Deformations of Poisson and bi-Hamiltonian structures on formal loop spaces

Guido Carlet
Korteweg - de Vries Institute for Mathematics, Amsterdam University

Our recent results:

- with H. Posthuma, S. Shadrin:
- "Bihamiltonian cohomology of the KdV brackets", Comm. Math. Phys. (2016).
- "Bihamiltonian cohomology of scalar Poisson brackets of hydrodynamic type", Bull. London Math. Soc. (2016).
- "Deformations of semisimple Poisson brackets of hydrodynamic type are unobstructed", preprint (2015).
- with M. Casati, S. Shadrin:
- "Poisson cohomology of scalar multidimensional Dubrovin-Novikov brackets", preprint (2015).

Outline

(1) Introduction
(2) Deformations of a single Poisson structure

Poisson pencils of Dubrovin-Novikov type
Local multivectors and Poisson structures
Poisson cohomology and Getzler's theorem
(3) Deformations of bihamiltonian structures

Bihamiltonian cohomology and central invariants
The problem of existence of deformations
Our results
(4) The proof for the $K d V$ case

Supervariables
Barakat-Liu-Zhang lemma
The differential complex in the KdV case Spectral sequences associated with filtrations
(5) Semisimple n-dimensional case: details of proof
(6) Several independent variables

Outline

(1) Introduction
(2) Deformations of a single Poisson structure

Poisson pencils of Dubrovin-Novikov type
Local multivectors and Poisson structures
Poisson cohomology and Getzler's theorem
(3) Deformations of bihamiltonian structures

Bihamiltonian cohomology and central invariants
The problem of existence of deformations
Our results
(4) The proof for the $K d V$ case

Supervariables
Barakat-Liu-Zhang lemma
The differential complex in the KdV case
Spectral sequences associated with filtrations
(5) Semisimple n-dimensional case: details of proof
(6) Several independent variables

The Korteweg - de Vries equation

$$
u_{t}=u u_{x}+\epsilon^{2} u_{x x x}
$$

has bihamiltonian formulation

$$
u_{t}(x)=\left\{u(x), H_{1}\right\}_{1}=\left\{u(x), H_{0}\right\}_{2}
$$

with compatible Poisson brackets
$\{u(x), u(y)\}_{1}=\delta^{\prime}(x-y)$,
$\{u(x), u(y)\}_{2}=u(x) \delta^{\prime}(x-y)+\frac{1}{2} u^{\prime}(x) \delta(x-y)+\frac{3}{2} \epsilon^{2} \delta^{\prime \prime \prime}(x-y)$.
[Gardner-Zakharov-Faddeev '71, Magri '78]

General problem

Scalar case $N=1$

Classify (bi)hamiltonian structures of the form

$$
\begin{aligned}
&\{u(x), u(y)\}=\{u(x), u(y)\}^{0}+ \\
&+\sum_{m \geqslant 2} \epsilon^{m} \sum_{l=0}^{m+1} A_{m, l}\left(u ; u_{x}, \ldots\right) \delta^{(I)}(x-y)
\end{aligned}
$$

under Miura type transformations

$$
u(x) \rightarrow u(x)+\epsilon f_{1}\left(u ; u_{x}\right)+\epsilon^{2} f_{2}\left(u ; u_{x}, u_{x x}\right)+\ldots
$$

where $A_{m, l}, f_{i}$ are differential polynomials.

Outline

(1) Introduction
(2) Deformations of a single Poisson structure

Poisson pencils of Dubrovin-Novikov type
Local multivectors and Poisson structures
Poisson cohomology and Getzler's theorem
(3) Deformations of bihamiltonian structures

Bihamiltonian cohomology and central invariants
The problem of existence of deformations
Our results
(4) The proof for the KdV case

Supervariables
Barakat-Liu-Zhang lemma
The differential complex in the KdV case
Spectral sequences associated with filtrations
(5) Semisimple n-dimensional case: details of proof
(6) Several independent variables

Poisson brackets of Dubrovin-Novikov type

Leading order:

$$
\left\{u^{i}(x), u^{j}(y)\right\}^{0}=g^{i j}(u(x)) \delta^{\prime}(x-y)+\Gamma_{k}^{i j}(u(x)) u_{x}^{k}(x) \delta(x-y)
$$

is a Poisson structure iff

- gij flat contravariant metric,
- $\Gamma_{k}^{i j}$ Christoffel symbols of $g^{i j}$.

Local multivectors

- In finite dimensions: the space Λ^{*} of multivectors on a manifold M is endowed with the Schouten-Nijenhuis bracket

$$
[,]: \Lambda^{p} \times \Lambda^{q} \rightarrow \Lambda^{p+q-1}
$$

- On a formal loop space $\mathcal{L} M=\left\{S^{1} \rightarrow M\right\}$: one considers the space $\Lambda_{\text {loc }}^{*}$ of local multivectors of the form (for $M=\mathbb{R}$)
$\sum_{p_{2} \cdots p_{k} \geqslant 0} B_{p_{2} \ldots p_{k}}\left(u(x) ; u_{x}(x), u_{x x}(x), \ldots\right) \delta^{\left(p_{2}\right)}\left(x-x_{2}\right) \cdots \delta^{\left(p_{k}\right)}\left(x-x_{k}\right)$
which is closed under a suitably defined Schouten-Nijenhuis bracket

$$
[,]: \Lambda_{l o c}^{p} \times \Lambda_{l o c}^{q} \rightarrow \Lambda_{l o c}^{p+q-1}
$$

Poisson cohomology and deformations

- A bivector $P \in \Lambda_{l o c}^{2}$ is a Poisson structure iff $[P, P]=0$ $\Longrightarrow d_{P}:=[P, \cdot]: \Lambda_{\text {loc }} \rightarrow \Lambda_{\text {loc }}$ is a differential $d_{P}^{2}=0$.
- Let $P \in \Lambda_{\text {loc }}^{2}$ Poisson bivector. The Poisson cohomology of P is

$$
H\left(\Lambda_{l o c}, d_{P}\right)=\frac{\operatorname{Ker} d_{P}}{\operatorname{Im} d_{P}}
$$

- The Poisson cohomology $H\left(\Lambda_{\text {loc }}, d_{P}\right)$ of a Poisson structure of DN type P vanishes in positive degree.
[Getzler'02, Degiovanni-Magri-Sciacca'05, Liu-Zhang'11]
- All deformations of a single Poisson structure of DN type are trivial under Miura transformations.

Outline

(1) Introduction

2 Deformations of a single Poisson structure
Poisson pencils of Dubrovin-Novikov type
Local multivectors and Poisson structures
Poisson cohomology and Getzler's theorem
(3) Deformations of bihamiltonian structures

Bihamiltonian cohomology and central invariants
The problem of existence of deformations
Our results
4. The proof for the $K d V$ case

Supervariables
Barakat-Liu-Zhang lemma
The differential complex in the KdV case
Spectral sequences associated with filtrations
(5) Semisimple n-dimensional case: details of proof
(6) Several independent variables

Deformations of bihamiltonian structure

Recent developments:

- Classification of deformations of dKdV bihamiltonian structure up to $O\left(\epsilon^{4}\right)$ [Lorenzoni'02] $\ldots O\left(\epsilon^{8}\right)$ [Arsie-Lorenzoni'11]
- Quasitriviality of dKdV deformations; reformulation as a double complex [Barakat'08]
- Computation of $B H^{1}(\hat{\mathcal{F}}), B H^{2}(\hat{\mathcal{F}})$, central invariants [Liu-Zhang'05, Dubrovin-Liu-Zhang'06]
- Computation of $B H^{3}(\hat{\mathcal{F}})$ for dKdV Poisson pencil: existence of deformation of dK dV Poisson pencil corresponding to infinitesimal deformations. Conjectured vanishing of $B H^{\geqslant 4}(\hat{\mathcal{F}})$. [Liu-Zhang'13]

Deformations of bihamiltonian structure

- Deformation theory of a Poisson pencil P_{1}, P_{2} of hydrodynamic type is governed by bihamiltonian cohomology groups

$$
B H\left(\Lambda_{l o c}, d_{1}, d_{2}\right)=\frac{\operatorname{Ker} d_{1} \cap \operatorname{Ker} d_{2}}{\operatorname{Im} d_{1} d_{2}}
$$

where $d_{i}=\left[P_{i}, \cdot\right]$.

