# Twistors and Integrability 

Richard Ward<br>Durham University<br>27th July 2016<br>University

## Outline

## From Lax Pairs to SDYM

Twistor Theory

Moduli Spaces and Reciprocity
Self-Dual Einstein Equations
Integrable Lattice Gauge System

## Introduction

- Integrability arose in classical applied maths.
- Twistor theory (50 years old) has roots in relativity etc.
- Similar structures, for example geometric.
- Twistor-integrable side: impact in geometry \& math phys.


## Integrability via Lax Pairs

- Integrability from commuting linear operators $\left[L_{1}, L_{2}\right]=0$.
- The $L_{a}$ depend on a parameter $\zeta$ (spectral parameter).
- Require $\left[L_{1}(\zeta), L_{2}(\zeta)\right]=0$ for all $\zeta \in \mathbb{C}$.
- $\longrightarrow$ conserved quantities, construction of solutions etc.


## Example: sine-Gordon Equation

With $f=f(u, v), g=g(u, v), \phi=\phi(u, v)$, take

$$
\begin{gathered}
L_{1}=2 \partial_{u}+\left(\begin{array}{cc}
f & 0 \\
0 & -f
\end{array}\right)+\zeta\left(\begin{array}{cc}
0 & \mathrm{e}^{\mathrm{i} \phi / 2} \\
\mathrm{e}^{-\mathrm{i} \phi / 2} & 0
\end{array}\right), \\
L_{2}=-2 \zeta \partial_{v}+\zeta\left(\begin{array}{cc}
g & 0 \\
0 & -g
\end{array}\right)+\left(\begin{array}{cc}
0 & \mathrm{e}^{-\mathrm{i} \phi / 2} \\
\mathrm{e}^{\mathrm{i} \phi / 2} & 0
\end{array}\right),
\end{gathered}
$$

where $\partial_{u}=\partial / \partial u$. Then $\left[L_{1}, L_{2}\right]=0$ is equivalent to

$$
\phi_{u v}+\sin \phi=0
$$

The Lax pair has the form
$L_{1}=\left(\partial_{1}+A_{1}\right)+\zeta\left(\partial_{3}+A_{3}\right), L_{2}=\left(\partial_{2}+A_{2}\right)+\zeta\left(\partial_{4}+A_{4}\right):$ four dimensions, quaternionic structure.

## Geometry and Gauge Theory

- Coordinates $z^{\mu}$, with $\mu=1, \ldots, 4$.
- $n \times n$ matrices $A_{\mu}$, operators $D_{\mu}=\partial_{\mu}+A_{\mu}$.
- Geometry: vector bundle with fibre $\mathbb{C}^{n}$ over each $z$.
- Connection with covariant derivative $\Psi \mapsto D_{\mu} \Psi$.
- Curvature $F_{\mu \nu}=\left[D_{\mu}, D_{\nu}\right]=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}+\left[A_{\mu}, A_{\nu}\right]$.
- Physics: gauge potential $A_{\mu}$ and gauge field $F_{\mu \nu}$.
- Gauge transformation $\Psi \mapsto \Lambda^{-1} \Psi, D_{\mu} \Psi \mapsto \Lambda^{-1} D_{\mu} \Psi, F_{\mu \nu} \mapsto \Lambda^{-1} F_{\mu \nu} \Lambda$.


## General Lax Pairs and SDYM

- So generally $L_{1}=D_{1}+\zeta D_{3}$ and $L_{2}=D_{2}+\zeta D_{4}$.
- Then $\left[L_{1}, L_{2}\right]=0$ is equivalent to

$$
\begin{equation*}
F_{12}=F_{34}=F_{14}+F_{32}=0 . \tag{SDYM}
\end{equation*}
$$

- These are the self-dual Yang-Mills equations.
- Nonlinear coupled PDEs for $A_{\mu}\left(z^{\nu}\right)$, integrable.
- Sine-Gordon, KdV, nonlinear Schrödinger, Toda etc are reductions of SDYM.


## Twistor Space as a Quotient

- Take $z^{\mu} \in \mathbb{C}^{4}$ and $\zeta \in \mathbb{C P}^{1}=\mathbb{C} \cup\{\infty\}$.
- So $\left(z^{\mu}, \zeta\right) \in \mathbb{F}=\mathbb{C}^{4} \times \mathbb{C P}^{1}$.
- The vector fields $\partial_{1}+\zeta \partial_{3}$ and $\partial_{2}+\zeta \partial_{4}$ live in $\mathbb{F}$.
- Quotient is 3 -dim complex manifold $\mathbb{T}$ : twistor space.
- Correspondence $\mathbb{C}^{4} \leftrightarrow \mathbb{T}$ is classical algebraic geometry.
- Solutions of SDYM on $\mathbb{C}^{4}$ correspond to holomorphic vector bundles on $\mathbb{T}$ : a nonlinear integral transform.
- No equations on $\mathbb{T}$-side, except holomorphic structure.
- Analogous to Inverse Scattering Transform.


