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Overview

1 Metrisability of projective structures

2 Deriving first integrals

3 Killing forms

4 Hydrodynamic-type systems

Problems: (i)Consider the projective structures defined by the Painlevé
equations, which of them are metrisable (if any)?
(ii) How many first integrals linear in the momenta does a geodesic flow
admit?
(iii) Given a HT system, how many hamiltonian formulations (local sense)
does it admit?
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equations, which of them are metrisable (if any)?

(ii) How many first integrals linear in the momenta does a geodesic flow
admit?
(iii) Given a HT system, how many hamiltonian formulations (local sense)
does it admit?

Felipe Contatto (DAMTP, Cambridge) LMS Durham Symposium 2016 28 July 2016 2 / 20



Overview

1 Metrisability of projective structures

2 Deriving first integrals

3 Killing forms

4 Hydrodynamic-type systems

Problems: (i)Consider the projective structures defined by the Painlevé
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Metrisability problem (R. Liouville, 1889)

Given a set of curves on Rn, are they traces of geodesics of some
metric?

On the (x , y)-plane, the necessary and sufficient condition for the
curves to be the geodesics of an affine connection: to be the integral
curves of an ODE y ′′(x) = F(x , y , y ′), where ∂4

y ′F(x , y , y ′) = 0.

Equivalence relation: two torsion-free connections are projectively
equivalent (Γ ∼ Γ̂) if they share the same unparametrised geodesics.

Definition

A projective structure [Γ] is the class of torsion-free connections that are
projectively equivalent to Γ.

Metrisability problem: given a projective structure, does it contain a
metric connection?
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The problem is (almost) solved in n = 2 dimensions:

the necessary
condition for the existence of a metric involves the vanishing of some
invariants of differential order at least 5 in the connection
[Bryant-Dunajski-Eastwood].

For the construction of a metric, the solution to the metrisability
equations must satisfy the non-degeneracy condition.
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Hamiltonian description of geodesics

Consider the metric g = g11dx
2 + 2g12dxdy + g22dy

2

and the geodesic Hamiltonian H = 1
2gabp

apb.

Hamilton’s equations

ẋa(t) =
∂H

∂pa
ṗa(t) = − ∂H

∂xa

Geodesic equations

ẍa + Γa
bc ẋ

bẋc = 0, a = 1, 2.

Unparametrised geodesics (divide (a = 2)/(a = 1))

y ′′ = A3(x , y)y ′3 + A2(x , y)y ′2 + A1(x , y)y ′ + A0(x , y) = F(x , y , y ′),

where A0 = −Γ2
11, A1 = Γ1

11 − 2Γ2
12, A2 = 2Γ1

12 − Γ2
22, A3 = Γ1

22.
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bẋc = 0, a = 1, 2.

Unparametrised geodesics (divide (a = 2)/(a = 1))

y ′′ = A3(x , y)y ′3 + A2(x , y)y ′2 + A1(x , y)y ′ + A0(x , y) = F(x , y , y ′),

where A0 = −Γ2
11, A1 = Γ1

11 − 2Γ2
12, A2 = 2Γ1

12 − Γ2
22, A3 = Γ1

22.

Felipe Contatto (DAMTP, Cambridge) LMS Durham Symposium 2016 28 July 2016 5 / 20



Hamiltonian description of geodesics

Consider the metric g = g11dx
2 + 2g12dxdy + g22dy

2

and the geodesic Hamiltonian H = 1
2gabp

apb.

Hamilton’s equations

ẋa(t) =
∂H

∂pa
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If K is a Killing vector ⇒ conserved quantity: Kaẋ
a = gabK

bẋa

Eliminate t using H = 1
2 (g11ẋ

2 + 2g12ẋ ẏ + g22ẏ
2) and y ′(x) = ẏ/ẋ :

I (x , y , y ′) :=
1

(K1 + K2y ′)2

(
g11 + 2g12y

′ + g22y
′2)

is a first integral of the unparametrised geodesic equation quadratic in y ′.

The Painlevé equations define projective structures.

(PI ) y ′′ = 6y2 + x , (PII ) y ′′ = 2y3 + xy + α , ... , (PVI ).

Satisfy the necessary conditions of [Bryant-Dunajski-Eastwood].

Still need to check non-degeneracy.
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Metrisability of Painlevé equations

Results: their projective structures are metrisable for (PIII), (PV) and
(PVI) when they are projectively flat (equiv to Y ′′(X ) = 0) or for

PIII and PV when they admit an algebraic first integral.

