Twistors and Integrability

Richard Ward

Durham University

27th July 2016

Outline

From Lax Pairs to SDYM

Twistor Theory

Moduli Spaces and Reciprocity

Self-Dual Einstein Equations

Integrable Lattice Gauge System

From Lax Pairs to SDYM

Twistor Theory Moduli Spaces and Reciprocity Self-Dual Einstein Equations Integrable Lattice Gauge System

Introduction

- Integrability arose in classical applied maths.
- ▶ Twistor theory (50 years old) has roots in relativity etc.
- Similar structures, for example geometric.
- Twistor-integrable side: impact in geometry & math phys.

Integrability via Lax Pairs

- Integrability from commuting linear operators $[L_1, L_2] = 0$.
- The L_a depend on a parameter ζ (spectral parameter).
- Require $[L_1(\zeta), L_2(\zeta)] = 0$ for all $\zeta \in \mathbb{C}$.
- \blacktriangleright \longrightarrow conserved quantities, construction of solutions etc.

Example: sine-Gordon Equation

With
$$f = f(u, v)$$
, $g = g(u, v)$, $\phi = \phi(u, v)$, take

$$L_1 = 2\partial_u + \begin{pmatrix} f & 0 \\ 0 & -f \end{pmatrix} + \zeta \begin{pmatrix} 0 & e^{i\phi/2} \\ e^{-i\phi/2} & 0 \end{pmatrix},$$

$$L_2 = -2\zeta\partial_v + \zeta \begin{pmatrix} g & 0 \\ 0 & -g \end{pmatrix} + \begin{pmatrix} 0 & e^{-i\phi/2} \\ e^{i\phi/2} & 0 \end{pmatrix},$$

where $\partial_u = \partial/\partial u$. Then $[L_1, L_2] = 0$ is equivalent to

$$\phi_{uv} + \sin \phi = 0.$$

The Lax pair has the form $L_1 = (\partial_1 + A_1) + \zeta(\partial_3 + A_3)$, $L_2 = (\partial_2 + A_2) + \zeta(\partial_4 + A_4)$: four dimensions, quaternionic structure.

Geometry and Gauge Theory

- Coordinates z^{μ} , with $\mu = 1, \ldots, 4$.
- $n \times n$ matrices A_{μ} , operators $D_{\mu} = \partial_{\mu} + A_{\mu}$.
- Geometry: vector bundle with fibre \mathbb{C}^n over each z.
- Connection with covariant derivative $\Psi \mapsto D_{\mu}\Psi$.
- Curvature $F_{\mu\nu} = [D_{\mu}, D_{\nu}] = \partial_{\mu}A_{\nu} \partial_{\nu}A_{\mu} + [A_{\mu}, A_{\nu}].$
- Physics: gauge potential A_{μ} and gauge field $F_{\mu\nu}$.
- Gauge transformation $\Psi \mapsto \Lambda^{-1}\Psi, \ D_{\mu}\Psi \mapsto \Lambda^{-1}D_{\mu}\Psi, \ F_{\mu\nu} \mapsto \Lambda^{-1}F_{\mu\nu}\Lambda.$

General Lax Pairs and SDYM

- So generally $L_1 = D_1 + \zeta D_3$ and $L_2 = D_2 + \zeta D_4$.
- Then $[L_1, L_2] = 0$ is equivalent to

$$F_{12} = F_{34} = F_{14} + F_{32} = 0.$$
 (SDYM)

- ► These are the *self-dual Yang-Mills* equations.
- Nonlinear coupled PDEs for $A_{\mu}(z^{\nu})$, integrable.
- Sine-Gordon, KdV, nonlinear Schrödinger, Toda etc are reductions of SDYM.

Twistor Space as a Quotient

- Take $z^{\mu} \in \mathbb{C}^4$ and $\zeta \in \mathbb{CP}^1 = \mathbb{C} \cup \{\infty\}$.
- So $(z^{\mu},\zeta) \in \mathbb{F} = \mathbb{C}^4 \times \mathbb{CP}^1$.
- The vector fields $\partial_1 + \zeta \partial_3$ and $\partial_2 + \zeta \partial_4$ live in \mathbb{F} .
- ▶ Quotient is 3-dim complex manifold T: *twistor space*.
- \blacktriangleright Correspondence $\mathbb{C}^4\leftrightarrow\mathbb{T}$ is classical algebraic geometry.
- Solutions of SDYM on C⁴ correspond to *holomorphic* vector bundles on T: a nonlinear integral transform.
- \blacktriangleright No equations on $\mathbb T\text{-side},$ except holomorphic structure.
- Analogous to Inverse Scattering Transform.

Twistor Correspondence

Reductions and Generalizations.

