor$, and the two U-systems of corresponding dimension preserve the same log-canonical Poisson bracket. In particular, when $N+M$ is odd the bracket has the form

$$
\left\{u_{j}, u_{k}\right\}=c_{k-j} u_{j} u_{k}, \quad c_{k}=-c_{-k},
$$

where the coeffients c_{k} for $k=1, \ldots, N+M-2$ satisfy

$$
\begin{array}{ll}
c_{k}=-c_{N+M-k}, & 2 \leq k \leq(N+M-1) / 2 \\
c_{k}=c_{k+N-M}, & 0 \leq k \leq M-2 \\
c_{k}=c_{k+2 M}, & 1 \leq k \leq(N-M-1) / 2
\end{array}
$$

The solution for c_{k} lies in a tableau built from $r=\frac{k}{2 M} \bmod N+M$.
Conclusion: Compatibility of the lifted brackets $\{,\}_{1,2}$ proves Liouville integrability of both the dK dV reductions and the pair of U -systems.

Analytic solution of Somos-6

Theorem $[H]$ For arbitrary $A, B, C \in \mathbb{C}^{*}, \mathbf{v}_{0} \in \mathbb{C}^{2} \bmod \Lambda$, the sequence

$$
\tau_{n}=\mathrm{AB}^{n} \mathrm{C}^{n^{2}-1} \frac{\sigma\left(\mathbf{v}_{0}+n \mathbf{v}\right)}{\sigma(\mathbf{v})^{n^{2}}}
$$

associated with a genus 2 curve X satisfies Somos- 6 with coefficients

$$
\begin{gathered}
\alpha=\frac{\sigma^{2}(3 \mathbf{v}) \mathrm{C}^{10}}{\sigma^{2}(2 \mathbf{v}) \sigma^{10}(\mathbf{v})} \hat{\alpha}, \quad \beta=\frac{\sigma^{2}(3 \mathbf{v}) \mathrm{C}^{16}}{\sigma^{18}(\mathbf{v})} \hat{\beta}, \\
\gamma=\frac{\sigma^{2}(3 \mathbf{v}) \mathrm{C}^{18}}{\sigma^{18}(\mathbf{v})}\left(\wp_{11}(3 \mathbf{v})-\hat{\alpha} \wp_{11}(2 \mathbf{v})-\hat{\beta} \wp_{11}(\mathbf{v})\right), \\
\hat{\alpha}=\frac{\wp_{22}(3 \mathbf{v})-\wp_{22}(\mathbf{v})}{\wp_{22}(2 \mathbf{v})-\wp_{22}(\mathbf{v})}, \quad \hat{\beta}=\frac{\wp_{22}(2 \mathbf{v})-\wp_{22}(3 \mathbf{v})}{\wp_{22}(2 \mathbf{v})-\wp_{22}(\mathbf{v})}=1-\hat{\alpha},
\end{gathered}
$$

provided that $\mathbf{v} \in \operatorname{Jac}(X)$ satisfies the constraint

$$
\operatorname{det}\left(\begin{array}{ccc}
1 & 1 & 1 \\
\wp_{12}(\mathbf{v}) & \wp_{12}(2 \mathbf{v}) & \wp_{12}(3 \mathbf{v}) \\
\wp_{22}(\mathbf{v}) & \wp_{22}(2 \mathbf{v}) & \wp_{22}(3 \mathbf{v})
\end{array}\right)=0
$$

Solution of the initial value problem for Somos-6

Question: Given initial data $\tau_{0}, \ldots, \tau_{5}$ and coefficients α, β, γ for Somos-6, how to reconstruct parameters A, B, C and genus 2 curve

$$
X: \quad z^{2}=4 s^{5}+c_{4} s^{4}+c_{3} s^{3}+c_{2} s^{2}+c_{1} s+c_{0}
$$

with vectors $\mathbf{v}_{0}, \mathbf{v} \in \operatorname{Jac}(X)$ such that \mathbf{v} satisfies the constraint? Idea: Consider map in 4D satisfied by $u_{n}=\tau_{n+2} \tau_{n} /\left(\tau_{n+1}\right)^{2}$.

Reduction of discrete BKP

Bilinear form of discrete BKP:

$$
T_{123} T-T_{1} T_{23}+T_{2} T_{31}-T_{3} T_{12}=0
$$

Plane wave reduction with quadratic gauge:
$T\left(n_{1}, n_{2}, n_{3}\right)=\delta_{1}^{n_{2} n_{3}} \delta_{2}^{n_{3} n_{1}} \delta_{3}^{n_{1} n_{2}} \tau_{n}, \quad n=n_{1}+2 n_{2}+3 n_{3}, \quad \delta_{1}=\sqrt{-\frac{\alpha}{\beta \gamma}}$.
Reduction of the discrete BKP scalar Lax triad gives a Lax pair with

$$
\mathbf{L}(x)=\left(\begin{array}{ccc}
\frac{A_{2} x^{2}+A_{1} x}{x+\lambda} & \frac{A_{2}^{\prime} x^{2}+A_{1}^{\prime} x}{x+\lambda} & \frac{A_{1}^{\prime \prime} x+A_{0}^{\prime \prime}}{x+\lambda} \\
B_{2} x^{2}+B_{1} x & B_{1}^{\prime} x & B_{1}^{\prime \prime} x+B_{0}^{\prime \prime} \\
C_{2} x^{2}+C_{1} x & C_{2}^{\prime} x^{2}+C_{1}^{\prime} x & C_{1}^{\prime \prime} x+C_{0}^{\prime \prime}
\end{array}\right)
$$

where x is a spectral parameter and A_{j}, B_{j} etc. are rational functions of

$$
\lambda=\frac{\delta_{1} \beta^{2}}{\alpha^{2}}, \quad \mu=-\frac{\delta_{1} \beta^{3}}{\gamma^{2}}, \quad P_{n}=-\frac{\delta_{1} \beta}{u_{n} u_{n+1}}, \quad R_{n}=\frac{\delta_{1} \gamma}{u_{n} u_{n+1} u_{n+2}} .
$$