These first integrals are derivable from Killing vectors.
E.g. (PV)

y ′′ =

(
1

2y
+

1

y − 1

)
y ′2 − 1

x
y ′ +

(y − 1)2

x2

(
αy +

β

y

)
First integral:

I =
1

y

(
xy ′

y − 1

)2

+
2β

y
− 2αy .
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Killing 1-forms of affine connections

Given an affine connection Γ on a surface Σ, its geodesics are the
solutions to

ẍa + Γa
bc ẋ

bẋc = 0, a = 1, 2

I = Kaẋ
a is a first integral ⇔ ∇(aKb) = 0

First integrals linear in the momenta are equivalent to Killing 1-forms.

Conditions for their existence will be established by prolongation.

Useful decomposition of the Riemann tensor:

Rab
c
d = δa

cPbd − δbcPad + Babδd
c ,

where Pab = 2
3Rab + 1

3Rba and Bab = −2P[ab] = −2
3R[ab].

Introduce a volume form εab and its derivative ∇cεab = θcεab.
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Define the inverse volume form εabεcb = δac .

Theorem

There is a one–to–one correspondence between solutions to the Killing
equations and parallel sections of the prolongation connection D on a
rank–three vector bundle E = Λ1(Σ)⊕ Λ2(Σ)→ Σ defined by

Da

(
Kb

µ

)
=

(
∇aKb − εabµ

∇aµ−
(
Pb

a + 1
2ε

ef Bef δ
b
a

)
Kb + µθa

)
.

The integrability conditions for the existence of parallel sections of this
connection will lead to a set of invariants of the affine connection Γ.
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Theorem

The necessary condition for a C 4 torsion–free affine connection Γ on a
surface Σ to admit a linear first integral is the vanishing, on Σ, of two
scalars denoted by IN and IS of differential order 3 and 4 in Γ.
Locally,

IN = IS = 0 are necessary and sufficient for the existence of a Killing
1-form.

there are precisely 2 Killing forms ⇔ Ta
b = 0 and R[ab] 6= 0, where T

is a rank-2 tensor of differential order 3 in Γ.

there are 3 independent Killing forms ⇔ Γ is projectively flat and
R[ab] = 0.

This does not hold globally.
Counter example: the flat torus S1 × S1 admits precisely 2 global
Killing forms (or vectors).

For special connections (R[ab] = 0), IN and IS become, essentially,
Liouville’s projective invariants ν5 and w1, respectively.
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Recall: R[ab] = ∂[aΓc
b]c = 0 ⇔ ∇ preserves a volume form.

[Γ] admits a traceless representative Πa
bc , i.e., Πa

ab = 0. It is given by

Πa
bc = Γa

bc −
1

3
δabΓd

dc −
1

3
δacΓd

db.

Πa
bc are called Thomas symbols. It preserves ε12 = 1.

Question: what can we say about the unparametrised geodesics if its
associated Thomas symbols admit a Killing form?

The answer is given by the following theorem, which is partially due
to [Liouville,1889].
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Theorem

The ODE y ′′ = A0(x , y) + A1(x , y)y ′ + A2(x , y)(y ′)2 + A3(x , y)(y ′)3

defining a projective structure admits coordinates (X ,Y ) such that
YXX = f (X ,Y ) for some function f if and only if IN = IS = 0 for any
special connection. Moreover, this is also equivalent to the fact that the
connection with Thomas symbols admits a Killing 1-form given by dX .

Proof.

Understand how Thomas symbols transform under coordinate
transformations.

Understand how Killing tensors of Thomas symbols change under
coordinate transformation.

Use these facts to show that one can choose coordinates (X ,Y ) s.t.
the Killing form is dX .

Check that this is equivalent to having YXX = f (X ,Y ).
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Claim: Degenerate solutions to the metrisability equations
correspond to Killing forms of special connections. Equivalently,
IN = IS = 0 or ν5 = w1 = 0.

Corollary (Babich,Bordag1999)

The Painlevé equations can be put in the form y ′′ = f (x , y) under point
transformation.

Example: (PIII): y ′′ = αex+y + βex−y + γe2(x+y) + δe2(x−y)

Remark: Scalars IN and IS , along with [B-D-E], answer the question
about degeneracy in metrisability ⇒
Metrisability problem itself is completely solved in 2D.
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The Painlevé equations can be put in the form y ′′ = f (x , y) under point
transformation.

