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Institute of Mathematics
Polish Academy of Sciences

Warsaw

01.08.2016
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Definitions of GL(2,R)-structures

Let M be a manifold of dimension k + 1.

Three equvialent definitions:

1 An isomorphism
TM ' Sk (E)

where E is a rank-2 bundle over M. Fixing a basis (x, y) ∈ Ep

TpM ' Hk (R2)

where Hk (R2) is the space of homogeneous polynomials in two
variables and of order k .

2 A reduction of the frame bundle to a GL(2,R)-subbundle B(E)
(where GL(2,R)-acts irreducibly).

3 A field of rational normal curves p 7→ C(E)p ⊂ P(TpM)

C(E) = {(sx + ty)k }.
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Motivations

Why GL(2,R)-structures are interesting:

1 Natural geometric structures on solutions spaces of ODEs
(generalisation of 3-dim conformal Lorentzian metric) [Bryant,
Dunajski-Tod, Nurowski, Doubrov].

2 Can appear as characteristic varieties of PDEs, e.g. Veronese
hierarchy on the next slide, or recent results by
[Ferapontov-Kruglikov].
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Veronese hierarchy

Solutions w : Rk+1 → R to

(ai − aj)∂0w∂i∂jw + aj∂iw∂j∂0w − ai∂jw∂i∂0w = 0, i, j = 1, . . . , k

where ai are distinct numbers are in a one to one correspondence with

1 Hyper-CR Einstein-Weyl structures in dim 3 (i.e. for k = 2)
[Dunajski-K.].

2 Veronese webs on Rk+1 for arbitrary k . The Veronese webs are
special 1-parameter families of corank-1 foliations introduced by
Gelfand and Zakharevich in connection to bi-Poisson systems on
odd-dimensional manifolds.

A characteristic variety of the system is the null cone C(E) of a
GL(2,R)-structure.
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Integrability

Fix a point V in the null cone C(E)p . Let

span{V} = D1(V) ⊂ D2(V) ⊂ . . . ⊂ Dk (V) ⊂ TpM

be a sequence of osculating spaces of C(E)p at V , where dimDi(V) = i.

Definitions:

1 Di(V) is called αi-plane of a GL(2,R)-structure.

2 A submanifold N ⊂ M is called αi-manifold if each TpN is an αi-plane.

3 A structure is αi-integrable if all αi-planes are tangent to αi-manifolds.
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Properties

1 αi-integrability implies αj-integrability for j < i.

2 αk -integrability is equivalent to αk−1-integrability (this follows from the
geometry of Goursat flags).

3 Veronese webs are αi-integrable for any i.
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Connections to ODEs

Theorem

A GL(2,R)-structure in dimension k + 1 comes from an ODE of order
k + 1 with the vanishing Wünschmann invariants if and only if it is
αk -integrable.

Remarks:

1 The Wünschamnn invariants are the basic contact invariants of
ODEs. An ODE of order k + 1 has k − 1 Wünschmann invariants.

2 If one wants to make αk -manifolds totally geodesic w.r.t. some
connection then additional point invariants appear - this generalizes
the Cartan invariant for third-order ODEs and the corresponding
Einstein-Weyl structures.

We shall consider later the α k+1
2

-integrability for even-dimensional
manifolds.
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Complex geometry

Theorem (K.-Mettler)

Let TM ' Sk (E) be a GL(2,R)-structure on even-dimensional manifold M
and assume that a GL(2,R)-connection on B(E) is defined by a 1-form
φ = (φi

j)i,j=1,2 with values in gl(2,R). Then there is a canonical
almost-complex structure Jφ on the quotient bundle

B(E)/CO(2,R)

whose (1, 0)-forms pullback to B(E) to become linear combinations of the
forms ξk ,0, . . . , ξk ,b k

2 c and

ζ = (φ1
2 + φ2

1) + i(φ2
2 − φ

1
1),

where ξk ,0, . . . , ξk ,b k
2 c are certain complex valued forms composed from the

soldering form.
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Complex geometry

In dimension 4:

ξ3,1 =
1
4

(3ω0 + ω2 + i(ω1 + 3ω3)), ξ3,0 =
1
4

(ω0 − ω2 + i(ω1 − ω3)).

In dimension 6:

ξ5,2 =
1
76

(10ω0 + 7ω3 + 12ω5 + i(12ω2 + 7ω4 + 10ω6)),

ξ5,1 =
1
76

(5ω0 − 6ω3 − 13ω5 + i(13ω2 + 6ω4 − 5ω6)),

ξ5,0 =
1
76

(ω0 − 5ω3 + 5ω5 + i(5ω2 − 5ω4 + ω6)).
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Complex structure on Hk (R2)

The first step in the proof is a construction of a complex structure on the
space of polynomials. Hk (R2) decomposes into 2-dimensional subspaces,
invariant w.r.t. CO(2,R). The polynomials are

Hk−2i = span{<((x + iy)k−i(x − iy)i), =((x + iy)k−i(x − iy)i)}.

