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INTEGRABLE SOLITON PDEs
Waves propagating in weakly nonlinear and dispersive media are well
described by integrable soliton equations: KdV, NLS, ... 1) The
Inverse Spectral Transform (IST) is the spectral method allowing one
to solve the Cauchy problem for such PDEs, predicting that a
localized disturbance evolves into a number of soliton pulses +
radiation. Soliton = balance between nonlinearity and dispersion. 2)
Soliton PDEs arise in hierarchies of commuting flows, sharing similar
behavior. 3) Soliton PDEs are in low dimensions.

INTEGRABLE DISPERSIONLESS PDEs
1) Lax pair of integrable dPDEs is made of vector fields⇒ can be in
arbitrary dimensions; 2) Due to the lack of dispersion, dPDEs may
exhibit wave breaking at finite time. 3) A novel IST for vector fields
has been recently developed, to solve the Cauchy problem, allowing,
in particular, to establish if, due to the lack of dispersion, the
nonlinearity of the PDE is “strong enough” to cause the gradient
catastrophe of localized multidimensional disturbances and to study
the analytic details of such a wave breaking. 4)dPDs are intimately
related to Twistor theory.



Commuting vector fields generate integrable PDEs in arbirary
dimensions [Zakharov Shabat ’79]
EXAMPLES
The commutation [L̂1, L̂2] = 0 of the vector fields:

L̂j ≡ ∂tj + λ∂zj + ~uzj · ∇~x , j = 1,2 (1)

is equivalent to the nonlinear vector PDE in N + 4 dimensions
[Manakov-PMS 06]:

~ut1z2 − ~ut2z1 +
(
~uz1 · ∇~x

)
~uz2 −

(
~uz2 · ∇~x

)
~uz1 = ~0, (2)

and its divergenceless reduction ∇~x · ~u = 0.
1) Its deepest scalar Hamiltonian reduction in 2M + 4 dimensions:

θt2z1 − θt1z2 + {θz1 , θz2} = c(t1, t2, z1, z2)

L̂j = ∂tj + λ∂zj + {θzj , ·}

{f ,g} =
M∑

k=1

(fxk gxM+k − fxM+k gxk )

i) the first heavenly equation
N = 2; ∂t1 , ∂t2 = 0, ⇒ {θx1 , θx2}z1,z2 = c(z1, z2) ii) the second
heavenly equation (anti-self-duality + Einstein equations):
N = 2; z1 = x1, z2 = x2 ⇒ θt2x1 − θt1x2 + θx1x1θx2x2 − θ2

x1x2
= c(t1, t2)



Intimately related to SDYM via U → ~u · ∇~x

Li = λ∂zi + ∂ti + Uzi , i = 1,2, [L1,L2] = 0 ⇒

Ut1z2 − Ut2z1 + [Uz1 ,Uz2 ] = 0

Recursion operator [Marvan, Sergyeyev 2012] and bi-Hamiltonian
structures follow directly from those of the SDYM [Bruschi, Levi,
Ragnisco 1981]:

SDYM : Θ1 ≡ ∂z1 , Θ2 ≡ ∂t1 + ad(Uz1 ), Φ ≡ Θ2(Θ1)−1

⇒ R = Θ2(Θ1)−1, Θ2
~f = ~ft1 +

(
~uz1 · ∇~x

)
~f −

(
~f · ∇~x

)
~uz1



2) The system of two nonlinear PDEs in 2 + 1 dimensions [Manakov
and PMS ’06]:

uxt + uyy + (uux )x + vxuxy − vy uxx = 0,
vxt + vyy + uvxx + vxvxy − vy vxx = 0, (3)

commutation condition [L̃1, L̃2] = 0 ∀λ, involving also ∂λ :

L̃1 ≡ ∂y + (λ+ vx )∂x − ux∂λ,

L̃2 ≡ ∂t + (λ2 + λvx + u − vy )∂x + (−λux + uy )∂λ,
(4)

it describes the most general integrable Einstein-Weyl metric
structure [Dunajski ’08; Dunajski,Ferapontov,Kruglikov ’14]
1a) The v = 0 reduction of (3), the celebrated dKP equation

(ut + uux )x + uyy = 0, u = u(x , y , t) ∈ R, x , y , t ∈ R, (5)

describing the evolution of small amplitude, nearly one-dimensional
waves when dispersion and dissipation are negligeable. It is a basic
prototype model in the description of multidimensional wave breaking
[Manakov, PMS 2008].



Commutation condition for a pair of Hamiltonian 2D vector fields:

L̂1 ≡ ∂y + λ∂x − ux∂λ = ∂y + {H1, ·}(λ,x),

L̂2 ≡ ∂t + (λ2 + u)∂x + (−λux + uy )∂λ = ∂t + {H2, ·}(λ,x),

H1 = λ2

2 + u(x , y), H2 = λ3

3 + λu − ∂−1
x uy ,

(6)

dKP hierarchy:

Hntm − Hmtn + {Hm,Hn}(λ,x) = 0, Hn ≡
1
n

(f n)≥0 , (7)

where f is the eigenfunction analytic in a neighborough of λ =∞,
with the expansion:

f = λ+ uλ−1 − ∂−1
x (uy )λ−2 +

∑
j≥3,j∈Z

qjλ
−j , (8)

1b. The u = 0 reduction of (3), the Pavlov equation

vxt + vyy = vy vxx − vxvxy , v = v(x , y , t) ∈ R, x , y , t ∈ R, (9)

associated with the non-Hamiltonian one-dimensional vector fields

L̂1 ≡ ∂y + (λ+ vx )∂x ,

L̂2 ≡ ∂t + (λ2 + λvx − vy )∂x .
(10)



IST for VECTOR FIELDS [Manakov and PMS ’05-06]
Basic example: the dKP system

uxt + uyy = −(uux )x − vxuxy + vy uxx , u, v ∈ R, x , y , t ∈ R,
vxt + vyy = −uvxx − vxvxy + vy vxx

(11)

describing the most general Einstein-Weyl metric, and its Lax pair
formulation L̂1ψ = 0, L̂2ψ = 0, ⇔ [L̂1, L̂2] = 0

L̃1 ≡ ∂y + (λ+ vx )∂x − ux∂λ,

L̃2 ≡ ∂t + (λ2 + λvx + u − vy )∂x + (−λux + uy )∂λ,
(12)

Novel features of the IST for vector fields
Since the Lax pair is made of vector fields (Hamiltonian in the dKP
(v = 0 reductions):
1) The space of eigenfunctions is a ring: if f1, f2 are two eigenf.s, then
an arbitrary differentiable function F (f1, f2) of them is also an eigenf.
2) In the Hamiltonian reductions, the space of eigenfunctions is also a
Lie algebra, whose Lie bracket is the natural Poisson bracket: if f1, f2
are two eigenf.s, then their Poisson bracket {f1, f2} is also an eigenf.



Cauchy problem for rapidly decreasing real 2D waves
L̂1 ≡ ∂y + (λ+ vx )∂x − ux∂λ
If f is a solution of L̂1f = 0, then

f (x , y , λ)→ f±(ξ, λ), y → ±∞,
ξ := x − λy ;

(13)

i.e., asymptotically, f is an arbitrary function of ξ = (x − λy), and λ.
Real (Jost) eigenfunctions ~φ±(x , y , λ):

~φ± ≡
(
φ1±(x , y , λ)
φ2±(x , y , λ)

)
→
(

λ
−λy + x

)
≡ ~ξ, y → ±∞. (14)

intimately related to the system of real ODEs

dx
dy

= λ+ vx (x , y),
dλ
dy

= −ux (x , y) (15)

defining the characteristics of L̂1.



If the potentials (u, v) are sufficiently regular, the solution (x(y), λ(y))
of the ODE (15) exists unique globally in the (time) variable y , with
the following free particle asymptotic behavior

x(y)→ λ±y + x±, λ(y)→ λ±, y → ±∞, (16)

reducing to the asymptotics

x(y)→ λy + x±, λ(y) = λ = constant, y → ±∞, (17)

in the Pavlov reduction u = 0. Once the asymptotics λ±, x± are
constructed in terms of the initial data x0 = x(y0), λ0 = λ(y0) of the
ODE: λ±(x0, y0, λ0), x±(x0, y0, λ0), the real eigenfunctions ~φ±, that
are particular constants of motion of the ODE, are given by

~φ±(x0, y0, λ0) = (x±(x0, y0, λ0), λ±(x0, y0, λ0)). (18)



Another important ingredient of the formalism is given by the complex
eigenfunction ~ψ, defined by the asymptotics

~ψ(y , ~x , λ) ∼ ~ξ, x2 + y2 →∞, λ /∈ R, (19)

analytic for λ /∈ R, having continuous boundary values
~ψ±(x , y , λ), λ ∈ R from above and below the real λ axis, with the
following asymptotics for large complex λ:

~ψ±(x , y , λ) = ~ξ + 1
λ
~U(x , y) + ~O

( 1
λ2

)
, |λ| >> 1,

~U(x , y) ≡
(
−yu(x , y)− v(x , y)

u(x , y)

)
.

