# Integrable background geometries: review and outlook 

David M. J. Calderbank

University of Bath
Durham, 2016

SIGMA 10 (2014), arXiv:1403.3471

# Integrable background geometries: review and outlook 

David M. J. Calderbank

University of Bath
Durham, 2016

SIGMA 10 (2014), arXiv:1403.3471
Apologia

- (Hitchin) Integrability is like jazz: if you have to ask what it is, you will never know.


# Integrable background geometries: review and outlook 

David M. J. Calderbank

University of Bath
Durham, 2016

SIGMA 10 (2014), arXiv:1403.3471
Apologia

- (Hitchin) Integrability is like jazz: if you have to ask what it is, you will never know. This makes me tone deaf.


# Integrable background geometries: review and outlook 

David M. J. Calderbank

University of Bath

Durham, 2016

SIGMA 10 (2014), arXiv:1403.3471
Apologia

- (Hitchin) Integrability is like jazz: if you have to ask what it is, you will never know. This makes me tone deaf.
- Attempt to collect and organise examples (taxonomy).
- Focus on integrable systems related to twistor theory (Ward).
- Mostly old ideas (original article on webpage in 2001).
- Very many contributors over the years... can only name a few.


## Plan

Aim to address a key issue: what is the geometry of reductions of SDYM? Main contentions:

- It does not suffice to restrict to SDYM on flat $\mathbb{R}^{4}$
- Instead SDYM and reductions are defined over background geometries in dimension $\leq 4$
- Background geometries are themselves solutions of (dispersionless) integrable systems


## Plan

Aim to address a key issue: what is the geometry of reductions of SDYM? Main contentions:

- It does not suffice to restrict to SDYM on flat $\mathbb{R}^{4}$
- Instead SDYM and reductions are defined over background geometries in dimension $\leq 4$
- Background geometries are themselves solutions of (dispersionless) integrable systems
Proceed by dimension (and history)

4. Dimension four: selfduality, twistor theory and integrability
5. Dimension three: Einstein-Weyl geometry and monopoles
6. Dimension two: spinor vortices and Higgs bundles
7. Dimension one: Riccati spaces and isomonodromy

0 . Null reductions: projective surfaces and twisted flat pencils
-1. Higher dimensions: quaternionic geometries and reductions

## Plan

Aim to address a key issue: what is the geometry of reductions of SDYM? Main contentions:

- It does not suffice to restrict to SDYM on flat $\mathbb{R}^{4}$
- Instead SDYM and reductions are defined over background geometries in dimension $\leq 4$
- Background geometries are themselves solutions of (dispersionless) integrable systems
Proceed by dimension (and history)

4. Dimension four: selfduality, twistor theory and integrability
5. Dimension three: Einstein-Weyl geometry and monopoles
6. Dimension two: spinor vortices and Higgs bundles
7. Dimension one: Riccati spaces and isomonodromy

0 . Null reductions: projective surfaces and twisted flat pencils
-1. Higher dimensions: quaternionic geometries and reductions

## 4. Selfdual Yang-Mills (SDYM)

$G$-connection $D$ on a vector bundle $V$ over $M=$ affine 4 -space

- $T M=M \times \mathbb{C}^{4}$ with coordinate vector fields $\partial_{1}, \partial_{2}, \partial_{3}, \partial_{4}$
- Trivialize $V \cong M \times \mathbb{C}^{k}, D_{i}=\partial_{i}+A_{i}$, for $A_{i} \in \mathfrak{g} \subseteq \operatorname{End}\left(\mathbb{C}^{k}\right)$
- Curvature $F_{i j}=-F_{j i}=\left[D_{i}, D_{j}\right]=\partial_{i} A_{j}-\partial_{j} A_{i}+\left[A_{i}, A_{j}\right]$


## 4. Selfdual Yang-Mills (SDYM)

$G$-connection $D$ on a vector bundle $V$ over $M=$ affine 4 -space

- $T M=M \times \mathbb{C}^{4}$ with coordinate vector fields $\partial_{1}, \partial_{2}, \partial_{3}, \partial_{4}$
- Trivialize $V \cong M \times \mathbb{C}^{k}, D_{i}=\partial_{i}+A_{i}$, for $A_{i} \in \mathfrak{g} \subseteq \operatorname{End}\left(\mathbb{C}^{k}\right)$
- Curvature $F_{i j}=-F_{j i}=\left[D_{i}, D_{j}\right]=\partial_{i} A_{j}-\partial_{j} A_{i}+\left[A_{i}, A_{j}\right]$

