Symmetry approach to classification of integrable systems

Alexander Mikhailov

University of Leeds

LMS-EPSRC Durham Symposium

Geometric and Algebraic Aspects of Integrability
Summer School
26-27/07/2016

Testing for integrability

- How do we test whether a given system is integrable?
- What are the integrability conditions?
- Can we describe all integrable systems of a certain type (classification problem)?
- Can we give a complete picture of all possible integrable systems of all orders (global classification)?

To answer these challenging questions we ought to decide what integrability is.

In order to classify equations we have to define the equivalence relation and ideally give a method to check whether two given equations are equivalent or not.

Testing for integrability. Various approaches to classification

- 1975 Wahlquist, Estabrook: Pseudo-potentials (a method to find Lax representations) for a given equation
- 1976 Kulish: Perturbative analysis of conservation laws.
- 1977 Ablowitz, Segur: Painlevé test for integrability
- 1979 Shabat, Sokolov, AVM, Yamilov, Svinolupov, Adler: Symmetry approach to classification of integrable PDEs and differential-difference systems
- 1980 Fokas: existence of a higher symmetry as criteria for integrability
- 1987 Hietarinta: classification of bi-linear (Hirota) representations
- 1997 Kodama, AVM: Asymptotic integrability
- 1998 Sanders, Wang: Symbolic method. Global results in classification of integrable equations
- 2002 AVM, Novikov: Perturbative symmetry approach
- 2003 Adler, Bobenko, Suris: classification of 3-D consistent integrable difference equations
- 2009 Ferapontov, Novikov, Roustemoglou, ... :Integrable deformations of hydrodynamic type systems
- 2011 AVM, Wang, Xenitidis, Garifullin, Yamilov, ...: Integrable partial difference equations.
- Algebraic entropy, singularity confinement, numerical simulations, ...

Symmetry

God, Thou great symmetry, Who put a biting lust in me
From whence my sorrows spring,
For all the frittered days
That I have spent in shapeless ways
Give me one perfect thing.
Anna Wickham, 1921.

Symmetries of Partial differential equations

Let us consider a partial differential equation with one dependent variable u and two independent variables t, x

$$
\begin{equation*}
\Phi\left(t, x, u, u_{t}, u_{x}, u_{t t}, u_{t x}, u_{x x}, \ldots\right)=0 \tag{1}
\end{equation*}
$$

where the lower indexes denote partial derivatives ($u_{x}=\partial_{x} u, u_{t}=\partial_{t} u, u_{t t}=\partial_{t}^{2} u, u_{x t}=\partial_{x} \partial_{t} u$, etc) and function Φ depends on a finite number of arguments. We shall assume that Φ is polynomial (or, in some cases, a locally holomorphic) function of its arguments. The ring of all polynomial (or locally holomorphic) functions of variables $t, x, u, u_{t}, u_{x}, u_{t t}, u_{t x}, u_{x x}, \ldots$ we shall denote \mathcal{R}_{0}.

$$
\mathcal{R}_{0}=\left[\mathbb{C} ; x, t, u ; D_{x}, D_{t}\right]
$$

Definition

A function $g=g\left(t, x, u, u_{t}, u_{x}, u_{t t}, u_{t x}, \ldots\right) \in \mathcal{R}_{0}$ is a symmetry (a generator of a symmetry) of equation (1) if for any solution u of (1) function

$$
\bar{u}=u+\varepsilon g+\mathcal{O}\left(\varepsilon^{2}\right)
$$

satisfies equation

$$
\Phi\left(t, x, \bar{u}, \bar{u}_{t}, \bar{u}_{x}, \bar{u}_{t t}, \bar{u}_{t x}, \bar{u}_{x x}, \ldots\right)=\mathcal{O}\left(\varepsilon^{2}\right)
$$

Symmetries of Partial differential equations

The latter is equivalent to the following equation

$$
\frac{\partial \Phi}{\partial u} g+\frac{\partial \Phi}{\partial u_{x}} D_{x}(g)+\frac{\partial \Phi}{\partial u_{t}} D_{t}(g)+\frac{\partial \Phi}{\partial u_{t t}} D_{t}^{2}(g)+\frac{\partial \Phi}{\partial u_{t x}} D_{t} D_{x}(g) \cdots=0
$$

or

$$
\Phi_{*}(g)=0
$$

where Φ_{*} is the Fréchet derivative of Φ. For any $a \in \mathcal{R}_{0}$ the Fréchet derivative a_{*} is defined as linear differential operator

$$
a_{*}=\frac{\partial a}{\partial u}+\frac{\partial a}{\partial u_{x}} D_{x}+\frac{\partial a}{\partial u_{t}} D_{t}+\frac{\partial a}{\partial u_{t t}} D_{t}^{2}+\frac{\partial a}{\partial u_{t x}} D_{t} D_{x} \ldots
$$

In each case the sum is finite since a has a finite number of arguments.
Derivations D_{x}, D_{t} can be written in the form

$$
D_{x}=\frac{\partial}{\partial x}+\sum_{i, j=0}^{\infty} u_{i+1, j} \frac{\partial}{\partial u_{i, j}}, \quad D_{t}=\frac{\partial}{\partial t}+\sum_{i, j=0}^{\infty} u_{i, j+1} \frac{\partial}{\partial u_{i, j}},
$$

where $u_{i, j}=\frac{\partial^{i+j}}{\partial x^{i} \partial t t^{j}}$.

Dynamical variables

- Equation $\Phi_{*}(g)=0$ should be satisfied on all solutions of $\Phi=0$, t.e. modulo $\Phi=0$ and its differential consequences (such as $D_{x} \Phi=0$, $\left.D_{t} \Phi=0, \ldots\right)$.
- $g \neq 0$ modulo $\Phi=0$ and its differential consequences.

In other words, we should consider a differential ideal $J_{\Phi} \subset \mathcal{R}_{0}$ generated by the element Φ

$$
J_{\Phi}=\left\{\sum_{p, q \geq 0}^{m, n} a_{p, q} D_{x}^{p} D_{t}^{q}(\Phi) \mid a_{p, q} \in \mathcal{R}_{0}, m, n \in \mathbb{Z}_{\geq 0}\right\}
$$

and the quotient ring $\mathfrak{R}_{\Phi}=\mathcal{R}_{0} / J_{\Phi}$.
A symmetry is a non-zero element $g \in \Re_{\Phi}$ such that $\Phi_{*}(g)=0$ (in $\left.\Re_{\Phi}\right)$.

Dynamical variables. Evolutionary PDEs

Let us consider evolutionary PDEs

$$
\begin{equation*}
u_{t}=f\left(x, u_{0}, u_{1}, \ldots, u_{n}\right) \tag{2}
\end{equation*}
$$

Here we adopt notations $u_{k}=\partial_{x}^{k} u$. As dynamical variables we can take the infinite set $x, u_{0}, u_{1}, u_{2} \ldots$.

Any t-derivative can be re-expressed in terms of the dynamical variables and

$$
\mathcal{R}_{0} /\left\langle u_{t}-f\right\rangle \simeq \mathcal{R}=\left[\mathbb{C} ; x, t ; u ; D_{x}\right]
$$

where $\left\langle u_{t}-f\right\rangle \subset \mathcal{R}_{0}$ is a differential ideal and D_{x} is reduced to

$$
D_{x}=\frac{\partial}{\partial x}+\sum_{i=0}^{\infty} u_{i+1} \frac{\partial}{\partial u_{i}} ; \quad D_{x} t=0, D_{x} x=1, \partial_{x} u_{0}=u_{1}, D_{x} u_{1}=u_{2} \ldots
$$

In \mathcal{R} the derivation $D_{t}: \mathcal{R} \mapsto \mathcal{R}$ is reduced to

$$
D_{t}=\frac{\partial}{\partial t}+\sum_{i=0}^{\infty} D_{x}^{i}(f) \frac{\partial}{\partial u_{i}} ; \quad D_{t} t=1, D_{t} x=0, D_{t} u_{0}=f, D_{t} u_{1}=D_{x} f \ldots
$$

Dynamical variables. Evolutionary PDEs

Equation $u_{t}=f\left(x, u_{0}, u_{1}, \ldots, u_{n}\right) \Longleftrightarrow$ two commuting derivations $\left[D_{x}, D_{t}\right]=0 \Longleftrightarrow$ two compatible infinite dimensional dynamical systems

$$
\begin{array}{ll}
D_{\times} u_{0}=u_{1}, & D_{t} u_{0}=f \\
D_{\times} u_{1}=u_{2}, & D_{t} u_{1}=D_{\times}(f)
\end{array}
$$

$$
D_{x} u_{k}=u_{k+1}, \quad D_{t} u_{k}=D_{x}^{k}(f)
$$

Example

KdV

$$
u_{t}=u_{3}+6 u u_{1}
$$

$$
\begin{array}{ll}
D_{x} u_{0}=u_{1}, & D_{t} u_{0}=u_{3}+6 u_{0} u_{1}, \\
D_{x} u_{1}=u_{2}, & D_{t} u_{1}=u_{4}+6 u_{1}^{2}+6 u_{0} u_{2} \\
D_{x} u_{2}=u_{3}, & D_{t} u_{2}=u_{5}+18 u_{1} u_{2}+6 u_{0} u_{3},
\end{array}
$$

Dynamical variables. Evolutionary PDEs

Definition

A derivation Y of \mathcal{R} (a vector field) is called evolutionary if $\left[D_{x}, Y\right]=0$.
Theorem
Let $Y=\sum_{i=0}^{\infty} Y_{i} \frac{\partial}{\partial u_{i}}, Y_{k} \in \mathcal{R}$ be an evolutionary derivation, then $Y_{i}=D_{x}^{i} Y_{0}$.
Proof: $\left[D_{x}, Y\right]\left(u_{k}\right)=D_{x}\left(Y_{k}\right)-Y\left(u_{k+1}\right)=D_{x}\left(Y_{k}\right)-Y_{k+1}=0 \Rightarrow Y_{k}=D_{X}^{k}\left(Y_{0}\right)$.
Thus, an evolutionary derivation can be written as

$$
D_{G}=\sum_{i=0}^{\infty} D_{x}^{i}(G) \frac{\partial}{\partial u_{i}}, \quad G \in \mathcal{R}
$$

and G is called the characteristic of the evolutionary derivation D_{G})

Theorem

Let D_{G}, D_{H} be two evolutionary derivations, then the derivation [D_{G}, D_{H}] is also evolutionary with the characteristic function $K=D_{G}(H)-D_{H}(G)=H_{*}(G)-G_{*}(H)$.