- Infinitesimal deformations $\left(O\left(\epsilon^{3}\right)\right)$ are classified by $B H^{2}\left(\Lambda_{l o c}\right)$, i.e., by central invariants

$$
c_{i}(u)=\frac{1}{3\left(f^{i}(u)\right)^{2}}\left(A_{2,3 ; 2}^{i i}-u^{i} A_{2,3 ; 1}^{i j}+\sum_{k \neq i} \frac{\left(A_{1,2 ; 2}^{i j}-u^{i} A_{1,2 ; 1}^{i j}\right)^{2}}{f^{k}(u)\left(u^{k}-u^{i}\right)}\right) .
$$

Existence of deformations

- Given an infinitesimal deformation of a Poisson pencil of DN type, is it possible to extend it to a full dispersive Poisson pencil ?

Main Theorem
[C-Posthuma-Shadrin'15]
The deformations of any semisimple Poisson pencil of DN type are unobstructed.

- Previously known for the dKdV Poisson pencil. [Liu-Zhang'13]
- Sufficient to show that $B H_{\geqslant 5}^{3}\left(\Lambda_{l o c}, d_{1}, d_{2}\right)$ vanishes.

Our results:

1 We compute the full bihamiltonian cohomology of the dispersionless KdV Poisson pencil:

Theorem
[C-Posthuma-Shadrin'14]
The bihamiltonian cohomology of the dispersionless KdV Poisson pencil is given by

$$
B H_{d}^{p}\left(\Lambda_{\text {loc }}, d_{1}, d_{2}\right) \cong \begin{cases}C^{\infty}(\mathbb{R}) & \text { for }(p, d)=(1,1),(2,1),(2,3),(3,3) \\ \mathbb{R} & \text { for }(p, d)=(0,0) \\ 0 & \text { otherwise }\end{cases}
$$

2 We generalize the above result, computing the full bihamiltonian cohomology of general scalar Poisson pencil of hydrodynamic type.
[C-Posthuma-Shadrin'15-a]

Our results:

3 We show that the bihamiltonian cohomology of a semisimple Poisson pencil of hydrodynamic type with n dependent variables vanishes but for a finite number of bi-degrees:

Theorem
[C-Posthuma-Shadrin'15-b]
The bihamiltonian cohomology $B H_{d}^{p}\left(\Lambda_{\text {loc }}, d_{1}, d_{2}\right)$ vanishes for all bi-degrees (p, d) with $d \geqslant 2$, unless

$$
\begin{gathered}
d=2, \ldots, n, \quad p=d, \ldots, d+n \\
d=n+1, n+2, \quad p=d, \ldots, d+n-1
\end{gathered}
$$

For example, in the $n=3$ case, we claim the bihamiltonian cohomology

$$
B H_{d}^{p}\left(\Lambda_{l o c}, d_{1}, d_{2}\right)
$$

vanishes in all bi-degrees but those highlighted.

In particular, this implies the vanishing of $\mathrm{BH}_{\geqslant 5}^{3}\left(\Lambda_{\text {loc }}\right)$ which in turn implies the vanishing of the obstructions.

Outline

(1) Introduction
(2) Deformations of a single Poisson structure

Poisson pencils of Dubrovin-Novikov type
Local multivectors and Poisson structures
Poisson cohomology and Getzler's theorem
(3) Deformations of bihamiltonian structures

Bihamiltonian cohomology and central invariants
The problem of existence of deformations
Our results
(4) The proof for the $K d V$ case

Supervariables
Barakat-Liu-Zhang lemma
The differential complex in the KdV case Spectral sequences associated with filtrations
(5) Semisimple n-dimensional case: details of proof
(6) Several independent variables

Supervariables formalism

[Liu-Zhang'13]
Consider the space

$$
\hat{\mathcal{A}}:=C^{\infty}(\mathbb{R})\left[\left[u^{1}, u^{2}, \ldots ; \theta, \theta^{1}, \ldots\right]\right]
$$

of formal series

$$
f\left(u ; u^{1}, u^{2}, \ldots ; \theta, \theta^{1}, \ldots\right) \in \hat{\mathcal{A}}
$$

in the commuting variables u^{1}, u^{2}, \ldots and in the anticommuting variables $\theta, \theta^{1}, \theta^{2}, \ldots$.

Supervariables formalism

[Liu-Zhang'13]
Consider the space

$$
\hat{\mathcal{A}}:=C^{\infty}(\mathbb{R})\left[\left[u^{1}, u^{2}, \ldots ; \theta, \theta^{1}, \ldots\right]\right]
$$

of formal series

$$
f\left(u ; u^{1}, u^{2}, \ldots ; \theta, \theta^{1}, \ldots\right) \in \hat{\mathcal{A}}
$$

in the commuting variables u^{1}, u^{2}, \ldots and in the anticommuting variables $\theta, \theta^{1}, \theta^{2}, \ldots$.

- x-derivative: $\partial=\sum_{s \geqslant 0}\left(u^{s+1} \frac{\partial}{\partial u^{s}}+\theta^{s+1} \frac{\partial}{\partial \theta^{s}}\right): \hat{\mathcal{A}} \rightarrow \hat{\mathcal{A}}$
- two gradations:

$$
\hat{\mathcal{A}}_{d}^{p}=\text { homogeneous component with degree }\left\{\begin{array}{l}
p \text { in } \theta, \theta^{1}, \ldots \\
d \text { in } x \text {-derivatives }
\end{array}\right.
$$

- Let $\hat{\mathcal{F}}:=\frac{\hat{\mathcal{A}}}{\partial \hat{\mathcal{A}}}$ and denote the projection map $\int: \hat{\mathcal{A}} \rightarrow \hat{\mathcal{F}}$.
- $\Lambda_{\text {loc }}^{p} \cong \hat{\mathcal{F}}^{p}$
- The Schouten-Nijenhuis bracket is

$$
\begin{gathered}
{[,]: \hat{\mathcal{F}}^{p} \times \hat{\mathcal{F}}^{q} \rightarrow \hat{\mathcal{F}}^{p+q-1}} \\
{[P, Q]=\int\left(\delta^{\bullet} P \delta \bullet Q+(-1)^{p} \delta \bullet P \delta^{\bullet} Q\right)} \\
\delta^{\bullet}=\sum_{s \geqslant 0}(-\partial)^{s} \frac{\partial}{\partial \theta^{s}}, \quad \delta_{\bullet}=\sum_{s \geqslant 0}(-\partial)^{s} \frac{\partial}{\partial u^{s}}
\end{gathered}
$$