SDYM equations: $\quad F_{12}=0=F_{34}, \quad F_{14}=F_{23}$
$\Leftrightarrow\left[L_{1}, L_{2}\right]=0$ for Lax pair $L_{1}=D_{1}+\zeta D_{3}, L_{2}=D_{2}+\zeta D_{4}$

- $\partial_{1}+\zeta \partial_{3}, \partial_{2}+\zeta \partial_{4}$ commute and span null planes for (conformal class of) metric $d x_{1} d x_{4}-d x_{2} d x_{3}$


## 4. Selfdual Yang-Mills (SDYM)

$G$-connection $D$ on a vector bundle $V$ over $M=$ affine 4 -space

- $T M=M \times \mathbb{C}^{4}$ with coordinate vector fields $\partial_{1}, \partial_{2}, \partial_{3}, \partial_{4}$
- Trivialize $V \cong M \times \mathbb{C}^{k}, D_{i}=\partial_{i}+A_{i}$, for $A_{i} \in \mathfrak{g} \subseteq \operatorname{End}\left(\mathbb{C}^{k}\right)$
- Curvature $F_{i j}=-F_{j i}=\left[D_{i}, D_{j}\right]=\partial_{i} A_{j}-\partial_{j} A_{i}+\left[A_{i}, A_{j}\right]$

SDYM equations: $\quad F_{12}=0=F_{34}, \quad F_{14}=F_{23}$
$\Leftrightarrow\left[L_{1}, L_{2}\right]=0$ for Lax pair $L_{1}=D_{1}+\zeta D_{3}, L_{2}=D_{2}+\zeta D_{4}$

- $\partial_{1}+\zeta \partial_{3}, \partial_{2}+\zeta \partial_{4}$ commute and span null planes for (conformal class of) metric $d x_{1} d x_{4}-d x_{2} d x_{3}$
- Can also view $\mathbb{C}^{4} \cong \mathbb{C}^{2} \otimes \mathbb{C}^{2}$ with $\partial_{1}+\zeta \partial_{3}=(1,0) \otimes(1, \zeta)$ and $\partial_{2}+\zeta \partial_{4}=(0,1) \otimes(1, \zeta)$; null planes are $\mathbb{C}^{2} \otimes(1, \zeta)$
- Take $\zeta \in \mathbb{C} P^{1}=\mathbb{C} \cup \infty$ : have rank 2 integrable distribution on $M \times \mathbb{C} P^{1}$; twistor space $\mathbb{T}$ is 3 -diml space of leaves
- Have $M \stackrel{\pi}{\longleftrightarrow} M \times \mathbb{C} P^{1} \xrightarrow{\alpha} \mathbb{T}$ and $\pi^{*} V \cong \alpha^{*} W$ for vector bundle $W \rightarrow \mathbb{T}$ s.t. $\forall x \in M, W$ is trivial on $\alpha\left(\pi^{-1}(x)\right)$


## 4. Selfdual 4-manifolds and their twistor spaces

Generalize to $M$ with $T M=E \otimes H$, for $E \rightarrow M, H \rightarrow M$ rank 2

- Locally $E \cong M \times \mathbb{C}^{2}, H \cong M \times \mathbb{C}^{2}$ and have vector fields $V_{1}+\zeta V_{3} \leftrightarrow(1,0) \otimes(1, \zeta)$ and $V_{2}+\zeta V_{4} \leftrightarrow(0,1) \otimes(1, \zeta)$
- Key requirement: there are lifts of these vector fields to $P(H) \cong M \times \mathbb{C} P^{1}$ which span an integrable distribution


## 4. Selfdual 4-manifolds and their twistor spaces

Generalize to $M$ with $T M=E \otimes H$, for $E \rightarrow M, H \rightarrow M$ rank 2

- Locally $E \cong M \times \mathbb{C}^{2}, H \cong M \times \mathbb{C}^{2}$ and have vector fields $V_{1}+\zeta V_{3} \leftrightarrow(1,0) \otimes(1, \zeta)$ and $V_{2}+\zeta V_{4} \leftrightarrow(0,1) \otimes(1, \zeta)$
- Key requirement: there are lifts of these vector fields to $P(H) \cong M \times \mathbb{C} P^{1}$ which span an integrable distribution
- Twistor space $Z$ is space of leaves, so have double fibration