(20)



Scattering and spectral data. The y = +∞ limit of ~φ− defines the
natural (y - time) scattering vector ~σ for L̂1:

lim
y→+∞

~φ−(x , y , λ) ≡ ~S(~ξ) = ~ξ + ~σ(~ξ). (21)

Since the space of eigenfunctions is a ring, the eigenfunctions ~ψ± for
λ ∈ R can be expressed in terms of the real eigenfunctions ~φ±, and
this expression defines the spectral data ~χ±β (ξ, λ):

~ψ±(x , y , λ) = ~K±−(~φ−(x , y , λ)) = ~K∓+ (~φ+(x , y , λ)), λ ∈ R,
~K±β (~ξ) ≡ ~ξ + ~χ±β (~ξ), ~ξ = (ξ, λ),

(22)

where ~χ+
β (~ξ) and ~χ−β (~ξ) are analytic wrt the first argument ξ

respectively in the upper and lower halves of the complex ξ - plane,
as a consequence of the analyticity properties of ~ψ±.



Evaluating

~K+
−(~φ−(x , y , λ)) = ~K−+ (~φ+(x , y , λ)), λ ∈ R,
~K±β (~ξ) ≡ ~ξ + ~χ±β (~ξ), ~ξ = (ξ, λ),

(23)

at y = +∞, one obtains the following linear Riemann - Hilbert (RH)
problem with a shift:

~σ(ξ, λ) + ~χ+
−(~ξ + ~σ(ξ, λ))− ~χ−+(ξ, λ) = ~0,

|~χ±β (ξ, λ)| = O(ξ−1), ξ ∼ ∞ (24)

equivalent to a linear Fredholm integral equation, allowing one to
uniquely construct the spectral data ~χ+

− and ~χ−+ from the scattering
data ~σ, under the hypothesis that the mapping ξ → ξ + σ1(ξ, λ) be
invertible.
Reality conditions (from reality of the potentials):

(u, v) ∈ R2 ⇒ ~φ± ∈ R2, ~ψ− = ~ψ+, ~σ ∈ R2, ~χ−α = ~χ+
α , λ ∈ R. (25)



Two inverse problems
The first inversion (the reconstruction of ~φ− from the spectral data
~χ+
−) is provided by the nonlinear integral equation

~φ−(x , y , λ) + Hλ~χ+
−I(

~φ−(x , y , λ) + ~χ+
−R(~φ−(x , y , λ)) = ~ξ, (26)

where ~χ+
−R and ~χ+

−I are the real and imaginary parts of ~χ+
−, and Hλ is

the Hilbert transform operator wrt λ

Hλf (λ) =
1
π

PV

∞∫
−∞

f (λ′)

λ− λ′
dλ′. (27)

Equation (26) expresses the fact that the RHS of (22) for ~ψ+ is the
boundary value of a function analytic in the upper half λ plane.
Once ~φ− is reconstructed from ~χ+

− solving the nonlinear integral
equation (26), equations (22) give ~ψ±, and (u, v) is finally
reconstructed from

u(x , y) = lim
λ→∞

(
λ(ψ−2 (x , y , λ)− λ

)
,

v(x , y) = −yu − lim
λ→∞

(
λ(ψ−1 (x , y , λ)− (x − λy)

)
,

(28)



A second inverse problem can be obtained eliminating the real
eigenfunctions from the first of equations (22) for ~ψ±, obtaing a 2
vector nonlinear RH (NRH) problem on the real line:

ψ+
1 (λ) = R1

(
ψ−1 (λ), ψ−2 (λ)

)
, λ ∈ R,

ψ+
2 (λ) = R2

(
ψ−1 (λ), ψ−2 (λ)

)
,

ψ+
1 (λ) = −yλ+ x + O(λ−1), ψ+

2 (λ) = λ+ O(λ−1), λ ∼ ∞.
(29)

for the RH data ~R, constructed, via algebraic manipulation, from the
spectral data. Once the analytic eigenfunctions are reconstructed
through the solution of the NRH problem (29), the solution of the
nonlinear PDE (3) is obtained from (28). We remark that, in the two
basic reductions, the RH data are constrained as follows:

R2(ζ1, ζ2) = ζ2, Pavlov reduction,
{R1,R2}ζ1,ζ2 = 1, dKP reduction. (30)



Evolution of the spectral data. The evolution of the scattering,
spectral, and RH data is described by the following simple formula
[Manakov,PMS 2006,07]:

Σ1(ξ, λ, t) = Σ1(ξ − λ2t , λ,0) (31)

for the Pavlov equation, and

Σ1(ξ, λ, t) = t
(
Σ2(ξ − λ2t , λ,0)

)2
+ Σ1(ξ − λ2t , λ,0),

Σ2(ξ, λ, t) = Σ2(ξ − λ2t , λ,0)
(32)

for the dKP equation.
We remark that, from the eigenfunctions ~φ±, ~ψ± of L̂1, one can
constructs the common eigenfunctions ~Φ±, ~Ψ± of L̂1 and L̂2 through
the formulae

Φ±1 = φ±1 − t (φ±2)2
, Φ±2 = φ±2,

Ψ±1 = ψ±1 − t
(
ψ±2
)2
, Ψ±2 = ψ±2 ,

(33)



Nonlinear Riemann - Hilbert dressing. Let ~Ψ±(λ) be the solutions of
the following 2 vector NRH problem on the line

~Ψ+(λ) = ~R
(
~Ψ−(λ)

)
, λ ∈ R, (34)

with the normalization

~Ψ±(λ) =

(
−tλ2 − yλ+ x − 2ut

λ

)
+ ~O(λ−1), λ ∼ ∞, (35)

for the RH data ~R(~ζ) = (R1(~ζ),R2(~ζ)), ~ζ ∈ C2. Then ~Ψ±(λ) are
eigenfunctions of L̂j j = 1,2: L̂j ~Ψ

± = ~0, j = 1,2, and one obtains the
following spectral characterization of the solution u:

u = F (x − 2ut , y , t) ∈ R, (36)

where the spectral function F , defined by

F (ξ, y , t) = −
∫
R

dλ
2πi R2

(
Ψ−1 (λ; ξ, y , t),Ψ−2 (λ; ξ, y , t)

)
, (37)

is connected to the initial data via the direct problem [?].



The longtime behavior of dKP solutions
Let t >> 1 and

x = ξ + v1t , y = v2t ,
ξ − 2ut , v1, v2 = O(1), v2 6= 0, t >> 1. (38)

On the parabola

x +
y2

4t
= ξ (v1 = −

v2
2
4

), (39)

the longtime behaviour of the solutions of the dKP equation is given
by

u = 1√
t
G
(

x + y2

4t − 2ut , y
2t

)
(1 + o (1)) ,

G(ξ, η) = − 1
2πi

∫
R

dµR2

(
ξ + µ2 + a1(µ; ξ, η), η + a2(µ; ξ, η)

)
,

(40)

where aj (µ : ξ, η) solve “asymptotic” RH problem on the µ real axes:

~A+(µ; ξ, η) = ~A−(µ; ξ, η) + ~R(~A−(µ; ξ, η)), µ ∈ R,
~A±(µ; ξ, η) =

(
ξ + µ2

η

)
+ ~a(µ; ξ, η).

(41)

Small initial data start evolving according to utx + uyy = 0. Only in the
longtime regime the nonlinear term becomes relevant, causing the
breaking of the small localized initial wave in a point of the parabola.



NO breaking mechanism instead for the the Pavlov equation
[Manakov and PMS 09]
RH INVERSE PROBLEM (Pavlov): R(ζ1, ζ2) ⇒ v(x , y , t)
In the Pavlov reduction:

~R( ~R(~̄ζ)) = ~ζ, ∀~ζ ∈ C2,,

R1(~ζ) = ζ1 ⇒ ψ+
1 (λ) = ψ−1 (λ) = λ ⇒ u = 0

(42)

the nonlinear RH problem becomes scalar for ψ±2 (λ):

Φ+(λ) = R(λ, ψ−(λ)), λ ∈ R (43)

with normalization:

Φ±(λ) = −λ2t − λy + x + O( 1
λ ), (44)

Then
v(x , y , t) =

∫
R

dλ
2πi

R
(
λ,Φ−(λ; x , y , t)

)
. (45)



The IST allows one to show that solutions u(x , y , t) of dKP depend on
x through the combination x − 2ut ; i.e., these solutions can be written
in the characteristic form

u = F (ζ, y , t), ζ = x − 2F (ζ, y , t)t ,,
F (x , y ,0) = u(x , y ,0),

(46)

in analogy with the case of the Riemann equation ut + umux = 0, for
which the dependence of the solution u(x , t) on x is through the
combination x − umt . For this reason, the IST for dKP can be viewed
as a generalization of the method of characteristics. The formulation
(46) becomes explicit in the small field limit

u ∼ ũ(x − 2ut , y , t),
ũxt + ũyy = 0, ũ(x , y ,0) = u(x , y ,0).

(47)

The formulation (46) has allowed one to study in an analytically
explicit way the interesting features of the gradient catastrophe of two
dimensional waves at finite time and in the longtime regime in terms
of the initial data [Manakov,PMS 2008,2011,2012].