- A bivector $P \in \hat{\mathcal{F}}^{2}$ is a Poisson structure iff $[P, P]=0$.
- By (graded) Jacobi identity $d_{P}:=[P, \cdot]: \hat{\mathcal{F}} \rightarrow \hat{\mathcal{F}}$ is a differential $d_{P}^{2}=0$.
- It is more convenient to work in $\hat{\mathcal{A}}$ rather than in $\hat{\mathcal{F}}$.
- For any $P \in \hat{\mathcal{F}}^{2}$, let $d_{P}=[P, \cdot]$, there exists a map D_{P} s.t. the diagram commutes

$$
\begin{array}{lll}
\hat{\mathcal{A}} \xrightarrow{D_{P}} & \hat{\mathcal{A}} \\
\downarrow \int & & \downarrow \\
\hat{\mathcal{F}} \xrightarrow{d_{P}} & \hat{\mathcal{F}}
\end{array}
$$

which is given by

$$
D_{P}=\sum_{s \geqslant 0}\left(\partial^{s}\left(\delta^{\bullet} P\right) \frac{\partial}{\partial u^{s}}+\partial^{s}\left(\delta_{\bullet} P\right) \frac{\partial}{\partial \theta^{s}}\right)
$$

- The short exact sequence of complexes above gives rise to a long exact sequence in cohomology that allow to recover the cohomology of $\hat{\mathcal{F}}$ from the cohomology of $\hat{\mathcal{A}}$.

Barakat-Liu-Zhang lemma

Let us consider the related polynomial complex

$$
\left(\hat{\mathcal{F}}[\lambda], d_{\lambda}\right), \quad d_{\lambda}=d_{2}-\lambda d_{1} .
$$

For almost all (p, d) the bihamiltonian cohomology groups are isomorphic to the cohomology groups of the corresponding polynomial complex i.e.

$$
B H_{d}^{p}\left(\hat{\mathcal{F}}, d_{1}, d_{2}\right) \cong H_{d}^{p}\left(\hat{\mathcal{F}}[\lambda], d_{\lambda}\right)
$$

for $p, d \geqslant 0$ excluding $(p, d)=(0,0),(1,0),(1,1),(2,1)$.
[Barakat'08, Liu-Zhang'13]

KdV case

- The dispersionless KdV Poisson bivectors are represented by the elements in $\hat{\mathcal{F}}$

$$
P_{1}=\frac{1}{2} \int \theta \theta^{1}, \quad P_{2}=\frac{1}{2} \int u \theta \theta^{1} .
$$

- The differentials on $\hat{\mathcal{F}}$ induced by the Schouten bracket are

$$
d_{i}=d_{P_{i}}=\left[P_{i}, \cdot\right], \quad i=1,2 .
$$

- The corresponding differentials on $\hat{\mathcal{A}}$ are

$$
\begin{aligned}
D_{1} & =\sum_{s \geqslant 0} \theta^{s+1} \frac{\partial}{\partial u^{s}} \\
D_{2} & =\sum_{s \geqslant 0}\left(\partial^{s}\left(u \theta^{1}+\frac{1}{2} u_{1} \theta\right) \frac{\partial}{\partial u^{s}}+\partial^{s}\left(\frac{1}{2} \theta \theta^{1}\right) \frac{\partial}{\partial \theta^{s}}\right) .
\end{aligned}
$$

Main problem

Our main problem is to compute the cohomology of the complex

$$
\left(\hat{\mathcal{A}}[\lambda], D_{\lambda}\right)
$$

where

$$
\hat{\mathcal{A}}=C^{\infty}(\mathbb{R})\left[\left[u^{1}, u^{2}, \ldots ; \theta, \theta^{1}, \ldots\right]\right]
$$

and

$$
D_{\lambda}=\sum_{s \geqslant 0}\left[\partial^{s}\left((u-\lambda) \theta^{1}+\frac{1}{2} u^{1} \theta\right) \frac{\partial}{\partial u^{s}}+\partial^{s}\left(\frac{1}{2} \theta \theta^{1}\right) \frac{\partial}{\partial \theta^{s}}\right] .
$$

A filtration of $\hat{\mathcal{A}}[\lambda]$

We define a filtration of $\hat{\mathcal{A}}[\lambda]$

$$
F^{i} \hat{\mathcal{A}}_{d}[\lambda]=\hat{\mathcal{A}}_{d}^{(d-i)}[\lambda]
$$

by imposing the upper bound $d-i$ on the highest derivative appearing in homogeneous component of standard degree d.

This filtration is bounded:
$0=F^{d+1} \hat{\mathcal{A}}_{d}[\lambda] \subset \cdots \subset F^{i+1} \hat{\mathcal{A}}_{d}[\lambda] \subset F^{i} \hat{\mathcal{A}}_{d}[\lambda] \subset \cdots \subset F^{0} \hat{\mathcal{A}}_{d}[\lambda]=\hat{\mathcal{A}}_{d}[\lambda]$.

We associate with this filtration a spectral sequence $E_{r}^{p, q}$.

Filtrations and spectral sequences

A (cohomological type) spectral sequence is a family of differential \mathbb{Z}-bigraded vector spaces $\left(E_{r}^{*, *}, d_{r}\right)$ with differentials d_{r} of bidegree ($r, 1-r$)

such that for all $p, q \in \mathbb{Z}$ and all $r \geqslant 0$

$$
E_{r+1}^{p q} \cong H^{p q}\left(E_{r}^{*, *}, d_{r}\right):=\frac{\operatorname{Ker}\left(d_{r}: E_{r}^{p q} \rightarrow E_{r}^{p+r, q-r+1}\right)}{\operatorname{Im}\left(d_{r}: E_{r}^{p-r, q+r-1} \rightarrow E_{r}^{p q}\right)} .
$$

(C, d) - filtered \mathbb{Z}-graded differential complex

- $F^{i} C, i \in \mathbb{Z}$ - decreasing filtration of (C, d)

$$
\cdots \subset F^{i+1} \subset F^{i} C \subset \cdots \subset C
$$

- $d\left(F^{i} C\right) \subset F^{i} C$ - filtration is preserved by differential

With a filtered Z-graded differential complex one associates a spectral sequence $\left(E_{r}^{*, *}, d_{r}\right)$ with

$$
\begin{gathered}
E_{0}^{p, q}=g r^{p} C^{p+q} \\
E_{1}^{p, q}=\frac{d^{-1}\left(F^{p+1} C^{p+q+1}\right) \cap F^{p} C^{p+q}}{d\left(F^{p} C^{p+q-1}\right)+F^{p+1} C^{p+q}}
\end{gathered}
$$

with differentials d_{0}, d_{1} induced by d on the quotients.

The cohomology of a filtered graded complex (C, d) inherits a filtration, where $F^{i} H(C, d)$ is given by the image of $H\left(F^{i} C, d\right)$ in $H(C, d)$ under the inclusion map.