With evolutionary derivation D_{G} we associate the infinite dimensional dynamical system $\left(u_{k}\right)_{\tau}=D_{x}^{k}(G)$ and a PDE $u_{\tau}=G$.

Dynamical variables. Hyperbolic (elliptic) equations

Let us consider hyperbolic (elliptic) PDEs

$$
\begin{equation*}
\Phi=u_{z \bar{z}}-f\left(z, \bar{z}, u, u_{z}, u_{\bar{z}}\right)=0 \tag{3}
\end{equation*}
$$

where z and \bar{z} are two independent variables (if z, \bar{z} are complex conjugated, then (3) is elliptic, if they are real, then it is a hyperbolic equation).
If u is a solution to the equations, then using the equation we can express any mixed derivative $\partial_{z}^{k} \partial_{\bar{z}}^{n} u$ in terms of $z, \bar{z}, u, u_{z}, u_{\bar{z}}, u_{z z}, u_{\bar{z} \overline{\bar{z}}}, \ldots$:

$$
u_{z \bar{z}}=f, u_{z z \bar{z}}=\frac{\partial f}{\partial z}+\frac{\partial f}{\partial u} u_{z}+\frac{\partial f}{\partial u_{z}} u_{z z}+\frac{\partial f}{\partial u_{\bar{z}}} f, \ldots .
$$

Let us introduce more convenient notations

$$
u_{0}=\bar{u}_{0}=u, \quad u_{k}=\frac{\partial^{k} u}{\partial z^{k}}, \quad \bar{u}_{k}=\frac{\partial^{k} u}{\partial \bar{z}^{k}} .
$$

Let $\mathcal{R}=\left(\mathbb{C} ; z, \bar{z}, u, u_{1}, \bar{u}_{1}, u_{2}, \bar{u}_{2}, \ldots\right)$ denotes a ring of (locally holomorphic) functions. In this notations z and \bar{z} derivatives D, \bar{D} of any $a \in \mathcal{R}$ can be written in the form

$$
\begin{aligned}
& D(a)=\frac{\partial a}{\partial z}+u_{1} \frac{\partial a}{\partial u_{0}}+u_{2} \frac{\partial a}{\partial u_{1}}+\cdots+f \frac{\partial a}{\partial \bar{u}_{1}}+\bar{D}(f) \frac{\partial a}{\partial \bar{u}_{2}}+\cdots \\
& \bar{D}(a)=\frac{\partial a}{\partial \bar{z}}+\bar{u}_{1} \frac{\partial a}{\partial \bar{u}_{0}}+\bar{u}_{2} \frac{\partial a}{\partial \bar{u}_{1}}+\cdots+f \frac{\partial a}{\partial u_{1}}+D(f) \frac{\partial a}{\partial u_{2}}+\cdots
\end{aligned}
$$

Dynamical variables. Hyperbolic (elliptic) equations

Thus we have two derivations D, \bar{D} in \mathcal{R} which can be defined recursively:

$$
\begin{aligned}
& D=\frac{\partial}{\partial z}+\sum_{k=0}^{\infty} u_{k+1} \frac{\partial}{\partial u_{k}}+\sum_{k=1}^{\infty} \bar{D}^{k-1}(f) \frac{\partial}{\partial \bar{u}_{k}} \\
& \bar{D}=\frac{\partial}{\partial \bar{z}}+\sum_{k=0}^{\infty} \bar{u}_{k+1} \frac{\partial}{\partial \bar{u}_{k}}+\sum_{k=1}^{\infty} D^{k-1}(f) \frac{\partial}{\partial u_{k}}
\end{aligned}
$$

Derivations D, \bar{D} commute $[D, \bar{D}]=0$. They correspond to two compatible infinite dimensional dynamical systems
$D(u)=u_{1}, D\left(u_{1}\right)=u_{2}, D\left(\bar{u}_{1}\right)=f, D\left(u_{2}\right)=u_{3}, D\left(\bar{u}_{2}\right)=\frac{\partial f}{\partial \bar{z}}+\bar{u}_{1} \frac{\partial f}{\partial u_{0}}+f \frac{\partial f}{\partial u_{1}}+\bar{u}_{2} \frac{\partial f}{\partial \bar{u}_{1}}, \ldots$
$\bar{D}(u)=\bar{u}_{1}, \bar{D}\left(u_{1}\right)=f, \bar{D}\left(\bar{u}_{1}\right)=\bar{u}_{2}, \bar{D}\left(u_{2}\right)=\frac{\partial f}{\partial z}+u_{1} \frac{\partial f}{\partial u_{0}}+u_{2} \frac{\partial f}{\partial u_{1}}+f \frac{\partial f}{\partial \bar{u}_{1}}, \bar{D}\left(\bar{u}_{2}\right)=\bar{u}_{3}, \ldots$
Theorem
If a vector field

$$
X=G \frac{\partial}{\partial u}+\sum_{k=1}^{\infty} G_{k} \frac{\partial}{\partial u_{k}}+\sum_{k=1}^{\infty} \bar{G}_{k} \frac{\partial}{\partial \bar{u}_{k}}
$$

commutes with D and \bar{D}, then

$$
\begin{equation*}
G_{k}=D^{k}(G), \quad \bar{G}_{k}=\bar{D}^{k}(G) \tag{4}
\end{equation*}
$$

Dynamical variables. Hyperbolic (elliptic) equations

Proof.

Indeed, if $[D, X]=0,[\bar{D}, X]=0$ then

$$
\begin{aligned}
& (D X-X D)\left(u_{k}\right)=D\left(G_{k}\right)-X\left(u_{k+1}\right)=D\left(G_{k}\right)-G_{k+1}=0, \Rightarrow G_{k}=D^{k}(G), \\
& (\bar{D} X-X \bar{D})\left(\bar{u}_{k}\right)=\bar{D}\left(\bar{G}_{k}\right)-X\left(\bar{u}_{k+1}\right)=\bar{D}\left(\bar{G}_{k}\right)-\bar{G}_{k+1}=0, \Rightarrow \bar{G}_{k}=\bar{D}^{k}(\bar{G}) .
\end{aligned}
$$

Conditions (4) are necessary, but not sufficient. We also need to check that $[D, X]\left(\bar{u}_{k}\right)=0,[\bar{D}, X]\left(u_{k}\right)=0$. It leads to

$$
[D, X]\left(\bar{u}_{1}\right)=D\left(\bar{G}_{1}\right)-X(f)=D \bar{D}(G)-f_{*}(G)=\Phi_{*}(G)=0 .
$$

The latter is nothing, but the condition that G is a generator of a symmetry for equation $\Phi=0$ (3). Thus all coefficients G_{k}, \hat{G}_{k} of the derivation X commuting with D, \bar{D} can be expressed in terms of a characteristic function $G \in \mathcal{R}$. It is natural to denote

$$
\begin{equation*}
D_{G}=G \frac{\partial}{\partial u}+\sum_{k=1}^{\infty} D^{k}(G) \frac{\partial}{\partial u_{k}}+\sum_{k=1}^{\infty} \bar{D}^{k}(G) \frac{\partial}{\partial \bar{u}_{k}} . \tag{5}
\end{equation*}
$$

Symmetries of PDEs

Having represented a PDE $\Phi=0$ as a compatible system of two infinite dimensional dynamical systems corresponding to derivations D_{x}, D_{t} in a certain set of dynamical variables, a symmetry can be viewed as a third infinite dimensional system, which is compatible with the first two.

Definition

We shall say that a derivation D of the ring \Re_{Φ} is a local symmetry of PDE $\Phi=0$ if

1. $\left[D_{x}, D\right]=\left[D_{t}, D\right]=0$;
2. $D(x)=D(t)=0$.

In the evolutionary case $u_{t}=f$ these conditions mean that derivation is evolutionary $D=D_{G}$ and its characteristic satisfies the linearised equation

$$
\left(D_{t}-f_{*}\right) G=0
$$

The characteristic function G and the corresponding PDE $u_{\tau}=G$ are also often called symmetry of equation $u_{t}=f$.
We say that a system is integrable if it possesses an infinite algebra of symmetries.

Dynamical variables and symmetries

Non-evolutionary equations, such as the Boussinesq equation

$$
u_{t t}=u_{x x x x}+\left(u^{2}\right)_{x x}
$$

can be re-written in the form of a system of evolutionary equations as

$$
u_{t}=v, \quad v_{t}=u_{x x x x}+\left(u^{2}\right)_{x x}
$$

with dynamical variables $V=\left\{u, v, u_{x}, v_{x}, u_{x x}, v_{x x}, \ldots\right\}$. Or as

$$
u_{t}=w_{x}, \quad w_{t}=u_{x x x}+\left(u^{2}\right)_{x}
$$

with dynamical variables $W=\left\{u, w, u_{x}, w_{x}, u_{x x}, w_{x x}, \ldots\right\}$. Or as

$$
u_{t}=z_{x x}, \quad z_{t}=u_{x x}+u^{2}
$$

with dynamical variables $Z=\left\{u, z, u_{x}, z_{x}, u_{x x}, z_{x x}, \ldots\right\}$.
It is interesting to note that in the dynamical variables V the corresponding evolutionary system has only a finite number of symmetries, but in the variables W or Z the number of commuting is infinite.

