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KdV

The Korteweg - de Vries equation

ut = uux + ε2uxxx

has bihamiltonian formulation

ut(x) = {u(x),H1}1 = {u(x),H0}2

with compatible Poisson brackets

{u(x), u(y)}1 = δ′(x − y),

{u(x), u(y)}2 = u(x)δ′(x − y) +
1

2
u′(x)δ(x − y) +

3

2
ε2δ′′′(x − y).

[Gardner-Zakharov-Faddeev ’71, Magri ’78]



General problem
Scalar case N = 1

Classify (bi)hamiltonian structures of the form

{u(x), u(y)} = {u(x), u(y)}0+

+
∑
m>2

εm
m+1∑
l=0

Am,l(u; ux , . . . )δ
(l)(x − y)

under Miura type transformations

u(x)→ u(x) + εf1(u; ux) + ε2f2(u; ux , uxx) + . . .

where Am,l , fi are differential polynomials.
[Dubrovin-Zhang’01]
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Poisson brackets of Dubrovin-Novikov type

Leading order:

{ui (x), uj(y)}0 = g ij(u(x))δ′(x − y) + Γij
k (u(x))ukx (x)δ(x − y),

is a Poisson structure iff

I g ij flat contravariant metric,

I Γij
k Christoffel symbols of g ij .

[Dubrovin-Novikov’83]



Local multivectors

I In finite dimensions: the space Λ∗ of multivectors on a
manifold M is endowed with the Schouten-Nijenhuis bracket

[, ] : Λp × Λq → Λp+q−1

I On a formal loop space LM = {S1 → M}: one considers the
space Λ∗loc of local multivectors of the form (for M = R)∑
p2···pk>0

Bp2...pk (u(x); ux(x), uxx(x), . . . )δ(p2)(x−x2) · · · δ(pk )(x−xk)

which is closed under a suitably defined Schouten-Nijenhuis
bracket

[, ] : Λp
loc × Λq

loc → Λp+q−1
loc



Poisson cohomology and deformations

I A bivector P ∈ Λ2
loc is a Poisson structure iff [P,P] = 0

=⇒ dP := [P, ·] : Λloc → Λloc is a differential d2
P = 0.

I Let P ∈ Λ2
loc Poisson bivector. The Poisson cohomology of P

is

H(Λloc , dP) =
Ker dP
Im dP

.

I The Poisson cohomology H(Λloc , dP) of a Poisson structure of
DN type P vanishes in positive degree.

[Getzler’02, Degiovanni-Magri-Sciacca’05, Liu-Zhang’11 ]

I All deformations of a single Poisson structure of DN type are
trivial under Miura transformations.
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Deformations of bihamiltonian structure

Recent developments:

I Classification of deformations of dKdV bihamiltonian structure up
to O(ε4) [Lorenzoni’02] ...O(ε8) [Arsie-Lorenzoni’11]

I Quasitriviality of dKdV deformations; reformulation as a double
complex [Barakat’08]

I Computation of BH1(F̂), BH2(F̂), central invariants [Liu-Zhang’05,

Dubrovin-Liu-Zhang’06]

I Computation of BH3(F̂) for dKdV Poisson pencil: existence of
deformation of dKdV Poisson pencil corresponding to infinitesimal
deformations. Conjectured vanishing of BH>4(F̂). [Liu-Zhang’13]



Deformations of bihamiltonian structure

I Deformation theory of a Poisson pencil P1, P2 of
hydrodynamic type is governed by bihamiltonian cohomology
groups

BH(Λloc , d1, d2) =
Ker d1 ∩ Ker d2

Im d1d2

where di = [Pi , ·].

I Infinitesimal deformations (O(ε3)) are classified by BH2(Λloc),
i.e., by central invariants

ci (u) =
1

3(f i (u))2

Aii
2,3;2 − uiAii

2,3;1 +
∑
k 6=i

(Aij
1,2;2 − uiAij

1,2;1)2

f k(u)(uk − ui )

 .

