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Integrability tests for discrete systems

1 Multidimensional consistency (Adler, Bobenko, Suris, Nijhoff, ...)
2 Symmetry approach (Mikhailov, Shabat, Yamilov, Wang, ...)
3 Algebraic entropy, singularity confinement,... (Vialet, Hulburd,

Hone,...)
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Programme of classification of 2 + 1-dimensional integrable
systems

1 Dispersive deformations:
Given a dispersionless integrable system

A(u)ut + B(u)ux + C(u)uy = 0

can we construct a dispersive integrable deformations?

2 Classification of dispersive integrable systems in
2 + 1-dimensions:

1 Classify 2 + 1-dimensional dispersionless integrable systems in
various classes.

2 Construct dispersive deformations.
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Approach in 2 + 1D

STEP 1

Take an integrable 2 + 1D dispersionless system. It can be decoupled
into a pair of 1 + 1D equations infinitely many ways (hydrodynamic
reductions)

.

STEP 2

Deform the system by adding suitable dispersive anzats

.

STEP 3

Require that all hydrodynamic reductions can be deformed into
reductions of the perturbed system by adding a suitable formal series
of dispersive terms
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Outline

Outline
1 Dispersionless 3D systems: method of hydrodynamic reductions.

2 Deformations technique.
3 Integrability of 3D discrete systems from the deformations

technique.
4 Classification results.
5 Semi-discrete systems.
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The method of hydrodynamic reductions

Consider a system of quasilinear equations

A(u)ux + B(u)uy + C(u)ut = 0.

Let us seek a multiphase solution u(R1, . . . ,RN), where
R i = R i(x , y , t) satisfy a pair of commuting 1 + 1-dimensional
equations

R i
y = µi(R)R i

x , R i
t = λi(R)R i

x

Definition
[Ferapontov-Khusnutdinova] A quasilinear system is said to be
integrable if for any number of phases N it possesses infinitely many
N-phase solutions parametrised by N arbitrary functions of one
variable.
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The method of hydrodynamic reductions

Example: dKP equation

ut = uux + wy , uy = wx

N-phase solutions: u = u(R1, ...,RN), w = w(R1, ...,RN) where

R i
y = µi(R)R i

x , R i
t = λi(R)R i

x

Then
∂iw = µi∂iu, λi = u + (µi)2

Functions u(R) and µi(R) obey the Gibbons-Tsarev system

∂jµ
i =

∂ju
µj − µi , ∂i∂ju = 2

∂iu∂ju
(µj − µi)2

Remark
The Gibbons-Tsarev system is in involution!
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The method of hydrodynamic reductions

In particular in the case N = 1 we have

u = R, w = W (R), µ(R) = W ′(R),

Ry = W ′(R)Rx , Rt =
(

R + (W ′(R))2
)

Rx
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Dispersive deformations

Consider the KP equation

ut = uux + wy +ε2uxxx uy = wx

Let us seek a formal 1-phase solution in the form

u = U(R)+εκ1(R)Rx + ε2
(
κ2(R)Rxx + κ3(R)R2

x

)
+ ε3(. . . ) + . . .

w = W (R)+ερ1(R)Rx + ε2
(
ρ2(R)Rxx + ρ3(R)R2

x

)
+ ε3(. . . ) + . . .

and let us require

Ry = µ(R)Rx +ε(a1(R)Rxx + a2(R)R2
x ) + ε2(. . . ) + . . .

Rt = (U(R) + µ(R)2)Rx +ε(A1(R)Rxx + A2(R)R2
x ) + ε2(. . . ) + . . .
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Dispersive deformations

Generalised Miura transfromations

R → φ(R) + εφ1(R)Rx + · · ·

Up to the Miura transformation we can seek a 1-phase solution in the
form

u = R

w = W (R)+ερ1(R)Rx + ε2
(
ρ2Rxx + ρ3R2

x

)
+ ε2(. . . ) + . . .

Ry = µ(R)Rx +ε(a1(R)Rxx + a2(R)R2
x ) + ε2(. . . ) + . . .