- Key property: $M$ is moduli space of "twistor lines"; for $x \in M$, $\alpha\left(\pi^{-1}(x)\right) \cong \mathbb{C} P^{1}$ in $Z$, with normal bundle $\mathcal{O}(1) \otimes \mathbb{C}^{2}$


## 4. Selfdual 4-manifolds and their twistor spaces

Generalize to $M$ with $T M=E \otimes H$, for $E \rightarrow M, H \rightarrow M$ rank 2

- Locally $E \cong M \times \mathbb{C}^{2}, H \cong M \times \mathbb{C}^{2}$ and have vector fields $V_{1}+\zeta V_{3} \leftrightarrow(1,0) \otimes(1, \zeta)$ and $V_{2}+\zeta V_{4} \leftrightarrow(0,1) \otimes(1, \zeta)$
- Key requirement: there are lifts of these vector fields to $P(H) \cong M \times \mathbb{C} P^{1}$ which span an integrable distribution
- Twistor space $Z$ is space of leaves, so have double fibration

- Key property: $M$ is moduli space of "twistor lines"; for $x \in M$, $\alpha\left(\pi^{-1}(x)\right) \cong \mathbb{C} P^{1}$ in $Z$, with normal bundle $\mathcal{O}(1) \otimes \mathbb{C}^{2}$
- Can solve generalization of SDYM to $V \rightarrow M$ via $W \rightarrow Z$ with $\left.W\right|_{\alpha\left(\pi^{-1}(x)\right)}$ trivial on each twistor line
- If this works, say $M$ (and $E, H$ ) is an integrable background geometry (IBG) for SDYM


## 4. Smörgåsbord of recipes

Heavenly hermeneutics

- Commuting independent vector fields $V_{1}+\zeta V_{3}$ and $V_{2}+\zeta V_{4}$ on $M$ make it into an IBG (Mason-Newman, Joyce, Dunajski)
- If $V_{j}$ are volume preserving (divergence-free), $M$ carries a selfdual vacuum Einstein (SDVE) metric (Plebanski).


## 4. Smörgåsbord of recipes

Heavenly hermeneutics

- Commuting independent vector fields $V_{1}+\zeta V_{3}$ and $V_{2}+\zeta V_{4}$ on $M$ make it into an IBG (Mason-Newman, Joyce, Dunajski)
- If $V_{j}$ are volume preserving (divergence-free), $M$ carries a selfdual vacuum Einstein (SDVE) metric (Plebanski).
- Gibbons-Hawking: can construct SDVE metrics from solutions of $U(1)$ monopole equations $* d f=d A$ on $\mathbb{R}^{3}$
- Ward: can also use solutions of Hitchin equations on $\mathbb{R}^{2}$ or Nahm equations on $\mathbb{R}$, provided gauge group is contained in volume preserving diffeomorphisms of $\Sigma^{2}$ or $\Sigma^{3}$ respectively


## 4. Smörgåsbord of recipes

Heavenly hermeneutics

- Commuting independent vector fields $V_{1}+\zeta V_{3}$ and $V_{2}+\zeta V_{4}$ on $M$ make it into an IBG (Mason-Newman, Joyce, Dunajski)
- If $V_{j}$ are volume preserving (divergence-free), $M$ carries a selfdual vacuum Einstein (SDVE) metric (Plebanski).
- Gibbons-Hawking: can construct SDVE metrics from solutions of $U(1)$ monopole equations $* d f=d A$ on $\mathbb{R}^{3}$
- Ward: can also use solutions of Hitchin equations on $\mathbb{R}^{2}$ or Nahm equations on $\mathbb{R}$, provided gauge group is contained in volume preserving diffeomorphisms of $\Sigma^{2}$ or $\Sigma^{3}$ respectively
Bait and switch map (aka "lets twist again"). Suppose:
- $M$ is an IBG
- $G$ acts freely on $M$ preserving structure of $T M=E \otimes H$
- $P$ is a principal $\tilde{G}$-bundle, with $\operatorname{dim} \tilde{G}=\operatorname{dim} G$
- $P$ admits a $\tilde{G}$-connection solving SDYM

Then $P / G$ is an IBG (with a free action of $\tilde{G}$ preserving structure).

