GL(2,R) geometry and integrable systems

Wojciech Kryński

Institute of Mathematics
Polish Academy of Sciences
Warsaw
01.08.2016

Introduction

This is a joint project with Thomas Mettler (Frankfurt).

Introduction

This is a joint project with Thomas Mettler (Frankfurt).
Plan:
1 Definitions
2 Motivations and examples
3 GL(2,R)-structures and complex geometry
4 Diemnsion 4

Let M be a manifold of dimension $k+1$.
Three equvialent definitions:
1 An isomorphism

$$
T M \simeq S^{k}(E)
$$

where E is a rank-2 bundle over M. Fixing a basis $(x, y) \in E_{p}$

$$
T_{p} M \simeq H_{k}\left(\mathbb{R}^{2}\right)
$$

where $H_{k}\left(\mathbb{R}^{2}\right)$ is the space of homogeneous polynomials in two variables and of order k.
2 A reduction of the frame bundle to a $G L(2, \mathbb{R})$-subbundle $B(E)$ (where $G L(2, \mathbb{R})$-acts irreducibly).
3 A field of rational normal curves $p \mapsto C(E)_{p} \subset P\left(T_{p} M\right)$

$$
C(E)=\left\{(s x+t y)^{k}\right\} .
$$

Motivations

Why $G L(2, \mathbb{R})$-structures are interesting:
1 Natural geometric structures on solutions spaces of ODEs (generalisation of 3-dim conformal Lorentzian metric) [Bryant, Dunajski-Tod, Nurowski, Doubrov].
2 Can appear as characteristic varieties of PDEs, e.g. Veronese hierarchy on the next slide, or recent results by [Ferapontov-Kruglikov].

Veronese hierarchy

Solutions $w: \mathbb{R}^{k+1} \rightarrow R$ to

$$
\left(a_{i}-a_{j}\right) \partial_{0} w \partial_{i} \partial_{j} w+a_{j} \partial_{i} w \partial_{j} \partial_{0} w-a_{i} \partial_{j} w \partial_{i} \partial_{0} w=0, \quad i, j=1, \ldots, k
$$

where a_{i} are distinct numbers are in a one to one correspondence with
1 Hyper-CR Einstein-Weyl structures in dim 3 (i.e. for $k=2$) [Dunajski-K.].
$\left[2\right.$ Veronese webs on \mathbb{R}^{k+1} for arbitrary k. The Veronese webs are special 1-parameter families of corank-1 foliations introduced by Gelfand and Zakharevich in connection to bi-Poisson systems on odd-dimensional manifolds.

A characteristic variety of the system is the null cone $C(E)$ of a $G L(2, \mathbb{R})$-structure.

Integrability

Fix a point V in the null cone $C(E)_{p}$. Let

$$
\operatorname{span}\{V\}=D_{1}(V) \subset D_{2}(V) \subset \ldots \subset D_{k}(V) \subset T_{p} M
$$

be a sequence of osculating spaces of $C(E)_{p}$ at V, where $\operatorname{dim} D_{i}(V)=i$.
Definitions:
$1 D_{i}(V)$ is called α_{i}-plane of a $G L(2, \mathbb{R})$-structure.
2 A submanifold $N \subset M$ is called α_{i}-manifold if each $T_{p} N$ is an α_{i}-plane.
3 A structure is α_{i}-integrable if all α_{i}-planes are tangent to α_{i}-manifolds.
$1 \alpha_{i}$-integrability implies α_{j}-integrability for $j<i$.
$2 \alpha_{k}$-integrability is equivalent to α_{k-1}-integrability (this follows from the geometry of Goursat flags).
3 Veronese webs are α_{i}-integrable for any i.

Connections to ODEs

Theorem

A $G L(2, \mathbb{R})$-structure in dimension $k+1$ comes from an ODE of order $k+1$ with the vanishing Wünschmann invariants if and only if it is α_{k}-integrable.

Remarks:
1 The Wünschamnn invariants are the basic contact invariants of ODEs. An ODE of order $k+1$ has $k-1$ Wünschmann invariants.

2 If one wants to make α_{k}-manifolds totally geodesic w.r.t. some connection then additional point invariants appear - this generalizes the Cartan invariant for third-order ODEs and the corresponding Einstein-Weyl structures.

We shall consider later the $\alpha_{\frac{k+1}{2}}$-integrability for even-dimensional manifolds.