Symmetries of PDEs

Examples:

1. Heat equation $u_{t}=u_{2}$, symmetries

$$
u_{\tau}=1, u_{t_{n}}=u_{n}, u_{\eta}=2 t u_{2}+x u_{1}
$$

2. The Hopf equation $u_{t}=u u_{x}$:

$$
u_{t_{k}}=u^{k} u_{x}, \quad u_{\tau}=f(u, x+t u) u_{1}
$$

3. Burgers equation $u_{t}=u_{x x}+2 u u_{x}$, symmetries

$$
u_{\tau}=1+2 t u_{1}, u_{\eta}=2 t u_{2}+x u_{1}-u, u_{t_{2}}=u_{2}+2 u u_{1}, u_{t_{3}}=u_{3}+3 u u_{2}+3 u_{1}^{2}+3 u^{2} u_{1}
$$

4. The KdV equation $u_{t}=u_{x x x}+6 u u_{x}$. A few symmetries

$$
u_{\tau}=1+6 t u_{1}, u_{\eta}=3 t\left(u_{3}+6 u u_{1}\right)+x u_{1}-2 u, u_{t_{5}}=u_{5}+10 u_{3} u+20 u_{1} u_{2}+30 u^{2} u_{1}, \ldots
$$

5. Sine-Gordon equation $u_{z \bar{z}}=\sin u$:

$$
u_{\tau_{3}}=u_{3}+\frac{1}{2} u_{1}^{3}, u_{\tau_{5}}=u_{5}+\frac{5}{2} u_{1}^{2} u_{3}+\frac{5}{2} u_{1} u_{2}^{2}+\frac{3}{8} u_{1}^{5}, \ldots
$$

Symmetry reductions

Having a symmetry we can find symmetry reduction: restrict on invariant solutions.
Let G be a generator of a symmetry, then condition $G=0$ consistent with the equation and leads to symmetry reduction from PDE to a finite system of ODEs.
Example: $\mathrm{KdV} u_{t}=u_{3}+6 u u_{1}$. Let us take a symmetry with a generator

$$
G=a u_{1}+b\left(u_{3}+6 u u_{1}\right)+\left(u_{5}+10 u_{3} u+20 u_{1} u_{2}+30 u^{2} u_{1}\right), \quad a, b \in \mathbb{R}
$$

Setting $G=0$ we get an ODE of 5 th order. We can express u_{5}, u_{6}, \ldots in terms of dynamical variables $u, u_{1}, u_{2}, u_{3}, u_{4}$ and reduce the infinite dimensional system

$$
\begin{array}{ll}
D_{x} u_{0}=u_{1}, & D_{t} u_{0}=u_{3}+6 u_{0} u_{1} \\
D_{x} u_{1}=u_{2}, & D_{t} u_{1}=u_{4}+6 u_{1}^{2}+6 u_{0} u_{2} \\
D_{x} u_{2}=u_{3}, & D_{t} u_{2}=u_{5}+18 u_{1} u_{2}+6 u_{0} u_{3}
\end{array}
$$

to two compatible systems of order 5. According S.P.Novikov, its solution can be expressed in theta functions for genus 2 algebraic curve. Degeneration of the curve leads to 2 -soliton solutions.

Local conservation laws

For a PDE $\Phi\left(x, t, u, u_{x}, u_{t}, u_{x x}, \ldots\right)=0$ a local conservation law is defined as a pair of two functions $\rho\left(x, t, u, u_{x}, u_{t}, \ldots\right), \sigma\left(x, t, u, u_{x}, u_{t}, \ldots\right)$ satisfying equation

$$
\partial_{t} \rho\left(x, t, u, u_{x}, u_{t}, \ldots\right)=\partial_{x} \sigma\left(x, t, u, u_{x}, u_{t}, \ldots\right)
$$

on all solutions of the PDE. Functions ρ and σ are called density and flux of a local conservation law.
Having a conservation law we can find constant of motion (analogs of first integrals in the ODE case).
Example: The KdV equation $u_{t}=u_{x x x}+6 u u_{x}$ is itself a conservation law with $\rho_{1}=u$. It is easy to check that $\rho_{2}=u^{2}, \rho_{3}=2 u^{3}-u_{1}^{2}$

$$
\begin{aligned}
& \frac{\partial}{\partial t} u=\frac{\partial}{\partial x}\left(u_{2}+3 u^{2}\right), \quad \frac{\partial}{\partial t} u^{2}=\frac{\partial}{\partial x}\left(2 u u_{2}-u_{1}^{2}+4 u^{3}\right) \\
& \frac{\partial}{\partial t}\left(2 u^{3}-u_{1}^{2}\right)=\frac{\partial}{\partial x}\left(9 u^{4}+6 u^{2} u_{2}+u_{2}^{2}-12 u u_{1}^{2}-2 u_{1} u_{3}\right)
\end{aligned}
$$

If, for example vanishes rapidly $u(x, t) \rightarrow 0$ as $x \rightarrow \pm \infty$, so that $\int_{-\infty}^{\infty} \rho_{k} d x$ converges, then

$$
\frac{d}{d t} \int_{-\infty}^{\infty} \rho_{k} d x=0
$$

Local conservation laws

In dynamical variables and our derivations D_{x}, D_{t} associated with the PDE our (pre)-definition of local conservation laws is a pair $\sigma, \rho \in \mathcal{R}$, such that

$$
\begin{equation*}
D_{t}(\rho)=D_{\times}(\sigma) \tag{6}
\end{equation*}
$$

If we take any element $h \in \mathcal{R}$ and define $\rho=D_{x}(h)$ then condition (6) will be satisfied in a trivial way with $\sigma=D_{t}(\rho)$. Such densities we call trivial.

Definition

Considering \mathcal{R} as a linear space over the base field \mathbb{C} we say that

1. Two elements $r_{1}, r_{2} \in \mathcal{R}$ are equivalent $r_{1} \sim r_{2}$ if $r_{1}-r_{2} \in D_{\times}(\mathcal{R})$.
2. A quotient linear space $\hat{\mathcal{R}}=\mathcal{R} / \sim$ is called a space of functionals.
3. Elements of $\hat{\mathcal{R}}$ are called densities.
4. A non-zero element $\rho \in \hat{\mathcal{R}}$ is called a density of a local conservation law (or simply a conserved density) if $D_{t}(\rho)=D_{x}(\sigma)$ for some $\sigma \in \mathcal{R}$ which is called a flux of the conservation law.

Evolutionary case

In what follows

- we shall consider evolutionary equations $u_{t}=F\left(x, u, u_{1}, \ldots, u_{n}\right)$ only,
- we shall assume that all functions do not depend on the variable t explicitly and thus $\mathcal{R}=\left[\mathbb{C} ; x ; u ; D_{x}\right]$,
- the differential field of fractions, corresponding to \mathcal{R} will be denoted as \mathcal{F}.

In this case the derivation D_{\times}is quite simple

$$
D_{x}=\frac{\partial}{\partial x}+\sum_{i=0}^{\infty} u_{i+1} \frac{\partial}{\partial u_{i}}
$$

and $\operatorname{Ker}\left(D_{x}\right)=\mathbb{C}$.
For equation $u_{t}=F\left(x, u, u_{1}, \ldots, u_{n}\right), n>1$ we will find a sequence of necessary conditions for the existence of local symmetries.

In order to proceed we need some facts from the theory of differential operators and formal series.

Ring of differential operators

Let $\mathcal{F}\left[D_{x}\right]$ be the algebra of differential operators over \mathcal{F}. Elements $A \in \mathcal{F}\left[D_{x}\right]$ are of the form

$$
A=A_{N} D_{x}^{N}+A_{N-1} D_{x}^{N-1}+\cdots+A_{1} D_{x}+A_{0}, \quad A_{N} \neq 0, \quad A_{n} \in \mathcal{F}, N \in \mathbb{Z}_{\geq 0}
$$

and N is called the order of the operator $N=\operatorname{ord} A$. The coefficient A_{N} is called the leading coefficient $A_{N}=\operatorname{Lc}(A)$.

The Fréchet derivative

$$
a_{*}=\sum_{k=0}^{M} \frac{\partial a}{\partial u_{k}} D_{x}^{k} \in \mathcal{F}\left[D_{x}\right], \quad a=a\left(x, u, u_{1}, \ldots, u_{M}\right) \in \mathcal{F}, \partial_{u_{M}} a \neq 0
$$

is an example of a differential operator of order M.
The order $|a|$ of an element $a \in \mathcal{F}$ is defined as $|a|=$ ord a_{*}.

Ring of differential operators.

The multiplication in $\mathcal{F}\left[D_{x}\right]$ is given by the Leibniz rule

$$
\begin{gathered}
a D_{x}^{k} \circ b D^{n}=\sum_{s=0}^{k}\binom{k}{s} a D_{x}^{s}(b) D_{x}^{n+k-s}, \quad k \in \mathbb{N}, \\
\binom{k}{s}=\frac{k(k-1) \cdots(k-s+1)}{s!}
\end{gathered}
$$

This multiplication is associative, but not commutative.
Let A be a differential operator

$$
A=\sum_{k=0}^{N} a_{k} D_{x}^{k}
$$

then a conjugated operator A^{+}is defined as

$$
A^{+}=\sum_{k=0}^{N}(-1)^{k} D_{x}^{k} \circ a_{k}=\sum_{k=0}^{N}(-1)^{k} \sum_{s=0}^{k}\binom{k}{s} D_{x}^{s}(a) D_{x}^{k-s} .
$$

This conjugation is an involution in algebra $\mathcal{F}\left[D_{x}\right]:(A \circ B)^{+}=B^{+} \circ A^{+}$.

Ring of differential operators.

Definition

A variational derivative $\delta_{u}(a), a \in \mathcal{F}$ is

$$
\delta_{u}(a)=a_{*}^{+}(1)=\sum_{k=0}^{|a|}(-1)^{k} D_{x}^{k}\left(\frac{\partial a}{\partial u_{k}}\right) .
$$

The linear operator $\delta_{u}:=E$ is called the Euler operator.