## 4. What is going on?

- Suppose $G$ acts freely on $M$, an IBG (for SDYM)
- SDYM on $M$ reduces to a gauge field equation on $Q=M / G$
- There is an IBG on $Q$ for this gauge field equation, independent of $G(!)$.


## 4. What is going on?

- Suppose $G$ acts freely on $M$, an IBG (for SDYM)
- SDYM on $M$ reduces to a gauge field equation on $Q=M / G$
- There is an IBG on $Q$ for this gauge field equation, independent of $G(!)$.
- Conversely, from an IBG $Q$ in dimension $k$, there is a construction of IBGs in dimension $\ell>k$ from solutions of the gauge field equation on $Q$ with structure group $G$ acting on manifold of dimension $\ell-k$.


## 4. What is going on?

- Suppose $G$ acts freely on $M$, an IBG (for SDYM)
- SDYM on $M$ reduces to a gauge field equation on $Q=M / G$
- There is an IBG on $Q$ for this gauge field equation, independent of $G(!)$.
- Conversely, from an IBG $Q$ in dimension $k$, there is a construction of IBGs in dimension $\ell>k$ from solutions of the gauge field equation on $Q$ with structure group $G$ acting on manifold of dimension $\ell-k$.

Such a coherent picture cannot be obtained without admitting the most general IBGs. In particular, for SDYM, we must admit that the relevant lifts of $V_{1}+\zeta V_{3}$ and $V_{2}+\zeta V_{4}$ differ from the coordinate lifts by multiples of $\partial_{\zeta}$, i.e., derivatices with respect to the spectral parameter. The appearance of such derivatives is a hallmark of dispersionless integrable systems: IBGs belong here.

## 4. What is going on?

- Suppose $G$ acts freely on $M$, an IBG (for SDYM)
- SDYM on $M$ reduces to a gauge field equation on $Q=M / G$
- There is an IBG on $Q$ for this gauge field equation, independent of $G(!)$.
- Conversely, from an IBG $Q$ in dimension $k$, there is a construction of IBGs in dimension $\ell>k$ from solutions of the gauge field equation on $Q$ with structure group $G$ acting on manifold of dimension $\ell-k$.

Such a coherent picture cannot be obtained without admitting the most general IBGs. In particular, for SDYM, we must admit that the relevant lifts of $V_{1}+\zeta V_{3}$ and $V_{2}+\zeta V_{4}$ differ from the coordinate lifts by multiples of $\partial_{\zeta}$, i.e., derivatices with respect to the spectral parameter. The appearance of such derivatives is a hallmark of dispersionless integrable systems: IBGs belong here.
Rest of the talk: illustrate this in each dimension.

## 3. Einstein-Weyl spaces and Jones-Tod constructions

- If an IBG $M$ (for SDYM) odmits a free nondegenerate conformal $U(1)$ action then $B=M / U(1)$ is an Einstein-Weyl 3-manifold, i.e., $\operatorname{Ric}_{o}^{\nabla}=0$ for a torsion-free conformal connection $\nabla$ on $B$
- The symmetry reduction of the SDYM equation to $B$ is the Bogomolny (BPS) monopole equation $* D^{\nabla} \phi=F^{A}$


## 3. Einstein-Weyl spaces and Jones-Tod constructions

- If an IBG $M$ (for SDYM) odmits a free nondegenerate conformal $U(1)$ action then $B=M / U(1)$ is an Einstein-Weyl 3-manifold, i.e., $\operatorname{Ric}_{o}^{\nabla}=0$ for a torsion-free conformal connection $\nabla$ on $B$
- The symmetry reduction of the SDYM equation to $B$ is the Bogomolny (BPS) monopole equation $* D^{\nabla} \phi=F^{A}$
- Conversely if $(A, \phi)$ is a solution of the monopole equation on $(B, \nabla)$, where the gauge group is a subgroup of the diffeomorphisms of a 1-manifold, then the associated bundle of 1-manifolds is an IBG for SDYM
- Constructions are mutually inverse when gauge group is $U(1)$