[Liu-Zhang’05, Dubrovin-Liu-Zhang’06]



Existence of deformations

I Given an infinitesimal deformation of a Poisson pencil of DN
type, is it possible to extend it to a full dispersive Poisson
pencil ?

Main Theorem [C-Posthuma-Shadrin’15]

The deformations of any semisimple Poisson pencil of DN
type are unobstructed.

I Previously known for the dKdV Poisson pencil. [Liu-Zhang’13]

I Sufficient to show that BH3
>5(Λloc , d1, d2) vanishes.



Our results:

1 We compute the full bihamiltonian cohomology of the
dispersionless KdV Poisson pencil:

Theorem [C-Posthuma-Shadrin’14]

The bihamiltonian cohomology of the dispersionless KdV
Poisson pencil is given by

BHp
d (Λloc , d1, d2) ∼=


C∞(R) for (p, d) = (1, 1), (2, 1), (2, 3), (3, 3)

R for (p, d) = (0, 0)

0 otherwise.

2 We generalize the above result, computing the full
bihamiltonian cohomology of general scalar Poisson pencil of
hydrodynamic type. [C-Posthuma-Shadrin’15-a]



Our results:

3 We show that the bihamiltonian cohomology of a semisimple
Poisson pencil of hydrodynamic type with n dependent
variables vanishes but for a finite number of bi-degrees:

Theorem [C-Posthuma-Shadrin’15-b]

The bihamiltonian cohomology BHp
d (Λloc , d1, d2) vanishes for

all bi-degrees (p, d) with d > 2, unless

d = 2, . . . , n, p = d , . . . , d + n,

d = n + 1, n + 2, p = d , . . . , d + n − 1.



For example, in the n = 3 case, we
claim the bihamiltonian cohomology

BHp
d (Λloc , d1, d2)

vanishes in all bi-degrees but those
highlighted.

q

p

q

p

q

p

q

p

q

p

q

p

q

p

r=0 r=1 r=2

d0

d1 d2

d

p

n=3

In particular, this implies the vanishing of BH3
>5(Λloc) which in

turn implies the vanishing of the obstructions.
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Supervariables formalism

[Liu-Zhang’13]

Consider the space

Â := C∞(R)[[u1, u2, . . . ; θ, θ1, . . . ]]

of formal series

f (u; u1, u2, . . . ; θ, θ1, . . . ) ∈ Â

in the commuting variables u1, u2, . . . and in the anticommuting
variables θ, θ1, θ2, . . . .

I x-derivative: ∂ =
∑

s>0

(
us+1 ∂

∂us + θs+1 ∂
∂θs

)
: Â → Â

I two gradations:

Âp
d = homogeneous component with degree

{
p in θ, θ1, . . .

d in x-derivatives.
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I Let F̂ := Â
∂Â and denote the projection map

∫
: Â → F̂ .

I Λp
loc
∼= F̂p

I The Schouten-Nijenhuis bracket is

[, ] : F̂p × F̂q → F̂p+q−1

[P,Q] =

∫
(δ•Pδ•Q + (−1)pδ•Pδ

•Q)

δ• =
∑
s>0

(−∂)s
∂

∂θs
, δ• =

∑
s>0

(−∂)s
∂

∂us

I A bivector P ∈ F̂2 is a Poisson structure iff [P,P] = 0.

I By (graded) Jacobi identity dP := [P, ·] : F̂ → F̂ is a
differential d2

P = 0.



I It is more convenient to work in Â rather than in F̂ .
[Liu-Zhang’13]

I For any P ∈ F̂2, let dP = [P, ·], there exists a map DP s.t.
the diagram commutes

Â DP−−−−→ Ây∫ y∫
F̂ dP−−−−→ F̂

which is given by

DP =
∑
s>0

(
∂s(δ•P)

∂

∂us
+ ∂s(δ•P)

∂

∂θs

)

I The short exact sequence of complexes above gives rise to a
long exact sequence in cohomology that allow to recover the
cohomology of F̂ from the cohomology of Â.