Theorem

1. If $a \in D_{x} \mathcal{F}$ then $\delta_{u}(a)=0$.
2. If $a\left(x, u, u_{1}, \ldots, u_{k}\right) \in \mathcal{F}$ is holomorphic in a neighbourhood of the point $(x, 0, \ldots, 0)$ and $\delta_{u}(a)=0$, then there exists $b \in \mathcal{F}$ such that $D_{x} b=a$.

If a is not holomorphic at $u=0$, for instance $a=u_{1} u^{-1}$, but $\delta_{u}(a)=0$, then a solution of equation $D_{x} b=a$ can be found in an extension of \mathcal{F}. In this example $b=\log u$.

Ring of differential operators.

Definition

The order of a conserved density ord ρ is defined as $\operatorname{ord} \rho=\operatorname{deg}\left(\delta_{u} \rho\right)_{*}$.

It is invariant definition of the order of a conserved density in a sense that if $\rho_{1} \sim \rho_{2}$, then $\operatorname{ord} \rho_{1}=\operatorname{ord} \rho_{2}$.

Let us list a few useful identities concerning Fréchet and variational derivatives.
Theorem
Let $a, b \in \mathcal{F}$, then

1. $(a b)_{*}=a b_{*}+b a_{*}$,
2. $\left(D_{x}(a)\right)_{*}=D_{\times} \circ a_{*}=D_{x}\left(a_{*}\right)+a_{*} \circ D_{x}$,
3. $\left(D_{b}(a)\right)_{*}=\left(a_{*}(b)\right)_{*}=D_{b}\left(a_{*}\right)+a_{*} \circ b_{*}$,
4. $\left(\delta_{u} a\right)_{*}=\left(\delta_{u} a\right)_{*}^{+}$,
5. $\delta_{u}\left(D_{b}(a)\right)=D_{b}\left(\delta_{u} a\right)+b_{*}^{+}\left(\delta_{u} a\right)$.

Ring of differential operators.

Corollary
Let ρ be a density of a conservation law of an evolutionary equation $u_{t}=F$, then

$$
\left(D_{t}+F_{*}^{+}\right) \delta_{u} \rho=0 .
$$

Definition

Any non-zero solution $\gamma \in \mathcal{F}$ of equation

$$
\left(D_{t}+F_{*}^{+}\right) \gamma=0
$$

is called a co-symmetry of the equation $u_{t}=F$.

Theorem

Let $\gamma,|\gamma|=n$ be a co-symmetry of equation $u_{t}=F$ such that $\gamma_{*}=\gamma_{*}^{+}$. Then there exists $\rho \in \mathcal{F}$ such that $\gamma=\delta_{u} \rho$ and $\delta_{u} D_{t}(\rho)=0$.
Moreover

$$
\rho=u \int_{0}^{1} \gamma\left(x, \xi u, \xi u_{1}, \ldots, \xi u_{n}\right) d \xi,
$$

if the integral converges.

Skewfield of formal series.

For further consideration we will need formal pseudo-differential series, which for simplicity we shall call formal series (of order $N=\operatorname{ord} A \in \mathbb{Z}$)
$A=a_{N} D_{x}^{N}+a_{N-1} D_{x}^{N-1}+\cdots+a_{1} D_{x}+a_{0}+a_{-1} D_{x}^{-1}+\cdots, \quad a_{N} \neq 0, \quad a_{n} \in \mathcal{F}$.

$$
\text { or } \quad A=\sum_{i=-\infty}^{N} a_{i} D_{x}^{i}
$$

The coefficient a_{N} is called the leading coefficient, $\operatorname{Lc}(A)=a_{N}$.
Multiplication is defined exactly in the same way as for differential operators

$$
\begin{gathered}
a D_{x}^{k} \circ b D^{n}=\sum_{s=0}^{\infty}\binom{k}{s} a D_{x}^{s}(b) D_{x}^{n+k-s}, \quad k \in \mathbb{Z} \\
\binom{k}{s}=\frac{k(k-1) \cdots(k-s+1)}{s!}
\end{gathered}
$$

but now we allow index k to be negative. If k is a positive integer, then the sum is finite. For negative k the sum is infinite (formal).
Example:

$$
D_{x}^{-1} \circ a=a D_{x}^{-1}-D_{x}(a) D_{x}^{-2}+D_{x}^{2}(a) D_{x}^{-3}+\cdots
$$

Skewfield of formal series.

Theorem

A set of all formal series with coefficients in the differential field \mathcal{F}

$$
\mathcal{F}\left(\left(D_{x}\right)\right)=\left\{\sum_{i=-\infty}^{N} a_{i} D_{x}^{i} \mid a_{n} \in \mathcal{F}, N \in \mathbb{Z}\right\}
$$

form a skewfield.

Proof.

We need to show that any non-zero element of $\mathcal{F}\left(\left(D_{x}\right)\right)$ is invertible. Indeed, if

$$
A=\sum_{i=-\infty}^{N} a_{i} D_{x}^{i}=a_{N}\left(1+\sum_{n=-\infty}^{-1} a_{N}^{-1} a_{n+N} D_{x}^{n}\right) D_{x}^{N}
$$

then

$$
A^{-1}=D_{x}^{-N} \circ \sum_{k=0}^{\infty}\left(-\sum_{n=-\infty}^{-1} a_{N}^{-1} a_{n+N} D_{x}^{n}\right)^{k} \circ a_{N}^{-1}
$$

Obviously in $A^{-1}=b_{-N} D_{x}^{-N}+b_{-N} D_{x}^{-N}+\cdots$ each coefficient b_{k} is a finite sum. Moreover b_{-N-k} is a differential polynomial of the coefficients a_{N}, \ldots, a_{N-k}.

In particular any differential operator $A \in \mathcal{F}\left[D_{x}\right]$ is invertible and its inverse $A^{-1} \in \mathcal{F}\left(\left(D_{X}\right)\right)$.

Skewfield of formal series.

Example: For series

$$
A=a_{m} D_{x}^{m}+a_{m-1} D_{x}^{m-1}+\cdots+a_{0}+a_{-1} D_{x}^{-1}+\cdots
$$

we can find uniquely the inverse element

$$
B=b_{-m} D_{x}^{-m}+b_{-m-1} D_{x}^{-m-1}+\cdots, \quad b_{k} \in \mathcal{F}
$$

such that $A \circ B=B \circ A=1$. Indeed, multiplying A and B and equating the result to 1 we find that $a_{m} b_{-m}=1$, i.e. $b_{-m}=1 / a_{m}$, then at D_{x}^{-1} we have

$$
m a_{m} D_{x}\left(b_{-m}\right)+a_{m} b_{-m-1}+a_{m-1} b_{-m}=0
$$

and therefore

$$
b_{-m-1}=-\frac{a_{m-1}}{a_{m}^{2}}-m D_{\times}\left(\frac{1}{a_{m}}\right), \quad \text { etc. }
$$

First k coefficients of the series B can be uniquely determined in terms of the first k coefficients of A.

Skewfield of formal series.

Moreover, if $\left(a_{m}\right)^{\frac{1}{m}} \in \mathcal{F}$ we can find the m-th root of the series A, i.e. a series

$$
C=c_{1} D_{x}+c_{0}+c_{-1} D_{x}^{-1}+c_{-2} D_{x}^{-2}+\cdots
$$

such that $C^{m}=A$ and if we know first k coefficients of the series A we can find the first k coefficients of the series C.
Example. Let $A=D_{x}^{2}+u$. Assuming

$$
C=c_{1} D_{x}+c_{0}+c_{-1} D_{x}^{-1}+c_{-2} D_{x}^{-2}+\cdots
$$

we compute

$$
\begin{gathered}
C^{2}=C \circ C=c_{1}^{2} D_{x}^{2}+\left(c_{1} D_{x}\left(c_{1}\right)+c_{1} c_{0}+c_{0} c_{1}\right) D_{x}+ \\
c_{1} D_{x}\left(c_{0}\right)+c_{0}^{2}+c_{1} c_{-1}+c_{-1} c_{1}+\cdots
\end{gathered}
$$

and compare the result with A. At D_{x}^{2} we find $c_{1}^{2}=1$ or $c_{1}= \pm 1$. Let $c_{1}=1$. At D_{\times}we get $2 c_{0}=0$, i.e. $c_{0}=0$. At D_{x}^{0} we have $2 c_{-1}=u$, at D_{x}^{-1} we find $c_{-2}=-u_{1} / 4$, etc.,

$$
C=A^{1 / 2}=D_{x}+\frac{u}{2} D_{x}^{-1}-\frac{u_{1}}{4} D_{x}^{-2}+\cdots
$$

We can easily find as many coefficients of C as required.

Skewfield of formal series.

Definition. The residue of a formal series $A=\sum_{k \leq n} a_{k} D_{x}^{k}, a_{k} \in \mathcal{F}$ is by definition the coefficient at D_{x}^{-1} :

$$
\operatorname{res}(A)=a_{-1}
$$

The logarithmic residue of A is defined as

$$
\text { res } \log A=\frac{a_{n-1}}{a_{n}}
$$

For a formal series

$$
A=a_{m} D_{x}^{m}+a_{m-1} D_{x}^{m-1}+\cdots+a_{0}+a_{-1} D_{x}^{-1}+\cdots
$$

First k residues

$$
r_{-1}=\operatorname{res} A^{-\frac{1}{m}}, r_{0}=\operatorname{res} \log A, r_{1}=\operatorname{res} A^{\frac{1}{m}}, r_{2}=\operatorname{res} A^{\frac{2}{m}}, \ldots r_{k-2}=\operatorname{res} A^{\frac{k-2}{m}}
$$

can be expressed in terms of first k coefficients of the series and vise versa.

Skewfield of formal series.