Complex geometry

Theorem (K.-Mettler)

Let $T M \simeq S^{k}(E)$ be a $G L(2, \mathbb{R})$-structure on even-dimensional manifold M and assume that a $G L(2, \mathbb{R})$-connection on $B(E)$ is defined by a 1 -form $\phi=\left(\phi_{j}^{i}\right)_{i, j=1,2}$ with values in $g l(2, \mathbb{R})$. Then there is a canonical almost-complex structure J_{ϕ} on the quotient bundle

$$
B(E) / C O(2, \mathbb{R})
$$

whose $(1,0)$-forms pullback to $B(E)$ to become linear combinations of the forms $\xi^{k, 0}, \ldots, \xi^{\left.k, \frac{k}{2}\right\rfloor}$ and

$$
\zeta=\left(\phi_{2}^{1}+\phi_{1}^{2}\right)+\mathrm{i}\left(\phi_{2}^{2}-\phi_{1}^{1}\right),
$$

where $\xi^{k, 0}, \ldots, \xi^{k,\left\lfloor\frac{k}{2}\right\rfloor}$ are certain complex valued forms composed from the soldering form.

In dimension 4:

$$
\xi^{3,1}=\frac{1}{4}\left(3 \omega^{0}+\omega^{2}+\mathrm{i}\left(\omega^{1}+3 \omega^{3}\right)\right), \quad \xi^{3,0}=\frac{1}{4}\left(\omega^{0}-\omega^{2}+\mathrm{i}\left(\omega^{1}-\omega^{3}\right)\right) .
$$

In dimension 6:

$$
\begin{aligned}
& \xi^{5,2}=\frac{1}{76}\left(10 \omega^{0}+7 \omega^{3}+12 \omega^{5}+\mathrm{i}\left(12 \omega^{2}+7 \omega^{4}+10 \omega^{6}\right)\right), \\
& \xi^{5,1}=\frac{1}{76}\left(5 \omega^{0}-6 \omega^{3}-13 \omega^{5}+\mathrm{i}\left(13 \omega^{2}+6 \omega^{4}-5 \omega^{6}\right)\right), \\
& \xi^{5,0}=\frac{1}{76}\left(\omega^{0}-5 \omega^{3}+5 \omega^{5}+\mathrm{i}\left(5 \omega^{2}-5 \omega^{4}+\omega^{6}\right)\right) .
\end{aligned}
$$

Complex structure on $H_{k}\left(R^{2}\right)$

The first step in the proof is a construction of a complex structure on the space of polynomials. $H_{k}\left(R^{2}\right)$ decomposes into 2-dimensional subspaces, invariant w.r.t. $C O(2, \mathbb{R})$. The polynomials are

$$
H_{k-2 i}=\operatorname{span}\left\{\mathfrak{R}\left((x+\mathrm{iy})^{k-i}(x-\mathrm{iy})^{i}\right), \quad \mathfrak{I}\left((x+\mathrm{iy})^{k-i}(x-\mathrm{iy})^{\prime}\right)\right\} .
$$

On H_{j} we defined a complex structure by formula

$$
J_{j}=\sqrt[i]{J}
$$

where $J \in C O(2, \mathbb{R})$ is the standard complex structure $(x, y) \mapsto(-y, x)$.
The construction gives $(x+\mathrm{iy})^{k-i}(x-\mathrm{iy})^{i}$ as $(1,0)$-vectors.

Integrability

The torsion T and curvature C of ϕ in the presence of J_{ϕ} decompose to parts $T^{(2,0)}, T^{(1,1)}, T^{(0,2)}$ and $C^{(2,0)} C^{(1,1)}, C^{(0,2)}$.

Theorem (K.-Mettler)

The almost-complex structure J_{ϕ} on $B(E) / C O(2, \mathbb{R})$ is integrable if and only if $T^{(0,2)}=0$ and $C^{(0,2)}=0$.

Remark: If $T^{(1,1)}=0$ and $T^{(0,2)}=0$ then $C^{(0,2)}=0$. In particular, if ϕ is torsion-free then J_{ϕ} is integrable.

Canonical connection

One can define a canonical connection for a $G L(2, \mathbb{R})$-structure. The corresponding almost-complex structure will be called canonical.

Let $g_{k} \subset g l(k+1, \mathbb{R})$ be the standard subalgebra isomorphic to $g l(2, \mathbb{R})$ corresponding to the irreducible action on $H_{k}\left(\mathbb{R}^{2}\right)$. Define

$$
g_{k}^{\perp}=\left\{\psi \in g l(k+1, \mathbb{R}) \mid \operatorname{tr}(\eta \circ \psi)=0 \quad \forall \eta \in g_{k}\right\} .
$$

Theorem

Let $T M \simeq S^{k}(E)$ be a $G L(2, \mathbb{R})$-structure on a manifold M of dimension $k+1>3$. There is a unique $G L(2, \mathbb{R})$-connection $\phi=\left(\phi_{j}^{i}\right)_{i, j=1,2}$ with values in $g l(2, \mathbb{R})$ such that $\Theta_{\chi}(X,.) \in g_{k}^{\perp}$ for any $\chi \in B(E)$ and $X \in T_{\chi} B(E)$, where Θ is the torsion 2-form of ψ.