Barakat-Liu-Zhang lemma

Let us consider the related polynomial complex

(F̂ [λ], dλ), dλ = d2 − λd1.

For almost all (p, d) the bihamiltonian cohomology groups are
isomorphic to the cohomology groups of the corresponding
polynomial complex i.e.

BHp
d (F̂ , d1, d2) ∼= Hp

d (F̂ [λ], dλ)

for p, d > 0 excluding (p, d) = (0, 0), (1, 0), (1, 1), (2, 1).
[Barakat’08, Liu-Zhang’13]



KdV case

I The dispersionless KdV Poisson bivectors are represented by
the elements in F̂

P1 =
1

2

∫
θθ1, P2 =

1

2

∫
uθθ1.

I The differentials on F̂ induced by the Schouten bracket are

di = dPi
= [Pi , ·], i = 1, 2.

I The corresponding differentials on Â are

D1 =
∑
s>0

θs+1 ∂

∂us
,

D2 =
∑
s>0

(
∂s(uθ1 +

1

2
u1θ)

∂

∂us
+ ∂s(

1

2
θθ1)

∂

∂θs

)
.



Main problem

Our main problem is to compute the cohomology of the complex

(Â[λ],Dλ)

where
Â = C∞(R)[[u1, u2, . . . ; θ, θ1, . . . ]]

and

Dλ =
∑
s>0

[
∂s((u − λ)θ1 +

1

2
u1θ)

∂

∂us
+ ∂s(

1

2
θθ1)

∂

∂θs

]
.



A filtration of Â[λ]

We define a filtration of Â[λ]

F iÂd [λ] = Â(d−i)
d [λ]

by imposing the upper bound d − i on the highest derivative
appearing in homogeneous component of standard degree d .

This filtration is bounded:

0 = F d+1Âd [λ] ⊂ · · · ⊂ F i+1Âd [λ] ⊂ F iÂd [λ] ⊂ · · · ⊂ F 0Âd [λ] = Âd [λ].

We associate with this filtration a spectral sequence Ep,q
r .



Filtrations and spectral sequences

A (cohomological type) spectral sequence is a family of differential
Z-bigraded vector spaces (E ∗,∗r , dr ) with differentials dr of bidegree
(r , 1− r)

q

p

q

p

q

p

r=0 r=1 r=2

d0

d1 d2

such that for all p, q ∈ Z and all r > 0

Epq
r+1
∼= Hpq(E ∗,∗r , dr ) :=

Ker(dr : Epq
r → Ep+r ,q−r+1

r )

Im(dr : Ep−r ,q+r−1
r → Epq

r )
.



(C , d) - filtered Z-graded differential complex

I F iC , i ∈ Z - decreasing filtration of (C , d)

· · · ⊂ F i+1 ⊂ F iC ⊂ · · · ⊂ C

I d(F iC ) ⊂ F iC - filtration is preserved by differential

With a filtered Z -graded differential complex one associates a
spectral sequence (E ∗,∗r , dr ) with

Ep,q
0 = grpCp+q

Ep,q
1 =

d−1(F p+1Cp+q+1) ∩ F pCp+q

d(F pCp+q−1) + F p+1Cp+q
,

with differentials d0, d1 induced by d on the quotients.



The cohomology of a filtered graded complex (C , d) inherits a
filtration, where F iH(C , d) is given by the image of H(F iC , d) in
H(C , d) under the inclusion map.

Theorem
The spectral sequence associated with a bounded filtration
converges to H(C , d), i.e.,

Ep,q
∞
∼=

F pHp+q(C , d)

F p+1Hp+q(C , d)

A filtration F ∗C is bounded if for each degree p there are integers
s and t such that

0 = F sCp ⊂ · · · ⊂ F i+1Cp ⊂ F iCp ⊂ · · · ⊂ F tCp = Cp.