Theorem

For any two formal series A, B of order n and m, respectively, the logarithmic residue satisfies the following identity:

$$
\text { res } \log (A \circ B)=\text { res } \log (A)+\text { res } \log (B)+n D_{\times}\left(\log \left(b_{m}\right)\right)
$$

For any derivation D_{G} of the differential field \mathcal{F} and any formal series A we have

$$
D_{G}(\text { res } \log A)=\operatorname{res}\left(D_{G}(A) \circ A^{-1}\right)
$$

We will use the following important Adler's Theorem.(M.Adler) For any two formal series A, B the residue of the commutator belongs to $\operatorname{Im} D_{x}$:

$$
\operatorname{res}[A, B]=D_{x}(\sigma(A, B))
$$

where

$$
\sigma(A, B)=\sum_{p \leq \operatorname{ord}(B), q \leq \operatorname{ord}(A)}^{p+q+1>0}\binom{p+q+1}{q} \sum_{s=0}^{p+q}(-1)^{s} D_{x}^{s}\left(a_{q}\right) D_{x}^{p+q-s}\left(b_{q}\right)
$$

Formal recursion operator

Let me recall that according my definition, integrable equations are equations possessing higher local symmetries and/or conservation laws.

We are going to show that for an evolutionary differential equation

$$
\begin{equation*}
u_{t}=F, \quad F=F\left(x, u, u_{1}, \ldots, u_{n}\right) \in \mathcal{F},|F|=n>1, \tag{7}
\end{equation*}
$$

existence of a symmetry $u_{\tau}=G\left(x, u, \ldots, u_{m}\right)$ of high order $m=|G|>n$ implies existence of an "approximate" solution $R \in \mathcal{F}\left(\left(D_{x}\right)\right)$ of the formal operator equation

$$
\begin{equation*}
D_{F}(R)-\left[F_{*}, R\right]=0, \tag{8}
\end{equation*}
$$

while existence of symmetries of arbitrary high order guarantee existence of a formal series R satisfying equation (8). We shall also show that existence of two high order local conserve densities ρ_{1}, ρ_{2} also implies existence of an approximate solution of equation (8). As well, if equation (7) is linearisable by a differential substitution, then it admits a formal recursion operator.

Thus, conditions of solvability for equation (8) will provide us with necessary integrability conditions for equation (7). These conditions will lead us to a canonical sequence of local conserved densities for equation (7), and the first one is of the form

$$
\rho_{-1}=\left(\frac{\partial F}{\partial u_{n}}\right)^{-\frac{1}{n}}
$$

Ultimately we aim to answer the questions: whether a given equation is integrable and what is a complete list of integrable equations?

Recursion operator

The name formal recursion operator is motivated by the concept of recursion operators, which are pseudo-differential operators R satisfying equation $D_{F}(R)-\left[F_{*}, R\right]=0$. Such operators do exist (AKNS, Lenard, Olver):

$$
\begin{array}{lll}
\text { Burgers eq. } & u_{t}=u_{2}+2 u u_{1}, & R_{\text {Bur }}=D_{x}+u+u_{1} D_{x}^{-1}, \\
\text { KdV eq. } & u_{t}=u_{3}+6 u u_{1}, & R_{K d V}=D_{x}^{2}+4 u+2 u_{1} D_{x}^{-1}, \\
\text { Sawada-Kotera eq. } & u_{t}=u_{5}+5 u u_{3}+5 u_{1} u_{2}+5 u^{2} u_{1}, & R_{S K}=D_{x}^{6}+6 u D_{x}^{4}+ \\
& +9 u_{1} D_{x}^{3}+\left(9 u^{2}+11 u_{2}\right) D_{x}^{2}+\left(10 u_{3}+21 u u_{1}\right) D_{x}+5 u_{4}+16 u u_{2}+6 u_{1}^{2}+4 u^{3}+ \\
& +\left(u_{5}+5 u u_{3}+5 u_{1} u_{2}+5 u^{2} u_{1}\right) D_{x}^{-1}+u_{1} D_{x}^{-1} \circ\left(2 u_{2}+u^{2}\right) .
\end{array}
$$

Theorem

Let R be a recursion operator for $u_{t}=F$ and G be a symmetry, such that $R(G) \in \mathcal{F}$. Then $R(G)$ is also a symmetry.
Proof. Indeed, the Lie bracket $[F, R(G)]=D_{F}(R(G))-D_{R(G)}(F)=$

$$
\begin{gathered}
D_{F}(R)(G)+R D_{F}(G)-F_{*} R(G)=D_{F}(R)(G)+R([F, G])+R D_{G}(F)-F_{*} R(G)= \\
\left(D_{F}(R)+R F_{*}-F_{*} R\right)(G)+R([F, G])=0 .
\end{gathered}
$$

Applying R^{k} to a seed symmetry G_{1} we can, in principle, construct an infinite sequence of symmetries $G_{n}=R\left(G_{n-1}\right)$.

Co-recursion operator

Theorem

Let R be a recursion operator for equation $u_{t}=F$ and γ be its co-symmetry such that $R^{+}(\gamma) \in \mathcal{F}$, then $R^{+} \gamma$ is also a co-symmetry of the equation.

In this sense R^{+}is a co-recursion operator.

Proof. Indeed, $D_{F}(\gamma)=-F_{*}^{+}(\gamma)$ and thus,
$D_{F}\left(R^{+} \gamma\right)=D_{F}\left(R^{+}\right) \gamma+R^{+} D_{F}(\gamma)=-F_{*}^{+} R^{+}(\gamma)+R^{+} F_{*}^{+}(\gamma)-R^{+} F_{*}^{+}(\gamma)=-F_{*}^{+}\left(R^{+} \gamma\right)$.

Example

For the KdV equation $R^{+}=D_{x}^{2}+4 u-2 D_{X}^{-1} \circ u_{1}$. Taking $\gamma_{0}=\frac{1}{2}$ we get $\gamma_{k}=\left(R^{+}\right)^{k} \gamma_{0}$:

$$
\gamma_{1}=u, \gamma_{2}=u_{2}+3 u^{2}, \gamma_{3}=u_{4}+10 u_{2} u+5 u_{1}^{2}+10 u^{3}, \ldots
$$

There is the issue of locality, i.e. to show that $R^{+}\left(\gamma_{k}\right) \in \mathcal{F}$ which in this case is equivalent to $\left(\gamma_{k}\right)_{*}=\left(\gamma_{k}\right)_{*}^{+}$.

Formal recursion operator

Formal recursion operators, i.e. formal series satisfying equation

$$
D_{F}(R)-\left[F_{*}, R\right]=0
$$

form an algebra, which we will denote $\mathfrak{R}(F)$:
Theorem
Let $R_{1}, R_{2} \in \mathfrak{R}(F)$, ord $\left(R_{1}\right)=n \neq 0$. Then

- $\alpha_{1} R_{1}+\alpha_{2} R_{2} \in \mathfrak{R}(F), \quad \alpha_{1}, \alpha_{2} \in \mathbb{C}$,
- $R_{1} \circ R_{2} \in \mathfrak{R}(F)$,
- $R_{1}^{\frac{k}{n}} \in \mathfrak{R}(F), k \in \mathbb{Z}$.

Moreover,
Theorem
Let $R \in \mathfrak{R}(F)$, ord $R=m \neq 0$. Then $\mathfrak{R}(F)=\mathbb{C}\left(\left(R^{-\frac{1}{m}}\right)\right)$.

Meaning: If a formal series $\hat{R} \in \mathfrak{R}(F)$, ord $\hat{R}=k$, then

$$
\hat{R}=\sum_{i=-\infty}^{k} \alpha_{i} R^{\frac{i}{m}}, \quad \alpha_{i} \in \mathbb{C} .
$$

Formal recursion operator

Lemma

Let $u_{t}=F\left(x, u, \ldots, u_{n}\right),|F|=n \geqslant 2$ and
$R=r_{m} D_{x}^{m}+\cdots \in \mathfrak{R}(F)$, ord $R=m$. Then

$$
r_{m}=\beta_{m}\left(\frac{\partial F}{\partial u_{n}}\right)^{\frac{m}{n}}, \quad \beta_{m} \in \mathbb{C} .
$$

Proof. The leading term in $D_{F}(R)-\left[F_{*}, R\right]$ is

$$
\left(-n\left(\frac{\partial F}{\partial u_{n}}\right) D_{\times}\left(r_{m}\right)+m r_{m} D_{\times}\left(\frac{\partial F}{\partial u_{n}}\right)\right) D_{\times}^{n+m-1} .
$$

Here we use the condition that $n \geqslant 2$, in this case $\operatorname{ord} D_{F}(R) \leqslant m<n+m-1$ and this term does not contribute in the equation for the coefficient at D_{x}^{n+m-1}. Now it is obvious that
$-n\left(\frac{\partial F}{\partial u_{n}}\right) D_{x}\left(r_{m}\right)+m r_{m} D_{\times}\left(\frac{\partial F}{\partial u_{n}}\right)=0 \Longleftrightarrow r_{m}=\beta_{m}\left(\frac{\partial F}{\partial u_{n}}\right)^{\frac{m}{n}}, \quad \beta_{m} \in \mathbb{C} . \square$

Canonical densities

For a formal series $R \in \mathcal{F}\left(\left(D_{x}\right)\right)$, $\operatorname{ord}(R)=m \neq 0$ the sequence of canonical densities $\rho_{-1}, \rho_{0}, \rho_{1}, \ldots$ is defined as

$$
\begin{aligned}
& \rho_{-1}=\operatorname{res} R^{-\frac{1}{m}}=r_{m}^{-\frac{1}{m}}, \\
& \rho_{0}=\operatorname{res} \log R=\frac{r_{m-1}}{r_{m}}, \\
& \rho_{k}=\operatorname{res} R^{\frac{k}{m}}, \quad k \in \mathbb{N} .
\end{aligned}
$$

Theorem

If $R, \operatorname{ord}(R)=m \neq 0$ is a formal recursion operator $(R \in \mathfrak{R}(F))$, then canonical densities are densities of local conservation laws for equation $u_{t}=F$

$$
D_{F}\left(\rho_{i}\right) \in D_{\times}(\mathcal{F}), \quad i=-1,0,1,2, \ldots .
$$

Proof. It follows from Adler's Theorem that

$$
D_{F} \rho_{k}=D_{F} \operatorname{res} R^{\frac{k}{m}}=\operatorname{res} D_{F} R^{\frac{k}{m}}=\operatorname{res}\left[F_{*}, R^{\frac{k}{m}}\right]=D_{x} \sigma\left(F_{*}, R^{\frac{k}{m}}\right), \quad k \neq 0
$$

$$
D_{F}\left(\rho_{0}\right)=D_{F} \text { res } \log R=\operatorname{res}\left(D_{F}(R) R^{-1}\right)=\operatorname{res}\left(\left[F_{*} R^{-1}, R\right]\right)=D_{\star} \sigma\left(F_{*} R^{-1}, R\right)
$$

Formal recursion operator

If there exists a formal recursion operator for equation
$u_{t}=F\left(x, u, \ldots, u_{n}\right),|F|=n \geqslant 2$ then $\rho_{-1}=\left(\frac{\partial F}{\partial u_{n}}\right)^{-\frac{1}{n}}$ must be a density of a conservation law.