Given F from the inverse problem, we solve (46b) wrt ζ : ζ(x , y , t)
and we replace it in (46a), obtaining the solution u = F (ζ(x , y , t), y , t)
of the Cauchy problem for dKP. Therefore the Singularity Manifold
(SM) of dKP is the two - dimensional manifold characterized by the
equation

S(ζ, y , t) ≡ 1 + 2Fζ(ζ, y , t)t = 0; (48)

Since

∇(x,y)u =
∇(ζ,y)F (ζ, y , t)
1 + 2Fζ(ζ, y , t)t

, (49)

the gradient of the wave becomes infinity on the SM, and the wave
“breaks”.
The first time tb at which S = 0 in a point ~ζb = (ζb, yb) of the (ζ, y ) -
plane:

tb ≡ global min ť(ζ, y) = ť(ζb, yb), ⇒ 1 + 2Fζ(~ζb, tb)tb = 0; (50)



conditions characterizing the breaking point (~ζb, tb):

1 + 2tbFζ(~ζb, tb) = 0
Fζ(~ζb, tb) < 0, Fζ(~ζb, tb) + tbFζt (~ζb, tb) < 0,
Fζζ(~ζb, tb) = Fζy (~ζb, tb) = 0,
Fζζζ(~ζb, tb) > 0, β ≡ Fζζζ(~ζb, tb)Fζyy (~ζb, tb)− F 2

ζζy (~ζb, tb) > 0.
(51)

At t = tb the wave breaks in the point ~xb = (xb, yb) of the (x , y) - plane
defined by

xb = ζb + 2F (~ζb, tb)tb. (52)

Therefore, generically, the solution breaks at the finite point (xb, yb, tb)
of space-time; in addition, due to (49), all derivatives of u blow up at
(xb, yb, tb), except the derivative along the “transversal line of
breaking”, characterized by the vector field V̂ = 2Fy t∂x + ∂y , for which

V̂u = Fy . (53)



Now we study the analytic behavior of the dKP solution near
breaking, evaluating the characteristic equations ζ = x − 2F (ζ, y , t)t
in the regime:

x = xb + x ′, y = yb + y ′, t = tb + t ′, ζ = ζb + ζ ′, (54)

where x ′, y ′, t ′, ζ ′ are small, obtaining, at the leading order, the cubic

Cubic(ζ ′; x ′, y ′, t ′) ≡ ζ ′3 + a(y ′)ζ ′2 + b(y ′, t ′)ζ ′ − γX (x ′, y ′, t ′) = 0,
(55)

where

a(y ′) =
3Fζζy
Fζζζ

y ′, b(y ′, t ′) = γ[2(Fζ + tbFζt )t ′ + Fζyy tby ′2],

X (x ′, y ′, t ′) = x ′ − 2F (ζb, y , t)t ′ − 2 [F (ζb, y , t)− F ] tb ∼
x ′ +

Fy
Fζ

y ′ − 2(F + tbFt )t ′ − Fyy
2|Fζ |y

′2 − 2(Fy + tbFyt )y ′t ′ − Fyyy
6|Fζ |y

′3,

γ =
6|Fζ |
Fζζζ

,

(56)
corresponding to the maximal balance

|ζ ′|, |y ′| = O(|t ′|1/2), X = O(|t ′|3/2). (57)



The Function S reads, at the leading order,

S = 2(Fζ + tbFζt )t ′ +
(

Fζζζζ ′
2

+ 2Fζζy y ′ζ ′ + Fζyy y ′2
)

tb. (58)

The solution is therefore described, around the breaking point, by

u = F (ζb + ζ ′, yb + y ′, tb + t ′) ∼ F + Fζζ ′ + Fy y ′ + O(t ′),

Cubic (ζ ′; x ′, y ′, t ′) = 0.
(59)

[Manakov,PMS 2008,2011,2012]

Equivalently, as in 1+1, one eliminates ζ ′, obtaining a cubic for u:

Cubic
(

u − F − Fy y ′

Fζ
; x ′, y ′, t ′

)
= 0. (60)



After breaking. If t > tb (t ′ > 0), the SM in space-time coordinates is
given by the zero discriminant condition ∆(x ′, y ′, t ′) = 0, delimiting a
compact region of the (x,y) plane with two cusp points (x±C (t ′), y±C (t ′)):

y±C (t ′) ≡ ±|Fζ |

√
2Fζζζ
β

√
t ′, (61)

x±C (t ′) ≡ − Fy
Fζ

y±C (t ′) +

(
F +

(
Fy
Fζ

)2
)

t ′ +
Fyy

2|Fζ |y
±
C (t ′)2

+ 2(Fy + tbFyt )y±C (t ′)t ′

+
Fyyy

6|Fζ |y
±
C (t ′)3 − 2

γ

a3(y±C (t′))

27 = ±Fy

√
2Fζζζ
β

√
t ′ + O(t ′),

(62)
Summarizing:

∆(x ′, y ′, t ′) < 0 if y−C (t ′) < y ′ < y+
C (t ′), x−B (y ′, t ′) < x ′ < x+

B (y ′, t ′),
∆(x ′, y ′, t ′) = 0 if y−C (t ′) ≤ y ′ ≤ y+

C (t ′), x ′ = x±B (y ′, t ′),
∆(x ′, y ′, t ′) > 0 otherwise,

(63)

x±B (y ′, t ′) ≡ − Fy
Fζ

y ′ +

(
F +

(
Fy
Fζ

)2
)

t ′ +
Fyy

2|Fζ |y
′2 + 2(Fy + tbFyt )y ′t ′

+
Fyyy

6|Fζ |y
′3 + 2

γ

(
− a(y ′)b(y ′,t′)

18 − a(y ′)
3 Q(y ′, t ′)± |Q(y ′, t ′)|3/2

)
.

(64)



We end this section remarking that, since

x+
B (y ′, t ′)− x−B (y ′, t ′) = O(t ′3/2), (65)

it follows that the transversal width of the three valued region,
estimated by the distance of the two cusps, is O(t ′1/2), while the
longitudinal width is O(t ′3/2). Consequently, the three valued region
develops, from the breaking point (xb, yb), with infinite speed in the
transversal direction, and with zero speed in the longitudinal one.
Typical shapes of the multivalued region for y-symmetric data:



Rigorous aspects of the IST for the Pavlov equation [Grinevich, PMS,
Wu ’14]
In analogy with KP1, f.i., a basic role is played by the real non analytic
eigenfunctions and by the complex analytic ones. But the analogy
ends here.
Indeed the construction and the proof of existence and uniqueness of
KP1 (and of ALL soliton PDEs) eigenfunctions follows from the
standard construction of the corresponding Green’s functions and of
the associated Fredholm integral equations. Since our Lax operators
are vector fields, bounded (Fredholm) operators cannot be
constructed and completely different strategies must be invented to
characterize the eigenfunctions associated with vector fields and
prove their existence and uniqueness.



To avoid extra technicalities, we assume that v0(x , y) = v(x , y ,0) ∈ R
is smooth and has compact support:

v0(x , y) = 0 outside the area − Dx ≤ x ≤ Dx ,−Dy ≤ y ≤ Dy .

Step 1: We construct the Jost functions and the classical scattering
data.
By definition, the Jost functions are solutions of:

Lϕ±(x , y , λ) = 0, L = ∂y + (λ+ vx )∂x ,

such that
ϕ±(x , y , λ)→ x − λy as y → ±∞.

These eigenfunctions are constant on the characteristics, i.e. are
constant on the solutions of the corresponding ODE:

dx
dy

= λ+ vx (x , y).

Consider the solutions of the Cauchy problem: x(y) = x0 at y = y0;
We have the following asymptotic:

x(y)→ λy + x±(x0, y0, λ), y → ±∞.



It is easy to see that

x±(x0, y0, λ)→ x0 − λy0 as y0 → ±∞;

therefore
ϕ±(x0, y0, λ) = x±(x0, y0, λ).

Since ϕ± enumerate the trajectories of L, they are a good basis for
any eigenfunction of L, for λ ∈ R.
The classical scattering amplitude σ(ξ, λ) is defined ξ ∈ R, λ ∈ R as
the function connecting the asymptotics at y → +∞ and y → −∞:

x+(x0, y0, λ) = x−(x0, y0, λ) + σ(x−(x0, y0, λ), λ).

Therefore:

ϕ+(x , y , λ)→ x − λy + σ(x − λy , λ) as y → −∞.

The regularity properties of σ(ξ, λ) follow from the standard ODE
theory.



Step 2: We construct the eigenfunction, analytic in the spectral
parameter.
For complex λ, let us introduce the following complex notations:

z = x − λy , z̄ = x − λ̄y

Equation on the wave function takes the form:

LΦ±(x , y , λ) = 0, L = ∂y + (λ+ vx )∂x .

and can be written as a Beltrami equation:

[∂z̄ + b(z, z̄, λ)∂z ] Φ(z, z̄, λ) = 0,

b(z, z̄, λ) = vx (z,z̄)
2iλI +vx (z,z̄) .

