Tau functions and anomalous dimensions

Twistors based on the Joukowski transformation

Lionel Mason
The Mathematical Institute, Oxford lmason@maths.ox.ac.uk

Geometric \& algebraic aspects of integrability, LMS, Durham 30/7/2016

Credits: Andrea Ferrari, (and historically, R.S.Ward, N.M.J.Woodhouse, ...) following Gromov, Kazakov and Volin plus many others.

Work in progress!

The Joukowski transformation

A non-Hausdorff twistor correspondence

- The Joukowski transformation $\lambda \in \mathbb{C P}^{1} \xrightarrow{(z, \rho)} \mathbb{C P}^{1} \ni u$

$$
u=\frac{\rho}{2}\left(\lambda+\frac{1}{\lambda}\right)+i z
$$

- Maps unit circle $|x|=1$ to the slit $[-\rho, \rho]+i z$.
- Family of 2 : 1 maps branching at $u= \pm \rho+i z$.
- For $\rho+i z \in U \subset \mathbb{C}$ that contains $\rho=0$, can connect both pre-images for $u \in U$ but not for $u \notin U$.
- Image is non-Hausdorff twistor space $\mathbb{T}(U)$: two Riemann spheres $\mathbb{C P}_{0}^{1}, \mathbb{C P}_{\infty}^{1}$ glued over U.

$$
\lambda=0 \rightarrow u=\infty \in \mathbb{C P}_{0}^{1}, \quad \lambda=\infty \rightarrow u=\infty \in \mathbb{C P}_{\infty}^{1}
$$

Correspondence: $U \times \mathbb{C P}^{1} \quad \ni(z, \rho, \lambda)$

$$
(z, \rho) \in U \quad \mathbb{T}(U) \ni u=\frac{\rho}{2}\left(\lambda+\frac{1}{\lambda}\right)+i z
$$

Three applications of the non-Hausdorff twistor space

1. Mason \& Woodhouse 1986 (following Ward 1983)
$\left\{\begin{array}{l}\text { Solutions to Ernst } \\ \text { equations on } U\end{array}\right\} \longleftrightarrow\left\{\begin{array}{l}\text { Certain rank } 2 \text { holomorphic } \\ \text { vector bundles } E \rightarrow \mathbb{T}(U)\end{array}\right\}$
2. A consequence of Mason \& Woodhouse (1996)
$\left\{\begin{array}{l}y(\rho), \text { Painlevé III } \\ \text { transcendants }\end{array}\right\} \longleftrightarrow\left\{\begin{array}{l}\text { Certain } \partial_{u} \text { invariant rank } \\ 2 \text { bundles } E \rightarrow \mathbb{T}(U)\end{array}\right\}$
3. Quantum spectral curve of Gromov, Kazakov \& Volin 2013
$\left\{\begin{array}{l}\text { Certain anomalous di- } \\ \text { mensions } \gamma(\rho) \text { for } N=4 \\ \text { Super Yang-Mills }\end{array}\right\} \longleftrightarrow\left\{\begin{array}{l}\text { Certain } u \rightarrow u+i \text { invari- } \\ \text { ant rank } 2,4 \text { or } 4 \mid 4 \text { bundles } \\ E \rightarrow \mathbb{T}(U)\end{array}\right\}$
Ongoing work with Andrea Ferrari.

Stationary axisymmetric self-dual Yang-Mills

Yang's form of Self-dual Yang-Mills on \mathbb{R}^{4} with coords $(v, y)=\left(z+i t, \rho \mathbf{e}^{i \theta}\right)$, metric $\mathrm{d} s^{2}=\mathrm{d} v \mathrm{~d} \bar{v}+\mathrm{d} y \mathrm{~d} \bar{y}$ is:

$$
\frac{\partial}{\partial \bar{v}}\left(J^{-1} \frac{\partial J}{\partial v}\right)+\frac{\partial}{\partial \bar{y}}\left(J^{-1} \frac{\partial J}{\partial y}\right)
$$

where $J=J(v, w, \bar{y}, \bar{y})$ is a Hermitian matrix function. t and θ-independence \sim

$$
\partial_{\rho}\left(\rho J^{-1} \partial_{\rho} J\right)+\partial_{z}\left(\rho J^{-1} \partial_{z} J\right)=0
$$