Example

It is known that equation $u_{t}=u^{n} u_{n}$ is integrable and possesses a recursion operator for $n=2,3$. Does it possess a formal recursion operator for $n>3$? In this case $\rho_{1}=u^{-1}$ and we have to verify that

$$
\left(u^{-1}\right)_{t}=-u^{n-2} u_{n} \in D_{x}(\mathcal{F})
$$

Taking the variational derivative we observe that

$$
\delta_{u}\left(u^{n-2} u_{n}\right)=(-1)^{n} D_{x}^{n}\left(u^{n-2}\right)+(n-2) u^{n-3} u_{n}
$$

is zero for $n=2,3$ and different from zero for $n>3$. Conclusion: for $n>3$ this equation does not possess a formal recursion operator.

Example

- For Burgers equation: $\rho_{-1}=1, \rho_{0}=0, \rho_{k}=D_{\times}\left(\left(D_{x}+u\right)^{k-1} u\right) \in D_{x}(\mathcal{F})$.
- For the KdV equation:

$$
\rho_{-1}=1, \rho_{0}=0, \rho_{1}=2 u, \rho_{2}=2 u_{1}, \rho_{3}=2 u_{2}+u^{2}, \ldots
$$

Approximate formal recursion operator

Now we are going to discuss approximate solutions of the equation

$$
\begin{equation*}
D_{F}(R)-\left[F_{*}, R\right]=0 \tag{9}
\end{equation*}
$$

in terms of formal series $\left(R \in \mathcal{F}\left(\left(D_{x}\right)\right)\right)$.
Definition. A set of k-approximate solutions of the equation (9) is defined as

$$
\Re_{k}=\left\{A \in \mathcal{F}\left(\left(D_{x}\right)\right) \mid \operatorname{ord}\left(D_{F}(A)-\left[F_{*}, A\right]\right) \leqslant \operatorname{ord} F_{*}+\operatorname{ord} A-k\right\} .
$$

It is clear that

$$
\mathcal{F}\left(\left(D_{\times}\right)\right)=\Re_{1} \supset \Re_{2} \supset \Re_{3} \supset \cdots \supset \Re_{\infty}=\mathfrak{R}(F)
$$

Lemma
A formal series R, ord $R=n \neq 0$ belongs to \Re_{k} if and only if $R^{\frac{m}{n}} \in \mathfrak{R}_{k}, m \in \mathbb{Z}$.

Approximate formal recursion operator

Theorem

Suppose equation $u_{t}=F$ has a symmetry $G \in \mathcal{F}$ of order k, then $G_{*} \in \Re_{k}$.
Proof. Taking the Fréchet derivative of the Lie bracket $[F, G]=0$ we get

$$
\left(D_{F}(G)-D_{G}(F)\right)_{*}=D_{F}\left(G_{*}\right)-\left[F_{*}, G_{*}\right]-D_{G}\left(F_{*}\right)=0
$$

and thus

$$
\operatorname{ord}\left(D_{F}\left(G_{*}\right)-\left[F_{*}, G_{*}\right]\right)=\operatorname{ord} D_{G}\left(F_{*}\right) \leqslant \operatorname{ord} F_{*}=\operatorname{ord} F_{*}+\operatorname{ord} G_{*}-k
$$

We can take a fraction power $G_{*}^{\frac{1}{k}}$ in order to obtain an approximate recursion operator of order 1 , which also belongs to \mathfrak{R}_{k} due to the Lemma.

Corollary

If equation $u_{t}=F$ admits symmetries of arbitrary high order, then there exist a formal recursion operator $R \in \mathcal{F}\left(\left(D_{\times}\right)\right)$of any fixed order N satisfying equation

$$
D_{F}(R)=\left[F_{*}, R\right] .
$$

Formal recursion operator

For equation $u_{t}=F$ of order n, since F does not depend on t explicitly, F is a symmetry of order n and thus $F_{*} \in \Re_{n}$. Thus we know first $n-1$ coefficients of R and the same number of canonical conserved densities

$$
\rho_{-1}=\operatorname{res} F_{*}^{-\frac{1}{n}}, \rho_{0}=\operatorname{res} \log F_{*}, \rho_{1}=\operatorname{res} F_{*}^{\frac{1}{n}}, \ldots, \rho_{n-3}=\operatorname{res} F_{*}^{\frac{n-3}{n}}
$$

Theorem

- Any equation $u_{t}=F$ of order $n \geqslant 2$ has an approximate formal recursion operator $R \in \Re_{n}$.
- It has an approximate recursion operator with $k>n$ if and only if

$$
D_{F}\left(\rho_{i}\right)=D_{\times}\left(\sigma_{i}\right), \sigma_{i} \in \mathcal{F}, \quad i=-1,0, \ldots, k-n-2
$$

- Canonical densities $\rho_{i}, i \geqslant n-2$ can be found explicitly in terms of the coefficients $\frac{\partial F}{\partial u_{j}}, j=0,1, \ldots, n$ of the Fréchet derivative F_{*} and $\sigma_{-1}, \ldots \sigma_{i-n+1}$.

Formal recursion operator

Example

Let $u_{t}=F\left(x, u, u_{1}, u_{2}\right)$ then $R=F_{*} \in \Re_{2}$. Indeed

$$
\operatorname{ord}\left(D_{F}\left(F_{*}\right)-\left[F_{*}, F_{*}\right]\right) \leqslant 2=\operatorname{ord}\left(F_{*}\right)+\operatorname{ord}(R)-2
$$

Let us denote $F_{2}=\frac{\partial F}{\partial u_{2}}, F_{1}=\frac{\partial F}{\partial u_{1}}, F_{0}=\frac{\partial F}{\partial u}$. We have $\rho_{-1}=\operatorname{res} R^{-\frac{1}{2}}=F_{2}^{-\frac{1}{2}}$.
In order to find solution in \mathfrak{R}_{3} we represent $R=F_{*}+a D_{x}$ and substitute in

$$
\begin{array}{ccc}
D_{F}\left(\operatorname{res} R^{-\frac{1}{2}}\right) & = & \operatorname{res}\left[F_{*}, R^{-\frac{1}{2}}\right] \\
\| & \| \\
D_{\times}\left(\sigma_{-1}\right) & = & D_{\times}\left(-F_{2}^{-\frac{1}{2}} a\right)
\end{array}
$$

therefore

$$
\sigma_{-1}=-F_{2}^{-\frac{1}{2}} a
$$

Thus

$$
\operatorname{ord}\left(D_{F} R^{-\frac{1}{2}}-\left[F_{*}, R^{-\frac{1}{2}}\right]\right) \leqslant-2=2-1-k, \Rightarrow k=3 .
$$

Thus $R=F_{*}-\sigma_{-1} F_{2}^{\frac{1}{2}} D_{x}=F_{2} D_{x}^{2}+\left(F_{1}-\sigma_{-1} F_{2}^{\frac{1}{2}}\right) D_{x} \in \Re_{3}$ and moreover $\rho_{0}=\left(F_{1}-\sigma_{-1} F_{2}^{\frac{1}{2}}\right) F_{2}^{-1}$. Making the next correction to R we would find

$$
\rho_{1}=\rho_{-1} F_{0}-\frac{\rho_{0}^{2}}{4 \rho_{-1}}+\frac{1}{2} \rho_{0} \sigma_{-1}-\frac{1}{2} \rho_{-1} \sigma_{0} .
$$

Solved problems of classification of integrable equations

The problem of complete description and classification of all integrable equations of the form

$$
\begin{aligned}
& u_{x t}=f(u), \\
& u_{t}=f\left(x, t, u, u_{x}, u_{x x}\right) \\
& u_{t}=u_{x x x}+f\left(x, u, u_{x}, u_{x x}\right), \\
& u_{t}=a\left(x, u, u_{x}, u_{x x}\right) u_{x x x}+f\left(x, u, u_{x}, u_{x x}\right), \\
& u_{t}=u_{x x x x x}+f\left(x, u, u_{x}, u_{x x}, u_{x x x}, u_{x x x x}\right),
\end{aligned}
$$

have been solved (Shabat, Sokolov, Svinolupov, Meshkov, Heredero, Zhiber). There are plenty results for systems of equations. In particularly all systems of two equations

$$
\mathbf{u}_{t}=A(\mathbf{u}) \mathbf{u}_{x x}+\mathbf{F}\left(\mathbf{u}, \mathbf{u}_{x}\right), \quad \mathbf{u}=(u, v)^{T}, \quad \operatorname{Det} A(\mathbf{u}) \neq 0
$$

possessing an infinite hierarchy of conservation laws have been classified (AVM, Shabat, Yamilov).
Differential-difference equations with conservation laws where studied

$$
\begin{aligned}
& \left(u_{n}\right)_{t}=F\left(u_{n-1}, u_{n}, u_{n+1}\right), \\
& \left(u_{n}\right)_{t}=F\left(u_{n-2}, u_{n-1}, u_{n}, u_{n+1}, u_{n+2}\right) .
\end{aligned}
$$

The first one was completely classified by Yamilov, the problem of classification for the second type of equations was recently (partially) solved by V.Adler.
This method can also be applied to the study of integrable difference equations. Integrability conditions for quadrilateral equations

$$
Q\left(u_{n, m}, u_{n+1, m}, u_{n, m+1}, u_{n+1, m+1}\right)=0
$$

was found by AVM, Wang and Xenitidis.