Lemma: The zeroth page E ∗,∗0 of the spectral sequence

Epq
0 = grpÂp+q[λ] ∼= Â[q]

p+q[λ]

q

p

d0 : Ep,q
0 → Ep,q+1

0

d0 =

(
(u − λ)θq+1 +

1

2
uq+1θ

)
∂

∂uq
+

1

2
θθq+1 ∂

∂θq



Lemma: The first page E ∗,∗1

Ep,q
1 =


R[λ], p = q = 0
C∞(R)
R[u] θθ

1, p = 0, q = 1

Â[q−1]
p θθq p > 1, q > 2.

q

p

d1 : Ep,q
1 → Ep+1,q

1

d1(f θθq) =

(
(Dλ(f ))λ=u +

q − 2

2
θ1f

)
θθq



Lemma: The second page E ∗,∗2

Important: The following operator is a contracting homotopy of d1

for p > 1, q > 2 and (p, q) 6= (1, 2)(∑
s>1

s + 2

2
us

∂

∂us
+
∑
s>0

s − 1

2
θs

∂

∂θs

)−1
∂

∂θ1

Ep,q
2 =


R[λ] p = 0, q = 0,
C∞(R)
R[u] θθ

1 p = 0, q = 1

C∞(R)θθ1θ2 p = 1, q = 2

0 else.

q

p

d2 : Ep,q
2 → Ep+2,q−1

2

The differential d2 is zero → the spectral sequence stabilizes



Main proposition

By the convergence theorem for spectral sequences we have

Ep,q
2 = Ep,q

∞
∼=

F pHp+q(Â[λ],Dλ)

F p+1Hp+q(Â[λ],Dλ)

and because the filtration is bounded we have

F 0Hn(Â[λ],Dλ) = Hn(Â[λ],Dλ), F nHn(Â[λ],Dλ) = 0.

Proposition

The cohomology of the polynomial complex (Â[λ],Dλ) is

H(Â[λ],Dλ) = R[λ]⊕ (C∞(R)/R[u])θθ1 ⊕ C∞(R)θθ1θ2



Main result

By the long exact sequence argument and the Barakat lemma, we
derive the bihamiltonian cohomology of F̂ from the cohomology of
the complex (Â[λ],Dλ).

Theorem
The bihamiltonian cohomology of the dispersionless KdV Poisson
pencil is given by

BHp
d (F̂ , d1, d2) ∼=


C∞(R) for (p, d) = (1, 1), (2, 1), (2, 3), (3, 3)

R for (p, d) = (0, 0)

0 otherwise.

Remark: This result generalizes to the general scalar case.
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Semisimple Poisson pencil of DN type

I Compatible Poisson brackets of DN type

{w i (x),w j(y)}0
1, {w i (x),w j(y)}0

2

i.e., g ij
1 , g ij

2 flat pencil of metrics.

I Semisimple when det(g2(w)− λg1(w)) = 0 has pairwise
distinct real roots in λ = u1(w), . . . , un(w).

I u1, . . . , un are canonical coordinates, i.e., the metrics are
diagonal:

g ij
1 = f i (u)δij , g ij

2 = ui f i (u)δij .



Semisimple n-dimensional case
I Space of local multivectors:

F̂ =
Â
∂Â

,

Â = C∞(U)[[ui ,1, ui ,2, . . . ; θ0
i , θ

1
i , θ

2
i , . . . ]]

with U ⊂ Rn.

I Poisson brackets {, }0
a as elements in F̂2:

Pa =
1

2

∫ (
g ij
a θ

0
i θ

1
j + Γij

k,au
k,1θiθj

)
, a = 1, 2.

I As before we associate to Pa ∈ F̂2 a differential operator Da

on Â, and define
Dλ = D2 − λD1.