Rt = (R + µ(R)2)Rx +ε(A1(R)Rxx + A2(R)R2
x ) + ε2(. . . ) + . . .
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Dispersive deformations

Requiring that this is a formal solution of the KP equation we obtain

u = R, w = W (R)+ε2
(

W ′′Rxx +
1
2

(W ′′′ − (W ′′)3)R2
x

)
+ O(ε4)

Ry = W ′Rx +ε2
(

W ′′Rxx +
1
2

(W ′′′ −W ′′3)R2
x

)
x

+ O(ε4)

Rt = (R+W ′2)Rx +ε2
(

(2W ′W ′′ + 1)Rxx + (W ′W ′′′ −W ′W ′′3 +
W ′′2

2
)R2

x

)
x

+ O(ε4)

NOTE

Procedure is entirely algebraic;
Similar results can be (and are) obtained for two, three (and so on)
phase solutions.
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Reconstruction of dispersive corrections

Consider the dKP equation

ut = uux + wy , wx = uy .

Let us add all possible dispersive corrections which are differential
polynomials in u,w with coefficients being functions in u,w :

ut = uux + wy +ε (α1uxx + α2uxy + α3uyy + α4wyy + · · · ) + ε2() + · · ·

Generalised Miura group

u → φ(u) + ε(φ1(u)ux + φ2(u)uy ) + ε2() + · · ·

w → ψ(w) + ε(ψ1(u,w)ux + ψ2(u,w)uy ) + ε2() + · · ·

Vladimir Novikov (Loughborough) Discrete Integrable Equations in 3D 2016 12 / 43



Reconstruction of dispersive corrections

Consider the dKP equation

ut = uux + wy , wx = uy .

Let us add all possible dispersive corrections which are differential
polynomials in u,w with coefficients being functions in u,w :

ut = uux + wy +ε (α1uxx + α2uxy + α3uyy + α4wyy + · · · ) + ε2() + · · ·

Generalised Miura group

u → φ(u) + ε(φ1(u)ux + φ2(u)uy ) + ε2() + · · ·

w → ψ(w) + ε(ψ1(u,w)ux + ψ2(u,w)uy ) + ε2() + · · ·

Vladimir Novikov (Loughborough) Discrete Integrable Equations in 3D 2016 12 / 43



Reconstruction of dispersive corrections

Now we seek the deformed hydrodynamic reductions for this equation
and obtain:

ut = uux + wy +

+ε2(h1uxxx + h2(2uuyuyy + uxu2
y + wyuyy ) + h3(

3
2

uyuyy −
1
2

uxwyy ))+

+O(ε4),

and h1,h2,h3 are arbitrary constants. Note that h1 corresponds to KP.
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Reconstruction of dispersive corrections

1 We have computed the dispersive corrections up to order ε4. The
moduli space of the corrections (up to Miura group) is finite
dimensional, i.e. correction coefficients are constants but not
functions in u,w (unlike the situation in 1+1-dimensions).

2 We conjecture that any (non-linearly degenerate) integrable
dispersionless 2 + 1-dimensional equation can be deformed in this
way and the moduli space of the corrections will be finite
dimensional.
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Integrability test for 2 + 1-dimensional equations

Definition
A 2 + 1-dimensional system is said to be integrable if all hydrodynamic
reductions of its dispersionless limit (which is supposed to be linearly
non-degenerate) can be deformed into reductions of the corresponding
dispersive counterpart.

Classification strategy

We first classify quasilinear systems which may potentially occur
as dispersionless limits of integrable equations.
We reconstruct dispersive terms requiring the inheritance of
hydrodynamic reductions of the dispersionless limit by the full
dispersive equation.
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Discrete 3D systems: discrete wave equations

Let us illustrate our approach by classifying integrable discrete
wave-type equations of the form

4t t̄ u −4xx̄ f (u)−4yȳ g(u) = 0,

where f and g are functions to be determined and

4x =
Tx − 1
ε

, 4x̄ =
1− T−1

x

ε
, . . . ,

Tx = eε∂x , Ty = eε∂y , Tz = eε∂z

Using expansions of the form

4t t̄ =
(eε∂t − 1)(1− e−ε∂t )

ε2
= ∂2

t +
ε2

12
∂4

t + . . . ,

we can rewrite the above equation as an infinite series in ε,

utt − f (u)xx − g(u)yy +
ε2

12
[utttt − f (u)xxxx − g(u)yyyy ] + · · · = 0.
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Discrete 3D systems: discrete wave equations

Dispersionless limit

utt − f (u)xx − g(u)yy = 0.

