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Overview

The classical literature on the exact integration of PDE is very
extensive. [Goursat, 2 volumes]

Methods: Monge, Laplace, Ampere, Moutard, Darboux ..
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The classical literature on the exact integration of PDE is very
extensive. [Goursat, 2 volumes]
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Integrals: Complete, General, Intermediate Integral, Darboux ...
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Overview

The classical literature on the exact integration of PDE is very
extensive. [Goursat, 2 volumes]

Methods: Monge, Laplace, Ampere, Moutard, Darboux ..

Integrals: Complete, General, Intermediate Integral, Darboux ...

Examples: Infinitely many but the most famous is:

ton sm;\ﬁ“é@

Overview

Symmetry
Reduction

Linear ODE
Liouville
Milestones
What is DI?
Properties of DI
Application 1
Application 2
Application 3
Application 4
Application 5
Application 6
Application 7
Application 8
Conclusions

Integrable Systems



Overview

The classical literature on the exact integration of PDE is very
extensive. [Goursat, 2 volumes]
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Methods: Monge, Laplace, Ampere, Moutard, Darboux ..

Integrals: Complete, General, Intermediate Integral, Darboux ...
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Overview

The classical literature on the exact integration of PDE is very
extensive. [Goursat, 2 volumes]

Methods: Monge, Laplace, Ampere, Moutard, Darboux ..
Integrals: Complete, General, Intermediate Integral, Darboux ...

Examples: Infinitely many but the most famous is:

X

1
Uy, = e, I:uXX—EU2 D,(l)=0

Y 2P 08 )
(F6) + 8 ()P

With this classical literature (including the tricks), one can solve
"explicitly” these so-called Darboux integrable equations.
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But many structural questions about these equations remain;

In the context of this conference: Equivalence, Symmetries, IVP,
Backlund, Zero Curvature.

AND one would really like a SIMPLE organizing principle for all
these classical integration methods and examples.
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Goals:

1. Motivate a new Lie group theoretic definition of DI. ‘%"ﬂ}emsm-;ﬁé{“

2. Show how this new definition can be used to effective study all
these questions and organize the subject.

Overview

Symmetry
Reduction

Linear ODE
Liouville
Milestones
What is DI?
Properties of DI
Application 1
Application 2
Application 3
Application 4
Application 5
Application 6
Application 7
Application 8
Conclusions

Integrable Systems



Symmetry Reduction
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Symmetry Reduction

Lie groups are typical used to reduce differential equations in two
distinct way.

Rn
g,
Pham gyee™

Overview

Symmetry
Reduction

Linear ODE
Liouville
Milestones
What is DI?
Properties of DI
Application 1
Application 2
Application 3
Application 4
Application 5
Application 6
Application 7
Application 8
Conclusions

Integrable Systems



Symmetry Reduction

Lie groups are typical used to reduce differential equations in two
distinct way.

Group Invariant Solutions for PDE.
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/

VAT
4, -2
ham Sy

Overview

Symmetry
Reduction

Linear ODE
Liouville
Milestones
What is DI?
Properties of DI
Application 1
Application 2
Application 3
Application 4
Application 5
Application 6
Application 7
Application 8
Conclusions

Integrable Systems



Symmetry Reduction

Lie groups are typical used to reduce differential equations in two
distinct way.

Group Invariant Solutions for PDE.
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The General Mathematical Setting

Let Z be a differential system on M (encoding some differential
equations).
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Let G be a Lie group acting on M and define &, : M — M by
dg(x) =g - x.
Then G is a symmetry group of Z if ®3(Z) = T.
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The General Mathematical Setting

Let Z be a differential system on M (encoding some differential
equations).

Let G be a Lie group acting on M and define &, : M — M by
dg(x) =g - x.

Then G is a symmetry group of Z if ®3(Z) = T.

Assume that G acts regularly on M so that #: M — M/G is a
smooth submersion.
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The General Mathematical Setting

Let Z be a differential system on M (encoding some differential
equations).

Let G be a Lie group acting on M and define &, : M — M by
dg(x) =g - x.

Then G is a symmetry group of Z if ®3(Z) = T.