I Compute the cohomology

H(Â[λ],Dλ).



Explicitly
Dλ = D(u1f 1, . . . , unf n)− λD(f 1, . . . , f n)

where

D(f 1, . . . , f n) =
∑
s>0

∂s
(
f iθ1

i

) ∂

∂ui,s

+
1

2

∑
s>0

∂s
(
∂j f

iuj,1θ0
i + f i

∂i f
j

f j
uj,1θ0

j − f j
∂j f

i

f i
ui,1θ0

j

)
∂

∂ui,s

+
1

2

∑
s>0

∂s
(
∂i f

jθ0
j θ

1
j + f j

∂j f
i

f i
θ0
i θ

1
j − f j

∂j f
i

f i
θ0
j θ

1
i

)
∂

∂θsi

+
1

2

∑
s>0

∂s
(
f j
∂i f

l

f l
∂i f

l

f l
ul,1θ0

l θ
0
j − f l

∂i f
l

f l
∂l f

j

f j
uj,1θ0

l θ
0
j

+ f l
∂l f

i

f i
∂i f

j

f j
uj,1θ0

l θ
0
j −

f l f j

f i
∂l f

i

f i
∂j f

i

f i
ui,1θ0

l θ
0
j

+ f l
∂l f

i

f i
∂l f

j

f j
uj,1θ0

j θ
0
i − f j

∂l f
i

f i
∂j f

l

f l
ul,1θ0

j θ
0
i

+f l
∂l f

i

f i
∂j f

l

f l
uj,1θ0

l θ
0
i + f l

∂l f
i

f i
∂l f

j

f j
uj,1θ0

l θ
0
i

)
∂

∂θsi
.



Main result

Theorem
The cohomology Hp

d (Â[λ],Dλ) vanishes for all bi-degrees (p, d),
unless

d = 0, . . . , n, p = d , . . . , d + n, (case 1)

d = 2, . . . , n + 2, p = d , . . . , d + n − 1. (case 2)

[C, Posthuma, Shadrin ’15]



Simple observation

Let (C , d) be a cochain complex with a bounded decreasing
filtration

· · · ⊂ F i+1C ⊂ F iC ⊂ · · ·

and let (Ek , dk) be the associated spectral sequence. Then

H`(Ek , dk) = 0 =⇒ H`(C , d) = 0.



First filtration

I The degree degu defined by

degu u
i ,s = 1, i = 1, . . . , n, s > 1

and zero otherwise.

I The first filtration on Â[λ] is given by

F r Âp[λ] = {f ∈ Âp[λ], p + degu f > r}.

I Denote ∆k the homogeneous components of Dλ on Â[λ]:

Dλ = ∆−1 + ∆0 + . . . , degu ∆k = k .

I The page E0 of the associated spectral sequence is:

(E0, d0) = (Â[λ],∆−1),

∆−1 =
∑
s>1

(ui − λ)f iθ1+s
i

∂

∂ui ,s
.



Proposition

The first page is given by

E1 = H(Â[λ],∆−1) ∼= Ĉ[λ]⊕
n⊕

i=1

Im
(
d̂i : Ĉi → Ĉi

)
where

Ĉ := C∞(U)[[θ0
1, . . . , θ

0
n, θ

1
1, . . . , θ

1
n]],

Ĉi := Ĉ[[{ui ,s , θs+1
i , s > 1}]],

d̂i =
∑
s>1

θs+1
i

∂

∂ui ,s
(de Rham).



Proof

To prove the Poincaré lemma

H(Ĉi , d̂i ) = Ĉ

we can define an homotopy map, i = 1, . . . , n, s > 1

hi ,s =
∂

∂θs+1
i

∫
dui ,s ,

with zero integration constant, then we have

hi ,s d̂i + d̂ihi ,s = 1− πui,sπθs+1
i
.



