GL(2,R) geometry and integrable systems

Wojciech Kryński

Institute of Mathematics Polish Academy of Sciences Warsaw

01.08.2016

This is a joint project with Thomas Mettler (Frankfurt).

Introduction

This is a joint project with Thomas Mettler (Frankfurt).

Plan:

- 1 Definitions
- 2 Motivations and examples
- 3 GL(2,R)-structures and complex geometry
- 4 Diemnsion 4

Definitions of GL(2,R)-structures

Let *M* be a manifold of dimension k + 1.

Three equvialent definitions:

1 An isomorphism

$$TM \simeq S^k(E)$$

where *E* is a rank-2 bundle over *M*. Fixing a basis $(x, y) \in E_p$

$$T_pM\simeq H_k(\mathbb{R}^2)$$

where $H_k(\mathbb{R}^2)$ is the space of homogeneous polynomials in two variables and of order *k*.

- A reduction of the frame bundle to a GL(2, R)-subbundle B(E) (where GL(2, R)-acts irreducibly).
- 3 A field of rational normal curves $p \mapsto C(E)_p \subset P(T_pM)$

$$C(E) = \{(sx + ty)^k\}.$$

Why $GL(2, \mathbb{R})$ -structures are interesting:

- Natural geometric structures on solutions spaces of ODEs (generalisation of 3-dim conformal Lorentzian metric) [Bryant, Dunajski-Tod, Nurowski, Doubrov].
- 2 Can appear as characteristic varieties of PDEs, e.g. Veronese hierarchy on the next slide, or recent results by [Ferapontov-Kruglikov].

Solutions $w : \mathbb{R}^{k+1} \to R$ to

 $(a_i - a_j)\partial_0 w \partial_i \partial_j w + a_j \partial_i w \partial_j \partial_0 w - a_i \partial_j w \partial_i \partial_0 w = 0, \qquad i, j = 1, \dots, k$

where a_i are distinct numbers are in a one to one correspondence with

- 1 Hyper-CR Einstein-Weyl structures in dim 3 (i.e. for k = 2) [Dunajski-K.].
- Veronese webs on R^{k+1} for arbitrary k. The Veronese webs are special 1-parameter families of corank-1 foliations introduced by Gelfand and Zakharevich in connection to bi-Poisson systems on odd-dimensional manifolds.

A characteristic variety of the system is the null cone C(E) of a $GL(2, \mathbb{R})$ -structure.

Integrability

Fix a point V in the null cone $C(E)_p$. Let

$$\operatorname{span}\{V\} = D_1(V) \subset D_2(V) \subset \ldots \subset D_k(V) \subset T_pM$$

be a sequence of osculating spaces of $C(E)_p$ at *V*, where $dimD_i(V) = i$. Definitions:

- **1** $D_i(V)$ is called α_i -plane of a $GL(2, \mathbb{R})$ -structure.
- **2** A submanifold $N \subset M$ is called α_i -manifold if each $T_p N$ is an α_i -plane.
- **3** A structure is α_i -integrable if all α_i -planes are tangent to α_i -manifolds.

Properties

- 1 α_i -integrability implies α_j -integrability for j < i.
- **2** α_k -integrability is equivalent to α_{k-1} -integrability (this follows from the geometry of Goursat flags).
- **3** Veronese webs are α_i -integrable for any *i*.

Theorem

A GL(2, \mathbb{R})-structure in dimension k + 1 comes from an ODE of order k + 1 with the vanishing Wünschmann invariants if and only if it is α_k -integrable.

Remarks:

- The Wünschamnn invariants are the basic contact invariants of ODEs. An ODE of order k + 1 has k - 1 Wünschmann invariants.
- 2 If one wants to make α_k -manifolds totally geodesic w.r.t. some connection then additional point invariants appear this generalizes the Cartan invariant for third-order ODEs and the corresponding Einstein-Weyl structures.

We shall consider later the $\alpha_{\frac{k+1}{2}}$ -integrability for even-dimensional manifolds.