Assume that G acts regularly on M so that #: M — M/G is a
smooth submersion.

Definition. The symmetry reduction of (Z, M) by G is the
differential system (Z/G, M/G) defined by

Z/G = {forms w on the reduced space M/G | n*(w) € T}.
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The calculation of Z/G is completely algorithmic and is easily done
with the Differential Geometry software.
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The calculation of Z/G is completely algorithmic and is easily done
with the Differential Geometry software.

I'll simply note that the G-invariant functions on M serve as local
coordinates for M/G.

General theorems in EDS theory can be used to identify the
reduction Z/G as an ODE, system of ODE, PDE in 2 independent
variables (parabolic, hyperbolic, elliptic), evolution equation ...
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The calculation of Z/G is completely algorithmic and is easily done
with the Differential Geometry software.

I'll simply note that the G-invariant functions on M serve as local

coordinates for M/G. Overview
General theorems in EDS theory can be used to identify the Rbtvcion
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Superposition Formula For Linear ODE

To help set the stage for what is coming, consider the differential
system for 2 copies of a linear second order ODE.

y" 4+ a(x)y’ 4+ b(x)y =0

The manifold coordinates are (x, u, p, v, q).

The Pfaffian system is

I ={du— pdx,dp— (ap + bu) dx,dv — q dx, dqg — (ag + bv) dx }.

The general linear group is a symmetry group.
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Example 1.

Reduce the Pfaffian system [/ by the special linear group:

= {ud, + pOp — vO, — q0q, vO, + qOp, ud, + pdy}.

Calculate the differential invariants for this group.

Inv = {x, W = uq — vp}.

The reduced differential equation is the differential syzygy

W' +aW =0,
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Example 1.
Reduce the Pfaffian system [/ by the special linear group:
= {ud, + pOp — vO, — q0q, vO, + qOp, ud, + pdy}.
Calculate the differential invariants for this group.
Inv = {x, W = uq — vp}.
The reduced differential equation is the differential syzygy

W' +aW =0,

which is Abel's Identity for the Wronksian.
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Example 2.

Reduce / by just the scaling symmetry

ud, + pO, — vo, —

q0q
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Example 2.

Reduce / by just the scaling symmetry

ud, + pd, — vO, — q0q

Now there are 4 invariants which we write as:

Inv = {x, U = uv, Uy = up + uq, Usx = 2pq — 2al — bUx}.
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Example 2.

Reduce / by just the scaling symmetry

ud, + pd, — vO, — q0q

Now there are 4 invariants which we write as:

Inv = {x, U = uv, Uy = up + uq, Usx = 2pq — 2al — bUx}.

The reduced differential equation is the differential syzygy
U +3aU + (a' +23° + 4b) U, + (2b' + 4ab)U = 0.

This is the symmetric power of the original 2nd order ODE.

Exercise. Reduce using some other groups.
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Liouville Equation

The Liouville equation uy, = exp(u) is the most famous example of
a Darboux integrable equation.

The general solution is

f'(x)g'(y)

4= I T 8 ()2

)

| want to show how this equation and its solution can be obtained
by symmetric reduction —

in exactly the same spirit as we derived Abel’s identity and the
symmetric power equation.
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The manifold is the product of jet spaces J3(R,R) x J3(R,R) with
coordinates
{X7 u,tuy, uz, us,y, Vv, vy, v2, V3}

The differential system is the contact system
C1 + Co = {du — udx, duy — wpdx, duy — uzdx
dv — vidy, dv; — vady, dvo — v3dx}
The symmetry group to be used for the reduction is the
simultaneous standard projective action of s, on the dependent
variables.
r={0,—0,, ud,+vd, + w10y +vi0,, + -,
w20, + 2uurdy, — V2 /20, — v vid, +---}
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The differential invariants are [ are

21 vy
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V2 V]. Overview
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The differential invariants are [ are

21 vy
Inv={x,y,U = Iogm7
U, = ﬁ — 2L
S (u+v)
Vo Vi
u=—--2——
Y wm (u+v)
u3
Uy=—+---
uy + }

The syzygy for the s/, differential invariants is:

2U1V1 u
ny = DyUX = DXUy = m =€

The Liouville equation is the symmetry reduction of
a pair of contact systems by the diagonal action of
5/2.