Integrability if and only if

f ′g′f ′′′ = f ′′(f ′′g′ + g′′f ′), f ′g′g′′′ = g′′(f ′′g′ + g′′f ′)

The resulting integrable systems are:

utt − (u − ln(1− eu))xx − (ln(1− eu))yy = 0,

utt − uxx − (eu)yy = 0.
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Discrete 3D systems: discrete wave equations

One-component reductions:

u = R(x , y , t), Rt = λ(R)Rx , Ry = µ(R)Rx ,

λ2 = f ′ + g′µ2.

Deformation:

Ry = µ(R)Rx + ε(a1(R)Rxx + a2(R)R2
x ) + ε2(b1(R)Rxxx + . . .) + . . . ,

Rt = λ(R)Rx + ε(A1(R)Rxx + A2(R)R2
x ) + ε2(B1(R)Rxxx + . . .) + . . . ,
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Discrete 3D systems: discrete wave equations

Order ε1: all terms vanish identically.

Order ε2:

f ′′ + g′′ = 0, g′′(1 + f ′)− g′f ′′ = 0, f ′′2(1 + 2f ′)− f ′(f ′ + 1)f ′′′ = 0.

Notice that these are second order conditions in addition to third order
dispersionless integrability conditions

f ′g′f ′′′ = f ′′(f ′′g′ + g′′f ′), f ′g′g′′′ = g′′(f ′′g′ + g′′f ′)
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Discrete 3D systems: discrete wave equations

The solution is f (u) = u − ln(eu + 1), g(u) = ln(eu + 1), resulting in
the difference equation

4t t̄ u −4xx̄ [u − ln(eu + 1)]−4yȳ [ln(eu + 1)] = 0,

which is an equivalent form of the Hirota equation, known as the
‘gauge-invariant form’ , or the ‘Y-system’.
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Discrete 3D systems: discrete wave equations

The first nontrivial term for expansions of Ry ,Rt is

Ry = µ(R) Rx + ε2(b1Rxxx + b2RxxRx + b3R3
x ) + O(ε4),

Rt = λ(R) Rx + ε2(B1Rxxx + B2RxxRx + B3R3
x ) + O(ε4),

where

b1 =
1

12

(
µ2 − 1

)
µ′,

B1 =

(
µ2 − 1

)
eR (µ2 + 2µµ′eR + 2µµ′ − 1

)
24
(
eR + 1

)2
λ

,
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Discrete 3D systems: discrete conservation laws

Consider the following examples of integrable 3D dispersionless
equations

(u1 − u2)u12 + (u3 − u1)u13 + (u2 − u3)u23 = 0,

∂1

(
ln

u3

u2

)
+ ∂2

(
ln

u1

u3

)
+ ∂3

(
ln

u2

u1

)
= 0.

These are dispersionless (continuum) limits of the lattice KP

(41u −42u)412u + (43u −41u)413u + (42u −43u)423u = 0.

and lattice Schwarzian KP equations

41

(
ln
43u
42u

)
+42

(
ln
41u
43u

)
+43

(
ln
42u
41u

)
= 0.
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Discrete conservation laws

Our main result provides a classification of integrable conservative
equations of the form

41f +42g +43h = 0,

f = f (41u,42u,43u), g = g(41u,42u,43u), h = h(41u,42u,43u)

The corresponding dispersionless limits are scalar conservation laws
of the form

∂1f (u1,u2,u3) + ∂2g(u1,u2,u3) + ∂3h(u1,u2,u3) = 0.
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Discrete conservation laws

The classification is performed modulo elementary transformations of
the form u → αu + αix i , as well as permutations of the independent
variables x i . We show that any integrable equation of such a form
arises as a conservation law of a certain discrete integrable equation
of octahedron type,

F (T1u, T2u, T3u, T12u, T13u, T23u) = 0.