- Impose boundary and global conditions.
- Eg dimensional reduction and algebraic constraints.
- ▶ BPS monopoles: take (t, x^1, x^2, x^3) real, and put

$$z^{1} = t + ix^{3}, z^{4} = t - ix^{3}, z^{2} = i(x^{1} + ix^{2}), z^{3} = i(x^{1} - ix^{2}).$$

• Assume fields independent of t, write $\Phi = A_t$, get

$$D_1 \Phi = F_{23}, D_2 \Phi = F_{31}, D_3 \Phi = F_{12}.$$
 (Bog)

- ► BC $|\Phi| \rightarrow 1$ & $|F_{jk}| \rightarrow 0$ as $r \rightarrow \infty$ in \mathbb{R}^3 .
- Topological classification \rightarrow monopole number *p*.
- Higher-dim generalization: Lax 2m-plet with $m \ge 2$.
- Reductions give hierarchies such as KdV and NLS.

Moduli Spaces

- In many cases, solution space is $\cup_p \mathcal{M}_p$.
- \mathcal{M}_p is the *moduli space* of *p* static solitons.
- For SU(2) monopoles, \mathcal{M}_p is a 4*p*-dim manifold.
- Comes equipped with a natural hyperkähler metric.
- Dynamics not integrable, but approximated by geodesics.

Reciprocity

- Kind of duality transform (nonlinear integral transform).
- ADHM transform, Nahm transform, and generalizations.
- ► Related to Fourier-Mukai transform in algebraic geometry.
- ▶ SDYM in \mathbb{R}^4 : let $S_{d,k}$ be the reduced system where
 - the fields depend on only *d* coordinates;
 - they are periodic in k coordinates;
 - they satisfy appropriate BCs in d k dimensions.
- Then $\mathcal{S}_{d,k} \cong \mathcal{S}_{4-d+k,k}$.
- The soliton number *p* and the rank *n* get interchanged.
- ▶ k = 0, d = 3: monopoles (PDE) from Nahm eqns (ODE).

Self-Dual Einstein Equations

- Historically, this came before the gauge-theory version.
- Use vector fields $V = V^{\mu}(x^{\alpha})\partial_{\mu}$ on a 4-dim manifold.
- Lax pair $L_1 = V_1 + \zeta V_2$, $L_2 = V_3 + \zeta V_4$.
- Surfaces \tilde{P} etc become 'curved'.
- Encodes a curved metric on the 4-dimensional space:
- Self-dual solution of Einstein's vacuum equations.
- ▶ Generalizes to 4k dimensions: hyperkähler structure.
- Of great interest in geometry, GR, string theory etc.

Integrable Lattice Gauge System

Integrable Lattice Gauge System

Richard Ward Twistors and Integrability

Discrete Systems from ADHM Data

- ► SDYM instanton fields on ℝ⁴ correspond to algebraic data (ADHM): matrices satisfying quadratic algebraic relations.
- Imposing symmetry in \mathbb{R}^4 makes these into lattice eqns.
- Circle symmetry \rightarrow discrete version of Nahm equations

$$\frac{d}{ds}T_j=\frac{1}{2}\varepsilon_{jkl}[T_k,\,T_l].$$

• T^2 symmetry \rightarrow discrete version of Hitchin equations.

▶ On \mathbb{R}^2 , two Higgs fields (Φ_1, Φ_2), gauge field $F = F_{xy}$,

$$F = [\Phi_1, \Phi_2], \quad D_x \Phi_1 = -D_y \Phi_2, \quad D_x \Phi_2 = D_y \Phi_1.$$

Lattice Gauge Theory & Discrete Hitchin Eqns

- ▶ 2-dim lattice with $x, y \in \mathbb{Z}^2$, gauge group U(p).
- Local U(p) gauge invariance on lattice: $\psi \mapsto \Lambda^{-1}\psi$.
- Standard lattice gauge assigns $A \in U(p)$ to each link.
- ▶ In our case, assign $A \in GL(p, \mathbb{C})$ to each link.
- ▶ Write *B* for the *x*-links, *C* for the *y*-links.
- Lattice curvature is $\Omega = C^{-1}B^{-1}_{+y}C_{+x}B$.
- One of our lattice eqns is $\Omega = 1$, and the other is

$$(BB^*)_{-x} + (CC^*)_{-y} = B^*B + C^*C.$$

Some Features

Corresponding lattice linear system is

$$B^*\psi_{+x}+\zeta(C\psi)_{-y}=0,\quad C^*\psi_{+y}-\zeta(B\psi)_{-x}=0.$$

• Continuum limit: lattice spacing h, let $h \rightarrow 0$ with

$$B = 1 - h(A_x - i\Phi_1), \quad C = 1 - h(A_y - i\Phi_2).$$

U(1) case: solving Ω = 1 gives B = exp(Δ⁺_xφ),
 C = exp(Δ⁺_Yφ), leaving nonlinear discrete Laplace eqn

$$\Delta_x^- \exp(2\Delta_x^+ \phi) + \Delta_y^- \exp(2\Delta_y^+ \phi) = 0.$$

• T^2 -sym instantons correspond to solns of this (with BCs).