The symmetry group used to make the reduction is called the
internal symmetry group.
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Two fundamental generalizations of this representation of the
Liouville equation have appeared in the literature.
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Two fundamental generalizations of this representation of the
Liouville equation have appeared in the literature.

Vessiot: 1939, 1941.  Here Vessiot gave symmetry group
representations of all equations

uxy = f(X7.y7 U, uX7 Uy)

which are Daboux integrable at the 2-jet level.

Ux
Uy =0 Uy =
y Y= x
B _2,/uxuy
Uy = Ull Uy =2X——
X+y
Uy =€" Uy =e"y/u2-1

In so doing he explicitly solved one such equation which Goursat
could not solve using intermediate integrals
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Two fundamental generalizations of this representation of the
Liouville equation have appeared in the literature.

Vessiot: 1939, 1941.  Here Vessiot gave symmetry group
representations of all equations

uxy = f(X7.y7 U, uX7 Uy)

which are Daboux integrable at the 2-jet level.

Ux
Uy =0 Uy =
y Y= x
B _2,/uxuy
Uy = Ull Uy =2X——
X+y
Uy =€" Uy =e"y/u2-1

In so doing he explicitly solved one such equation which Goursat
could not solve using intermediate integrals

The internal symmetry groups all arise as tranformation groups in
the plane, as classified many years earlier by S. Lie.
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Leznov and Saveliev, 1980 ... 1999. The Toda lattice equations

Uiy = exp(a;’) [a;] = Cartan matrix

provide another substantial generalization of the Liouville equation.

Overview

Symmetry
Reduction

Linear ODE
Liouville
Milestones
What is DI?
Properties of DI
Application 1
Application 2
Application 3
Application 4
Application 5
Application 6
Application 7
Application 8
Conclusions

Integrable Systems



Leznov and Saveliev, 1980 ... 1999. The Toda lattice equations

U>i(y = exp(a;’) [a;] = Cartan matrix

provide another substantial generalization of the Liouville equation.

The representation of the Toda lattice equations by symmtry
reduction is found in

— Representation Theory and Integration of Nonlinear Spherically
Symmetric Equations to Gauge Theories

See also

— Two-Dimensional Exactly and Completely Integrable Dynamical
Systems: Monopoles, Instantons, Dual Models, Relativistic Strings,
Lund-Regge Model, Generalized Toda Lattice, etc. it

...all enumerated dynamical systems are joined together due to the
presence of non-trivial internal symmetry groups. Just this fact allows
one to find explicit expressions for the solutions of the corresponding
equations in terms of Lie algebra and group representation theory.
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What is Darboux Integrability ?

With the above remarks as motivation we make the following new
definition.

Definition: A differential system is called Darboux integrable if it is
the differential syzgies of a diagonal group action for the common
symmetry of a pair of auxiliary differential equations.

More precisely: A differential system (Z, M) is called Darboux
integrable if

I,Z(K:l-FICQ)/G, M:(Ml XM2)/G
where

- (K1, My) and (Ko, My) are two Pfaffian systems.

— G is a Lie group which is a common symmetry group of (K1, K3)
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What is Darboux Integrability ?

With the above remarks as motivation we make the following new
definition.

Definition: A differential system is called Darboux integrable if it is
the differential syzgies of a diagonal group action for the common
symmetry of a pair of auxiliary differential equations.

More precisely: A differential system (Z, M) is called Darboux
integrable if

I,Z(K:l-FICQ)/G, M:(Ml XM2)/G

where

- (K1, My) and (Ko, My) are two Pfaffian systems.

— G is a Lie group which is a common symmetry group of (K1, K3)
and the following technical requirements holds:

— G acts regularly on My and M,

— G acts freely on M; and M,

—G acts transversely to K1 and K,
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We call K1 and K, the defining differential systems and G the
internal symmetry group (or Vessiot group).
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Meta Principle of DI Systems

Every question you have about a DI system should be
answered in terms of the defining differential systems
and the internal group G.
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Meta Principle of DI Systems

Every question you have about a DI system should be
answered in terms of the defining differential systems

and the internal group G.