Theorem
Integrable discrete conservation laws are naturally grouped into 7
three-parameter families,

αI + βJ + γK = 0,

where α, β, γ are free parameters and I, J,K denote left hand sides of
three linearly independent discrete conservation laws of seven
octahedron equations.
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Classification Results: octahedron equations

Octahedron equations (Adler, Bobenko, Suris)

T2τ − T12τ

T23τ
= T1τ

(
1

T13τ
− 1

T3τ

)
, (1)

T12uT13u + T2uT23u + T1uT3u = T12uT23u + T1uT13u + T2uT3u, (2)
T23τ

T3τ
+

T12τ

T2τ
+ α

T12τ + T23τ

T2τ + T3τ
=

T12τ

T1τ
+

T13τ

T3τ
+ α

T12τ + T13τ

T1τ + T3τ
, (3)

(T1u − T2u)T12u + (T3u − T1u)T13u + (T2u − T3u)T23u = 0, (4)
T13τ − T12τ

T1τ
+

T12τ − T23τ

T2τ
+

T23τ − T13τ

T3τ
= 0, (5)

(T241u)(T342u)(T143u) = (T243u)(T341u)(T142u), (6)(
T12τ

T2τ
− 1
)(

T13τ

T1τ
− 1
)(

T23τ

T3τ
− 1
)

=

(
T12τ

T1τ
− 1
)(

T13τ

T3τ
− 1
)(

T23τ

T2τ
− 1
)

(7)

here τ = eλu/ε, λ = const which is specific for each case.
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Discrete conservation laws: Schwarzian KP

One of the seven cases mentioned above is the octahedron equation

(T241u)(T342u)(T143u) = (T243u)(T341u)(T142u),

known as the Schwarzian KP equation in its standard form. It
possesses three conservation laws

I = 42 ln
(

1− 43u
41u

)
−43 ln

(
42u
41u

− 1
)

= 0,

J = 43 ln
(

1− 41u
42u

)
−41 ln

(
43u
42u

− 1
)

= 0,

K = 41 ln
(

1− 42u
43u

)
−42 ln

(
41u
43u

− 1
)

= 0,

The linear combination I + J + K = 0 coincides with the Schwarzian
KP.
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Discrete conservation laws: the idea of the proof

The dispersionless limit is of the form

∂1f + ∂2g + ∂3h = 0,

we denote
a = u1, b = u2, c = u3,

so
f = f (a,b, c), g = g(a,b, c), h = h(a,b, c).

Necessary integrability conditions at order ε1 give:

fa = gb = hc = 0, fb + ga + fc + ha + gc + hb = 0.
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Discrete conservation laws: the idea of the proof

Thus the equation ∂1f + ∂2g + ∂3h = 0 becomes

Fu12 + Gu13 + Hu23 = 0, F = fb + ga, G = fc + ha, H = gc + hb

Any integrable equation of this type is equivalent to

[p(u1)− q(u2)]u12 + [r(u3)− p(u1)]u13 + [q(u2)− r(u3)]u23 = 0,

and functions p,q, r satisfy the integrability conditions

p′′ = p′
(

p′−q′

p−q + p′−r ′
p−r −

q′−r ′
q−r

)
,

q′′ = q′
(

q′−p′

q−p + q′−r ′
q−r −

p′−r ′
p−r

)
,

r ′′ = r ′
(

r ′−p′

r−p + r ′−q′

r−q −
p′−q′

p−q

)
.