## 3. Einstein-Weyl spaces and Jones-Tod constructions

- If an IBG $M$ (for SDYM) odmits a free nondegenerate conformal $U(1)$ action then $B=M / U(1)$ is an Einstein-Weyl 3-manifold, i.e., $\operatorname{Ric}_{o}^{\nabla}=0$ for a torsion-free conformal connection $\nabla$ on $B$
- The symmetry reduction of the SDYM equation to $B$ is the Bogomolny (BPS) monopole equation $* D^{\nabla} \phi=F^{A}$
- Conversely if $(A, \phi)$ is a solution of the monopole equation on $(B, \nabla)$, where the gauge group is a subgroup of the diffeomorphisms of a 1-manifold, then the associated bundle of 1-manifolds is an IBG for SDYM
- Constructions are mutually inverse when gauge group is $U(1)$
- Special cases: Gibbons-Hawking; LeBrun hyperbolic Ansatz
- When $M$ is SVDE and the $U(1)$ action is isometric, $B$ is given by a solution of $S U(\infty)$ Toda equation $u_{x x}+u_{y y}+\left(e^{u}\right)_{z z}=0$, and the $U(1)$ monopole equation reduces to its linearization. However, only the solution $u_{z}$ yields a SDVE metric.


## 3. Minitwistor theory of Einstein-Weyl spaces

- $B, \nabla$ Einstein-Weyl implies that $T B \cong S^{2} H$ for a rank 2 bundle $H \rightarrow B$, and $P(H) \cong B \times \mathbb{C} P^{1}$ has a rank 2 integrable distribution (Lax pair)
- Thus have a "mini" twistor correspondence (double fibration)



## 3. Minitwistor theory of Einstein-Weyl spaces

- $B, \nabla$ Einstein-Weyl implies that $T B \cong S^{2} H$ for a rank 2 bundle $H \rightarrow B$, and $P(H) \cong B \times \mathbb{C} P^{1}$ has a rank 2 integrable distribution (Lax pair)
- Thus have a "mini" twistor correspondence (double fibration)

- Thus $B$ is moduli space of minitwistor lines $\alpha\left(\pi^{-1}(x)\right) \cong \mathbb{C} P^{1}$ in $S$, which have normal bundle $\mathcal{O}(2)$
- Solutions of the Bogomolny monopole equations correspond to holomorphic vector bundles on $S$ which are trivial on minitwistor lines


## 2. Spinor vortices and generalized Hitchin equations

- If an IBG $M$ (for SDYM) admits a free nondegenerate conformal action of a 2-dimensional Lie group $G$, then $\Sigma=M / G$ is a conformal surface carrying a solution $(C, \psi, \nabla)$ on a spinorial version of the vortex equations:

$$
\bar{\partial}^{\nabla} C=0 \quad \bar{\partial}^{\nabla} \psi=-3 C \bar{\psi} \quad s^{\nabla}=\psi \bar{\psi}-2 C \bar{C}
$$

- The symmetry reduction of SDYM equation to $\Sigma$ is a background-coupled generalization of Hitchin's equations for Higgs pairs $(A, \Phi)$

$$
\begin{aligned}
F^{A}-[\Phi, \bar{\Phi}] & =\psi \wedge \bar{\Phi}+\bar{\psi} \wedge \Phi \\
\bar{\partial}^{\nabla, A} \Phi & =C \bar{\Phi} .
\end{aligned}
$$

## 2. Spinor vortices and generalized Hitchin equations

- If an IBG $M$ (for SDYM) admits a free nondegenerate conformal action of a 2-dimensional Lie group $G$, then $\Sigma=M / G$ is a conformal surface carrying a solution ( $C, \psi, \nabla$ ) on a spinorial version of the vortex equations:

$$
\bar{\partial}^{\nabla} C=0 \quad \bar{\partial}^{\nabla} \psi=-3 C \bar{\psi} \quad s^{\nabla}=\psi \bar{\psi}-2 C \bar{C}
$$

- The symmetry reduction of SDYM equation to $\Sigma$ is a background-coupled generalization of Hitchin's equations for Higgs pairs $(A, \Phi)$

$$
\begin{aligned}
F^{A}-[\Phi, \bar{\Phi}] & =\psi \wedge \bar{\Phi}+\bar{\psi} \wedge \Phi \\
\bar{\partial}^{\nabla, A} \Phi & =C \bar{\Phi} .
\end{aligned}
$$

- Conversely can construct $M$ from solutions of generalized Hitchin equations on $\Sigma$ with gauge group a subgroup of diffeomorphisms of a 2-manifold
- Have a twistor correspondence but twistor space is a non-Hausdorff complex curve