Theorem (K.-Mettler)

Let $TM \simeq S^k(E)$ be a $GL(2, \mathbb{R})$ -structure on even-dimensional manifold Mand assume that a $GL(2, \mathbb{R})$ -connection on B(E) is defined by a 1-form $\phi = (\phi_j^i)_{i,j=1,2}$ with values in gl(2, \mathbb{R}). Then there is a canonical almost-complex structure J_{ϕ} on the quotient bundle

 $B(E)/CO(2,\mathbb{R})$

whose (1,0)-forms pullback to B(E) to become linear combinations of the forms $\xi^{k,0}, \ldots, \xi^{k,\lfloor \frac{k}{2} \rfloor}$ and

$$\zeta = (\phi_2^1 + \phi_1^2) + i(\phi_2^2 - \phi_1^1),$$

where $\xi^{k,0}, \ldots, \xi^{k,\lfloor \frac{k}{2} \rfloor}$ are certain complex valued forms composed from the soldering form.

Complex geometry

In dimension 4:

$$\xi^{3,1} = rac{1}{4}(3\omega^0 + \omega^2 + \mathrm{i}(\omega^1 + 3\omega^3)), \qquad \xi^{3,0} = rac{1}{4}(\omega^0 - \omega^2 + \mathrm{i}(\omega^1 - \omega^3)).$$

In dimension 6:

$$\begin{split} \xi^{5,2} &= \frac{1}{76} (10\omega^0 + 7\omega^3 + 12\omega^5 + i(12\omega^2 + 7\omega^4 + 10\omega^6)), \\ \xi^{5,1} &= \frac{1}{76} (5\omega^0 - 6\omega^3 - 13\omega^5 + i(13\omega^2 + 6\omega^4 - 5\omega^6)), \\ \xi^{5,0} &= \frac{1}{76} (\omega^0 - 5\omega^3 + 5\omega^5 + i(5\omega^2 - 5\omega^4 + \omega^6)). \end{split}$$

Complex structure on $H_k(R^2)$

The first step in the proof is a construction of a complex structure on the space of polynomials. $H_k(R^2)$ decomposes into 2-dimensional subspaces, invariant w.r.t. $CO(2, \mathbb{R})$. The polynomials are

$$H_{k-2i} = \operatorname{span}\{\mathfrak{R}((x+\mathrm{i}y)^{k-i}(x-\mathrm{i}y)^i), \quad \mathfrak{I}((x+\mathrm{i}y)^{k-i}(x-\mathrm{i}y)^i)\}.$$

On H_i we defined a complex structure by formula

$$J_j = \sqrt[j]{J}$$

where $J \in CO(2, \mathbb{R})$ is the standard complex structure $(x, y) \mapsto (-y, x)$.

The construction gives $(x + iy)^{k-i}(x - iy)^i$ as (1, 0)-vectors.

Integrability

The torsion *T* and curvature *C* of ϕ in the presence of J_{ϕ} decompose to parts $T^{(2,0)}$, $T^{(1,1)}$, $T^{(0,2)}$ and $C^{(2,0)}$ $C^{(1,1)}$, $C^{(0,2)}$.

Theorem (K.-Mettler)

The almost-complex structure J_{ϕ} on $B(E)/CO(2,\mathbb{R})$ is integrable if and only if $T^{(0,2)} = 0$ and $C^{(0,2)} = 0$.

Remark: If $T^{(1,1)} = 0$ and $T^{(0,2)} = 0$ then $C^{(0,2)} = 0$. In particular, if ϕ is torsion-free then J_{ϕ} is integrable.

Canonical connection

One can define a canonical connection for a $GL(2, \mathbb{R})$ -structure. The corresponding almost-complex structure will be called canonical.

Let $g_k \subset gl(k + 1, \mathbb{R})$ be the standard subalgebra isomorphic to $gl(2, \mathbb{R})$ corresponding to the irreducible action on $H_k(\mathbb{R}^2)$. Define

$$g_k^{\perp} = \{ \psi \in gl(k+1,\mathbb{R}) \mid \operatorname{tr}(\eta \circ \psi) = 0 \quad \forall \eta \in g_k \}.$$

Theorem

Let $TM \simeq S^k(E)$ be a $GL(2, \mathbb{R})$ -structure on a manifold M of dimension k + 1 > 3. There is a unique $GL(2, \mathbb{R})$ -connection $\phi = (\phi_j^i)_{i,j=1,2}$ with values in $gl(2, \mathbb{R})$ such that $\Theta_{\chi}(X, .) \in g_k^{\perp}$ for any $\chi \in B(E)$ and $X \in T_{\chi}B(E)$, where Θ is the torsion 2-form of ψ .