Theorem

The spectral sequence associated with a bounded filtration converges to $H(C, d)$, i.e.,

$$
E_{\infty}^{p, q} \cong \frac{F^{p} H^{p+q}(C, d)}{F^{p+1} H^{p+q}(C, d)}
$$

A filtration $F^{*} C$ is bounded if for each degree p there are integers s and t such that

$$
0=F^{s} C^{p} \subset \cdots \subset F^{i+1} C^{p} \subset F^{i} C^{p} \subset \cdots \subset F^{t} C^{p}=C^{p}
$$

Lemma: The zeroth page $E_{0}^{*, *}$ of the spectral sequence

$$
E_{0}^{p q}=g r^{p} \hat{\mathcal{A}}_{p+q}[\lambda] \cong \hat{\mathcal{A}}_{p+q}^{[q]}[\lambda]
$$

$$
\begin{gathered}
d_{0}: E_{0}^{p, q} \rightarrow E_{0}^{p, q+1} \\
d_{0}=\left((u-\lambda) \theta^{q+1}+\frac{1}{2} u^{q+1} \theta\right) \frac{\partial}{\partial u^{q}}+\frac{1}{2} \theta \theta^{q+1} \frac{\partial}{\partial \theta^{q}}
\end{gathered}
$$

Lemma: The first page $E_{1}^{*, *}$

$$
E_{1}^{p, q}= \begin{cases}\mathbb{R}[\lambda], & p=q=0 \\ \frac{C^{\infty}(\mathbb{R})}{\mathbb{R}} \theta \theta^{1}, & p=0, q=1 \\ \hat{\mathcal{A}}_{p}^{[q-1]} \theta \theta^{q} & p \geqslant 1, q \geqslant 2\end{cases}
$$

$$
\begin{gathered}
d_{1}: E_{1}^{p, q} \rightarrow E_{1}^{p+1, q} \\
d_{1}\left(f \theta \theta^{q}\right)=\left(\left(D_{\lambda}(f)\right)_{\lambda=u}+\frac{q-2}{2} \theta^{1} f\right) \theta \theta^{q}
\end{gathered}
$$

Lemma: The second page $E_{2}^{*, *}$

Important: The following operator is a contracting homotopy of d_{1} for $p \geqslant 1, q \geqslant 2$ and $(p, q) \neq(1,2)$

$$
\begin{gathered}
\left(\sum_{s \geqslant 1} \frac{s+2}{2} u^{s} \frac{\partial}{\partial u^{s}}+\sum_{s \geqslant 0} \frac{s-1}{2} \theta^{s} \frac{\partial}{\partial \theta^{s}}\right)^{-1} \frac{\partial}{\partial \theta^{1}} \\
E_{2}^{p, q}= \begin{cases}\mathbb{R}[\lambda] & p=0, q=0, \\
\begin{array}{ll}
C^{\infty}(\mathbb{R}) \\
\mathbb{R}[u]
\end{array} \theta^{1} & p=0, q=1 \\
C^{\infty}(\mathbb{R}) \theta \theta^{1} \theta^{2} & p=1, q=2 \\
0 & \text { else. } \\
0 & \cdot \\
l & \cdot \\
d_{2}: & \cdot \\
d_{2}^{p, q} \rightarrow E_{2}^{p+2, q-1}\end{cases}
\end{gathered}
$$

The differential d_{2} is zero \rightarrow the spectral sequence stabilizes

Main proposition

By the convergence theorem for spectral sequences we have

$$
E_{2}^{p, q}=E_{\infty}^{p, q} \cong \frac{F^{p} H_{p+q}\left(\hat{\mathcal{A}}[\lambda], D_{\lambda}\right)}{F^{p+1} H_{p+q}\left(\hat{\mathcal{A}}[\lambda], D_{\lambda}\right)}
$$

and because the filtration is bounded we have

$$
F^{0} H_{n}\left(\hat{\mathcal{A}}[\lambda], D_{\lambda}\right)=H_{n}\left(\hat{\mathcal{A}}[\lambda], D_{\lambda}\right), \quad F^{n} H_{n}\left(\hat{\mathcal{A}}[\lambda], D_{\lambda}\right)=0 .
$$

Proposition
The cohomology of the polynomial complex $\left(\hat{\mathcal{A}}[\lambda], D_{\lambda}\right)$ is

$$
H\left(\hat{\mathcal{A}}[\lambda], D_{\lambda}\right)=\mathbb{R}[\lambda] \oplus\left(C^{\infty}(\mathbb{R}) / \mathbb{R}[u]\right) \theta \theta^{1} \oplus C^{\infty}(\mathbb{R}) \theta \theta^{1} \theta^{2}
$$

Main result

By the long exact sequence argument and the Barakat lemma, we derive the bihamiltonian cohomology of $\hat{\mathcal{F}}$ from the cohomology of the complex $\left(\hat{\mathcal{A}}[\lambda], D_{\lambda}\right)$.

Theorem
The bihamiltonian cohomology of the dispersionless KdV Poisson pencil is given by
$B H_{d}^{p}\left(\hat{\mathcal{F}}, d_{1}, d_{2}\right) \cong \begin{cases}C^{\infty}(\mathbb{R}) & \text { for }(p, d)=(1,1),(2,1),(2,3),(3,3) \\ \mathbb{R} & \text { for }(p, d)=(0,0) \\ 0 & \text { otherwise } .\end{cases}$

Remark: This result generalizes to the general scalar case.

Outline

(1) Introduction
(2) Deformations of a single Poisson structure

Poisson pencils of Dubrovin-Novikov type
Local multivectors and Poisson structures
Poisson cohomology and Getzler's theorem
(3) Deformations of bihamiltonian structures

Bihamiltonian cohomology and central invariants
The problem of existence of deformations
Our results
(4) The proof for the $K d V$ case

Supervariables
Barakat-Liu-Zhang lemma
The differential complex in the KdV case
Spectral sequences associated with filtrations
(5) Semisimple n-dimensional case: details of proof
(6) Several independent variables

Semisimple Poisson pencil of DN type

- Compatible Poisson brackets of DN type

$$
\left\{w^{i}(x), w^{j}(y)\right\}_{1}^{0}, \quad\left\{w^{i}(x), w^{j}(y)\right\}_{2}^{0}
$$

i.e., $g_{1}^{i j}, g_{2}^{i j}$ flat pencil of metrics.

- Semisimple when $\operatorname{det}\left(g_{2}(w)-\lambda g_{1}(w)\right)=0$ has pairwise distinct real roots in $\lambda=u^{1}(w), \ldots, u^{n}(w)$.
- u^{1}, \ldots, u^{n} are canonical coordinates, i.e., the metrics are diagonal:

$$
g_{1}^{i j}=f^{i}(u) \delta_{i j}, \quad g_{2}^{i j}=u^{i} f^{i}(u) \delta_{i j}
$$

Semisimple n-dimensional case

- Space of local multivectors:

$$
\begin{gathered}
\hat{\mathcal{F}}=\frac{\hat{\mathcal{A}}}{\partial \hat{\mathcal{A}}}, \\
\hat{\mathcal{A}}=C^{\infty}(U)\left[\left[u^{i, 1}, u^{i, 2}, \ldots ; \theta_{i}^{0}, \theta_{i}^{1}, \theta_{i}^{2}, \ldots\right]\right]
\end{gathered}
$$

with $U \subset \mathbb{R}^{n}$.