Proof
Similarly, to prove the Proposition we use two homotopy maps.
The first is

hi ,s := σi
1

ui − λ
1

f i
∂

∂θs+1
i

∫
dui ,s

which satisfies

hi ,s∆−1 + ∆−1hi ,s = 1− pi ,s ,

pi ,s :=πui,sπθs+1
i

+
(

1− πui,sπθs+1
i

+

−
∑
t>1
j

f j

f i
∂

∂θs+1
i

θt+1
j

∫
dui ,s

∂

∂uj ,t

)
πλ−ui .

It follows that we can kill the dependence on all the variables ui ,s ,
θs+1
i with i = 1, . . . , n, s > 1, in the λ-dependent part of any

cocyle.



Proof

The second homotopy map is, for i 6= j

hi ,s;j ,t =
1

ui − uj
1

f i f j
∂

∂θs+1
i

∂

∂θt+1
j

∫
dui ,s

∫
duj ,t

and we have for ∆−1 = d ′′ − λd ′

[hi ,s;j ,t , d
′′d ′] = 1− pi ,s;j ,t + (...)d ′ + (...)d ′′,

where we did not specify the last two terms since they vanish when
applied on elements in Ker d ′ ∩ Ker d ′′, and

pi ,s;j ,t := πui,sπθs+1
i

+ πuj,tπθt+1
j
− πui,sπθs+1

i
πuj,tπθt+1

j
.

This allows to kill mixed terms in the λ independent part of a
cocycle.



Second page

I The second page E2 is given by

E2 = H(E1, d1) = H
(
B̂,∆0

)
,

B̂ := Ĉ[λ]⊕
n⊕

i=1

Im
(
d̂i : Ĉi → Ĉi

)
.



∆0 = (−λ + ui )f iθ1
i

∂

∂ui

+
∑

s=a+b
s,a>1;b>0

(−λ + ui )

(
s

b

)
∂j f

i uj,aθ1+b
i

∂

∂ui,s
+

∑
s=a+b

s,a>1;b>0

(
s

b

)
f i ui,aθ1+b

i

∂

∂ui,s

+
1

2

∑
s=a+b

s>1;a,b>0

(−λ + ui )

(
s

b

)
∂j f

i uj,1+a
θ
b
i

∂

∂ui,s
+

1

2

∑
s=a+b

s>1;a,b>0

(
s

b

)
f i ui,1+a

θ
b
i

∂

∂ui,s

+
1

2

∑
s=a+b

s>1;a,b>0

(−λ + ui )

(
s

b

)
f i
∂i f

j

f j
uj,1+a

θ
b
j

∂

∂ui,s
+

1

2

∑
s=a+b

s>1;a,b>0

(
s

b

)
f i ui,1+a

θ
b
i

∂

∂ui,s

−
1

2

∑
s=a+b

s>1;a,b>0

(−λ + uj )

(
s

b

)
f j
∂j f

i

f i
ui,1+a

θ
b
j

∂

∂ui,s
−

1

2

∑
s=a+b

s>1;a,b>0

(
s

b

)
f i ui,1+a

θ
b
i

∂

∂ui,s

+
1

2

∑
s=a+b
s,a,b>0

(−λ + uj )

(
s

b

)
∂i f

j
θ
a
j θ

1+b
j

∂

∂θsi

+
1

2

∑
s=a+b
s,a,b>0

(
s

b

)
f iθai θ

1+b
i

∂

∂θsi

+
1

2

∑
s=a+b
s,a,b>0

(−λ + uj )

(
s

b

)
f j
∂j f

i

f i
θ
a
i θ

1+b
j

∂

∂θsi

+
1

2

∑
s=a+b
s,a,b>0

(
s

b

)
f iθai θ

1+b
i

∂

∂θsi

−
1

2

∑
s=a+b
s,a,b>0

(−λ + uj )

(
s

b

)
f j
∂j f

i

f i
θ
a
j θ

1+b
i

∂

∂θsi

−
1

2

∑
s=a+b
s,a,b>0

(
s

b

)
f iθai θ

1+b
i

∂

∂θsi

.