Discrete Lax equation and spectral curve

The second half of the Lax pair is

$$
\mathbf{M}(x)=\frac{1}{R_{0}}\left(\begin{array}{ccc}
-1 & 1 & 0 \\
-\frac{x}{\lambda}-1 & 1 & \frac{1}{\lambda} \\
0 & \left(\lambda P_{0} R_{1} R_{2}+1\right) x & -P_{0} R_{2}
\end{array}\right)
$$

with $\operatorname{det} \mathbf{M}(x)=\frac{R_{1} R_{2}}{R_{0}^{2}} x$, and the discrete Lax equation $\tilde{\mathbf{L}} \mathbf{M}=\mathbf{M L}$ is equivalent to the reduced Somos-6 map in 4D:

$$
\hat{\varphi}: \quad u_{n+4} u_{n+3}^{2} u_{n+2}^{3} u_{n+1}^{2} u_{n}=\alpha u_{n+3} u_{n+2}^{2} u_{n+1}+\beta u_{n+2}+\gamma,
$$

The spectral curve

$$
S: \quad \operatorname{det}(\mathbf{L}(x)-y \mathbf{1})=0
$$

provides two independent first integrals of the map, denoted K_{1}, K_{2}.

Spectral curve: Jacobian and Prym variety

The curve S has genus 4 and is given by
$(x+\lambda) y^{3}+\left(x K_{1}+\mu+x^{2} K_{2}\right) y^{2}-\left(\mu x^{4}+K_{1} x^{3}+x^{2} K_{2}\right) y-\lambda x^{4}-x^{3}=0$.
It has the involution $\iota:(x, y) \rightarrow(1 / x, 1 / y)$ with two fixed points $(\pm 1,1)$.

\qquad
The quotient $C=S / \iota$ has genus 2 , and $\operatorname{Jac}(S)$ is isogenous to $\operatorname{Jac}(C) \times \operatorname{Prym}(S, \iota)$, where $\operatorname{Prym}(S, \iota)=\operatorname{im}(1-\iota)=\operatorname{ker}(1+\iota)^{0}$.

Solving the initial value problem from the spectral data

Theorem: [H \& Fedorov] A generic complex invariant manifold $\mathcal{I}_{K}=\left\{K_{1}=\right.$ const, $K_{2}=$ const $\}$ for the reduced Somos- 6 map $\hat{\varphi}$ is isomorphic to $\operatorname{Prym}(S, \iota) \cong \operatorname{Jac}(X)$ for a genus 2 curve X.

- $\operatorname{Prym}(S, \iota)$ is isomorphic to a 2D Jacobian (Mumford, Dalaljan).
- Effective description of 2-fold branched coverings of hyperelliptic curves (Levin).
- Isospectral manifold for Lax matrix $\mathbf{L}(x)$ is isomorphic to \mathcal{I}_{K}.
- The eigenvector bundle for $\mathbf{L}(x) \psi=y \psi$ defines a point in $\operatorname{Jac}(S)$.
- $\tilde{\psi}=\mathbf{M}(x) \psi$ shifts by the divisor $\mathcal{V}=\overline{\mathcal{O}}-\mathcal{O}$, and $\iota(\mathcal{V})=-\mathcal{V}$.

Now \mathcal{V} corresponds to a vector $\mathbf{v} \in \operatorname{Jac}(X)$, and from $\mathcal{O}_{1}-\overline{\mathcal{O}}_{1} \equiv 2 \mathcal{V}$, $\mathcal{O}_{2}-\overline{\mathcal{O}}_{2} \equiv 3 \mathcal{V}$ one sees that \mathbf{v} satisfies the constraint. Hence \mathbf{v}_{0} and the other parameters in the solution are recovered from the initial data.

Classical Somos-6 sequence

For the original Somos-6 sequence,

$$
\left(\tau_{0}, \ldots, \tau_{5}\right)=(1,1,1,3,5,9), \quad \alpha=1, \quad \beta=1, \quad \gamma=1
$$

one finds

$$
\lambda=i, \quad \mu=-i, \quad K_{1}=19, \quad K_{2}=14 i
$$

This yields the genus 2 curve

$$
X: \quad z^{2}=4 s^{5}-233 s^{4}+1624 s^{3}-422 s^{2}+36 s-1
$$

and one has the constant $\mathrm{C}=i / \sqrt{20}$ and a pair of divisors on X,

$$
\mathcal{D}=\left(s_{1}, z_{1}\right)+\left(s_{2}, z_{2}\right)-2 \infty, \quad \mathcal{D}_{0}=\left(s_{1}^{(0)}, z_{1}^{(0)}\right)+\left(s_{2}^{(0)}, z_{2}^{(0)}\right)-2 \infty
$$

where

$$
\begin{aligned}
& s_{1,2}=-8 \pm \sqrt{65}, \quad z_{1,2}=20 i(129 \mp 16 \sqrt{65}), \\
& s_{1,2}^{(0)}=5 \pm 2 \sqrt{6}, \quad z_{1,2}^{(0)}=4 i(71 \pm 29 \sqrt{6}),
\end{aligned}
$$

corresponding to $\mathbf{v}, \mathbf{v}_{0}$ respectively.