- Poisson brackets $\{,\}_{a}^{0}$ as elements in $\hat{\mathcal{F}}^{2}$:

$$
P_{a}=\frac{1}{2} \int\left(g_{a}^{i j} \theta_{i}^{0} \theta_{j}^{1}+\Gamma_{k, a}^{i j} u^{k, 1} \theta_{i} \theta_{j}\right), \quad a=1,2
$$

- As before we associate to $P_{a} \in \hat{\mathcal{F}}^{2}$ a differential operator D_{a} on $\hat{\mathcal{A}}$, and define

$$
D_{\lambda}=D_{2}-\lambda D_{1}
$$

- Compute the cohomology

$$
H\left(\hat{\mathcal{A}}[\lambda], D_{\lambda}\right) .
$$

Explicitly

$$
D_{\lambda}=D\left(u^{1} f^{1}, \ldots, u^{n} f^{n}\right)-\lambda D\left(f^{1}, \ldots, f^{n}\right)
$$

where

$$
\begin{aligned}
& D\left(f^{1}, \ldots, f^{n}\right)=\sum_{s \geqslant 0} \partial^{s}\left(f^{i} \theta_{i}^{1}\right) \frac{\partial}{\partial u^{i, s}} \\
& +\frac{1}{2} \sum_{s \geqslant 0} \partial^{s}\left(\partial_{j} f^{i} u^{j, 1} \theta_{i}^{0}+f^{i} \frac{\partial_{i} f^{j}}{f^{j}} u^{j, 1} \theta_{j}^{0}-f^{j} \frac{\partial_{j} f^{i}}{f^{i}} u^{i, 1} \theta_{j}^{0}\right) \frac{\partial}{\partial u^{i, s}} \\
& +\frac{1}{2} \sum_{s \geqslant 0} \partial^{s}\left(\partial_{i} f^{j} \theta_{j}^{0} \theta_{j}^{1}+f^{j} \frac{\partial_{j} f^{i}}{f^{i}} \theta_{i}^{0} \theta_{j}^{1}-f^{j} \frac{\partial_{j} f^{i}}{f^{i}} \theta_{j}^{0} \theta_{i}^{1}\right) \frac{\partial}{\partial \theta_{i}^{s}} \\
& +\frac{1}{2} \sum_{s \geqslant 0} \partial^{s}\left(f^{j} \frac{\partial_{i} f^{\prime}}{f^{\prime}} \frac{\partial_{i} f^{\prime}}{f^{\prime}} u^{l, 1} \theta_{l}^{0} \theta_{j}^{0}-f^{\prime} \frac{\partial_{i} f^{\prime}}{f^{\prime}} \frac{\partial_{I} f^{j}}{f^{j}} u^{j, 1} \theta_{l}^{0} \theta_{j}^{0}\right. \\
& \quad+f^{\prime} \frac{\partial_{I} f^{i}}{f^{i}} \frac{\partial_{i} f^{j}}{f^{j}} u^{j, 1} \theta_{l}^{0} \theta_{j}^{0}-\frac{f^{\prime} f^{j}}{f^{i}} \frac{\partial_{I} f^{i}}{f^{i}} \frac{\partial_{j} f^{i}}{f^{i}} u^{i, 1} \theta_{l}^{0} \theta_{j}^{0} \\
& \quad+f^{\prime} \frac{\partial_{I} f^{i}}{f^{i}} \frac{\partial_{I} f^{j}}{f^{j}} u^{j, 1} \theta_{j}^{0} \theta_{i}^{0}-f^{j} \frac{\partial_{I} f^{i}}{f^{i}} \frac{\partial_{j} f^{\prime}}{f^{\prime}} u^{\prime, 1} \theta_{j}^{0} \theta_{i}^{0} \\
& \left.\quad+f^{\prime} \frac{\partial_{I} f^{i}}{f^{i}} \frac{\partial_{j} f^{\prime}}{f^{\prime}} u^{j, 1} \theta_{l}^{0} \theta_{i}^{0}+f^{\prime} \frac{\partial_{I} f^{i}}{f^{i}} \frac{\partial_{I} f^{j}}{f^{j}} u^{j, 1} \theta_{l}^{0} \theta_{i}^{0}\right) \frac{\partial}{\partial \theta_{i}^{s} .}
\end{aligned}
$$

Main result

Theorem

The cohomology $H_{d}^{p}\left(\hat{\mathcal{A}}[\lambda], D_{\lambda}\right)$ vanishes for all bi-degrees (p, d), unless

$$
\begin{gather*}
d=0, \ldots, n, \quad p=d, \ldots, d+n \tag{case1}\\
d=2, \ldots, n+2, \quad p=d, \ldots, d+n-1 .
\end{gather*}
$$

[C, Posthuma, Shadrin '15]

Simple observation

Let (C, d) be a cochain complex with a bounded decreasing filtration

$$
\cdots \subset F^{i+1} C \subset F^{i} C \subset \cdots
$$

and let $\left(E_{k}, d_{k}\right)$ be the associated spectral sequence. Then

$$
H^{\ell}\left(E_{k}, d_{k}\right)=0 \quad \Longrightarrow \quad H^{\ell}(C, d)=0
$$

First filtration

- The degree deg_{u} defined by

$$
\operatorname{deg}_{u} u^{i, s}=1, \quad i=1, \ldots, n, s \geqslant 1
$$

and zero otherwise.

- The first filtration on $\hat{\mathcal{A}}[\lambda]$ is given by

$$
F^{r} \hat{\mathcal{A}}^{p}[\lambda]=\left\{f \in \hat{\mathcal{A}}^{p}[\lambda], p+\operatorname{deg}_{u} f \geqslant r\right\}
$$

- Denote Δ_{k} the homogeneous components of D_{λ} on $\hat{\mathcal{A}}[\lambda]$:

$$
D_{\lambda}=\Delta_{-1}+\Delta_{0}+\ldots, \quad \operatorname{deg}_{u} \Delta_{k}=k
$$

- The page E_{0} of the associated spectral sequence is:

$$
\begin{gathered}
\left(E_{0}, d_{0}\right)=\left(\hat{\mathcal{A}}[\lambda], \Delta_{-1}\right) \\
\Delta_{-1}=\sum_{s \geqslant 1}\left(u^{i}-\lambda\right) f^{i} \theta_{i}^{1+s} \frac{\partial}{\partial u^{i, s}}
\end{gathered}
$$

Proposition

The first page is given by

$$
E_{1}=H\left(\hat{\mathcal{A}}[\lambda], \Delta_{-1}\right) \cong \hat{\mathcal{C}}[\lambda] \oplus \bigoplus_{i=1}^{n} \operatorname{lm}\left(\hat{d}_{i}: \hat{\mathcal{C}}_{i} \rightarrow \hat{\mathcal{C}}_{i}\right)
$$

where

$$
\begin{gathered}
\hat{\mathcal{C}}:=C^{\infty}(U)\left[\left[\theta_{1}^{0}, \ldots, \theta_{n}^{0}, \theta_{1}^{1}, \ldots, \theta_{n}^{1}\right]\right], \\
\hat{\mathcal{C}}_{i}:=\hat{\mathcal{C}}\left[\left[\left\{u^{i, s}, \theta_{i}^{s+1}, s \geqslant 1\right\}\right]\right], \\
\hat{d}_{i}=\sum_{s \geqslant 1} \theta_{i}^{s+1} \frac{\partial}{\partial u^{i, s}} \quad(\text { de Rham }) .
\end{gathered}
$$

Proof

To prove the Poincaré lemma

$$
H\left(\hat{\mathcal{C}}_{i}, \hat{d}_{i}\right)=\hat{\mathcal{C}}
$$

we can define an homotopy map, $i=1, \ldots, n, s \geqslant 1$

$$
h_{i, s}=\frac{\partial}{\partial \theta_{i}^{s+1}} \int d u^{i, s}
$$

with zero integration constant, then we have

$$
h_{i, s} \hat{d}_{i}+\hat{d}_{i} h_{i, s}=1-\pi_{u^{i}, s} \pi_{\theta_{i}^{s+1}}
$$

Proof

Similarly, to prove the Proposition we use two homotopy maps. The first is

$$
h_{i, s}:=\sigma_{i} \frac{1}{u^{i}-\lambda} \frac{1}{f^{i}} \frac{\partial}{\partial \theta_{i}^{s+1}} \int d u^{i, s}
$$

which satisfies

$$
\begin{gathered}
h_{i, s} \Delta_{-1}+\Delta_{-1} h_{i, s}=1-p_{i, s}, \\
p_{i, s}:=\pi_{u^{i}, s} \pi_{\theta_{i}^{s+1}}+\left(1-\pi_{u^{i, s}} \pi_{\theta_{i}^{s+1}}+\right. \\
\left.-\sum_{t \geqslant 1} \frac{f^{j}}{f^{i}} \frac{\partial}{\partial \theta_{i}^{s+1}} \theta_{j}^{t+1} \int d u^{i, s} \frac{\partial}{\partial u^{j, t}}\right) \pi_{\lambda-u^{i} .} .
\end{gathered}
$$

It follows that we can kill the dependence on all the variables $u^{i, s}$, θ_{i}^{s+1} with $i=1, \ldots, n, s \geqslant 1$, in the λ-dependent part of any cocyle.