Example of classification

I would like to illustrate the method on a simple enough example of the Korteweg-de Vries type equation

$$
u_{t}=u_{x x x}+f\left(u, u_{x}\right)
$$

and make a few steps towards the proof of the following statement:
Theorem
Equation

$$
\begin{equation*}
u_{t}=F=u_{3}+f\left(u, u_{1}\right) \tag{10}
\end{equation*}
$$

admits an infinite algebra of symmetries if and only if it is one from the following list

$$
\begin{align*}
& u_{t}=u_{3}-\frac{\alpha^{2}}{2} u_{1}^{3}+\left(\alpha_{1} \exp (2 \alpha u)+\alpha_{2} \exp (-2 \alpha u)+\alpha_{0}\right) u_{1} \tag{11}\\
& u_{t}=u_{3}+\alpha_{3} u_{1}^{3}+\alpha_{2} u_{1}^{2}+\alpha_{1} u_{1}+\alpha_{0} \tag{12}\\
& u_{t}=u_{3}+\left(\alpha_{2} u^{2}+\alpha_{1} u+\alpha_{0}\right) u_{1} \tag{13}\\
& u_{t}=u_{3}+\alpha_{2} u_{1}+\alpha_{1} u+\alpha_{0} \tag{14}
\end{align*}
$$

where $\alpha, \alpha_{k} \in \mathbb{C}$ are arbitrary constants.

Example of classification

Existence of symmetries implies the existence of a formal recursion operator R satisfying the equation

$$
\begin{equation*}
D_{t}(R)-\left[F_{*}, R\right]=0 \tag{15}
\end{equation*}
$$

In our case

$$
F_{*}=D_{x}^{3}+f_{1} D_{x}+f_{0}, \quad f_{1}=\frac{\partial f}{\partial u_{1}}, \quad f_{0}=\frac{\partial f}{\partial u}
$$

has constant leading coefficient and the next coefficient (at D^{2}) is zero. Thus canonical densities $\rho_{-1}=$ res $R^{-\frac{1}{3}}=1, \rho_{0}=$ res $\log R=0$ thus

$$
R=F_{*}+r_{-1} D_{x}^{-1}+\cdots
$$

Taking $R=D_{x}^{3}+f_{1} D_{x}+f_{0}+r_{-1} D_{x}^{-1}+\cdots$ we can easily find that

$$
\begin{aligned}
R^{\frac{1}{3}} & =D_{x}+\frac{1}{3} f_{1} D_{x}^{-1}+\frac{1}{3}\left(f_{0}-D_{x}\left(f_{1}\right)\right) D_{x}^{-2}+\cdots \\
R^{\frac{2}{3}} & =D_{x}^{2}+\frac{2}{3} f_{1}+\frac{1}{3}\left(2 f_{0}-D_{x}\left(f_{1}\right)\right) D_{x}^{-1}+\cdots
\end{aligned}
$$

and thus canonical densities are

$$
\rho_{1}=\operatorname{res} R^{\frac{1}{3}}=\frac{1}{3} f_{1}, \quad \rho_{2}=\operatorname{res} R^{\frac{2}{3}}=\frac{1}{3}\left(2 f_{0}-D_{x}\left(f_{1}\right)\right), \quad \rho_{3}=\operatorname{res} R=r_{-1}
$$

Example of classification

Thus our conditions are (after obvious re-scaling):

$$
\begin{aligned}
& \rho_{1}=\frac{\partial f}{\partial u_{1}}, \quad D_{t} \rho_{1}=D_{x} \sigma_{1}, \sigma_{1} \in \mathcal{F} \\
& \rho_{2}=\frac{\partial f}{\partial u_{0}}, \quad D_{t} \rho_{2} \in D_{x}(\mathcal{F}) \\
& \rho_{3}=\sigma_{1}, \quad D_{t} \rho_{3} \in D_{x}(\mathcal{F})
\end{aligned}
$$

Applying the Euler operator $\delta / \delta u$ to $D_{t} \rho_{1}$ we find an explicit form

$$
0=\frac{\delta}{\delta u} D_{t}\left(\frac{\partial f}{\partial u_{1}}\right)=3 u_{4}\left(u_{2} \frac{\partial^{4} f}{\partial u_{1}^{4}}+u_{1} \frac{\partial^{4} f}{\partial u_{1}^{3} \partial u}\right)+\cdots
$$

of the first integrability condition. Equation

$$
u_{2} \frac{\partial^{4} f}{\partial u_{1}^{4}}+u_{1} \frac{\partial^{4} f}{\partial u_{1}^{3} \partial u}=0
$$

gives rise to

$$
f\left(u_{1}, u\right)=\lambda u_{1}^{3}+A(u) u_{1}^{2}+B(u) u_{1}+C(u)
$$

where λ is a constant.
For such f the first condition turns out to be equivalent to

$$
\begin{array}{ll}
\lambda A^{\prime}=0, & B^{\prime \prime \prime}+8 \lambda B^{\prime}=0 \\
\left(B^{\prime} C\right)^{\prime}=0, & A B^{\prime}+6 \lambda C^{\prime}=0
\end{array}
$$

Example of classification

The second integrability condition has the form

$$
D_{t}\left(\frac{\partial f}{\partial u}\right)=D\left(\sigma_{2}\right)
$$

Using this fact we can derive a few more differential relations between $A(u)$, $B(u), C(u)$. Solving them all together we obtain the following list of equations

$$
\begin{aligned}
& u_{t}=u_{x x x}+c_{1} u_{x}+c_{2} u+c_{3} \\
& u_{t}=u_{x x x}+\left(c_{1} u^{2}+c_{2} u+c_{3}\right) u_{x} \\
& u_{t}=u_{x x x}+c_{1} u_{x}^{3}+c_{2} u_{x}^{2}+c_{3} u_{x}+c_{4}, \\
& u_{t}=u_{x x x}-\frac{1}{2} u_{x}^{3}+\left(c_{1} e^{2 u}+c_{2} e^{-2 u}+c_{3}\right) u_{x},
\end{aligned}
$$

where $c_{1}, c_{2}, c_{3}, c_{4}$ are arbitrary constants. In the latter equation we normalize λ to $-1 / 2$ by a scaling. Only these equations have passed through the first two necessary integrability conditions $\left(D_{t}\left(\rho_{1}\right), D_{t}\left(\rho_{2}\right) \in \operatorname{Im}(D)\right)$. Actually all these equations are integrable, i.e. possess infinitely many commuting symmetries, higher conservation laws, have Lax's representations, etc. In this particular case first two integrability conditions proved to be sufficient for the classification.

Example of classification

Integrability conditions for more general equation $u_{t}=u_{x x x}+f\left(x, u, u_{x}, u_{x x}\right)$ are:

$$
\begin{aligned}
& D_{t}\left(\frac{\partial f}{\partial u_{2}}\right)=D_{x} \sigma_{0}, \\
& D_{t}\left(\frac{\partial f}{\partial u_{1}}-\frac{1}{3}\left(\frac{\partial f}{\partial u_{2}}\right)^{2}\right)=D_{x} \sigma_{1} \\
& D_{t}\left(\frac{\partial f}{\partial u}-\frac{1}{3}\left(\frac{\partial f}{\partial u_{2}}\right)\left(\frac{\partial f}{\partial u_{1}}\right)+\frac{2}{27}\left(\frac{\partial f}{\partial u_{2}}\right)^{3}+\frac{1}{3} \sigma_{0}\right)=D_{x} \sigma_{2} \\
& D_{t}\left(\sigma_{1}\right)=D_{x}\left(\sigma_{3}\right) .
\end{aligned}
$$

Difference equations

Quadrilateral equations:

$$
Q\left(u_{0,0}, u_{1,0}, u_{0,1}, u_{1,1}\right) \in \mathbb{C}[u ; \mathcal{S}, \mathcal{T}], \quad J_{Q}=\langle Q ; \mathcal{S}, \mathcal{T}\rangle \subset \mathbb{C}[u ; \mathcal{S}, \mathcal{T}]
$$

Difference fields:

$$
\mathcal{F}_{Q}=\operatorname{Frac}\left(\mathbb{C}[u ; \mathcal{S}, \mathcal{T}] / J_{Q}\right), \quad \mathcal{F}_{\mathbf{s}}=\operatorname{Frac}(\mathbb{C}[u ; \mathcal{S}]), \quad \mathcal{F}_{\mathbf{t}}=\operatorname{Frac}(\mathbb{C}[u ; \mathcal{T}])
$$

Definition

An element $K \in \mathcal{F}_{Q}$ is called a symmetry of the equation $Q\left(u_{0,0}, u_{1,0}, u_{0,1}, u_{1,1}\right)=0$ if in \mathcal{F}_{Q}

$$
Q_{*}(K)=0, \quad Q_{*}=\sum_{i, j \in\{0,1\}} \frac{\partial Q}{\partial u_{i, j}} \mathcal{S}^{i} \mathcal{T}^{j}
$$

Difference equations

Definition

Let A be a formal series of order N

$$
A=a_{N} \mathcal{S}^{N}+a_{N-1} \mathcal{S}^{N-1}+\cdots+a_{1} \mathcal{S}+a_{0}+a_{-1} \mathcal{S}^{-1}+\cdots, \quad a_{k} \in \mathcal{F}_{Q} .
$$

The residue $\operatorname{res}(A)$ and logarithmic residue res $\ln (A)$ are defined as

$$
\operatorname{res}(A)=a_{0}, \quad \operatorname{res} \ln (A)=\ln \left(a_{N}\right) .
$$

Theorem
Let $A=a_{N} \mathcal{S}^{N}+a_{N-1} \mathcal{S}^{N-1} \ldots$ and $B=b_{M} \mathcal{S}^{M}+b_{M-1} \mathcal{S}^{M-1} \cdots$ be two Laurent formal series of order N and M respectively. Then

$$
\operatorname{res}[A, B]=(\mathcal{S}-\mathbf{1})(\sigma(A, B)),
$$

where $\sigma(A, B) \in \mathcal{F}_{Q}$

$$
\sigma(A, B)=\sum_{n=1}^{N} \sum_{k=1}^{n} \mathcal{S}^{-k}\left(a_{-n}\right) \mathcal{S}^{n-k}\left(b_{n}\right)-\sum_{n=1}^{M} \sum_{k=1}^{n} \mathcal{S}^{-k}\left(b_{-n}\right) \mathcal{S}^{n-k}\left(a_{n}\right)
$$

Theorem

If a quadrilateral difference equation possess an infinite sequence of symmetries $K_{n} \in \mathcal{F}_{\mathrm{s}}$ of increasing order $0<\operatorname{ord}_{+}\left(K_{p+1}\right)-\operatorname{ord}_{+}\left(K_{p}\right)=N$ then it has a formal recursion operator \mathfrak{R} of order N.