Second filtration

I The second page E2 is given by

E2 = H
(
B̂,∆0

)
,

B̂ := Ĉ[λ]⊕
n⊕

i=1

Im
(
d̂i : Ĉi → Ĉi

)
.

I To compute E2 we introduce a filtration on B̂:

F r B̂ = {f ∈ B̂, degθ1 f − degθ f 6 −r}.

I The differential splits in ∆0 = ∆01 + ∆00 + ∆0,−1, where ∆01

is the part that increases the number of θ1
i by one.



Explicitly:

∆01 = (−λ+ ui )f iθ1
i

∂

∂ui

+
∑
s>1

s + 2

2
f iui ,sθ1

i

∂

∂ui ,s

− 1

2

∑
s>1

(−λ+ uj)sf j
∂j f

i

f i
ui ,sθ1

j

∂

∂ui ,s

− 1

2
(−λ+ uj)∂i f

jθ1
j θ

0
j

∂

∂θ0
i

+
1

2

∑
s>0

f i (s − 1)θ1
i θ

s
i

∂

∂θsi

− 1

2

∑
s>0

(−λ+ uj)f j
∂j f

i

f i
(s + 1)θ1

j θ
s
i

∂

∂θsi

+
1

2
(−λ+ uj)f j

∂j f
i

f i
θ1
i θ

0
j

∂

∂θ0
i



I The first page E ′1 of the spectral sequence associated with the
second filtration F B̂ is obtained by computing the
cohomology:

E ′1 = H(B̂,∆01),

where

B̂ := Ĉ[λ]⊕
n⊕

i=1

Im
(
d̂i : Ĉi → Ĉi

)
.

I The differential ∆01 leaves each summand invariant, hence we
can compute the cohomology of each summand independently.



Vanishing of H(Ĉ[λ],∆01)

I The possible monomials in Ĉ are

θ0
i1 · · · θ

0
ik
θ1
j1 · · · θ

1
jl
.

I Hence the cohomology Hp
d (Ĉ[λ],∆01) vanishes, unless

d = 0, . . . , n, p = d , . . . , d + n.

⇒ (case 1)



Third filtration

I Finally we need to compute, for fixed i= 1, . . . , n:

H
(
B̂i ,∆01

)
,

where
B̂i := Im

(
d̂i : Ĉi → Ĉi

)
.

I We introduce a filtration on B̂i by:

F r B̂i = {f ∈ B̂i , degθ1
i
f − degθ f 6 −r}



I Denote by θ1
i Di the part of ∆01 that increases the degree in

θ1
i .

Di :=
∑
s>1

s + 2

2
f iui ,s

∂

∂ui ,s
+
∑
s>2

s − 1

2
f iθsi

∂

∂θsi

− 1

2
f iθ0

i

∂

∂θ0
i

+
1

2

n∑
j=1

(uj − ui )f j
∂j f

i

f i
θ0
j

∂

∂θ0
i



I The first page E ′′1 of the spectral associated with the third
filtration is obtained by computing the cohomology:

H(B̂i , θ1
i Di ).

I Finally we can obtain the vanishing of the cohomology that
implies the main theorem:

Proposition

The cohomology Hp
d (B̂i , θ1

i Di ) vanishes for all bi-degrees (p, d)
unless

d = 2, . . . , n + 2, q = d , . . . , d + n − 1.

⇒ (case 2)



Conclusions and open problems
For the semisimple N dimensional case

1. We show that most of the bihamiltonian cohomology in the
general semisimple case vanishes, thus proving existence of
deformations.