Proof

The second homotopy map is, for $i \neq j$

$$
h_{i, s ; j, t}=\frac{1}{u^{i}-u^{j}} \frac{1}{f^{i} f^{j}} \frac{\partial}{\partial \theta_{i}^{s+1}} \frac{\partial}{\partial \theta_{j}^{t+1}} \int d u^{i, s} \int d u^{j, t}
$$

and we have for $\Delta_{-1}=d^{\prime \prime}-\lambda d^{\prime}$

$$
\left[h_{i, s ; j, t}, d^{\prime \prime} d^{\prime}\right]=1-p_{i, s ; j, t}+(\ldots) d^{\prime}+(\ldots) d^{\prime \prime},
$$

where we did not specify the last two terms since they vanish when applied on elements in Ker $d^{\prime} \cap \operatorname{Ker} d^{\prime \prime}$, and

$$
p_{i, s ; j, t}:=\pi_{u^{i, s}} \pi_{\theta_{i}^{s+1}}+\pi_{\mu^{j, t}} \pi_{\theta_{j}^{t+1}}-\pi_{u^{i, s}} \pi_{\theta_{i}^{s+1}} \pi_{\mu^{j, t}} \pi_{\theta_{j}^{t+1}}
$$

This allows to kill mixed terms in the λ independent part of a cocycle.

Second page

- The second page E_{2} is given by

$$
\begin{gathered}
E_{2}=H\left(E_{1}, d_{1}\right)=H\left(\hat{\mathcal{B}}, \Delta_{0}\right), \\
\hat{\mathcal{B}}:=\hat{\mathcal{C}}[\lambda] \oplus \bigoplus_{i=1}^{n} \operatorname{lm}\left(\hat{d}_{i}: \hat{\mathcal{C}}_{i} \rightarrow \hat{\mathcal{C}}_{i}\right) .
\end{gathered}
$$

$$
\begin{aligned}
& \Delta_{0}=\left(-\lambda+u^{i}\right) f^{i} \theta_{i}^{1} \frac{\partial}{\partial u^{i}} \\
& +\sum_{\substack{s=a+b \\
s, a \geqslant 1 ; b \geqslant 0}}\left(-\lambda+u^{i}\right)\binom{s}{b} \partial_{j} f^{i} u^{j, a} \theta_{i}^{1+b} \frac{\partial}{\partial u^{i, s}}+\sum_{\substack{s=a+b \\
s, a \geqslant 1 ; b \geqslant 0}}\binom{s}{b} f^{i} u^{i, a} \theta_{i}^{1+b} \frac{\partial}{\partial u^{i, s}} \\
& +\frac{1}{2} \sum_{\substack{s=a+b \\
s \geqslant 1 ; a, b \geqslant 0}}\left(-\lambda+u^{i}\right)\binom{s}{b} \partial_{j} f^{i} u^{j, 1+a} \theta_{i}^{b} \frac{\partial}{\partial u^{i, s}}+\frac{1}{2} \sum_{\substack{s=a+b \\
s \geqslant 1 ; a, b \geqslant 0}}\binom{s}{b} f^{i} u^{i, 1+a} \theta_{i}^{b} \frac{\partial}{\partial u^{i, s}} \\
& +\frac{1}{2} \sum_{\substack{s=a+b \\
s \geqslant 1 ; a, b \geqslant 0}}\left(-\lambda+u^{i}\right)\binom{s}{b} f^{i} \frac{\partial_{i} f^{j}}{f^{j}} u^{j, 1+a} \theta_{j}^{b} \frac{\partial}{\partial u^{i, s}}+\frac{1}{2} \sum_{\substack{s=a+b \\
s \geqslant 1 ; a, b \geqslant 0}}\binom{s}{b} f^{i} u^{i, 1+a} \theta_{i}^{b} \frac{\partial}{\partial u^{i, s}} \\
& -\frac{1}{2} \sum_{\substack{s=a+b \\
s \geqslant 1 ; a, b \geqslant 0}}\left(-\lambda+u^{j}\right)\binom{s}{b} f^{j} \frac{\partial_{j} f^{i}}{f^{i}} u^{i, 1+a} \theta_{j}^{b} \frac{\partial}{\partial u^{i, s}}-\frac{1}{2} \sum_{\substack{s=a+b \\
s \geqslant 1 ; a, b \geqslant 0}}\binom{s}{b} f^{i} u^{i, 1+a} \theta_{i}^{b} \frac{\partial}{\partial u^{i, s}} \\
& +\frac{1}{2} \sum_{\substack{s=a+b \\
s, a, b \geqslant 0}}\left(-\lambda+u^{j}\right)\binom{s}{b} \partial_{i} f^{j} \theta_{j}^{a} \theta_{j}^{1+b} \frac{\partial}{\partial \theta_{i}^{s}}+\frac{1}{2} \sum_{\substack{s=a+b \\
s, a, b \geqslant 0}}\binom{s}{b} f^{i} \theta_{i}^{a} \theta_{i}^{1+b} \frac{\partial}{\partial \theta_{i}^{s}} \\
& +\frac{1}{2} \sum_{\substack{s=a+b \\
s, a, b \geqslant 0}}\left(-\lambda+u^{j}\right)\binom{s}{b} f^{j} \frac{\partial_{j} f^{i}}{f^{i}} \theta_{i}^{a} \theta_{j}^{1+b} \frac{\partial}{\partial \theta_{i}^{s}}+\frac{1}{2} \sum_{\substack{s=a+b \\
s, a, b \geqslant 0}}\binom{s}{b} f^{i} \theta_{i}^{a} \theta_{i}^{1+b} \frac{\partial}{\partial \theta_{i}^{s}} \\
& -\frac{1}{2} \sum_{\substack{s=a+b \\
s, a, b \geqslant 0}}\left(-\lambda+u^{j}\right)\binom{s}{b} f^{j} \frac{\partial_{j} f^{i}}{f^{i}} \theta_{j}^{a} \theta_{i}^{1+b} \frac{\partial}{\partial \theta_{i}^{s}}-\frac{1}{2} \sum_{\substack{s=a+b \\
s, a, b \geqslant 0}}\binom{s}{b} f^{i} \theta_{i}^{a} \theta_{i}^{1+b} \frac{\partial}{\partial \theta_{i}^{s}} .
\end{aligned}
$$

Second filtration

- The second page E_{2} is given by

$$
\begin{gathered}
E_{2}=H\left(\hat{\mathcal{B}}, \Delta_{0}\right), \\
\hat{\mathcal{B}}:=\hat{\mathcal{C}}[\lambda] \oplus \bigoplus_{i=1}^{n} \operatorname{lm}\left(\hat{d}_{i}: \hat{\mathcal{C}}_{i} \rightarrow \hat{\mathcal{C}}_{i}\right) .
\end{gathered}
$$

- To compute E_{2} we introduce a filtration on $\hat{\mathcal{B}}$:

$$
F^{r} \hat{\mathcal{B}}=\left\{f \in \hat{\mathcal{B}}, \operatorname{deg}_{\theta^{1}} f-\operatorname{deg}_{\theta} f \leqslant-r\right\} .
$$

- The differential splits in $\Delta_{0}=\Delta_{01}+\Delta_{00}+\Delta_{0,-1}$, where Δ_{01} is the part that increases the number of θ_{i}^{1} by one.