(66)

Since v ∈ R, , |b| < 1 and the Beltrami equ is uniquely solvable
without the small norm assumption; in addition the solution is
holomorphic in λ for Imλ 6= 0.
What happens if | Imλ| → 0?. If the limiting values
Φ±(x , y , λ) = Φ(x , y , λ± ε), λ ∈ R exist, they can be represented as
functions of ϕ±:

Φ−(x , y , λ) = ϕ−(x , y , λ) + χ−(ϕ−(x , y , λ), λ)
= ϕ+(x , y , λ) + χ+(ϕ+(x , y , λ), λ)

(67)

defining the spectral data χ±(ξ, λ).



2D  y |λ |I

ξ

ξ+σ(ξ,λ)

z

If Imλ� 1, Imλ < 0, outside a small neighborhood of the real line in
the z-plane (the support of v ), Φ−z̄ = 0 ⇒ Φ− is holomorphic in z:
Φ−(x , y , λ) = Φ̂(z, λ), and almost constant on the characteristics:

Φ̂(ξ − iε, λ) ∼ Φ̂(ξ + σ(ξ, λ) + iε, λ) (68)

In addition, from (67):

Φ̂(ξ − iε, λ) = Φ−(ξ, λ) = ξ + χ−(ξ, λ), y < −Dy

Φ̂(ξ + iε, λ) = Φ−(ξ, λ) = ξ + χ+(ξ, λ), y > Dy
(69)

Combining these equations, one obtains:



a linear Riemann problem with a shift for the spectral data χ±(ξ, λ):

σ(ξ, λ) + χ+(ξ + σ(ξ, λ), λ)− χ−(ξ, λ) = 0, ξ ∈ R,

where the functions χ±(ξ, λ) are analytic in ξ in the upper half-plane
and in the lower half-plane respectively, with χ±(ξ, λ)→ 0, |ξ| → ∞.

The solution of such a linear RH problem with a shift exists unique
without a small norm assumption

The trivial t-dependence of the scattering and spectral data:

σ(ξ, λ, t) = σ(ξ − λ2t , λ,0),

χ±(ξ, λ, t) = χ±(ξ − λ2t , λ,0),
(70)

is what justifies the IST method



The inverse spectral problem

The equation of the inverse spectral problem is the nonlinear integral
equation:

ψ−(x , y , t , λ)−Hλχ−I
(
ψ−(x , y , t , λ), λ

)
+χ−R

(
ψ−(x , y , t , λ), λ

)
= x−λy−λ2t ,

where χ−R and χ−I denote the real and imaginary parts of χ−
respectively, and Hλ – denotes the Hilbert transform in λ:

Hλf (λ) = 1
πPV

∞∫
−∞

f (λ′)
λ−λ′ dλ

′. In terms of the Hilbert transform

analyticity of χ−(ξ, λ) ξ in the lower half-plane is equivalent to:
χ−R − Hξχ−I = 0, and the solution of the Pavlov equation is
reconstructed via

v(x , y , t) = −1
π

∫
R
χ−I (ψ−(x , y , t , λ), λ) dλ. (71)



Unique solvability of the integral equation of the inverse problem

Theorem
Let the spectral data χ−(ξ, λ) satisfy the following constraints:

1. χ−(ξ, λ), ∂ξχ−(ξ, λ) are differentiable

2.
|∂ξχ−R(ξ, λ)| ≤ 1

4
tan
(π

8

)
, |∂ξχ−I(ξ, λ)| ≤ 1

4
tan
(π

8

)
.

3. For some C > 0

|χ−(ξ, λ)| ≤ C
1 + |λ|

Then for all x , y , t ∈ R, t ≥ 0, the inverse problem integral equation is
uniquely solvable (the integral operator is a contraction) and
ψ(x , y , t , λ) = x − λy − λ2t + ω(x , y , t , λ), where
ω(x , y , t , λ) ∈ L2(dλ) ∩ L∞(dλ).



The inverse problem solves the direct:

Theorem
Assume, that we have the following constraints on the inverse
spectral data χ±(ξ, λ):

1. |∂ξχ−R(ξ, λ)| ≤ 1
4 tan

(
π
8

)
, |∂ξχ−I(ξ, λ)| ≤ 1

4 tan
(
π
8

)
.

2. |∂n
ξχ−(ξ, λ)| ≤ C

1+|λ|2+n , n = 0,1,2,3.

3. |∂n
ξ∂λχ−(ξ, λ)| ≤ C

1+|λ|3+n , n = 0,1,

and denote by ω(x , y , t , λ) = ψ(x , y , t , λ)− (x − λy − λ2t). Then

I Then ωx , ωy , ωt ∈ L2(dλ) ∩ L4(dλ), ωxx , ωxy , ωxt , ωyy ∈ L2(dλ),
they depend continuously on x , y , t , they are uniformly bounded
in R× R× R+, and ψ(x , y , t , λ) satisfies the Lax pair for the
Pavlov equation.



At last:

Theorem
Suppose v0(x , y) is a smooth, compact support, and small norm
initial condition. Then above IST provides a real solution of the
Cauchy problem for the Pavlov equation

vxt + vyy = vy vxx − vxvyy ,
v(x , y ,0) = v0(x , y)

(72)

such that v , vx , vy , vxx , vxy , vyy , vxt ∈ C(R×R×R+)∩L∞(R×R×R+).



What do we mean by “small data” in our problem?
Let us associate the following constants with the Cauchy data

B0 =

+∞∫
−∞

[
max
x∈R
|vx (x , y)|

]
dy ,

B1 = exp

 +∞∫
−∞

[
max
x∈R
|vxx (x , y)|

]
dy

− 1,

B2 =

 +∞∫
−∞

[
max
x∈R
|vxxx (x , y)|

]
dy

 (1 + B1)3,

B3 =

[
+∞∫
−∞

[
max
x∈R
|vxxx (x , y)|

]
dy

]
3(1 + B1)2B2+

+

[
+∞∫
−∞

[
max
x∈R
|vxxxx (x , y)|

]
dy

]
(1 + B1)4,

(73)



B̂0 =

[
+∞∫
−∞

(√
+∞∫
−∞
|vx (x , y)|2dx

)
dy

]
· 1√

1−B1
, (74)

B̂1 =

[
+∞∫
−∞

(√
+∞∫
−∞
|vxx (x , y)|2dx

)
dy

]
· 1+B1√

1−B1
. (75)

Theorem
Assume that

1. v(x , y) = 0 outside the area −Dx ≤ x ≤ Dx , −Dy ≤ x ≤ Dy .

2. B0 ≤ 1
4 ,

3. B1 ≤ 1
2 ,

4. 8B0 + 8B2 + 2
√

2B̂0 < π,

5. 2B1 +
√

2
π (32B1 + 16B̂0) + 1

π (8B3 + 16B2
2 + 56B1 +

16B2
1)
(

B0 + 2
π [2B0 + B̂0]

)
< tan

(
π
8

)
.

Then the unique solubility conditions for the inverse problem are
fulfilled.



What happens, if we consider the inverse problem

ψ−(x , y , t , λ)−Hλχ−I
(
ψ−(x , y , t , λ), λ

)
+χ−R

(
ψ−(x , y , t , λ), λ

)
= x−λy−λ2t ,

with inverse data such that χ−R − Hξχ−I 6= 0?
It can be shown that we obtain the same solutions of the Pavlov
equation, but the normalization of the wave function will be different
from the Jost one at y → −∞.



HOW DO WE DEAL WITH NONLOCALITY OF dPDEs? [Grinevich,
PMS ’15]

(ut + uux )x + uyy = 0, dKP
vxt + vyy + vxvxy − vy vxx = 0, Pavlov

nonlocal evolutionary forms and Cauchy problems:

ut + uux = −∂−1
x uyy , u ∈ R, x , y ,∈ R, t > 0,

u(x , y ,0) given

vt = vxvy − ∂−1
x [vy + v2

x ]y , v ∈ R, x , y ∈ R, t > 0,
v(x , y ,0) given

(76)

∂−1
x is the formal inverse of ∂x , defined up to an arbitrary integration

constant depending on y and t . On the other hand, the IST for
integrable dispersionless PDEs provides us with a unique solution of
the Cauchy problem in which the functions u(x , y ,0), v(x , y ,0) are
assigned, corresponding to a specific choice of such integration
constant.



Result for dKP. 1) The IST formalism corresponds to the following
evolutionary form of the Pavlov equation, for t ≥ 0:

ut (x , y , t) + u(x , y , t)ux (x , y , t) =

∫ +∞

x
uyy (x ′, y , t) dx ′. (77)

2) In addition, for any smooth compact support initial condition and
any t > 0, the solution develops the constraint

∂2
yM(y , t) ≡ 0, where M(y , t) =

∫ +∞

−∞
u(x , y , t) dx (78)

identically in y and t .
This is the first of the so-called Manakov constraints and, to make the
dynamics smoother initially, one can choose the initial condition in
order to satisfy such constraint (it can be easily satisfied by lots of
smooth initial data ..). BUT the more Manakov constraints one
satisfies initially, the less relevant is dKP in applications ..