## Twistor Correspondence


$\mathbb{C \mathbb { P } ^ { \prime }}$

## Reductions and Generalizations.

- Impose boundary and global conditions.
- Eg dimensional reduction and algebraic constraints.
- BPS monopoles: take $\left(t, x^{1}, x^{2}, x^{3}\right)$ real, and put

$$
z^{1}=t+i x^{3}, z^{4}=t-i x^{3}, z^{2}=i\left(x^{1}+i x^{2}\right), z^{3}=i\left(x^{1}-i x^{2}\right)
$$

- Assume fields independent of $t$, write $\Phi=A_{t}$, get

$$
D_{1} \Phi=F_{23}, D_{2} \Phi=F_{31}, D_{3} \Phi=F_{12} . \quad(\mathrm{Bog})
$$

- BC $|\Phi| \rightarrow 1 \&\left|F_{j k}\right| \rightarrow 0$ as $r \rightarrow \infty$ in $\mathbb{R}^{3}$.
- Topological classification $\rightarrow$ monopole number $p$.
- Higher-dim generalization: Lax $2 m$-plet with $m \geq 2$.
- Reductions give hierarchies such as KdV and NLS.


## Moduli Spaces

- In many cases, solution space is $\cup_{p} \mathcal{M}_{p}$.
- $\mathcal{M}_{p}$ is the moduli space of $p$ static solitons.
- For $\operatorname{SU}(2)$ monopoles, $\mathcal{M}_{p}$ is a $4 p$-dim manifold.
- Comes equipped with a natural hyperkähler metric.
- Dynamics not integrable, but approximated by geodesics.


## Reciprocity

- Kind of duality transform (nonlinear integral transform).
- ADHM transform, Nahm transform, and generalizations.
- Related to Fourier-Mukai transform in algebraic geometry.
- SDYM in $\mathbb{R}^{4}$ : let $\mathcal{S}_{d, k}$ be the reduced system where
- the fields depend on only $d$ coordinates;
- they are periodic in $k$ coordinates;
- they satisfy appropriate BCs in $d-k$ dimensions.
- Then $\mathcal{S}_{d, k} \cong \mathcal{S}_{4-d+k, k}$.
- The soliton number $p$ and the rank $n$ get interchanged.
- $k=0, d=3$ : monopoles (PDE) from Nahm eqns (ODE).


## Self-Dual Einstein Equations

- Historically, this came before the gauge-theory version.
- Use vector fields $V=V^{\mu}\left(x^{\alpha}\right) \partial_{\mu}$ on a 4-dim manifold.
- Lax pair $L_{1}=V_{1}+\zeta V_{2}, L_{2}=V_{3}+\zeta V_{4}$.
- Surfaces $\widetilde{P}$ etc become 'curved'.
- Encodes a curved metric on the 4-dimensional space:
- Self-dual solution of Einstein's vacuum equations.
- Generalizes to $4 k$ dimensions: hyperkähler structure.
- Of great interest in geometry, GR, string theory etc.


## Integrable Lattice Gauge System

## Integrable Lattice Gauge System

## Discrete Systems from ADHM Data

- SDYM instanton fields on $\mathbb{R}^{4}$ correspond to algebraic data (ADHM): matrices satisfying quadratic algebraic relations.
- Imposing symmetry in $\mathbb{R}^{4}$ makes these into lattice eqns.
- Circle symmetry $\rightarrow$ discrete version of Nahm equations

$$
\frac{d}{d s} T_{j}=\frac{1}{2} \varepsilon_{j k l}\left[T_{k}, T_{l}\right]
$$

- $T^{2}$ symmetry $\rightarrow$ discrete version of Hitchin equations.
- On $\mathbb{R}^{2}$, two Higgs fields $\left(\Phi_{1}, \Phi_{2}\right)$, gauge field $F=F_{x y}$,

$$
F=\left[\Phi_{1}, \Phi_{2}\right], \quad D_{x} \Phi_{1}=-D_{y} \Phi_{2}, \quad D_{x} \Phi_{2}=D_{y} \Phi_{1}
$$

## Lattice Gauge Theory \& Discrete Hitchin Eqns

- 2-dim lattice with $x, y \in \mathbb{Z}^{2}$, gauge group $U(p)$.
- Local $\mathrm{U}(p)$ gauge invariance on lattice: $\psi \mapsto \Lambda^{-1} \psi$.
- Standard lattice gauge assigns $A \in \mathrm{U}(p)$ to each link.
- In our case, assign $A \in \mathrm{GL}(p, \mathbb{C})$ to each link.
- Write $B$ for the $x$-links, $C$ for the $y$-links.
- Lattice curvature is $\Omega=C^{-1} B_{+y}^{-1} C_{+x} B$.
- One of our lattice eqns is $\Omega=1$, and the other is

$$
\left(B B^{*}\right)_{-x}+\left(C C^{*}\right)_{-y}=B^{*} B+C^{*} C
$$

## Some Features

- Corresponding lattice linear system is

$$
B^{*} \psi_{+x}+\zeta(C \psi)_{-y}=0, \quad C^{*} \psi_{+y}-\zeta(B \psi)_{-x}=0
$$

- Continuum limit: lattice spacing $h$, let $h \rightarrow 0$ with

$$
B=1-h\left(A_{x}-i \Phi_{1}\right), \quad C=1-h\left(A_{y}-i \Phi_{2}\right)
$$

- $\mathrm{U}(1)$ case: solving $\Omega=1$ gives $B=\exp \left(\Delta_{x}^{+} \phi\right)$, $C=\exp \left(\Delta_{Y}^{+} \phi\right)$, leaving nonlinear discrete Laplace eqn

$$
\Delta_{x}^{-} \exp \left(2 \Delta_{x}^{+} \phi\right)+\Delta_{y}^{-} \exp \left(2 \Delta_{y}^{+} \phi\right)=0
$$

- $T^{2}$-sym instantons correspond to solns of this (with BCs).