2. How to compute the remaining bihamiltonian cohomology
groups, including the ones associated to the central invariants
?
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D independent variables

Poisson bracket of Dubrovin-Novikov type with x = (x1, . . . , xD),
u = (u1, . . . , uN):

{ui (x), uj(y)} =
D∑
α=1

(
g ijα(u(x))∂xαδ(x − y)+

+ bijαk (u(x))∂xαu
k(x)δ(x − y)

)
[Mokhov ’88-’08, Ferapontov-Lorenzoni-Savoldi ’15]

What can we say about the deformation theory of such Poisson
brackets ?



I Differential polynomials

A = C∞(U)[[{∂k1

x1 · · · ∂kDxDu
i with k1, . . . , kD > 0, (k1, . . . , kD) 6= 0}]].

I Standard degree deg on A :

deg(∂k1

x1 · · · ∂kDxDu
i ) = k1 + · · ·+ kD

I We consider dispersive deformations of multidimensional DN
brackets of the form

{ui (x), uj(y)}ε = {ui (x), uj(y)}+

+
∑
k>0

εk
∑

k1,...,kD>0
k1+···+kD6k+1

Aij
k;k1,...,kD

(u(x))∂k1

x1 · · · ∂kDxD δ(x − y)

where Aij
k;k1,...,kD

∈ A and degAij
k;k1,...,kD

= k − k1 · · · − kD + 1.
I Miura-type transformations

v i = ui +
∑
k>1

εkF i
k

where F i
k ∈ A and deg F i

k = k .



We consider the the scalar N = 1 case

{u(x), u(y)} = g(u(x))cα
∂

∂xα
δ(x−y)+

1

2
g ′(u(x))cα

∂u

∂xα
(x)δ(x−y)

which in flat coordinates reduces to

{u(x), u(y)} =
D∑
α=1

cα
∂

∂xα
δ(x − y).



I Deformation theory is governed by Poisson cohomology groups
Hp(F̂) associated with the Poisson bracket {u(x), u(y)}.

I Infinitesimal deformations −→ H2(F̂)

I Obstructions −→ H3(F̂)



Our main result

Define the ring of polynomials in the anticommuting variables θS

Θ = R[{θ(s1,...,sD−1), si > 0}]

and the auxiliary space:

H(D) =
Θ

∂x1Θ + · · ·+ ∂xD−1
Θ
.

Theorem
The Poisson cohomology of the Poisson bracket in bi-degree (p, d)
is isomorphic to

Hp
d (D)⊕ Hp+1

d (D).

[C, Casati, Shadrin ’15]



D = 2 independent variables

For D = 1 we recover scalar case of Getzler’s theorem.

For D = 2 we have a closed formula for the dimension of Hp
d (2):



Higher D

For D > 2 we expect the Poisson cohomology in p = 2, 3 to be
highly non-trivial.

D = 3 :

D = 4 :



Remarks

I The situation in D > 1 looks much more complicated:
I No Getzler’s theorem on triviality
I Many infinitesimal deformations, also non-homogeneous
I A priori non-vanishing obstructions

I Deformation theory is non-empty: we find examples of
nontrivial deformations of degree 2 for each D > 2



Remarks on the proof

1. The Poisson cohomology groups are invariant (up to
isomorphism) under linear changes of the independent
variables.

2. We can put the Poisson bracket in the special form

{u(x), u(y)} = ∂xDδ(x − y).



3. We show that the following sequences are exact:

where

F̂i =
Â

∂x1Â+ · · ·+ ∂x i Â
.



4. The differential associated to the Poisson bracket in special
form

∆ =
∑
S

θS+ξD
∂

∂uS
,

commutes with all the maps, therefore induces exact
sequences of complexes.

5. The corresponding long exact sequences in cohomology allow
us to compute inductively:

H(F̂i ) =
Θ

∂x1Θ + · · ·+ ∂x i Θ
,

for i = 1, . . . ,D − 1.

6. The long exact sequence associated to the last line allows us
to conclude.



Conclusion
For the D independent variables case

I D > 1 deformation theory highly nontrivial (unlike D = 1).

I Can we classify nontrivial (homogeneus) deformations ?
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