Result for Pavlov. 1) The IST formalism corresponds to the following
evolutionary form of dKP, for t ≥ 0:

vt (x , y , t) = vx (x , y , t) vy (x , y , t) +

∫ +∞

x
[vy (x ′, y , t) + (vx′(x ′, y , t))2]y dx ′.

(79)
2) In addition, for any smooth compact support initial condition and
any t > 0, the solution develops the constraint

∂yM(y , t) ≡ 0, where M(y , t) =

∫ +∞

−∞

[
vy (x , y , t) + (vx (x , y , t))2] dx ,

(80)
identically in y and t , but, unlike the Manakov constraints for KP and
for dKP, no rapidly decaying smooth initial data can satisfy this
condition at t = 0. Indeed, if we have well-localized Cauchy data,
thenM(y ,0) = const, andM(y ,0)→ 0 for |y | → ∞; therefore
M(y ,0) ≡ 0. On the other hand,

+∞∫
−∞

M(y ,0) dy =

+∞∫
−∞

+∞∫
−∞

(vx (x , y ,0))2 dxdy > 0,

unless vx (x , y ,0) ≡ 0.



Scketch of the proof (in the Pavlov case).

v(x , y , t) = − 1
π

∫
R
χ−I(ψ−(x , y , t , λ), λ)dλ.

vt (x , y , t) = − 1
π

∫
R ∂τχ−I(x − λy − λ2t + ω(x , y , t , λ), λ)ψ−tdλ, t > 0

(81)
For t = 0 the integral repr. of vt diverges and the calculation of vt
requires an additional investigation.

Our strategy is the following:
1) We calculate the t-derivative of v(x , y , t) for t ≥ 0 in what we call
the “leading order approximation”;
2) We show that the correction to the leading order approximation
vanishes for x → ±∞.



The leading order approximation:
1) We replace σ(τ, λ) by the leading term σL(τ, λ) of the 1

λ expansion,
for λ→ ±∞.

σL(τ, λ) =
sign(λ)

λ2 V2

(
− τ
λ

)
. (82)

where

V2(y) =

∞∫
−∞

(−vy − v2
x )(x , y)dx ,

2) The shifted RH problem is replaced by the standard one

χL−(τ, λ)− χL+(τ, λ) = σL(τ, λ), τ ∈ R, (83)

where χL±(τ, λ) are analytic in τ in the upper and lower half-planes
C± respectively, whose solution reads

χL−I(τ, λ) = −
χ2−I

(
− τλ
)

λ2 , (84)

where
χ2−(ζ)− χ2+(ζ) = V2(ζ).



3) We replace the eigenfunction by its normalization in the
representation of v :

vL(x , y , t) = −1
π

∫
R

χL−I(x − λy − λ2t , λ)dλ, (85)

obtaining: ∂tvL(x , y , t) = 0, t ≥ 0, x > 0.
For x < 0:

vL(x , y , t) =
1
|x |π

∞∫
2
√

t|x|

χ2−I (y − z) + χ2−I (y + z)√
1 + 4tx

z2

dz,

∂tvL(x , y , t) =
2
π

∞∫
√

4t|x|

[χ′2−I(y + z)− χ′2−I(y − z)]dz√
z2 − 4t |x |

.

Then

∂tvL(x , y , t)
∣∣
t=0+

=
∫ +∞
−∞ [vy (x ′, y ,0) + (vx ′(x ′, y ,0))2]y dx ′, x < 0.

(86)
We see that, for t = 0+ and x < 0, the function ∂tvL(x , y , t) does not
depend on x . On the contrary, if t > 0, then this function decays at
x → −∞ as O

(
1

(t|x|)3/2

)
.



One can show that, for |x | → ∞, the exact formulas are well
approximated by the leading order formulas, for fixed y , t ≥ 0 and
|x | → ∞:

∂tv(x , y , t)− ∂tvL(x , y , t) = O

(
1√
|x |

)
. (87)

From the Pavlov equation in the non-evolutionary form (76), we see
that ∂tv(x , y , t)

∣∣
t=0+

is constant in x in both intervals x < −Dx and
x > Dx outside the support of the Cauchy data. Taking |x | → ∞, and
using the above equs, we immediately obtain that:

∂tv(x , y , t)
∣∣
t=0+

=

{ ∫ +∞
−∞ [vy (x ′, y ,0) + (vx ′(x ′, y ,0))2]y dx ′, x < −Dx ,

0, x > Dx ,

recall:
vt = vxvy − ∂−1

x [vy + (vx ′)
2]y (88)

which is consistent only with the choice ∂−1
x = −

∫∞
x dx ′. We also

obtain that
∂tv(x , y , t)→ 0, for x → ±∞, t > 0,

and, together with the fact that both ∂xv(x , y , t), ∂xv(x , y , t)→ 0 for
x → ±∞, t > 0, the evolutionary Pavlov, evaluated at x → −∞,
implies the constraintM(y , t) ≡ 0. We remark that, once this
constraint is satisfied, for t > 0, all possible choices of ∂−1

x become
equivalent.



Applications to wave breaking phenomena in Nature. Let us pretend
that the family of nonlinear wave equations [Santucci, PMS 2012]
describes some Physics:

(f (W ))TT = 4W , 4 =
n∑

i=1

∂2
Xi
, W = W (~X ,T ) (89)

For small amplitudes: W = εw , 0 < ε� 1:

f (W ) = f (0) + f ′(0)εw +
1
2

f ′′(0)ε2w2 + · · · (90)

at O(ε), w satisfies the linear wave equation

wTT = c24w , c = 1/
√

f ′(0), if f ′(0) > 0. (91)

If the waves are quasi one-dimensional and we choose X1 as the
direction of propagation, the wave lengths in the trasversal directions
are small: ~k⊥ = εα~κ⊥. Then the dispersion relation becomes

ω = c
√

k2
1 + ~k2

⊥ = ck1

√
1 + ε2α

~κ2
⊥

k2
1
' ck1

(
1 + ε2α

~κ2
⊥

2k2
1

)
, (92)

and the phase of a monochromatic wave reads

~k · ~X − ωT = k1 (X1 − cT ) + εα~κ⊥ · ~X⊥ −
cε2α

2
~κ2
⊥

k2
1

T , (93)

motivating the introduction of the new variables




x = X1 − cT ,
~y = εα~X⊥, yi = Xi+1, i = 1, . . . ,n − 1,
t = ε2α c

2 T .
(94)

In the new variables and imposing α = 1/2 to get the maximal
balance, one obtains, at O(ε2), the dKP equation in n + 1 dims

(ut + uux )x +4⊥u = 0,
u = − c2

2 f ′′(0)w .
(95)

If the term f ′′(0) vanishes, the maximal balance involves the cubic
term and is achieved for α = 1, obtaining the modified dKP:(

ut + u2ux
)

x +4⊥u = 0, (96)

and so on. The relation between the solution W of the nonlinear wave
equation and the dKP solution u:

W (X1, ~X⊥,T ) = εu
(

X1 − cT , ε
m
2 ~X⊥, εm

c
2

T
)

= εu
(
x , ~y , t

)
(97)



The most relevant examples are:
1) Riemann equation for n = 1:

ut + umux = 0 (98)

2) the integrable dKP equation for (m,n) = (1,2):

(ut + uux )x + uyy = 0 (99)

3) the nonintegrable Khokhlov - Zobolotskaya (KZ) equation for
(m,n) = (1,3)

(ut + uux )x + uy1y1 + uy2y2 = 0 (100)

4) the nonintegrable modified dKP (mdKP) equation for
(m,n) = (2,2):

(ut + u2ux )x + uyy = 0 (101)



Are dKP equations good models?

1) Information travels with finite speed for the wave equation, and with
infinite speed for dKP.
2) The wave equation is a second order local PDE, whose solution is
prescribed imposing two initial data: the initial position and
momentum; dKP is a first order nonlocal PDE:

ut + uux −
∞∫

x

uyy dx ′ = 0, (102)

whose solution is prescribed by the initial condition for u;
3) Unlike the wave equation, dKP (as KP) is affected by a non smooth
behavior at t = 0+; f.i., for any smooth initial condition,∫

R
uyy (x ′, y , t)dx ′ = 0, t > 0. (103)

These pathologies can be cured only imposing an infinite set of (the
so-called Manakov) constraints; but the more constraints we impose,
the less interesting is the dKP dynamics from the point of view of
applications ..



Two Cauchy problems for nonlinear waves in which dKP is relevant
(PMS’16, unpublished)

Weak nonlinearity is often achieved in natural phenomena on Earth;

Quasi-one dimensionality can be achieved essentially in two ways:

1) The initial data of the wave equ. are localized in both direction:
W (X ,Y ,0) = εf (X ,Y ), but the wave front is studied far away from the
source. In this case the X direction is the one defined by the positions
of the source and of the observer.
From W (X ,Y ,0) = εu (x ,

√
εy ,0), it corresponds to a Cauchy

problem of dKP for a fastly varying initial condition in the y direction:
u(x , y ,0) = f (x , y√

ε
)



2) The initial data for the wave equation are slowly varying in the
tranversal direction: W (X ,Y ,0) = εf (X ,

√
εY ). In this case, Y is the

transversal direction and X is the direction of propagation (f.i., a plate
pushes itself under another, creating a bump on the water surface,
and the fraction is extended for many Kilometers in the Y direction). It
corresponds to a Cauchy problem of dKP for an initial condition
localized in both directions: u (x , y ,0) = f (x , y), and its solution
requires the full dKP machinery (IST,..).