Remark: In dimension 4 this coincides with the Bryant connection.

Theorem

Let $T M \simeq S^{k}(E)$ be a $G L(2, \mathbb{R})$-structure on even-dimensional manifold M and assume that the almost-complex structure J_{ϕ} defined by a $G L(2, \mathbb{R})$-connection ϕ is integrable. Then, the $G L(2, \mathbb{R})$-structure is $\alpha_{\frac{k+1}{2}}$-integrable.

Remarks:

1 In dimension 4 we get that a $G L(2, \mathbb{R})$-structure is torsion-free if and only if the canonical almost-complex structure is integrable.
2 If a structure is $\alpha_{\frac{k+1}{2}}$-integrable then there is a well defined $\frac{k+3}{2}$-dimensional (real) twistor space. (This twistor space can be "glued" to $B(E) / C(2, \mathbb{R})$ to get (complex) twistor space.)

Holomorphic sections

$B(E) / C O(2, \mathbb{R}) \simeq P\left(E^{\mathrm{C}}\right) \backslash P(E)$ and any point

$$
[z]=[x+i y] \in P\left(E^{\mathbb{C}}\right) \backslash P(E)
$$

defines the following subspace in $T^{\mathbb{C}} M \simeq S^{k}\left(E^{\mathbb{C}}\right)$

$$
\operatorname{span}\left\{z^{k}, z^{k-1} \bar{z}, \ldots, z^{\frac{k+1}{2}} \bar{z}^{\frac{k-1}{2}}\right\}
$$

This defines a complex structure on $T_{p} M$.
Remark: Holomorphic sections of $B(E) / C O(2, \mathbb{R})$ give complex structures on M.

$$
\begin{aligned}
& B(E) / C O(2, \mathbb{R}) \simeq P\left(E^{\mathbb{C}}\right) \backslash P(E) \text { and any point } \\
& {[z]=[x+i y] \in P\left(E^{\mathbb{C}}\right) \backslash P(E)}
\end{aligned}
$$

defines the following subspace in $T^{\mathbb{C}} M \simeq S^{k}\left(E^{\mathbb{C}}\right)$

$$
\operatorname{span}\left\{z^{k}, z^{k-1} \bar{z}, \ldots, z^{\frac{k+1}{2}} \bar{z}^{\frac{k-1}{2}}\right\}
$$

This defines a complex structure on $T_{p} M$.
Remark: Holomorphic sections of $B(E) / C O(2, \mathbb{R})$ give complex structures on M.

Now, we would like to describe all integrable $G L(2, \mathbb{R})$-structures in a convenient way.

Dimension 4

Theorem (K.-Mettler)

Any integrable $G L(2, \mathbb{R})$-structure in dim 4 can be put in the form $C(E)=\left\{s^{3} V_{0}+s^{2} t V_{1}+s t^{2} V_{2}+t^{3} V_{3} \mid s, t \in \mathbb{R}\right\}$ where

$$
\begin{aligned}
& V_{0}=\partial_{3}, \quad V_{1}=\partial_{2}+9 A \partial_{3}, \quad V_{2}=\partial_{1}+3 A \partial_{2}+B \partial_{3}, \\
& V_{3}=\partial_{0}+A \partial_{1}+C \partial_{2}+D \partial_{3},
\end{aligned}
$$

and A, B, C, D are functions satisfying the following system

$$
\begin{gathered}
V_{2}(D)-V_{3}(B)-B V_{2}(A)-9 A V_{2}(C)+27 A V_{3}(A)+27 A^{2} V_{2}(A)=0 \\
3 V_{2}(C)+9 V_{3}(A)-2 V_{1}(D)-9 A V_{2}(A)+2 B V_{1}(A) \\
+18 A V_{1}(C)-54 A^{2} V_{1}(A)=0 \\
3 V_{2}(A)-6 V_{1}(C)+3 V_{0}(D)+18 A V_{1}(A)-27 A V_{0}(C) \\
+81 A^{2} V_{0}(A)-3 B V_{0}(A)=0 \\
3 V_{1}(A)+9 V_{0}(C)-2 V_{0}(B)+27 A V_{0}(A)=0
\end{gathered}
$$

Dimension 4

Remarks:

1 First step in the proof: write down a structure in terms of the corresponding ODE.
2 A priori there are 8 equations (components of the Bryant torsion) however half of them is void.

3 The system has a Lax representation $\left[L_{0}, L_{1}\right]=0$.
4 I do not know how to construct a similar system describing the structures in higher dimensions.

Thank you!