## 1. Riccati spaces and generalized Nahm equations

- If an IBG $M$ (for SDYM) admits a free nondegenerate conformal action of a 3-dimensional Lie group $G$, then $\Gamma=M / G$ is a curve carrying a solution $B$ of the Riccati equation

$$
\partial_{t} B=\left(B^{2}\right)_{0}
$$

for symmetric traceless $3 \times 3$ matrices

## 1．Riccati spaces and generalized Nahm equations

－If an IBG $M$（for SDYM）admits a free nondegenerate conformal action of a 3－dimensional Lie group $G$ ，then $\Gamma=M / G$ is a curve carrying a solution $B$ of the Riccati equation

$$
\partial_{t} B=\left(B^{2}\right)_{0}
$$

for symmetric traceless $3 \times 3$ matrices
－The symmetry reduction of SDYM equation to $\Gamma$ is a background－coupled generalization of Nahm＇s equations

$$
\partial_{t} \Phi_{i}-\frac{1}{2} \sum_{i, j, k=1}^{3} \varepsilon_{i j k}\left[\Phi_{j}, \Phi_{k}\right]=\sum_{j=1}^{3} B_{i j} \Phi_{j}
$$

－Conversely can construct $M$ from solutions of generalized Hitchin equations on 「 with gauge group a subgroup of diffeomorphisms of a 3－manifold

## 1. Geometry of Riccati equation

- Really $B$ is a section of $\operatorname{End}(\mathcal{E})$ which is trace-free and symmetric with respect to an inner product on $E \cong \Gamma \times \mathbb{C}^{3}$
- For an orthonormal frame $e_{1}, e_{2}, e_{3}$ of $E$, let

$$
e_{\zeta}=\frac{1}{2}\left(\zeta^{2}+1\right) e_{1}+i \zeta e_{2}+\frac{i}{2}\left(\zeta^{2}-1\right) e_{3}
$$

This is null with respect to inner product: $\left\langle e_{\zeta}, e_{\zeta}\right\rangle=0$. Thus $\zeta$ parametrizes the conic $\langle v, v\rangle=0$ in $P(E) \cong \Gamma \times \mathbb{C} P^{2}$

## 1. Geometry of Riccati equation

- Really $B$ is a section of $\operatorname{End}(\mathcal{E})$ which is trace-free and symmetric with respect to an inner product on $E \cong \Gamma \times \mathbb{C}^{3}$
- For an orthonormal frame $e_{1}, e_{2}, e_{3}$ of $E$, let

$$
e_{\zeta}=\frac{1}{2}\left(\zeta^{2}+1\right) e_{1}+i \zeta e_{2}+\frac{i}{2}\left(\zeta^{2}-1\right) e_{3}
$$

This is null with respect to inner product: $\left\langle e_{\zeta}, e_{\zeta}\right\rangle=0$. Thus $\zeta$ parametrizes the conic $\langle v, v\rangle=0$ in $P(E) \cong \Gamma \times \mathbb{C} P^{2}$

- $\langle v+\lambda B v, v\rangle=0$ defines a pencil (one parameter family) of conics in $P(E) \cong \Gamma \times \mathbb{C} P^{2}$. Base locus (intersection) consists of four points (counted with multiplicity), classified by



## 1. Geometry of Riccati equation

- Really $B$ is a section of $\operatorname{End}(\mathcal{E})$ which is trace-free and symmetric with respect to an inner product on $E \cong \Gamma \times \mathbb{C}^{3}$
- For an orthonormal frame $e_{1}, e_{2}, e_{3}$ of $E$, let

$$
e_{\zeta}=\frac{1}{2}\left(\zeta^{2}+1\right) e_{1}+i \zeta e_{2}+\frac{i}{2}\left(\zeta^{2}-1\right) e_{3}
$$

This is null with respect to inner product: $\left\langle e_{\zeta}, e_{\zeta}\right\rangle=0$. Thus $\zeta$ parametrizes the conic $\langle v, v\rangle=0$ in $P(E) \cong \Gamma \times \mathbb{C} P^{2}$

- $\langle v+\lambda B v, v\rangle=0$ defines a pencil (one parameter family) of conics in $P(E) \cong \Gamma \times \mathbb{C} P^{2}$. Base locus (intersection) consists of four points (counted with multiplicity), classified by

- Generalized Nahm equation has Lax pair

$$
\left\langle B\left(e_{\zeta}\right), e_{\zeta}\right\rangle \partial_{\zeta}+\Phi\left(e_{\zeta}\right) \quad \partial_{t}+\left\langle B\left(e_{\zeta}\right), e_{\zeta}^{\prime}\right\rangle \partial_{\zeta}+\Phi\left(e_{\zeta}^{\prime}\right)
$$

Interpretation: $\partial_{\zeta}+\Phi\left(e_{\zeta}\right) /\left\langle B\left(e_{\zeta}\right), e_{\zeta}\right\rangle$ is isomonodromic.