On Hj we defined a complex structure by formula

Jj =
j√
J

where J ∈ CO(2,R) is the standard complex structure (x, y) 7→ (−y, x).

The construction gives (x + iy)k−i(x − iy)i as (1, 0)-vectors.

Wojciech Kryński (Warsaw) 01.08.2016 11 / 18



Integrability

The torsion T and curvature C of φ in the presence of Jφ decompose to
parts T (2,0), T (1,1), T (0,2) and C(2,0) C(1,1), C(0,2).

Theorem (K.-Mettler)

The almost-complex structure Jφ on B(E)/CO(2,R) is integrable if and
only if T (0,2) = 0 and C(0,2) = 0.

Remark: If T (1,1) = 0 and T (0,2) = 0 then C(0,2) = 0. In particular, if φ is
torsion-free then Jφ is integrable.
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Canonical connection

One can define a canonical connection for a GL(2,R)-structure. The
corresponding almost-complex structure will be called canonical.

Let gk ⊂ gl(k + 1,R) be the standard subalgebra isomorphic to gl(2,R)
corresponding to the irreducible action on Hk (R2). Define

g⊥k = {ψ ∈ gl(k + 1,R) | tr(η ◦ ψ) = 0 ∀η ∈ gk }.

Theorem

Let TM ' Sk (E) be a GL(2,R)-structure on a manifold M of dimension
k + 1 > 3. There is a unique GL(2,R)-connection φ = (φi

j)i,j=1,2 with
values in gl(2,R) such that Θχ(X , .) ∈ g⊥k for any χ ∈ B(E) and
X ∈ TχB(E), where Θ is the torsion 2-form of ψ.

Remark: In dimension 4 this coincides with the Bryant connection.
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Twistor space

Theorem

Let TM ' Sk (E) be a GL(2,R)-structure on even-dimensional manifold M
and assume that the almost-complex structure Jφ defined by a
GL(2,R)-connection φ is integrable. Then, the GL(2,R)-structure is
α k+1

2
-integrable.

Remarks:

1 In dimension 4 we get that a GL(2,R)-structure is torsion-free if and
only if the canonical almost-complex structure is integrable.

2 If a structure is α k+1
2

-integrable then there is a well defined
k+3

2 -dimensional (real) twistor space. (This twistor space can be
”glued” to B(E)/C(2,R) to get (complex) twistor space.)
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Holomorphic sections

B(E)/CO(2,R) ' P(EC) \ P(E) and any point

[z] = [x + iy] ∈ P(EC) \ P(E)

defines the following subspace in TCM ' Sk (EC)

span{zk , zk−1z̄, . . . , z
k+1

2 z̄
k−1

2 }

This defines a complex structure on TpM.

Remark: Holomorphic sections of B(E)/CO(2,R) give complex structures
on M.

Now, we would like to describe all integrable GL(2,R)-structures in a
convenient way.
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Dimension 4

Theorem (K.-Mettler)

Any integrable GL(2,R)-structure in dim 4 can be put in the form
C(E) = { s3V0 + s2tV1 + st2V2 + t3V3| s, t ∈ R} where

V0 = ∂3, V1 = ∂2 + 9A∂3, V2 = ∂1 + 3A∂2 + B∂3,

V3 = ∂0 + A∂1 + C∂2 + D∂3,

and A ,B ,C ,D are functions satisfying the following system

V2(D) − V3(B) − BV2(A) − 9AV2(C) + 27AV3(A) + 27A2V2(A) = 0

3V2(C) + 9V3(A) − 2V1(D) − 9AV2(A) + 2BV1(A)

+ 18AV1(C) − 54A2V1(A) = 0

3V2(A) − 6V1(C) + 3V0(D) + 18AV1(A) − 27AV0(C)

+ 81A2V0(A) − 3BV0(A) = 0

3V1(A) + 9V0(C) − 2V0(B) + 27AV0(A) = 0
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Dimension 4

Remarks:

1 First step in the proof: write down a structure in terms of the
corresponding ODE.

2 A priori there are 8 equations (components of the Bryant torsion)
however half of them is void.

3 The system has a Lax representation [L0, L1] = 0.

4 I do not know how to construct a similar system describing the
structures in higher dimensions.
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Thank you!
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