The reduced vacuum equations

Ward's reduction (1983)

Metric:

$$
\begin{gathered}
\mathrm{d} s^{2}= \pm \mathbf{e}^{2 k}\left(\mathrm{~d} \rho^{2}+\mathrm{d} z^{2}\right) \pm J_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j} \\
k=k(\rho, z), \quad J_{i j}=J_{i j}(\rho, z) .
\end{gathered}
$$

$\partial / \partial x^{i}, i=1, \ldots n-2$ are 2-surface orthogonal Killing vectors (take $n=4$ hereon).

The Vacuum field equations

$$
\begin{gathered}
\rho^{2}=\operatorname{det} J \\
4 i \frac{\partial k}{\partial w}=-\rho \operatorname{tr}\left(\left(J^{-1} \partial_{w} J\right)^{2}\right)-\frac{1}{\rho}, \quad w=z+i \rho \\
\partial_{\rho}\left(\rho J^{-1} \partial_{\rho} J\right)+\partial_{z}\left(\rho J^{-1} \partial_{z} J\right)=0
\end{gathered}
$$

Tau function: Solution controlled by k, the tau function.

The Lax pair

- Let $U \subset H=\left\{(z, \rho) \in \mathbb{R}^{2} \mid \rho \geq 0\right\}$ and set $w=\rho+i z$.
- For $(w, \lambda) \in U \times \mathbb{C P}^{1}$ define

$$
\begin{aligned}
L & :=\partial_{w}+\frac{\lambda(\lambda-1)}{2 \rho(\lambda+1)} \partial_{\lambda}+\frac{1}{\lambda+1} J^{-1} \partial_{w} J \\
\tilde{L} & :=\partial_{\bar{w}}-\frac{\lambda(\lambda+1)}{2 \rho(\lambda-1)} \partial_{\lambda}-\frac{1}{\lambda-1} J^{-1} \partial_{\bar{w}} J
\end{aligned}
$$

- Then

$$
[L, \tilde{L}]=0 \quad \Leftrightarrow \quad \partial_{\rho}\left(\rho J^{-1} \partial_{\rho} J\right)+\partial_{z}\left(\rho J^{-1} \partial_{z} J\right)=0
$$

Twistor space

For a given $U \subset H$ define the reduced twistor space to be

$$
\mathbb{T}(U)=U \times \mathbb{C P}^{1} /\{I, \tilde{l}\}
$$

where $\{I, \tilde{I}\}$ is the distribution spanned by

$$
I=\partial_{w}+\frac{\lambda(\lambda-1)}{2 \rho(\lambda+1)} \partial_{\lambda}, \quad \tilde{l}=\partial_{\bar{w}}-\frac{\lambda(\lambda+1)}{2 \rho(\lambda-1)} \partial_{\lambda} .
$$

Points of $\mathbb{T}(U)$ are the leaves of $\{I, \tilde{I}\}$ given by constant

$$
u=\frac{\rho}{2}\left(\lambda+\frac{1}{\lambda}\right)+i z
$$

$\mathbb{T}(U)$ is a non-Hausdorff Riemann surface with affine holomorphic coordinate u so $u: \mathbb{T}(U) \rightarrow \mathbb{C P}^{1}$.

Reduced Ward correspondence,

Theorem (M. \& Woodhouse 1986)

Solutions to the stationary axisymmetric SDYM equations on U are in 1:1 correspondence with holomorphic vector bundles $E \rightarrow \mathbb{T}(U)$ such that $p^{*} E$ is trivial over each $\mathbb{C P}^{1}$ in $U \times \mathbb{C P}^{1}$. Suppose further

- $\bar{E}=$ pull-back of E^{*} by complex conjugation $u \rightarrow \bar{u}$
- interchange of sheets of $\mathbb{T}(U) \rightarrow \mathbb{C P}^{1}$ sends $E \rightarrow E^{*}$, then J is real and symmetric and is a solution of the reduced vacuum equations.
(Triviality condition is generic for small enough U.)