## 0 . Null reductions

- So far have considered nondegenerate reductions. These are integrable backgrounds for gauge field equations with degree 2 Lax pairs (normal bundle to twistor lines has degree 2).
- Can also consider null reductions; most interesting cases are reductions to 2 dimensions.


## 0 . Null reductions

- So far have considered nondegenerate reductions. These are integrable backgrounds for gauge field equations with degree 2 Lax pairs (normal bundle to twistor lines has degree 2).
- Can also consider null reductions; most interesting cases are reductions to 2 dimensions.
- If $G$ is two dimensional with twistorial null surfaces as orbits then $M / G$ carries a solution $(\nabla, \psi, \chi)$ of

$$
d^{\nabla} \psi=0, \quad d^{\nabla} \chi=0, \quad F^{\nabla}=\chi \wedge \psi
$$

SDYM reduces to solutions $(A, \Phi)$ of

$$
F^{A}=\psi \wedge \Phi, \quad d^{A} \Phi=0, \quad \frac{1}{2}[\Phi \wedge \Phi]=\chi \wedge \Phi
$$

For $\phi=\psi=0$ this means $d^{A}+\lambda \Phi$ is flat.

## 0 . Null reductions

- So far have considered nondegenerate reductions. These are integrable backgrounds for gauge field equations with degree 2 Lax pairs (normal bundle to twistor lines has degree 2).
- Can also consider null reductions; most interesting cases are reductions to 2 dimensions.
- If $G$ is two dimensional with twistorial null surfaces as orbits then $M / G$ carries a solution $(\nabla, \psi, \chi)$ of

$$
\mathrm{d}^{\nabla} \psi=0, \quad \mathrm{~d}^{\nabla} \chi=0, \quad F^{\nabla}=\chi \wedge \psi
$$

SDYM reduces to solutions $(A, \Phi)$ of

$$
F^{A}=\psi \wedge \Phi, \quad d^{A} \Phi=0, \quad \frac{1}{2}[\Phi \wedge \Phi]=\chi \wedge \Phi
$$

For $\phi=\psi=0$ this means $d^{A}+\lambda \Phi$ is flat.

- If $G$ is two dimensional with non-twistorial null surfaces as orbits then $M / G$ has a projective structure [ $\nabla$ ] (twistor space is dual surface, and twistor lines have normal bundle $\mathcal{O}(1))$. SDYM reduces to solutions $(A, \Phi)$ of

$$
\begin{equation*}
\nabla^{A} \Phi=\frac{1}{2} \mathrm{~d}^{\nabla, A} \Phi \tag{=}
\end{equation*}
$$

## -1. Higher dimensions

- Higher degree Lax pairs are obtained by generalizing $M^{4}$ to $M^{2 k}$, where $T M=E \otimes H$ with $H$ rank 2 and $E$ rank $k$.
- Have a double fibration

where twistor lines $\alpha\left(\pi^{-1}(x)\right) \cong \mathbb{C} P^{1}$ have normal bundle $\mathcal{O}(1) \otimes \mathbb{C}^{k}$. When $k$ is even, $M$ is a quaternionic manifold.


## -1. Higher dimensions

- Higher degree Lax pairs are obtained by generalizing $M^{4}$ to $M^{2 k}$, where $T M=E \otimes H$ with $H$ rank 2 and $E$ rank $k$.
- Have a double fibration

where twistor lines $\alpha\left(\pi^{-1}(x)\right) \cong \mathbb{C} P^{1}$ have normal bundle $\mathcal{O}(1) \otimes \mathbb{C}^{k}$. When $k$ is even, $M$ is a quaternionic manifold.
- Reductions are complicated, but may be classified in terms of sheaves on $\mathbb{C} P^{1}$.
- Example of reduction for $k=2 m$ even is $B^{3 m}$ with $T B=V \otimes S^{2} H$ where $V$ has rank $m, H$ has rank 2. Twistor lines have normal bundle $\mathcal{O}(2) \otimes \mathbb{C}^{m}$.
- Real point however is that all these geometries have Lax distributions with geometric interpretation.