Vladimir Novikov (Loughborough) Discrete Integrable Equations in 3D 2016 28 / 43



Discrete conservation laws: the idea of the proof

Thus the equation ∂1f + ∂2g + ∂3h = 0 becomes

Fu12 + Gu13 + Hu23 = 0, F = fb + ga, G = fc + ha, H = gc + hb

Any integrable equation of this type is equivalent to

[p(u1)− q(u2)]u12 + [r(u3)− p(u1)]u13 + [q(u2)− r(u3)]u23 = 0,

and functions p,q, r satisfy the integrability conditions

p′′ = p′
(

p′−q′

p−q + p′−r ′
p−r −

q′−r ′
q−r

)
,

q′′ = q′
(

q′−p′

q−p + q′−r ′
q−r −

p′−r ′
p−r

)
,

r ′′ = r ′
(

r ′−p′

r−p + r ′−q′

r−q −
p′−q′

p−q

)
.

Vladimir Novikov (Loughborough) Discrete Integrable Equations in 3D 2016 28 / 43



Discrete conservation laws: the idea of the proof

Classification strategy:
1 First, we solve equations for p,q, r . Modulo unessential

translations and re-scalings this leads to the seven integrable
equations.

2 Next, for all of the seven equations found at step 1, we calculate
first order conservation laws. It is known that any integrable
second order quasilinear PDE possesses exactly four
conservation laws.

3 Taking linear combinations of the four conservation laws in each of
the above seven cases, and replacing partial derivatives u1,u2,u3
by discrete derivatives 41u,42u,43u, we obtain discrete
equations of our form which, at this stage, are the candidates for
integrability.

4 Applying the ε2-integrability test to the above linear combinations,
we obtain constraints on the coefficients, and the final
classification result.
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Further illustration

One of the cases correspond to a situation when q = const , r = const .
Setting q = −r = 1 we obtain a single equation on p:

p′′ =
2p(p′)2

p2 − 1
.

The solution is p = 1+eu1

1−eu1 , which leads to the equation

eu1u12 − u13 + (1− eu1)u23 = 0.

The four conservation laws are

∂1eu1 + ∂3(eu2−u1 − eu2) = 0, ∂1e−u3 + ∂2(eu1−u3 − e−u3) = 0,

∂2(u3 − ln(1− eu1)) + ∂3(ln(1− eu1)− u1) = 0,

∂1
u2u3

2
− ∂2

(u1u3

2
− u1 ln(1− eu1)− Li2(eu1)

)
+∂3

(
u2

1
2
− u1u2

2
− u1 ln(1− eu1)− Li2(eu1)

)
= 0.
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Further illustration

Applying steps 3 and 4 we obtain the discrete equation:

e(T1u−T13u)/ε + e(T12u−T23u)/ε = e(T1u−T3u)/ε + e(T2u−T23u)/ε.

Finally, setting τ = eu/ε we find

T2τ − T12τ

T23τ
= T1τ

(
1

T13τ
− 1

T3τ

)
.
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Discrete conservation laws: semi-discrete equations

Similar results can be proved in the case of semi-discrete equations.
We have two possible cases:

One continuous and two discrete variables;
Two continuous and one discrete variable.

Theorem
Integrable semi-discrete conservation laws

∆1f + ∆2g + ∂3h = 0

are naturally grouped into 7 three-parameter families,

αI + βJ + γK = 0,

where α, β, γ are free parameters and I, J,K denote left hand sides of
three linearly independent discrete conservation laws of seven
semi-discrete octahedron equations.
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Discrete conservation laws: semi-discrete equations

Semi-discrete octahedron equations (Adler-Bobenko-Suris)

T12v
T2v

+
T1v3

T1v
=

T1v
v

+
T2v3

T2v
,

T12v =
T1vT2v

v
+

T2vT1v3 − T1vT2v3

T2v − T1v
,

vT12v
T1v

=
T1vT2v3

T1v3
,

(T12u − T2u)T1u3 = (T1u − u)T2u3,

v(T12v − T2v)T1v3 = T1v(T1v − v)T2v3,

(T241u)(42u)T1u3 = (T142u)(41u)T2u3,

(T2 sinh41u)(sinh42u)T1u3 = (T1 sinh42u)(sinh41u)T2u3.
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Discrete conservation laws: semi-discrete equations

Theorem
There are no integrable semi-discrete equations of the form

∂1f + ∂2g + ∆3h = 0
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Numerics: Dispersionless vs Discrete equation

We compare numerical solutions for the discrete equation

4t t̄ u −4xx̄ [u − ln(eu + 1)]−4yȳ [ln(eu + 1)] = 0,

and its dispersionless limit

utt − [u − ln(eu + 1)]xx − [ln(eu + 1)]yy = 0,

subject to the following Cauchy data:

Disrete equation: u(x , y ,0) = 3e−(x2+y2), u(x , y ,−ε) = 3e−(x2+y2).