Axis simple case

The Ward ansatze
Assume solution analytic (or meromorphic) at $\rho=0$.

- $\mathbb{T}(U)=\mathbb{C P} \mathbb{P}_{0}^{1}$ glued to $\mathbb{C P}_{\infty}^{1}$ over U.
- There is a canonical normalization of twistor data:

$$
\left.\left.E\right|_{\mathbb{C P}_{0}^{1}} \cong E\right|_{\mathbb{C P}_{\infty}^{1}} \cong \mathcal{O}(p) \oplus \mathcal{O}(q), \quad\left(\mathcal{O}(p)=\mathbb{C} \text {-line bundle, } c_{1}=p\right)
$$

- Need $P(u): U \rightarrow \operatorname{SL}(2, \mathbb{C})$ to patch $\left.E\right|_{\mathbb{C P}_{0}^{1}}$ to $\left.E\right|_{\mathbb{C P}_{\infty}^{1}}$.
- J is obtained from Riemann-Hilbert problem in λ-plane

$$
\begin{aligned}
& G_{0}(z, \rho, \lambda)=\left(\begin{array}{cc}
\frac{\rho^{p}}{\lambda^{p}} & 0 \\
0 & \frac{\rho^{q}}{\lambda^{q}}
\end{array}\right) P(u)\left(\begin{array}{cc}
(-\rho \lambda)^{p} & 0 \\
0 & (-\rho \lambda)^{q}
\end{array}\right) G_{\infty}(z, \rho, \lambda), \\
& u=i z+\frac{\rho}{2}\left(\frac{1}{\lambda}+\lambda\right), G_{0} \text { holomorphic on }|\lambda| \leq 1, G_{\infty} \text { on }|\lambda| \geq 1
\end{aligned}
$$

- Finally

$$
J(z, \rho)=G_{0}(z, \rho, 0) G_{\infty}(z, \rho, \infty)^{-1}
$$

P can be retrieved from finite order ρ-expansion of J at $\rho=0$,

Tau functions for Painlevé III transcendants

- Stationary axisymmetric SDYM with ∂_{z} symmetry reduces to Painlevé III [M.\& Woochouse (1997)].

$$
y^{\prime \prime}=\frac{y^{\prime 2}}{y}-\frac{y^{\prime}}{\rho}+\frac{\alpha y^{2}+\beta}{t}+\gamma y^{3}+\frac{\delta}{y}
$$

- ∂_{z} symmetry implies exponential dependence for $P(u)$.
- Explicit Tau function solutions follow from combinations of Ward Ansatze, to solve Riemann-Hillbert problem:

$$
G_{0}(\rho, \lambda)=\left(\begin{array}{cc}
\lambda^{-L} \mathbf{e}^{\theta u} & \mathbf{e}^{u} \\
0 & \lambda^{L} \mathbf{e}^{-\theta u}
\end{array}\right) G_{\infty}(\rho, \lambda)
$$

- Tau functions obtained as determinants of $L \times L$ Matrices

$$
\tau(\rho)=\operatorname{det}\left(A_{i j}\right), \quad A_{i j}=\psi^{i+j-2} \quad \psi^{k}=\left(\rho \partial_{\rho}\right)^{k}\left(c_{1} I_{\nu}(\rho)+c_{2} I_{-\nu}\right)
$$

where $I_{ \pm \nu}(\rho)$ are Bessel functions of [Okamoto, Masuda 2007].

