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Plan

Aim to address a key issue: what is the geometry of reductions of
SDYM? Main contentions:

I It does not suffice to restrict to SDYM on flat R4

I Instead SDYM and reductions are defined over background
geometries in dimension ≤ 4

I Background geometries are themselves solutions of
(dispersionless) integrable systems

Proceed by dimension (and history)

4. Dimension four: selfduality, twistor theory and integrability

3. Dimension three: Einstein–Weyl geometry and monopoles

2. Dimension two: spinor vortices and Higgs bundles

1. Dimension one: Riccati spaces and isomonodromy

0. Null reductions: projective surfaces and twisted flat pencils

-1. Higher dimensions: quaternionic geometries and reductions
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4. Selfdual Yang–Mills (SDYM)

G -connection D on a vector bundle V over M = affine 4-space

I TM = M × C4 with coordinate vector fields ∂1, ∂2, ∂3, ∂4
I Trivialize V ∼= M × Ck , Di = ∂i + Ai , for Ai ∈ g ⊆ End(Ck)

I Curvature Fij = −Fji = [Di ,Dj ] = ∂iAj − ∂jAi + [Ai ,Aj ]

SDYM equations: F12 = 0 = F34, F14 = F23
⇔ [L1, L2] = 0 for Lax pair L1 = D1 + ζD3, L2 = D2 + ζD4

I ∂1 + ζ∂3, ∂2 + ζ∂4 commute and span null planes for
(conformal class of) metric dx1 dx4 − dx2 dx3

I Can also view C4 ∼= C2 ⊗ C2 with ∂1 + ζ∂3 = (1, 0)⊗ (1, ζ)
and ∂2 + ζ∂4 = (0, 1)⊗ (1, ζ); null planes are C2 ⊗ (1, ζ)

I Take ζ ∈ CP1 = C ∪∞: have rank 2 integrable distribution
on M × CP1; twistor space T is 3-diml space of leaves

I Have M �π M × CP1 α- T and π∗V ∼= α∗W for vector
bundle W → T s.t. ∀x ∈ M, W is trivial on α(π−1(x))
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4. Selfdual 4-manifolds and their twistor spaces
Generalize to M with TM = E ⊗ H, for E → M,H → M rank 2

I Locally E ∼= M × C2, H ∼= M × C2 and have vector fields
V1 + ζV3 ↔ (1, 0)⊗ (1, ζ) and V2 + ζV4 ↔ (0, 1)⊗ (1, ζ)

I Key requirement: there are lifts of these vector fields to
P(H) ∼= M × CP1 which span an integrable distribution

I Twistor space Z is space of leaves, so have double fibration

P(H)

M4

π
�

Z 3

α-

I Key property: M is moduli space of “twistor lines”; for x ∈ M,
α(π−1(x)) ∼= CP1 in Z , with normal bundle O(1)⊗ C2

I Can solve generalization of SDYM to V → M via W → Z
with W |α(π−1(x)) trivial on each twistor line

I If this works, say M (and E ,H) is an integrable background
geometry (IBG) for SDYM
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4. Smörg̊asbord of recipes
Heavenly hermeneutics

I Commuting independent vector fields V1 + ζV3 and V2 + ζV4

on M make it into an IBG (Mason–Newman, Joyce, Dunajski)

I If Vj are volume preserving (divergence-free), M carries a
selfdual vacuum Einstein (SDVE) metric (Plebanski).

I Gibbons–Hawking: can construct SDVE metrics from
solutions of U(1) monopole equations ∗df = dA on R3

I Ward: can also use solutions of Hitchin equations on R2 or
Nahm equations on R, provided gauge group is contained in
volume preserving diffeomorphisms of Σ2 or Σ3 respectively

Bait and switch map (aka “lets twist again”). Suppose:

I M is an IBG

I G acts freely on M preserving structure of TM = E ⊗ H

I P is a principal G̃ -bundle, with dim G̃ = dimG

I P admits a G̃ -connection solving SDYM

Then P/G is an IBG (with a free action of G̃ preserving structure).
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4. What is going on?

I Suppose G acts freely on M, an IBG (for SDYM)

I SDYM on M reduces to a gauge field equation on Q = M/G

I There is an IBG on Q for this gauge field equation,
independent of G (!).

I Conversely, from an IBG Q in dimension k , there is a
construction of IBGs in dimension ` > k from solutions of the
gauge field equation on Q with structure group G acting on
manifold of dimension `− k .

Such a coherent picture cannot be obtained without admitting the
most general IBGs. In particular, for SDYM, we must admit that
the relevant lifts of V1 + ζV3 and V2 + ζV4 differ from the
coordinate lifts by multiples of ∂ζ , i.e., derivatices with respect to
the spectral parameter. The appearance of such derivatives is a
hallmark of dispersionless integrable systems: IBGs belong here.

Rest of the talk: illustrate this in each dimension.
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3. Einstein–Weyl spaces and Jones–Tod constructions

I If an IBG M (for SDYM) odmits a free nondegenerate
conformal U(1) action then B = M/U(1) is an Einstein–Weyl
3-manifold, i.e., Ric∇o = 0 for a torsion-free conformal
connection ∇ on B

I The symmetry reduction of the SDYM equation to B is the
Bogomolny (BPS) monopole equation ∗D∇φ = FA

I Conversely if (A, φ) is a solution of the monopole equation on
(B,∇), where the gauge group is a subgroup of the
diffeomorphisms of a 1-manifold, then the associated bundle
of 1-manifolds is an IBG for SDYM

I Constructions are mutually inverse when gauge group is U(1)