PDE Property

Symmetry Reduction Property

Intermediate Integrals

Differential Invariants for G

Closed Form Solutions

Defining systems are contact

IVP by quadrature

Solvable G

Equivalence Problem

E.P. for the defining systems

Symmetries

Normalizers of G

Backlund Transformations

Subgroups of G

Zero Curvature

Representation theory of G

Leznov and Saveliev

Parabolic Geometry

O |0 (N |0 R jw =

Classification of DI

Class. of Group Actions
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Application 1: Intermediate Integrals

Let us recall the general definition (in terms of a distribution of
vector fields (dual to a Pfaffian system).

A distribution H is called hyperbolic if
H="Hi1DH> with [Hl,Hz] CH
An intermediate integral is a function f such that

X(f)=0 forall X in H;.
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Application 1: Intermediate Integrals

Let us recall the general definition (in terms of a distribution of
vector fields (dual to a Pfaffian system).

A distribution H is called hyperbolic if
H=Hi®Hy with [Hi,H]CH
An intermediate integral is a function f such that
X(f)=0 forall X in H;.

Theorem. The differential invariants on the defining manifolds for
the action of the internal symmetry group give all intermediate
integrals.
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Application 1: Intermediate Integrals

Let us recall the general definition (in terms of a distribution of
vector fields (dual to a Pfaffian system).

A distribution H is called hyperbolic if
H=Hi®Hy with [Hi,H]CH
An intermediate integral is a function f such that
X(f)=0 forall X in H;.

Theorem. The differential invariants on the defining manifolds for
the action of the internal symmetry group give all intermediate
integrals.

Theorems on the existence and number of differen-
tial invariants immediately translate to theorems on
differential invariants.
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Example. The differential invariant for the projective action of sk is
the Schwarzian derivative which projects to the intermediate
integral for Liouville equation.

u/l 5 1
() — Uu— 5%

ul//
ul

N| W

Wt sm;\ﬁ“é@
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Example. The differential invariant for the projective action of sk is
the Schwarzian derivative which projects to the intermediate
integral for Liouville equation.

u/l 5 1
() — Uu— 5%

ul//
ul

N| W

This 1-1 correspondence between intermediate integrals and
differential invariants is very important.

L
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Application 2: Equations with closed form solutions

On November 8, 1908 Forysth gave the Presidential Address to the
Cambridge Mathematical Society. This address contains an nice
summary of classical geometric integration methods and concludes
with a number of open problems.

One of these is to classify all 2nd order scalar PDE in the plane
whose general integral is

X = Vl(a’ﬁ7 ¢(O‘)’¢(ﬁ)a¢/7w/"')
y= V2(a7ﬂ7 Q5(Oé),1/1(ﬂ),¢l,w/...),
u= Vs(a,B,¢(a),¥(B), ¢, 9"...).
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Application 2: Equations with closed form solutions

On November 8, 1908 Forysth gave the Presidential Address to the
Cambridge Mathematical Society. This address contains an nice
summary of classical geometric integration methods and concludes
with a number of open problems.

One of these is to classify all 2nd order scalar PDE in the plane
whose general integral is

X = Vl(a’ﬁ7 ¢(O‘)’w(ﬁ)a¢/7w/"')
y= V2(a7ﬂ7 Q5(Oé),1/1(ﬂ),¢l,w/...),
u= Vs(a,B,¢(a),¥(B), ¢, 9"...).

The same kind of question was asked by Hilbert and answered by
Cartan in the context of an under-determined ODE (Monge
equation)
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Application 2: Equations with closed form solutions

On November 8, 1908 Forysth gave the Presidential Address to the
Cambridge Mathematical Society. This address contains an nice
summary of classical geometric integration methods and concludes
with a number of open problems.

One of these is to classify all 2nd order scalar PDE in the plane
whose general integral is

X = Vl(a’ﬁ7 ¢(O‘)’w(ﬁ)a¢/7w/"')
y= V2(a7ﬂ7 Q5(Oé),1/1(ﬂ),¢l,w/...),
u= Vs(a,B,¢(a),¥(B), ¢, 9"...).