Integrability of N=4 Super Yang-Mills (MSYM)

- Fields: Yang-Mills connection $A, 6$ scalars Φ_{i}, and Fermions.
- Action $\int_{M} \operatorname{Tr}\left(F_{A}^{2}+\left[\Phi_{i}, \Phi_{j}\right]^{2}+\right.$ Fermions $)$
- Conformal field theory.
- QFT controlled by strings in $\mathrm{AdS}^{5} \times S^{5}$
- Strings are minimal surfaces $Y: \Sigma \rightarrow A d S^{5} \times S^{5}$.
- Integrable with Lax pair

$$
L=d+\frac{1-\lambda}{1+\lambda} j+\frac{1+\lambda}{1-\lambda} \bar{j}
$$

where $j \in \Omega_{\Sigma}^{1,0} \otimes s u(2,2 \mid 4)$ and L has \mathbb{Z}_{4} symmetry.

- This all needs to be quantized \leadsto integrable spin chains ...

What can you calculate?

Anomalous dimensions

- The cusp anomalous dimension is a Wilson loop

$$
\gamma(\theta, \phi, \rho)=\left\langle\operatorname{tr} \operatorname{Pexp} \int_{\Gamma_{\theta, \phi}}\left(A+\mathrm{d} s n^{i} \Phi_{i}\right)\right\rangle
$$

with $|n|=1, \Gamma=$ two arcs of circles in \mathbb{M} with angle θ, and $n \cdot n^{\prime}=\cos \phi$.

- QFT calculation \leadsto Feynman integrals, multi-zeta values, polylogs...
- Calculate using quantum spectral curve [Gromov,Kazakov, Volin 2013...].
- Near BPS to $O\left((\theta-\phi)^{2}\right)$, QSC becomes

$$
G_{0}(\rho, \lambda)=\left(\begin{array}{cc}
\lambda^{-2 L} \mathbf{e}^{\theta u} & \sinh 2 \pi u \\
0 & \lambda^{2 L} \mathbf{e}^{-\theta u}
\end{array}\right) G_{\infty}(\rho, \lambda)
$$

- $\gamma=\tau$-function with $\psi^{k}=l_{k}^{\theta}$ generalized Bessel functions $\sinh \left(2 \pi \rho\left(\lambda+\frac{1}{\lambda}\right) \exp \left(\theta \rho\left(\lambda-\frac{1}{\lambda}\right)=\sum_{\nu} I_{k}^{\theta} \lambda^{k}\right.\right.$.

Full Quantum Spectral Curve

More generally

- $G_{0}^{a}(\rho, \lambda)$ on $|\lambda|<1+\epsilon, a=1, \ldots, 4$,
- $G_{\infty}^{a}(\rho, \lambda)$ on $|\lambda|>1-\epsilon$
- Instead of P have $\mu_{a b}=-\mu_{b a}$ near $|\lambda|=1$.
- Near $|\lambda|=1$ we have

$$
G_{0}^{a}=\mu^{a b} G_{\infty}^{b}
$$

- In near BPS cases $\mu_{\mathrm{ab}}=\mu_{\mathrm{ab}}(u)$ periodic in $u \rightarrow u+i$.
- In general it satisfies its own Riemann Hilbert problem in terms of G_{0}^{a} and G_{∞}^{a} and asymptotics as $\lambda \rightarrow 0, \infty$

$$
\mu^{a b}-\tilde{\mu}^{a b}=G_{0}^{[a} G_{\infty}^{b]}
$$

Gives all anomalous dimensions for $N=4$ SYM.

Summary

- Non-Hausdorff reduced twistor space underlies geometry of Ernst equations, Painlevé III, and Quantum spectral curve.
- Near BPS anomalous dimensions arise from adaptations of twistor correspondences and satisfy reductions of SDYM equations.

Further projects:

- Near BPS is close to classical minimal surface problem for string in AdS^{5} where ρ is radius of AdS^{5}.
- Away from BPS, system becomes more complicated and coupled, although still geometric.
- Is this some underlying geometric structure on $\mathbb{T}(U)$?
- Do these give stationary axisymmetric SDYM solutions periodic in z ?
- Any relation to $N=4$ SYM twistor action?

Thank you!