Example: (PIII): y ′′ = αex+y + βex−y + γe2(x+y) + δe2(x−y)

Remark: Scalars IN and IS , along with [B-D-E], answer the question
about degeneracy in metrisability ⇒
Metrisability problem itself is completely solved in 2D.

Felipe Contatto (DAMTP, Cambridge) LMS Durham Symposium 2016 28 July 2016 13 / 20



Claim: Degenerate solutions to the metrisability equations
correspond to Killing forms of special connections. Equivalently,
IN = IS = 0 or ν5 = w1 = 0.

Corollary (Babich,Bordag1999)
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Hydrodynamic-type (HT) systems

Definition (HT system (our case))

A system of PDEs is of HT if it has the form

∂tu
a = vab(u)∂xu

b, a, b = 1, 2

where ua = ua(x , t) and v is a diagonalisable matrix with distinct real
eigenvalues λ1(u) and λ2(u).

Theorem (Riemann invariants)

A HT system admits coordinates R i (u) (called Riemann invariants) such
that

∂tR
i = λi (u(R))∂xR

i , i = 1, 2 (no summation).
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Question: does my HT system admit a Hamiltonian formulation under a
Poisson bracket of Dubrovin-Novikov type?

{F ,G} =

∫
R

δF

δua

(
gab(u)

∂

∂x
+ babc (u)

∂uc

∂x

) δG
δub

dx .

Or
∂ua

∂t
= Ωab δH

δub
= gab∇b∇cH︸ ︷︷ ︸

va
c

∂uc

∂x
,

where ∇ is the Levi-Civita connection of g , H[u1, u2] =
∫
H(u1, u2)dx and

Ωab = gab ∂

∂x
+ babc

∂uc

∂x
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Answer [Ferapontov91]: It does iff there exists a flat diagonal metric

k−1 d
(
R1
)2

+ f −1 d
(
R2
)2

satisfying the following system of PDEs

∂2k + 2Ak = 0, ∂1f + 2Bf = 0,

where

A =
∂2λ

1

λ2 − λ1
, B =

∂1λ
2

λ1 − λ2
, and ∂i = ∂/∂R i

And, by flatness,

(∂2A + A2)f + (∂1B + B2)k +
1

2
A∂2f +

1

2
B∂1k = 0.

These are the compatibility conditions of the overdetermined system
for H

gab∇b∇cH = vac
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Claim: The above overdetermined system of PDEs is equivalent to the
Killing equations

∇̃(aKb) = 0,

where

Γ̃1
11 = ∂1 lnA− 2B, Γ̃2

22 = ∂2 lnB − 2A,

Γ̃1
12 = −

(1

2
∂2 lnA + A

)
, Γ̃2

12 = −
(1

2
∂1 lnB + B

)
,

and K1 = Af , K2 = Bk .

Recall: A and B are determined by your HT system.
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Killing forms of the above connection are in 1− 1 correspondence
with Hamiltonians of the HT system.

Theorem

A HT system admits 1, 2 or 3 Hamiltonian formulations iff its associated
connection defined above admits 1, 2 or 3 independent linear first integrals
respectively.

This connection defines the following projective structure

Y ′′ = (∂X ln (AB))Y ′ − (∂Y ln (AB))(Y ′)2.

Theorem

This projective structure is metrisable by the Lorentzian metric

AB d
(
R1
)
d
(
R2
)
.
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Corollary

A HT sytem is trihamiltonian iff its associated connection has symmetric
Ricci tensor and (AB)−1∂1∂2 ln(AB) = const (metric of constant
curvature).

A two-dimensional Frobenius manifold (M, η, e,E , ◦) (η=flat metric,
e=identity, E=Euler vector field) with flat coordinates (t1, t2) defines
a HT system

∂t i

∂t
= e jc ijl

∂t l

∂x
,

where ∂i ◦ ∂j = ckij ∂k and e ◦ ∂j = ∂j .

Theorem

HT systems arising from Frobenius manifolds are trihamiltonian.

The flat metrics determining the Poisson brackets are ηij (metric),
hij = E kηikc jkl (intersection form) and hikhjlηkl (whatever).
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Outlook

Statement of the problem of R. Liouville

Metrisability of the Painlevé equations and derivation of their first
integrals

Killing forms of affine connections

Hamiltonian structures of HT systems

Thank you!
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