The same kind of question was asked by Hilbert and answered by
Cartan in the context of an under-determined ODE (Monge
equation)

Here | would simply state a similar result — if the defining systems
are jet spaces, then the general solution to DI system is of the
above form.
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Application 3: Generalizations of d’Alebert formula

The solution to the Cauchy problem
Uy — U =0 0(0,x) = a(x)  wu(0,x) = b(x)

is given by the well-known d’'Alembert formula

X+t

1 1
u= E(a(x— t)+a(x+t))+ §~/X—t b(¢) d¢
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Application 3: Generalizations of d’Alebert formula

The solution to the Cauchy problem
Uy — U =0 0(0,x) = a(x)  wu(0,x) = b(x)

is given by the well-known d’'Alembert formula

X+t

1 1
u= E(a(x— t)+a(x+t))+ §~/X—t b(¢) d¢

Theorem The Cauchy problem for a DI integrable system (in 2
independent variables) can be solved by quadratures if the internal
symmetry group is solvable.
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Application 3: Generalizations of d’Alebert formula

The solution to the Cauchy problem
Uy — U =0 0(0,x) = a(x)  wu(0,x) = b(x)

is given by the well-known d’'Alembert formula

X+t

1 1
u= E(a(x— t)+a(x+t))+ §~/X—t b(¢) d¢

Theorem The Cauchy problem for a DI integrable system (in 2
independent variables) can be solved by quadratures if the internal
symmetry group is solvable.

This goes back to the basic theorem of Lie on solving ODE by
quadratures but now in the context of lifting integral curves.
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Example 1.
The solution to the non-linear Cauchy problem

thy = 2 u(x,x) = Fx), u(x,x) = 8(x)
U= x + (F(y) — x)exp(A(x, y)) + exp(—A(0, x)) /t i_y A0, £)dt,

Als.t) = / £(0)/(¢ — F(0)) d¢

Example 2. The Cauchy problem for u,, = e" requires the solving a
pair of Riccati equations.
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Application 3: Equivalence of Darboux Integrable Systems

Theorem. Two DI integrable systems are equivalent if their internal
symmetry groups are isomorphism, the actions are equivalent, and
their defining differential systems are equivariantly equivalent.
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Application 3: Equivalence of Darboux Integrable Systems

Theorem. Two DI integrable systems are equivalent if their internal
symmetry groups are isomorphism, the actions are equivalent, and
their defining differential systems are equivariantly equivalent.

Project. Within the framework of the DifferentialGeometry software
construct a database of known DI systems and their realizations as
symmetry reductions.
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Example 1. The relativistic string equation (Barbashov, Nesterenko,
Chervakov)

cos(0)
sin(9)3

is Darboux integrable. It is a reduction of jet spaces by the internal
symmetry group g/(2).

6XX — 9“ + (SD)Z( — QD?) = O7 (COt(@)QgDX)X = (Cot(9)2apt)t
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Example 1. The relativistic string equation (Barbashov, Nesterenko,
Chervakov)

cos(0)
sin(9)3

is Darboux integrable. It is a reduction of jet spaces by the internal
symmetry group g/(2).

6XX — 9“ + (SD)Z( — QD?) = O7 (COt(@)QgDX)X = (Cot(e)zapt)t

Comparing to known examples, we find this system to be equivalent
to the wave map equations defined by the metric

1
d52 = ﬁ(dlﬂ + dV2).
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Example 2.
In his classic treatise, Goursat gives two very different 2 examples of
DI systems.

Yrtem sm;\ﬁ“é@

U —27"UXUy and

xy — )

X + .y Overview
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Uxx+u2uyy+2uu}2, :0 eduction

Linear ODE

Liouville

It would seem that he was unaware that these systems are
equivalent under the transformation
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Example 2.
In his classic treatise, Goursat gives two very different 2 examples of
DI systems.

U —27"UXU}/ and

xy — )

X + .y Overview
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Reduction

Uxx + u2uyy + 2uu}2, =0

Linear ODE
It would seem that he was unaware that these systems are Howile
equivalent under the transformation Cﬂvr:(;:v
Properties of DI
XZX? y = U+(X+Y)UY7 U= Ux + V Uy Application 1
Application 2
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Application 5: Symmetries of Darboux Integrable Systems

Let (Z, M) be a differential system with full symmetry algebra X.
Let ' be a sub-algebra of X.