Remark: In dimension 4 this coincides with the Bryant connection.

Theorem

Let $TM \simeq S^k(E)$ be a $GL(2, \mathbb{R})$ -structure on even-dimensional manifold M and assume that the almost-complex structure J_{ϕ} defined by a $GL(2, \mathbb{R})$ -connection ϕ is integrable. Then, the $GL(2, \mathbb{R})$ -structure is $\alpha_{\frac{k+1}{2}}$ -integrable.

Remarks:

- In dimension 4 we get that a *GL*(2, ℝ)-structure is torsion-free if and only if the canonical almost-complex structure is integrable.
- 2 If a structure is $\alpha_{\frac{k+1}{2}}$ -integrable then there is a well defined $\frac{k+3}{2}$ -dimensional (real) twistor space. (This twistor space can be "glued" to $B(E)/C(2,\mathbb{R})$ to get (complex) twistor space.)

Holomorphic sections

 $B(E)/CO(2,\mathbb{R}) \simeq P(E^{\mathbb{C}}) \setminus P(E)$ and any point $[z] = [x + iy] \in P(E^{\mathbb{C}}) \setminus P(E)$

defines the following subspace in $T^{\mathbb{C}}M \simeq S^k(E^{\mathbb{C}})$

$$\operatorname{span}\{z^k, z^{k-1}\bar{z}, \dots, z^{\frac{k+1}{2}}\bar{z}^{\frac{k-1}{2}}\}$$

This defines a complex structure on $T_p M$.

Remark: Holomorphic sections of $B(E)/CO(2, \mathbb{R})$ give complex structures on M.

Holomorphic sections

 $B(E)/CO(2,\mathbb{R}) \simeq P(E^{\mathbb{C}}) \setminus P(E)$ and any point $[z] = [x + iy] \in P(E^{\mathbb{C}}) \setminus P(E)$

defines the following subspace in $T^{\mathbb{C}}M \simeq S^k(E^{\mathbb{C}})$

$$\operatorname{span}\{z^k, z^{k-1}\bar{z}, \dots, z^{\frac{k+1}{2}}\bar{z}^{\frac{k-1}{2}}\}$$

This defines a complex structure on $T_p M$.

Remark: Holomorphic sections of $B(E)/CO(2, \mathbb{R})$ give complex structures on M.

Now, we would like to describe all integrable $GL(2, \mathbb{R})$ -structures in a convenient way.

Theorem (K.-Mettler)

Any integrable $GL(2, \mathbb{R})$ -structure in dim 4 can be put in the form $C(E) = \{ s^3 V_0 + s^2 t V_1 + s t^2 V_2 + t^3 V_3 | s, t \in \mathbb{R} \}$ where

$$\begin{split} V_0 &= \partial_3, \qquad V_1 = \partial_2 + 9A\partial_3, \qquad V_2 = \partial_1 + 3A\partial_2 + B\partial_3, \\ V_3 &= \partial_0 + A\partial_1 + C\partial_2 + D\partial_3, \end{split}$$

and A, B, C, D are functions satisfying the following system

$$\begin{split} V_2(D) - V_3(B) - BV_2(A) - 9AV_2(C) + 27AV_3(A) + 27A^2V_2(A) &= 0\\ 3V_2(C) + 9V_3(A) - 2V_1(D) - 9AV_2(A) + 2BV_1(A) \\ &+ 18AV_1(C) - 54A^2V_1(A) = 0\\ 3V_2(A) - 6V_1(C) + 3V_0(D) + 18AV_1(A) - 27AV_0(C) \\ &+ 81A^2V_0(A) - 3BV_0(A) = 0\\ 3V_1(A) + 9V_0(C) - 2V_0(B) + 27AV_0(A) = 0 \end{split}$$

Remarks:

- First step in the proof: write down a structure in terms of the corresponding ODE.
- 2 A priori there are 8 equations (components of the Bryant torsion) however half of them is void.
- **3** The system has a Lax representation $[L_0, L_1] = 0$.
- I do not know how to construct a similar system describing the structures in higher dimensions.

Thank you!