Theorem

Let $Q\left(u_{0,0}, u_{1,0}, u_{0,1}, u_{1,1}\right)=0$ be a quadrilateral difference equation.
(i) If there exist two s-pseudo-difference operators \mathfrak{R} and \mathfrak{P} such that

$$
Q_{*} \circ \mathfrak{R}=\mathfrak{P} \circ Q_{*},
$$

then \mathfrak{R} is a recursion operator of the difference equation.
(ii) The above relation is valid if and only if

$$
\mathcal{T}(\Re)-\Re=\left[\Phi \circ \Re, \Phi^{-1}\right],
$$

where $\Phi=\left(Q_{u_{1,1}} \mathcal{S}+Q_{u_{0,1}}\right)^{-1} \circ\left(Q_{u_{1,0}} \mathcal{S}+Q_{u_{0}, 0}\right)$, and

$$
\mathfrak{P}=\left(Q_{u_{1,0}} \mathcal{S}+Q_{u_{0}, 0}\right) \circ \mathfrak{R} \circ\left(Q_{u_{1,0}} \mathcal{S}+Q_{u_{0}, 0}\right)^{-1}
$$

Theorem

If a (formal) recursion operator \mathfrak{R} is represented by a first order formal series $\mathfrak{R}=r_{1} \mathcal{S}+r_{0}+r_{-1} \mathcal{S}^{-1}+\cdots$, then

$$
\begin{equation*}
(\mathcal{T}-1)\left(\ln r_{1}\right)=(\mathcal{S}-1) \mathcal{S}^{-1}\left(\ln \frac{Q_{u_{1,1}}}{Q_{u_{1,0}}}\right) \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
(\mathcal{T}-\mathbf{1})\left(r_{0}\right)=(\mathcal{S}-\mathbf{1}) \mathcal{S}^{-1}\left(r_{1} F\right) \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
(\mathcal{T}-\mathbf{1})\left(r_{-1} \mathcal{S}^{-1}\left(r_{1}\right)+r_{0}^{2}+r_{1} \mathcal{S}\left(r_{-1}\right)\right)=(\mathcal{S}-\mathbf{1})\left(\sigma_{2}\right) \tag{iii}
\end{equation*}
$$

where

$$
\begin{aligned}
\sigma_{2}= & \mathcal{S}^{-1}\left(r_{1} F\right)\left\{\mathcal{S}^{-1}\left(r_{0}\right)+r_{0}-\mathcal{S}^{-2}\left(r_{1} F\right)\right\}- \\
& -\left(1+\mathcal{S}^{-1}\right)\left(r_{1} G \mathcal{S}^{-1}\left(r_{1} F\right)\right),
\end{aligned}
$$

and F, G denote

$$
F=\frac{Q_{u_{0,1}} \mathcal{S}^{-1}\left(Q_{u_{1,0}}\right)-Q_{u_{0}, 0} \mathcal{S}^{-1}\left(Q_{u_{1,1}}\right)}{Q_{u_{1,0}} \mathcal{S}^{-1}\left(Q_{u_{1,1}}\right)}, \quad G=\frac{Q_{u_{0}, 0}}{Q_{u_{1,0}}}
$$

Problem 1: Find conditions on $a \in \mathcal{F}_{Q}$, such that the difference equation $a=\mathcal{T}(b)-b$ is solvable in \mathcal{F}_{Q}, and if so find $b \in \mathcal{F}_{Q}$ (same for $\left.a=\mathcal{S}(b)-b\right)$.

Problem 2: Determine whether the kernel spaces $\operatorname{Ker}(\mathcal{T}-\mathbf{1})$ and $\operatorname{Ker}(\mathcal{S}-\mathbf{1})$ are trivial: $\operatorname{Ker}(\mathcal{T}-\mathbf{1})=\operatorname{Ker}(\mathcal{S}-\mathbf{1})=\mathbb{C}$? If not, give a description of these spaces.

Kernel spaces $\operatorname{Ker}(\mathcal{T}-\mathbf{1})$ and $\operatorname{Ker}(\mathcal{S}-\mathbf{1})$ can be nontrivial It depends on the choice of Q. For example, if

$$
Q=u u_{11}-\left(u_{10}-1\right)\left(u_{01}-1\right)
$$

then

$$
\left(\frac{u_{20}}{u_{10}-1}\right)\left(\frac{u-1}{u_{10}}\right) \in \operatorname{Ker}(\mathcal{T}-\mathbf{1})
$$

and \mathcal{F}_{Q} has a nontrivial subfield of \mathcal{T}-constants.
If $a \in \mathcal{F}_{\mathbf{t}}$ the answer is well known:

$$
a \in \operatorname{Im}(\mathcal{T}-\mathbf{1})+\mathbb{C} \Leftrightarrow \sum_{n \in \mathbb{Z}} \mathcal{T}^{-n} \frac{\partial a}{\partial u_{0 n}}=0
$$

element $b \in \mathcal{F}_{\mathbf{t}}$ can be easily found and $\operatorname{Ker}(\mathcal{T}-\mathbf{1})=\mathbb{C}$.

$$
u_{n, m} u_{n+1, m}+u_{n, m+1} u_{n+1, m+1}+u_{n+1, m} u_{n+1, m+1}=0
$$

Canonical conservation laws $\left(\Delta_{m}=\mathcal{T}-1, \Delta_{n}=\mathcal{S}-1\right)$:

$$
\begin{gathered}
\Delta_{m}\left(\log \frac{u_{n, m} u_{n-1, m}}{u_{n+1, m}^{2}}\right)=\Delta_{n}\left(\log \frac{u_{n, m} u_{n-1, m}}{u_{n, m+1}\left(u_{n-1, m}+u_{n, m+1}\right)}\right) \\
\Delta_{m}(\mathcal{S}+1) \frac{u_{n-2, m}}{u_{n, m}}=\Delta_{n}\left(\frac{u_{n, m+1} u_{n-2, m}}{u_{n, m}\left(u_{n-1, m}+u_{n, m+1}\right)}-\frac{u_{n-1, m}}{u_{n, m+1}}-1\right) \\
\Delta_{m}\left\{(\mathcal{S}+1)\left(\frac{u_{n-2, m}^{2}}{u_{n, m}^{2}}+\frac{u_{n-3, m} u_{n-2, m}}{u_{n-1, m} u_{n, m}}\right)+2 \frac{u_{n-2, m} u_{n-1, m}}{u_{n, m} u_{n+1, m}}\right\}=\Delta_{n} \sigma
\end{gathered}
$$

Coefficients of the formal recursion operator

$$
\begin{aligned}
& r_{1}=\frac{u_{n, m} u_{n-1, m}}{u_{n+1, m}^{2}} \\
& r_{0}=(\mathcal{S}+1) \frac{u_{n-2, m}}{u_{n, m}} \\
& r_{-1}=\frac{u_{n-3, m} u_{n, m}}{u_{n-1, m}^{2}}+\frac{u_{n, m}^{2}}{u_{n-2, m} u_{n-1, m}}
\end{aligned}
$$

First symmetry

$$
\frac{\mathrm{d} u_{n, m}}{\mathrm{~d} t_{1}}=\frac{u_{n, m} u_{n-1, m}}{u_{n+1, m}}
$$

Second symmetry

$$
\frac{\mathrm{d} u_{n, m}}{\mathrm{~d} t_{2}}=\frac{u_{n, m} u_{n-1, m}^{2}}{u_{n+1, m}^{2}}+\frac{u_{n-2, m} u_{n-1, m}}{u_{n+1, m}}+\frac{u_{n-1, m} u_{n, m}^{2}}{u_{n+1, m} u_{n+2, m}}
$$

Open problems:

- Foundation of the theory (differential-difference algebra).
- Connection of symmetry approach and Lax-Darboux structure.
- Classification of Lax structures.
- Classification of the corresponding elementary Darboux maps.
- Lenard's scheme for $\mathrm{D} \Delta \mathrm{Es}$ and $\mathrm{P} \Delta \mathrm{Es}$.
- Integrability conditions for non-quadrilateral equations.
- Integrability conditions for systems of $D \Delta E s$ and $P \Delta E s$.
- Classification of integrable $\mathrm{D} \Delta \mathrm{Es}$ of order higher than $(-1,+1)$.
- Classification of integrable $\mathrm{P} \Delta$ Es and system of $\mathrm{P} \Delta \mathrm{Es}$.
- Non-local extensions and non-evolutionary equations.
- Integrability conditions for multi-dimensional equations.
- Differential and difference equations in "non-commutative" cases.
- Theory of normal forms for approximately integrable systems.
- Connection with differential and difference Galois theory.