Then the algebra nors (') /T always determines a sub-algebra of the
full symmetry algebra of the reduced system. (Z/G, M/G).
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full symmetry algebra of the reduced system. (Z/G, M/G).
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Let (Z, M) be a differential system with full symmetry algebra X.
Let ' be a sub-algebra of X.

Then the algebra nors (') /T always determines a sub-algebra of the
full symmetry algebra of the reduced system. (Z/G, M/G).
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Application 5: Symmetries of Darboux Integrable Systems

Let (Z, M) be a differential system with full symmetry algebra X.
Let ' be a sub-algebra of X.

Then the algebra nors (') /T always determines a sub-algebra of the
full symmetry algebra of the reduced system. (Z/G, M/G).

Overview

Generically one expects the reduced system to have more

. Symmetry
symmetries. Reduction
Linear OD!
But for DI we have the remarkable: Lo :
Theorem. Let (Z, M) be a DI system with defining systems Milestones
(Ka, M,) with symmetry algebras X,. Let be [ C X, be the internal ~ whatisor
Symmetry algebra Properties of DI
Application 1
Then the full symmetry algebra of (Z, M) is determined by the P
normalizer [giag in X1 @ Xo. Application 3
Corollary. If ¥; =¥, =X then Application 4
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Example 1. Thanks to D. The, B. Doubrov, F. Stazzullo

For the defining differential systems take
v = (")
The symmetry algebra is the exceptional algebra g».

There are 2 MAS.

Roots Normalizer in g» Equation
a4, 05, Qg 9 rt — s? = 3t
Qasz, (s, g 7 Messy
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Application 6: Backlund Transformations for Darboux Integrable
Systems

Backlund transformations for a Darboux integrable system can be
constructed from different subgroups of the symmetry groups of the
defining differential systems.
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Application 6: Backlund Transformations for Darboux Integrable
Systems

Backlund transformations for a Darboux integrable system can be
constructed from different subgroups of the symmetry groups of the
defining differential systems.

Step 1. Start with a Darboux integrable system.
(K1 x K2)

xcdiag

Z = (K1 x K2)/Gdiag

Wty sm-@é{“
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Step 2. Reduce by another symmetry group L.

(K1 x K2)

qar AGdiag
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Step 3. Symmetry reduce by the intersection H= LN G.

(K1 x K2)
.

AHaia

g 2
o s‘,mas"’

/B = (K1 x K2)/Hain
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Step 4. Calculate the orbit projection maps p; and pa.

(K1 x K2)
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Step 5. Remove the scaffolding to arrive at a Backlund
transformation.

B = (K1 x K2)/Hajag

= P

J = (K1 x K2)/L Z = (K1 x K2)/Gdiag

"
c-,g-l:}r »
l‘;}emsvmvﬁ
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ALL known examples of Backlund transformations for Darboux
integrable systems can be constructed by symmetry reduction.

Example 1. A Backlund transformation for a fully non-linear
equation

[w = @2, v =("?]

!

[ B ]
/ \
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Example 2. A de-coupling Backlund transformation for the A, Toda
lattice.

J34 5 g3.4

Overview

{I'. 21,22}

Symmetry
1 2 W,

= 7[/[/,‘1, W7 +e™) Reduction
W2, = —W2(E" +wy)

zy

Linear ODE

Liouville

1 vt 1 _ 2U0'-U?
= ey = € B
Vey =€ Usy What is DI?
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Application 7: Zero Curvature Formulations for Darboux
Integrable Systems

Zero curvature formulations for Darboux integrable systems can be
constructed from linear representations of the internal symmetry

group.
We illustrate with Liouville's equation

Step 1. The coordinates for J3(R, R) x J3(R, R) are
(x,2, 21,22, 23, ¥, W, Wy, Wa, W3)

Here is diagonal action used in the symmetry reduction to
Liouville's equation.