In the first Cauchy problem for the dKP(m,n) equs

(ut + umux )x +
n−1∑
j=1

uyj yj = 0, dKP(m,n) (104)

a relevant role is played by a family of exact solutions of dKP(m,n)
equs associated with their invariance under transformations on the

paraboloid x +
n−1∑
j=1

y2
j

4t = const (a Lie symmetry) [Manakov, PMS

2011; Santucci, PMS 2012].
Look for sol.s in the form

u = v(ξ, t), ξ = x +
1
4t

n−1∑
i=1

y2
i , (105)

reducing dKP(m,n) to a PDE in 1 + 1 dim.s

vt + vmvξ +
n − 1

2t
v = 0. (106)

Further change of variables

v(ξ, t) = t−
n−1

2 q(ξ, τ(t)),

τ(t) =

{ 1
cm,n

tcm,n + α, if cm,n 6= 0
ln t + β, if cm,n = 0

,
(107)



reduces it to the Riemann equation in the variables (ξ, τ)

qτ + qmqξ = 0. (108)

where
cmn = 1− m(n − 1)

2
. (109)

Therefore dKP(m,n) possesses the family of exact implicit solutions

u = 1

t
n−1

2
F (x +

n−1∑
j=1

y2
j

4t −
1

cmn
umt), cmn 6= 0,

u = 1

t
n−1

2
F (x +

n−1∑
j=1

y2
j

4t − umt log t), cmn = 0,
(110)

describing wave breaking on parabolic wave fronts; after breaking
these solutions are either multivalued or they describe single value
discontinuous shocks of dissipative nature.

For dKP: c12 = 1/2 ; for mdKP: in 2 + 1 dims c22 = 0; for KZ: c13 = 0.



1st Cauchy problem: the initial data are generic localized single
humps; f.i., if the initial momentum is zero and w(X ,Y ,0) = e−X 2−Y 2

snapshots at different times:



snapshots at different times of the Y = 0 section of the wave:

detail of the asymptotic wave front:



m = 1, n = 2; the initial data of the wave equation are localized in
both directions.
For finite T and, in general, T � O(ε−1), we are in the linear regime

wTT = wXX + wYY , w(X ,Y ,T ), X ,Y ∈ R, T ≥ 0,
w(X ,Y ,0) = A(X ,Y ), wT (X ,Y ,0) = B(X ,Y )

(111)

where the initial profile A(X ,Y ) and the initial momentum B(X ,Y ) are
smooth and localized, having in mind the physically relevant case of
generic convex single humps belonging to the Schwarz space.
It is easy to verify that the total mass of (111) grows linearly in time:

M(t) ≡
∫
R2 w(X ,Y ,T )dXdY = M1t + M0,

M0 ≡
∫
R2 A(X ,Y )dXdY , M1 ≡

∫
R2 B(X ,Y )dXdY , (112)

while the total energy is a constant of motion:

E(T ) ≡ 1
2

∫
R2

(
w2

T (X ,Y ,T ) + w2
X (X ,Y ,T ) + w2

Y (X ,Y ,T )
)

dXdY = E(0).

(113)



For the X -mass (the mass of the Y = 0 section)

M̃lin wave(Y ,T ) ≡
∞∫
−∞

w(X ,Y ,T )dX (114)

it is easy to prove the following result:

M̃lin wave(Y ,T )→ M1

2
, as T � 1 and

|Y |
T
→ 0 (115)

faster than any power. In particular, if the initial momentum is zero,
then M1 = 0 and M̃lin wave(Y ,T )→ 0 faster than any power, as t →∞
and |Y |T → 0.
We are now ready to show that the pathologies of linearized dKP are
actually miracles of the asymptotic model. Since

w(X ,Y ,T ) ∼ u(X − T ,
√
εY , εT

2 ),

T = O(ε−1), X − T = O(1), Y = O(ε−
1
2 ),

(116)

where u(x , y , t) satisfies the linearized dKP equation

uxt + uyy = 0 (117)



If w solves the Cauchy problem (111) with B(X ,Y ) = 0, then
M̃(Y ,T )→ 0 as t →∞ faster than any power; correspondingly, as far
as lin dKP is concerned, the x-mass reads

M̃lin dKP(y , t) ≡
∞∫
−∞

u(x , y , t)dx (118)

therefore we have the relation

M̃lin wave(Y ,T ) ∼ M̃lin dKP(y , t),
y =
√
εY , t = εT

2
(119)

from which we infer that, since any t > 0 corresponds to T � 1, the
discontinuity at initial time of the x-mass of linearized dKP is easily
explained by the asymptotic property (115) of (111).

M̃lin dKP(y ,0) ∼ M̃lin wave(Y ,0) 6= 0,
M̃lin dKP(y , t) ∼ M̃lin wave(Y , 2t

ε ) ∼ 0, t > 0.
(120)



If 1� T � O(ε−1); we are still in the linear regime. Applying the
stationary phase method to the Fourier representation of the solution:

w(X ,Y ,T ) = 1
4π2

∫
R2

dK1dK2Â(K1,K2)ei(K1X+K2Y ) cos(
√

K 2
1 + K 2

2 T )

+ 1
4π2

∫
R2

dK1dK2√
K 2

1 +K 2
2

B̂(K1,K2)ei(K1X+K2Y ) sin(
√

K 2
1 + K 2

2 T ),

(121)
where Â and B̂ are the Fourier transforms of A and B:

Â(K1,K2) =
∫
R2 A(X ,Y )e−i(K1X+K2Y )dXdY ,

B̂(K1,K2) =
∫
R2 B(X ,Y )e−i(K1X+K2Y )dXdY ,

(122)

we obtain the asymptotic formula

w ∼ 1√
T

G(R − T , α), T � 1,
X = R cosα, Y = R sinα, R =

√
X 2 + Y 2 = O(T ),

(123)

where

G(ξ, α) ≡
√

2π
∞∫
0

dk
[√

k Re
(

Â(k cosα, k sinα)eikξ−i π4
)

+

1
2
√

k
Re
(

B̂(k cosα, k sinα)eikξ+i π4
)]
,

(124)



Choose, for instance, the gaussian initial condition:

A(x , y) = e−(a2x2+b2y2), B(x , y) = 0, (125)

where a,b are positive O(1) constants; then

Â(k1, k2) =
π

ab
e−
(

k1
2a

)2
−
(

k2
2b

)2

, B̂(k1, k2) = 0, (126)

G(ξ, α) = π3/2

2ab 4
√

C3(α)

[
Γ
( 3

4

)
1F1

(
3
4 ,

1
2 ,−

Z 2

4

)
+

Z
2 Γ
( 5

4

)
1F1

(
5
4 ,

3
2 ,−

Z 2

4

)] (127)

where Γ is the Gamma function, 1F1 is the Kummer confluent
hypergeometric function:

1F1(a; b; z) ≡
∞∑

n=0

(a)nzn

(b)nn! ,

(a)n ≡ a(a + 1)(a + 2) . . . (a + n − 1).
(128)

and

Z ≡ R − T
C(α)

, C(α) ≡
(cosα

2a

)2
+

(
sinα
2b

)2

. (129)



We remark that, if an initial condition is radially symmetric, then the
solution w is radially symmetric ∀T , since the Laplacian is rotation
invariant. In our explicit example (125), the initial condition is radially
symmetric iff a = b. In this case, the coefficient C = 1/(2a2) = 1 (if
a = 1/

√
2) does not depend on α, and the asymptotic solution is

radially symmetric too.

Asymptotic wave front generated by a Gaussian initial condition is
expressed in terms of Kummer special functions.



Going to dKP variables, the circular wave front is approximated by its
osculating parabola with vertex on the X axes:

R − T ∼ x +
y2

4t
; (130)

in addition,

tanα =
Y
X
∼
√
ε

y
2t
∼ α. (131)

It follows that (123) takes the form of asymptotic solution of linearized
dKP:

u(x , y , t) ∼
√
ε√
t
G(x + y2

4t ,
√
ε y

2t ). (132)

Radially symmetric initial conditions lead therefore to the exact
solution

u(x , y , t) ∼
√
ε√
t
G
(

x + y2

4t

)
, (133)

of lin dKP, constant on the parabola x + y2

4t = const .



When T = O(ε−1) we enter the nonlinear regime, and the solution is
well described matching the linear asymptotic formula

u(x , y , t) ∼
√
ε√
t
G(x + y2

4t ,
√
ε y

2t ) (134)

with the dKP exact solution

u =

√
ε√
t
F (x +

y2

4t
− 2ut), (135)

Obtaining

u ∼
√
ε√
t
G(x +

y2

4t
− 2ut ,

√
ε

y
2t

). (136)

Radially symmetric initial data of lead therefore to the exact dKP
solution

u(x , y , t) ∼
√
ε√
t
G
(

x + y2

4t − 2ut
)
, (137)

constant on the parabola x + y2

4t = const . Its characteristic form reads

q =
√
εG(ζ), ζ = ξ −

√
εG(ζ)τ,

ξ = x + y2

4t , τ = 2
√

t , q =
√

tu
(138)

and the solution breaks at ζb = 1.96, τb = 1.49, ξb = 3.27; i.e., at
tb = 0.56, on the parabola x + y2

4tb
= ξb.