I Special cases: Gibbons–Hawking; LeBrun hyperbolic Ansatz

I When M is SVDE and the U(1) action is isometric, B is given
by a solution of SU(∞) Toda equation uxx + uyy + (eu)zz = 0,
and the U(1) monopole equation reduces to its linearization.
However, only the solution uz yields a SDVE metric.
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3. Minitwistor theory of Einstein–Weyl spaces

I B,∇ Einstein–Weyl implies that TB ∼= S2H for a rank 2
bundle H → B, and P(H) ∼= B × CP1 has a rank 2 integrable
distribution (Lax pair)

I Thus have a “mini” twistor correspondence (double fibration)

P(H)

B3

π
�

S2

α-

I Thus B is moduli space of minitwistor lines α(π−1(x)) ∼= CP1

in S , which have normal bundle O(2)

I Solutions of the Bogomolny monopole equations correspond
to holomorphic vector bundles on S which are trivial on
minitwistor lines
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2. Spinor vortices and generalized Hitchin equations
I If an IBG M (for SDYM) admits a free nondegenerate

conformal action of a 2-dimensional Lie group G , then
Σ = M/G is a conformal surface carrying a solution (C , ψ,∇)
on a spinorial version of the vortex equations:

∂
∇
C = 0 ∂

∇
ψ = −3Cψ s∇ = ψψ − 2CC ,

I The symmetry reduction of SDYM equation to Σ is a
background-coupled generalization of Hitchin’s equations for
Higgs pairs (A,Φ)

FA − [Φ,Φ] = ψ ∧ Φ + ψ ∧ Φ

∂∇,AΦ = CΦ.

I Conversely can construct M from solutions of generalized
Hitchin equations on Σ with gauge group a subgroup of
diffeomorphisms of a 2-manifold

I Have a twistor correspondence but twistor space is a
non-Hausdorff complex curve
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1. Riccati spaces and generalized Nahm equations

I If an IBG M (for SDYM) admits a free nondegenerate
conformal action of a 3-dimensional Lie group G , then
Γ = M/G is a curve carrying a solution B of the Riccati
equation

∂tB = (B2)0

for symmetric traceless 3× 3 matrices

I The symmetry reduction of SDYM equation to Γ is a
background-coupled generalization of Nahm’s equations

∂tΦi −
1

2

3∑
i ,j ,k=1

εijk [Φj ,Φk ] =
3∑

j=1

BijΦj

I Conversely can construct M from solutions of generalized
Hitchin equations on Γ with gauge group a subgroup of
diffeomorphisms of a 3-manifold
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1. Geometry of Riccati equation
I Really B is a section of End(E) which is trace-free and

symmetric with respect to an inner product on E ∼= Γ× C3

I For an orthonormal frame e1, e2, e3 of E , let

eζ = 1
2(ζ2 + 1)e1 + iζe2 + i

2(ζ2 − 1)e3

This is null with respect to inner product: 〈eζ , eζ〉 = 0. Thus
ζ parametrizes the conic 〈v , v〉 = 0 in P(E ) ∼= Γ× CP2

I 〈v + λBv , v〉 = 0 defines a pencil (one parameter family) of
conics in P(E ) ∼= Γ× CP2. Base locus (intersection) consists
of four points (counted with multiplicity), classified by

I D 0

II
--

N
--

III
--

I Generalized Nahm equation has Lax pair

〈B(eζ), eζ〉∂ζ + Φ(eζ) ∂t + 〈B(eζ), e ′ζ〉∂ζ + Φ(e ′ζ)

Interpretation: ∂ζ + Φ(eζ)/〈B(eζ), eζ〉 is isomonodromic.
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I 〈v + λBv , v〉 = 0 defines a pencil (one parameter family) of
conics in P(E ) ∼= Γ× CP2. Base locus (intersection) consists
of four points (counted with multiplicity), classified by

I D 0

II
--

N
--

III
--

I Generalized Nahm equation has Lax pair

〈B(eζ), eζ〉∂ζ + Φ(eζ) ∂t + 〈B(eζ), e ′ζ〉∂ζ + Φ(e ′ζ)

Interpretation: ∂ζ + Φ(eζ)/〈B(eζ), eζ〉 is isomonodromic.
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0. Null reductions
I So far have considered nondegenerate reductions. These are

integrable backgrounds for gauge field equations with degree 2
Lax pairs (normal bundle to twistor lines has degree 2).

I Can also consider null reductions; most interesting cases are
reductions to 2 dimensions.

I If G is two dimensional with twistorial null surfaces as orbits
then M/G carries a solution (∇, ψ, χ) of

d∇ψ = 0, d∇χ = 0, F∇ = χ ∧ ψ.
SDYM reduces to solutions (A,Φ) of

FA = ψ ∧ Φ, dAΦ = 0, 1
2 [Φ ∧ Φ] = χ ∧ Φ.

For φ = ψ = 0 this means dA + λΦ is flat.
I If G is two dimensional with non-twistorial null surfaces as

orbits then M/G has a projective structure [∇] (twistor space
is dual surface, and twistor lines have normal bundle O(1)).
SDYM reduces to solutions (A,Φ) of

∇AΦ = 1
2d∇,AΦ.
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-1. Higher dimensions

I Higher degree Lax pairs are obtained by generalizing M4 to
M2k , where TM = E ⊗ H with H rank 2 and E rank k .

I Have a double fibration

P(H)

M2k

π
�

Z k+1

α-

where twistor lines α(π−1(x)) ∼= CP1 have normal bundle
O(1)⊗ Ck . When k is even, M is a quaternionic manifold.

I Reductions are complicated, but may be classified in terms of
sheaves on CP1.

I Example of reduction for k = 2m even is B3m with
TB = V ⊗ S2H where V has rank m, H has rank 2. Twistor
lines have normal bundle O(2)⊗ Cm.

I Real point however is that all these geometries have Lax
distributions with geometric interpretation.
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