r1 = az - awv
I =20z + 210, + w0y + W10w, + ... (prolonged to order 3)

z2 w?
M3 = ?82 + 2210, + 78,” + w10, + ...
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Step 2. Create an extension by adding (vector space coordinates
ty, tr for the adjoint representation)

1=00, +11
Fo =110y — t20r, + T2
F3 =10, +T3

Step 3. Calculate the Pfaffian system which is [ invariant and linear
in the new variables
9t = =dt; — )\(71-1 = ;tg)d

1
2 _ T2
¥° = dty )\( ) t1 2t2) dx

(to which the contact forms on J3(R, R) x J3(R, R) are added)
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Step 4. Calculate the reduced differential system in terms of the
differential invariants

_ 2y,

221 w1

t1 —zt: = ——|(t t: =lo
o=\ ztr), 02 \/W1( 1twh), U g((z+ w)2)
to be the zero curvature formulation :::::y
Reduction

d [o 0 _ \@ | o Linear ODE
— = Liouville
dx |02 2 '
Milestones

What is DI?

1 Properties of DI

L 0 Application 1
d |og 27 o1 PP
. = Application 2
dy |02 V2 1 02

2

- Application 3
uy

Application 4
_u Application 5

of uy, = e".

Application 6

Application 7

Application 8

Conclusions

Integrable Systems



Application 8: Classification of Darboux Integrable f-Gordon
Equations

Uxy = f(X,}/> u, Uxauy) (*)

In 1899 Goursat give a classification of equations (*) which are DI
integrable at order 2.

In 1939, 1941 Vessiot re-produced Goursat's result using the
symmetry reduction approach discussed today - in effect one simply
calculates the DI systems determined by Lie’s classification of vector
field systems in the plane.
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In 2001 Ziber and Sokolov classified f-Gordon equations (*) which
are DI integrable all order. From our perspective, the equations are

[1] reduction of the contact systems on JX(R, R) Eq 2; Eq 3; Eq 4;
Eq 5; Eq 6; Eq 7.

[2] reduction of z/ = y(" by the 2-step nilpotent algebras (and
simple variations)

[3] reduction of the Hilbert-Cartan equation z’ = y” by 5
dimensional sub-algebras of the exceptional algebra g». Eq 8; Eq 9.
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Conclusions

1. The definition of Darboux integrability in terms of symmetry :
reduction by an internal symmetry group is (locally) equivalent to e gy
the classical definition in terms of the existence of intermediate

integrals/ Darboux invariants/ ... A-Fels-Vaasiliou
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Conclusions

1. The definition of Darboux integrability in terms of symmetry
reduction by an internal symmetry group is (locally) equivalent to
the classical definition in terms of the existence of intermediate
integrals/ Darboux invariants/ ... A-Fels-Vaasiliou

2. The advantage of the symmetry reduction approach to Darboux :::::y
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Conclusions

1. The definition of Darboux integrability in terms of symmetry
reduction by an internal symmetry group is (locally) equivalent to
the classical definition in terms of the existence of intermediate
integrals/ Darboux invariants/ ... A-Fels-Vaasiliou

2. The advantage of the symmetry reduction approach to Darboux
integrability is that it gives immediate access to the geometric
structures that one encounters in integrable systems theory
(symmetries, Bicklund transformations, zero curvature, ...

| don't know what integrability means but | do know:

‘ Darboux integrable systems are integrable systems

3. The work of Leznov and Saveliev indicate that there is hope of
generalizing to the case of infinite dimensional internal groups and
equations which are not DI in the strict sense.

WIP
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Conclusions

1. The definition of Darboux integrability in terms of symmetry
reduction by an internal symmetry group is (locally) equivalent to
the classical definition in terms of the existence of intermediate
integrals/ Darboux invariants/ ... A-Fels-Vaasiliou

2. The advantage of the symmetry reduction approach to Darboux
integrability is that it gives immediate access to the geometric
structures that one encounters in integrable systems theory
(symmetries, Bicklund transformations, zero curvature, ...

| don't know what integrability means but | do know:

‘ Darboux integrable systems are integrable systems

3. The work of Leznov and Saveliev indicate that there is hope of
generalizing to the case of infinite dimensional internal groups and
equations which are not DI in the strict sense.

WIP

THANK-YOU
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