The wave front at breaking, corresponding to a Gaussian initial
condition for the nonlinear wave equation, is described in terms of
confluent Kummer functions:



Going back to physical variables, we finally obtain the asymptotic
solution of the nonlinear wave equation

W ∼ ε
√

2
T

G(R − T −WT , α), (139)

where
G(ξ, α) = π3/2

2ab 4
√

C3(α)

[
Γ
( 3

4

)
1F1

(
3
4 ,

1
2 ,−

Y 2

4

)
+

Y
2 Γ
( 5

4

)
1F1

(
5
4 ,

3
2 ,−

Y 2

4

)] (140)

For radially symmetric initial data, the dependence on the angle is
absent and breaking takes place at Tb = 2tb/ = 11.15 on the circle of
radius Rb = Tb + ξb = 14.42.



Analogously, for mdKP and KZ, for which cmn = 1−m(n − 1)/2 = 0:
1) for mdKP (ut + u2ux )x + uyy = 0 the exact solution reads

u =
1√
t
F (x +

y2

4t
− u2t log t)) (141)

and the wave breaking in the physical Cauchy problem is decribed by

W ∼ ε√
T

G(R − T − 1
2

W 2T log(
ε2T
2

), α) (142)

2) for KZ (ut + uux )x + uyy + uzz = 0 the exact solution reads

u =
1
t

F (x +
y2

4t
+

z2

4t
− ut log t) (143)

and the wave breaking in the physical Cauchy problem is decribed by

W ∼ ε

T
G(R − T − 1

2
WT log(

εT
2

), α, β), (144)



Also the asymptotic wave front generated by zero initial position and
gaussian initial momentum is expressed in term of special functions
(Bessel functions):

∞∫
0

dk√
k
e−k2

cos(|X |k + sign(X )π4 ) = 1√
2
e−

X2
8 π
√
|X |×

(I− 1
4
( X 2

8 ) cos(π4 sign(X ))− I 1
4
( X 2

8 ) sin(π4 sign(X ))))

(145)
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SOLVABLE NONLINEAR RH PROBLEMS [Manakov and PMS ’08,
’09, ’11]
Example 1 The invariant product:

ψ+
1 = ψ−1 eif (ψ−1 ψ

−
2 ), ψ+

2 = ψ−1 e−if (ψ−1 ψ
−
2 ), λ ∈ R, (146)

satisfying the symplectic and reality constraints. Then ψ+
1 ψ

+
2 is an

invariant of the RH problem:

ψ+
1 ψ

+
2 = ψ−1 ψ

−
2 = −tλ3 − yλ2 + (x − 3ut)λ− 2yu + 3t ∂−1

x uy ≡W (λ),
(147)

and the NRH problem linearizes and decouples:

ψ+
1 = ψ−1 eif (W (λ)), ψ+

2 = ψ−2 e−if (W (λ)). (148)

Separating the (+) and (-) parts:

ψ+
j ei(−)j f +(λ) = ψ−j ei(−)j f−(λ) = Aj (λ), j = 1,2, (149)

where the analytic functions f±(λ), defined by

f±(λ) ≡ 1
2πi

∫
R

dλ′
λ′−(λ±i0) f (W (λ′)), (150)

exhibit the following asymptotics

f±(λ) ∼ i
∑
n≥1
〈λn−1f 〉λ−n, 〈λnf 〉 ≡ 1

2π

∫
R λ

n(W (λ))dλ, (151)

if f decays faster than any power.



Explicit solution of the NRH problem:

ψ±j = Aj (λ)ei(−)j+1f +(λ), j = 1,2,
A1(λ) ≡ −tλ2 − (y + t < f >)λ+ x − 2ut − y < f > −
t(< λf > + 1

2 < f >2), A2(λ) ≡ λ− < f >,
(152)

NB: W depends on the unknowns u and ∂−1
x uy ; the 1/λ terms of the

expansions of equations (149) yield the algebraic system

q(1)
1 = 2t∂−1

x uy − yu = −(x − 2ut) < f > +y(< f >2 /2+ < λf > +
t(< λ2f > + < f >< λf > + < f >3 /6)),

q(1)
2 = u =< λf > − < f >2 /2.

(153)
for such unknowns u and ∂−1

x uy . They correspond to the following
differential constraint (Lie point symmetry) of dKP
3tut + xux + 2yuy + 2u = 0. Substituting its general solution

u = t−2/3B (x ′, y ′) , x ′ =
x

t1/3 , y ′ =
y

t2/3 , (154)

into dKP, one obtains the similarity reduction of dKP:

Bx′ +
x ′

3
Bx ′x ′ +

2
3

y ′Bx ′y ′ − By ′y ′ − (BBx ′)x ′ = 0. (155)

whose solution is characterized by the algebraic system (153).



Example 2 The invariant sum

ψ+
1 = ψ−1 + iaf (ψ−1 + aψ−2 ),
ψ+

2 = ψ−2 − if (ψ−1 + aψ−2 ), λ ∈ R, (156)

ψ+
1 + aψ+

2 = ψ−1 + aψ−2 = −tλ2 − (y − a)λ+ x − 2ut ≡W (λ), (157)
the NRH problem linearizes and decouples:

ψ+
1 = ψ−1 + iaf (W ), ψ+

2 = ψ−2 − if (W ), λ ∈ R, (158)

its solution:
ψ±1 = −tλ2 − yλ+ x − 2ut + iaf±(λ),
ψ±2 = λ− if±(λ).

(159)

Expanding the above equ.s for large λ, it is possible to express the
coefficients q(n)

1,2 of the asymptotic expansions of ψ±± in terms of the
spectral function f (W ) in the following way:

q(n)
1 = −a < λn−1f >, n ≥ 1,

q(n)
2 =< λn−1f >, n ≥ 1.

(160)

Since W in (157) is function of q(1)
2 = u only, equation (160b) for n = 1

u = 1√
t
F
(

x + (y−a)2

4t − 2ut
)
.

F (z) = 1
2π

∫
R

f (−µ2 + z)dµ. (161)

characterizes the family of solutions associated with the above NRH
problem. It describes a family of solutions of dKP, constant on the
parabola

x +
(y − a)2

4t
= ξ, (162)

and breaking simultaneously in all points of it.



From the particular examples to the general method
The goal is to construct RH probl.s i) possessing an invariant; ii)
satisfying the reality and symplectic constraints.
Solvable nonlinear RH problems Consider an autonomous
Hamiltonian two-dimensional dynamical system with Hamiltonian

H(x) = H(E(x)) (163)

where x ≡ (q,p) are canonically conjugated coordinates, E(x) is a
polynomial function of the coordinates and H(·) is an arbitrary
function of a single argument, corresponding to the equations of
motion

dx
dτ

= H′(E)

(
0 1
−1 0

)
∇xE(x). (164)

Introducing action - angle variables in the usual way:

J ≡ 1
2π

∮
p(q,H)dq, ⇒ H = H(J),

θ − θ0 ≡ ω(J)H′(E)(τ − τ0) = H′(E)
q∫

q0

∂p(q′,H(J))
∂J dq′,

ω(J) ≡ ∂H(J)
∂J ,

(165)

the solution can be found inverting the quadrature (165):

~x = ~D(θ − θ0;~x0, J),
{D1,D2}(q0,p0) = 1 symplectic

(166)



Identifying ~x(τ)→ ~ψ+(λ), ~x(τ0)→ ~ψ−(λ), equation (166) becomes
the two-dimensional vector NRH problem

~ψ+ = ~D
(
ω(J(~ψ−))H′(E(~ψ−)); ~ψ−, J(~ψ−)

)
≡ ~R

(
~ψ−
)

(167)

connecting the (−) and (+) vector functions through the canonical
transformation. E(~x0) = E(~x) → E(~ψ−) = E(~ψ+), “invariant” of the
NRH problem (167). Since E(~ψ) is a polynomial function of its
arguments, equation E(~ψ−) = E(~ψ+) define a polynomial in λ:

E(~ψ−(λ)) = E(~ψ+(λ)) ≡W (λ;~qN1
1 , ~qN2

2 ), (168)

given by the polynomial part of the asymptotic expansion of E(~ψ±) for
large λ, depending on a finite number of coefficients
~qN1

1 = (q1
1 , . . . ,q

N1
1 ), ~qN2

2 = (q1
2 , . . . ,q

N2
2 ) of the expansion. Since E is

a real function of its arguments⇒W (λ̄) = W (λ)⇒

H′(·) = if (·). (169)



Define

θ±(λ) ≡ 1
2πi

∫
R

dλ′
λ′−(λ±i0)

(
iω(J(~ψ−(λ′)))f (W (λ′))

)
(λ′),

θ±(λ;~qN1
1 , ~qN2

2 ) ≡ −
∑
n≥1

〈λn−1ωf〉
λn , |λ| >> 1,

〈λng〉 ≡ 1
2π

∫
R λ

ng(λ)dλ

(170)

so that iωf = θ+ − θ−, the RH problem becomes

~D(−θ+;ψ+, J(ψ+)) = ~D(−θ−;ψ−, J(ψ−)), (171)

and provides the solution of the problem if ~D is formally expandible,
for large λ, in Laurent series with a finite number of positive powers:

~D(−θ±(λ;~qN1
1 , ~qN2

2 ); ~ψ±, J(~ψ±)) = ~A(λ)
~A(λ;~qN1

1 , ~qN2
2 ) =

(
~D(−θ±(λ;~qN1

1 , ~qN2
2 ); ~ψ±, J(~ψ±))

)
+

polynomial

(172)
Since the negative power part of such expansion is absent, the
corresponding coefficients are zero; the first N1 + N2 of such
equations for the first and second component of ~D define a closed
system of algebraic equations for the unknown fields (~qN1

1 , ~qN2
2 ),

providing the wanted integration of the target nonlinear PDE.