Explicitly:

$$
\begin{aligned}
\Delta_{01} & =\left(-\lambda+u^{i}\right) f^{i} \theta_{i}^{1} \frac{\partial}{\partial u^{i}} \\
& +\sum_{s \geqslant 1} \frac{s+2}{2} f^{i} u^{i, s} \theta_{i}^{1} \frac{\partial}{\partial u^{i, s}} \\
& -\frac{1}{2} \sum_{s \geqslant 1}\left(-\lambda+u^{j}\right) s f^{j} \frac{\partial_{j} f^{i}}{f^{i}} u^{i, s} \theta_{j}^{1} \frac{\partial}{\partial u^{i, s}} \\
& -\frac{1}{2}\left(-\lambda+u^{j}\right) \partial_{i} f^{j} \theta_{j}^{1} \theta_{j}^{0} \frac{\partial}{\partial \theta_{i}^{0}}+\frac{1}{2} \sum_{s \geqslant 0} f^{i}(s-1) \theta_{i}^{1} \theta_{i}^{s} \frac{\partial}{\partial \theta_{i}^{s}} \\
& -\frac{1}{2} \sum_{s \geqslant 0}\left(-\lambda+u^{j}\right) f^{j} \frac{\partial_{j} f^{i}}{f^{i}}(s+1) \theta_{j}^{1} \theta_{i}^{s} \frac{\partial}{\partial \theta_{i}^{s}} \\
& +\frac{1}{2}\left(-\lambda+u^{j}\right) f^{j} \frac{\partial_{j} f^{i}}{f^{i}} \theta_{i}^{1} \theta_{j}^{0} \frac{\partial}{\partial \theta_{i}^{0}}
\end{aligned}
$$

- The first page E_{1}^{\prime} of the spectral sequence associated with the second filtration $F \hat{\mathcal{B}}$ is obtained by computing the cohomology:

$$
E_{1}^{\prime}=H\left(\hat{\mathcal{B}}, \Delta_{01}\right),
$$

where

$$
\hat{\mathcal{B}}:=\hat{\mathcal{C}}[\lambda] \oplus \bigoplus_{i=1}^{n} \operatorname{lm}\left(\hat{d}_{i}: \hat{\mathcal{C}}_{i} \rightarrow \hat{\mathcal{C}}_{i}\right)
$$

- The differential Δ_{01} leaves each summand invariant, hence we can compute the cohomology of each summand independently.

Vanishing of $H\left(\hat{\mathcal{C}}[\lambda], \Delta_{01}\right)$

- The possible monomials in $\hat{\mathcal{C}}$ are

$$
\theta_{i_{1}}^{0} \cdots \theta_{i_{k}}^{0} \theta_{j_{1}}^{1} \cdots \theta_{j_{i}}^{1} .
$$

- Hence the cohomology $H_{d}^{p}\left(\hat{\mathcal{C}}[\lambda], \Delta_{01}\right)$ vanishes, unless

$$
d=0, \ldots, n, \quad p=d, \ldots, d+n
$$

\Rightarrow (case 1)

Third filtration

- Finally we need to compute, for fixed $i=1, \ldots, n$:

$$
H\left(\hat{\mathcal{B}}_{i}, \Delta_{01}\right),
$$

where

$$
\hat{\mathcal{B}}_{i}:=\operatorname{Im}\left(\hat{d}_{i}: \hat{\mathcal{C}}_{i} \rightarrow \hat{\mathcal{C}}_{i}\right) .
$$

- We introduce a filtration on $\hat{\mathcal{B}}_{i}$ by:

$$
F^{r} \hat{\mathcal{B}}_{i}=\left\{f \in \hat{\mathcal{B}}_{i}, \operatorname{deg}_{\theta_{i}^{1}} f-\operatorname{deg}_{\theta} f \leqslant-r\right\}
$$

- Denote by $\theta_{i}^{1} \mathcal{D}_{i}$ the part of Δ_{01} that increases the degree in θ_{i}^{1}.

$$
\begin{aligned}
\mathcal{D}_{i} & :=\sum_{s \geqslant 1} \frac{s+2}{2} f^{i} u^{i, s} \frac{\partial}{\partial u^{i, s}}+\sum_{s \geqslant 2} \frac{s-1}{2} f^{i} \theta_{i}^{s} \frac{\partial}{\partial \theta_{i}^{s}} \\
& -\frac{1}{2} f^{i} \theta_{i}^{0} \frac{\partial}{\partial \theta_{i}^{0}}+\frac{1}{2} \sum_{j=1}^{n}\left(u^{j}-u^{i}\right) f^{j} \frac{\partial_{j} f^{i}}{f^{i}} \theta_{j}^{0} \frac{\partial}{\partial \theta_{i}^{0}}
\end{aligned}
$$

- The first page $E_{1}^{\prime \prime}$ of the spectral associated with the third filtration is obtained by computing the cohomology:

$$
H\left(\hat{\mathcal{B}}_{i}, \theta_{i}^{1} \mathcal{D}_{i}\right)
$$

- Finally we can obtain the vanishing of the cohomology that implies the main theorem:

Proposition

The cohomology $H_{d}^{p}\left(\hat{\mathcal{B}}_{i}, \theta_{i}^{1} \mathcal{D}_{i}\right)$ vanishes for all bi-degrees (p, d) unless

$$
d=2, \ldots, n+2, \quad q=d, \ldots, d+n-1
$$

\Rightarrow (case 2)

Conclusions and open problems

For the semisimple N dimensional case

1. We show that most of the bihamiltonian cohomology in the general semisimple case vanishes, thus proving existence of deformations.
2. How to compute the remaining bihamiltonian cohomology groups, including the ones associated to the central invariants ?

Outline

(1) Introduction
(2) Deformations of a single Poisson structure

Poisson pencils of Dubrovin-Novikov type
Local multivectors and Poisson structures
Poisson cohomology and Getzler's theorem
(3) Deformations of bihamiltonian structures

Bihamiltonian cohomology and central invariants
The problem of existence of deformations
Our results
(4) The proof for the $K d V$ case

Supervariables
Barakat-Liu-Zhang lemma
The differential complex in the KdV case
Spectral sequences associated with filtrations
(5) Semisimple n-dimensional case: details of proof
(6) Several independent variables

D independent variables

Poisson bracket of Dubrovin-Novikov type with $x=\left(x^{1}, \ldots, x^{D}\right)$, $u=\left(u^{1}, \ldots, u^{N}\right)$:

$$
\begin{aligned}
\left\{u^{i}(x), u^{j}(y)\right\}= & \sum_{\alpha=1}^{D}\left(g^{i j \alpha}(u(x)) \partial_{x^{\alpha}} \delta(x-y)+\right. \\
& \left.+b_{k}^{i j \alpha}(u(x)) \partial_{x^{\alpha}} u^{k}(x) \delta(x-y)\right)
\end{aligned}
$$

[Mokhov '88-'08, Ferapontov-Lorenzoni-Savoldi '15]
What can we say about the deformation theory of such Poisson brackets ?