Dispersionless equation: u(x , y ,0) = 3e−(x2+y2), ut (x , y ,0) = 0.

Vladimir Novikov (Loughborough) Discrete Integrable Equations in 3D 2016 35 / 43



Numerical Simulations: Dispersionless equation

Figure: Numerical solution of the dispersionless equation for t = 0,4,8.

According to the general theory this solution is expected to break down
in finite time [Klainerman].
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Numerical Simulations: Discrete equation

The discrete equation can be equivalently written as

u(t + ε) = −u(t − ε) + (Tx + Tx̄ )(u − ln(eu + 1)) + (Ty + Tȳ ) ln(eu + 1)

with
u(x , y ,0) = 3e−(x2+y2), u(x , y ,−ε) = 3e−(x2+y2).

No breakdown in this case.

Figure: Numerical solution of the discrete equation for ε = 2 and t = 0,4,8.

Vladimir Novikov (Loughborough) Discrete Integrable Equations in 3D 2016 37 / 43



Numerical Simulations: Discrete equation

Figure: Numerical solution of the discrete equation for ε = 1 and t = 0,4,8.

Figure: Numerical solution of the discrete equation for ε = 1/8 and t = 0,4,8.
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Numerical Simulations: Discrete equation

As ε→ 0, solutions of the discrete equation tend to solutions of the
dispersionless limit until the breakdown occurs.

At the breaking point

Figure: Formation of a dispersive shock wave in the numerical solution of the
discrete equation for ε = 1/8 (left) and ε = 1/16 (right), at t = 8.
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Other classes of semi-discrete equations

Consider the following equation

ut = uuy + wy , (T − 1)w =
ε

2
(T + 1)uy , (8)

where T is a shift operator T = eεDx .
The continuous limit of this equation is

ut = uuy + wy , wx = uy .
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Differential-difference equations

Theorem
The following equations constitute a complete list of integrable
equations of the form
ut = φux + ψuy + ηwx + τwy + ε() + ε2(), (T − 1)w = ε

2(T + 1)uy :

ut = uuy + wy ,

ut = (w + αeu)uy + wy ,

ut = u2uy + (uw)y +
ε2

12
uyyy ,

ut = u2uy + (uw)y +
ε2

12
(uyy −

3
4

u2
y

u
)y ,
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Equations with the Toda-type non-locality: wx = 4+
y u

ut = φux + f4+
y g + p4−y q, (9)

where the non-locality w is defined as wx = 4+
y u, and φ, f ,g,p,q are

functions of u and w .

Theorem
The following examples constitute a complete list of integrable
equations of the form (9) with the non-locality of Toda type:

ut = u4−y w ,

ut = (αu + β)4−y ew ,

ut = ew√u4+
y
√

u +
√

u4−y (ew√u),

here α, β = const.
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Equations with the fully discrete non-locality: 4+
x w = 4+

y u

ut = f4+
x g + h4−x k + p4+

y q + r4−y s,

where the non-locality w is defined as 4+
x w = 4+

y u, and the functions
f ,g,h, k ,p,q, r , s depend on u and w .

Theorem
The following examples constitute a complete list of integrable
equations of the above form with the fully discrete non-locality:

ut = u4−y (u − w),

ut = u(4+
x +4−y )w ,

ut = 4−y eu−w ,

ut = (αe−u + β)4−y eu−w ,

ut = (αeu + β)(4+
x +4−y )ew ,

ut =
√
α− βe2u

(
ew−u4+

y

√
α− βe2u +4−y (ew−u

√
α− βe2u)

)
,

here α, β = const.
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