Increasing the richness of the solution space
Let ψ±1,2 be the solutions of the above solvable NRH problem,
satisfying the usual asymptotics:

ψ±1 (λ) = −λ2t − λy + x − 2tq(1)
2 +

∑
n≥1

q(n)
1
λn ,

ψ±2 (λ) = λ+
q(1)

2
λ +

∑
n≥2

q(n)
2
λn , q(1)

2 = u.
(173)

then arbitrary differentiable functions of (ψ±1 , ψ
±
2 ) are also solutions.

The first transformation: ψ(1)±
1 ≡ ψ±1 + a1f (1)

(
ψ±2
)
, ψ

(1)±
2 ≡ ψ±2

where a1 ∈ R and f (1) is an arbitrary real function of one variable, is
triangular, invertible, symplectic and preserves the reality constraint
⇒ ψ

(1)±
1,2 are also canonically conjugated solutions satisfying the

reality constraint.
The second transformation:
ψ

(2)±
1 ≡ ψ(1)±

1 , ψ
(2)±
2 ≡ ψ(1)±

2 + a2f (2)
(
ψ

(1)±
1

)
has the same properties. Alternating the two transformations, at the
mth step, one constructs canonically conjugated solutions ψ(m)±

1,2
satisfying the reality constraint, and parametrized by (m + 1) arbitrary
real functions f , f (1), . . . , f (m) of a single argument.



Example: the invariant ψ+
1 + a(ψ+

2 )n, n ∈ N+

example of solvable volume preserving RH data:

R1(~ζ) = ζ1 + if (ζ2), R2(~ζ) = ζ2 (174)

Elementary transformation:

ψ
(1)±
1 ≡ ψ±1 , ψ

(1)±
2 ≡ ψ±2 + a(ψ±1 )N , (f (1)(ζ) = ζN) (175)

Then:

ψ+
1 = ψ−1 − if (ψ−2 + aψ−1

n
), λ ∈ R,ψ+

2 + aψ−1
n

= ψ−2 + aψ−1
n

(176)
Invariance equation ψ+

2 + aψ+
1

n
= ψ−2 + aψ−1

n
=

−tλ2 − yλ+ x − 2ut + a
((
ψ−1
)n
)

+
≡W (λ),

ψ±1 = λ− if±(λ), ψ±2 = W (λ)− aψ±1
n
,

f±(λ) ≡ 1
2πi

∫
R

dλ′
λ′−(λ±i0) f (W (λ′)),

f±(λ) ∼ i
∑
n≥1
〈λn−1f 〉λ−n, 〈λnf 〉 ≡ 1

2π

∫
R λ

nf (W (λ))dλ,
(177)

Equation (177a) for |λ| >> 1 yields q(n)
1 =< λn−1f >, n ≥ 1.

Since W depends on the (n− 1) unknowns u,q(n)
2 , n = 2, . . . ,n− 1, it

is an algebraic system of (n−1) equ.s characterizing a family of impli-
cit solutions of dKP parametrized by the arbitrary real function f (·).



The corresponding differential constraint:((
ψ±2 + aψ±1

n
)
−1

)
x

= yux − 2tuy + anutn = 0

where utn is the nth flow of the dKP hierarchy.
If n = 1,2, one gets the known solution:

u = q(1)
2 = 1√

t
F
(

x + (y−a)2

4t − 2ut
)
,

F (z) = 1
2π

∫
R

f (−µ2 + z)dµ (178)



If n = 3, in the longtime regime and for |a| � 1:

u ∼ 1√
τ3

F (ξ − aη3 − 2uτ3),

τ3 = t + 3aη, η = y/2t ,
η = O(1), ξ − aη3 − 2uτ3 = O(1), t � 1, |a| � 1,

(179)

Known the first breaking time τb from the well known formula

τb = 1
4F ′(ζb)2 = minζ∈R 1

4F ′(ζ)2 , F ′(ζb) < 0, (180)

If a > 0, the first breaking takes place when tb ∼ −∞ at yb ∼ −∞,
outside the asymptotic region of validity of our approximation,
travelling towards the inner region along the wave front. Now let t be
close to τb; then:

y =
2

3a
t(τb − t) ∼ 2

3a
τb(τb − t), (181)

implying that, in the asymptotic region (179), the breaking point
moves approximately with the constant speed 2τb/(3a) along the
wave front.



If n = 4, then

u ∼ 1√
τ4

F (ξ + aη4 − 2uτ4),

τ4 = t − 6aη2,
η = O(1), ξ + aη4 − 2uτ4 = O(1), t � 1, 0 < a� 1.

(182)

If the graph of F (z) is a single positive hump, it describes, before
breaking, a saddle wave front with saddle point (ζ0 + 2F (ζ0)/

√
t ,0),

where ζ0 is the maximum of the hump: F ′(ζ0) = 0.
Known the first breaking time τb as before, the first (physical)
breaking time tb is achieved at yb = 0 (ηb = yb/2tb = 0) and
coincides with τb, while xb follows from xb = ζb + 2F (ζb)

√
tb.
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The basic examples generated for N = 2 have natural generalizations
in higher dimensions. For example, the following volume preserving
NRH problems are solvable:

ψ+
j = ψ−j eifj (

∏
k ψ
−
k ), j = 1, . . . ,N,∑

j fj = 0 ⇒
∏

k ψ
−
k =

∏
k ψ

+
k is invariant

(183)

ψ+
j = ψ−j + ifj (

∑
k ψ
−
k ), j = 1, . . . ,N,∑

j fj = 0 ⇒
∑

k ψ
−
k =

∑
k ψ

+
k is invariant (184)

Once we have constructed a solvable volume preserving NRH
problem, it is possible to introduce a systematic procedure to
increase the richness of the solution space of the integrable PDE,
generalizing the procedure presented in [Manakov and PMS 2011].
Consider the triangular transformation

ψ̃±1 = ψ±1 ,

ψ̃±2 = ψ±2 + f (1)
2 (ψ±1 ),

ψ̃±3 = ψ±3 + f (1)
3 (ψ±1 , ψ

±
2 ),

...,
ψ̃±N = ψ±N + f (1)

N (ψ±1 , . . . , ψ
±
N−1)

(185)



where the functions f (1)
j , j = 2, . . . ,N are entire (polynomial). Then:

i) the transformation is invertible, and the inverse is also entire
(polynomial);
ii) the Jacobian of the transformation is 1.
This tranformation can be combined with other triangular
transformations of the same type, like, for instance:

˜̃ψ±2 = ψ̃±2 ,
˜̃ψ±3 = ψ±3 + f (2)

3 (ψ̃±2 ),
˜̃ψ±4 = ψ±4 + f (2)

4 (ψ̃±2 , ψ̃
±
3 ),

...,
˜̃ψ±1 = ψ̃±1 + f (2)

1 (ψ̃±2 , . . . , ψ
±
N )

(186)

Let ~T (ψ±) be an arbitrary combination of triangular, invertible and
volume preserving transformations of this type, depending on an
arbitrary functions of one, two, .., N − 1 arguments. The
normalization of ~T (ψ−):

~T (ψ−) = ~µ(λ) + O(λ−1), λ ∼ ∞ (187)

in particular, follows from the definition of ~T (ψ±). Let ~G be a solvable
volume preserving NRH problem associated with a set of invariants
{I(~ψ)}.



Then the NRH problem

~T (ψ+) = ~G(~T (ψ−)),
~T (ψ−) = ~µ(λ) + (λ−1), λ ∼ ∞

(188)

can also be solved in terms of the invariants {I(~T (~ψ))}. Then ~ψ±,
solution of the volume preserving NRH problem

~ψ+ =
(
~T −1 ◦ ~G ◦ ~T

)
~ψ−, (189)

can be directly constructed from ~T (ψ±) inverting such a
transformation. As a result of this procedure, the solution of the
nonlinear PDE depend on a large number of arbitrary functions of
several variables. The same procedure applies also to the case of
solvable generalized volume preserving NRH problems.
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