- Differential polynomials

$$
\mathcal{A}=C^{\infty}(U)\left[\left[\left\{\partial_{x^{1}}^{k_{1}} \cdots \partial_{x^{D}}^{k_{D}} u^{i} \text { with } k_{1}, \ldots, k_{D} \geqslant 0,\left(k_{1}, \ldots, k_{D}\right) \neq 0\right\}\right]\right]
$$

- Standard degree deg on \mathcal{A} :

$$
\operatorname{deg}\left(\partial_{x^{1}}^{k_{1}} \cdots \partial_{x^{D}}^{k_{D}} u^{i}\right)=k_{1}+\cdots+k_{D}
$$

- We consider dispersive deformations of multidimensional DN brackets of the form

$$
\begin{aligned}
& \left\{u^{i}(x), u^{j}(y)\right\}^{\epsilon}=\left\{u^{i}(x), u^{j}(y)\right\}+ \\
& +\sum_{k>0} \epsilon^{k} \sum_{\substack{k_{1}, \ldots, k_{D} \geqslant 0 \\
k_{1}+\cdots+k_{D} \leqslant k+1}} A_{k ; k_{1}, \ldots, k_{D}}^{i j}(u(x)) \partial_{x^{1}}^{k_{1}} \cdots \partial_{x^{D}}^{k_{D}} \delta(x-y)
\end{aligned}
$$

where $A_{k ; k_{1}, \ldots, k_{D}}^{i j} \in \mathcal{A}$ and $\operatorname{deg} A_{k ; k_{1}, \ldots, k_{D}}^{i j}=k-k_{1} \cdots-k_{D}+1$.

- Miura-type transformations

$$
v^{i}=u^{i}+\sum_{k \geqslant 1} \epsilon^{k} F_{k}^{i}
$$

where $F_{k}^{i} \in \mathcal{A}$ and $\operatorname{deg} F_{k}^{i}=k$.

We consider the the scalar $N=1$ case
$\{u(x), u(y)\}=g(u(x)) c^{\alpha} \frac{\partial}{\partial x^{\alpha}} \delta(x-y)+\frac{1}{2} g^{\prime}(u(x)) c^{\alpha} \frac{\partial u}{\partial x^{\alpha}}(x) \delta(x-y)$
which in flat coordinates reduces to

$$
\{u(x), u(y)\}=\sum_{\alpha=1}^{D} c^{\alpha} \frac{\partial}{\partial x^{\alpha}} \delta(x-y)
$$

- Deformation theory is governed by Poisson cohomology groups $H^{p}(\hat{F})$ associated with the Poisson bracket $\{u(x), u(y)\}$.
- Infinitesimal deformations $\longrightarrow H^{2}(\hat{\mathcal{F}})$
- Obstructions $\longrightarrow H^{3}(\hat{F})$

Our main result

Define the ring of polynomials in the anticommuting variables θ^{S}

$$
\Theta=\mathbb{R}\left[\left\{\theta^{\left(s_{1}, \ldots, s_{D-1}\right)}, s_{i} \geqslant 0\right\}\right]
$$

and the auxiliary space:

$$
H(D)=\frac{\Theta}{\partial_{x_{1}} \Theta+\cdots+\partial_{x_{D-1}} \Theta}
$$

Theorem
The Poisson cohomology of the Poisson bracket in bi-degree (p, d) is isomorphic to

$$
H_{d}^{p}(D) \oplus H_{d}^{p+1}(D)
$$

[C, Casati, Shadrin '15]

$D=2$ independent variables

For $D=1$ we recover scalar case of Getzler's theorem.
For $D=2$ we have a closed formula for the dimension of $H_{d}^{p}(2)$:

d	0	1	2	3	4	5	6	7	8
$\operatorname{dim} H_{d}^{2}(\hat{\mathcal{F}})$	0	1	0	2	0	2	1	2	1
$\operatorname{dim} H_{d}^{3}(\hat{\mathcal{F}})$	0	0	0	1	0	1	2	1	2

Higher D

For $D \geqslant 2$ we expect the Poisson cohomology in $p=2,3$ to be highly non-trivial.
$D=3:$

d	0	1	2	3	4	5	6	7	8
$\operatorname{dim} H_{d}^{2}(\hat{\mathcal{F}})$	0	2	1	8	3	16	13	26	26
$\operatorname{dim} H_{d}^{3}(\hat{\mathcal{F}})$	0	0	1	4	6	14	29	36	72

$D=4:$

d	0	1	2	3	4	5	6
$\operatorname{dim} H_{d}^{2}(\hat{\mathcal{F}})$	0	3	3	20	15	66	73
$\operatorname{dim} H_{d}^{3}(\hat{\mathcal{F}})$	0	0	3	11	30	75	183

Remarks

- The situation in $D>1$ looks much more complicated:
- No Getzler's theorem on triviality
- Many infinitesimal deformations, also non-homogeneous
- A priori non-vanishing obstructions
- Deformation theory is non-empty: we find examples of nontrivial deformations of degree 2 for each $D>2$

Remarks on the proof

1. The Poisson cohomology groups are invariant (up to isomorphism) under linear changes of the independent variables.
2. We can put the Poisson bracket in the special form

$$
\{u(x), u(y)\}=\partial_{x} \triangleright \delta(x-y)
$$

3. We show that the following sequences are exact:

$$
\begin{array}{ccccccccc}
0 & \rightarrow & \hat{\mathcal{A}} / \mathbb{R} & \xrightarrow{\partial_{x^{1}}} & \hat{\mathcal{A}} & \xrightarrow{\int d x^{1}} & \hat{\mathcal{F}}_{1} & \rightarrow & 0 \\
0 & \rightarrow & \hat{\mathcal{F}}_{1} / \mathbb{R} & \xrightarrow[x^{2}]{ } & \hat{\mathcal{F}}_{1} & \xrightarrow{\int d x^{2}} & \hat{\mathcal{F}}_{2} & \rightarrow & 0 \\
0 & \rightarrow & \hat{\mathcal{F}}_{2} / \mathbb{R} & \xrightarrow[\partial_{x^{3}}]{ } & \hat{\mathcal{F}}_{2} & \xrightarrow{\int d x^{3}} & \hat{\mathcal{F}}_{3} & \rightarrow & 0 \\
\vdots & & & \vdots & & \vdots & & \\
0 & \rightarrow & \hat{\mathcal{F}}_{D-1} / \mathbb{R} & \xrightarrow{\partial_{x} D} & \hat{\mathcal{F}}_{D-1} & \xrightarrow{\int d x^{D}} & \hat{\mathcal{F}}_{D} & \rightarrow & 0
\end{array}
$$

where

$$
\hat{\mathcal{F}}_{i}=\frac{\hat{\mathcal{A}}}{\partial_{x^{1}} \hat{\mathcal{A}}+\cdots+\partial_{x^{i}} \hat{\mathcal{A}}}
$$

4. The differential associated to the Poisson bracket in special form

$$
\Delta=\sum_{S} \theta^{S+\xi_{D}} \frac{\partial}{\partial u^{S}}
$$

commutes with all the maps, therefore induces exact sequences of complexes.
5. The corresponding long exact sequences in cohomology allow us to compute inductively:

$$
H\left(\hat{\mathcal{F}}_{i}\right)=\frac{\Theta}{\partial_{x^{1}} \Theta+\cdots+\partial_{x^{i}} \Theta}
$$

for $i=1, \ldots, D-1$.
6. The long exact sequence associated to the last line allows us to conclude.

Conclusion

For the D independent variables case

- $D>1$ deformation theory highly nontrivial (unlike $D=1$).
- Can we classify nontrivial (homogeneus) deformations ?

