Discrete Integrable Equations in 3D

Vladimir Novikov

Department of Mathematical Sciences, Loughborough University, UK

Joint project with E. Ferapontov, I. Roustemoglou
 LMS EPSRC Durham Symposium
 Geometric and Algebraic Aspects of Integrability

Integrability tests for discrete systems

(1) Multidimensional consistency (Adler, Bobenko, Suris, Nijhoff, ...)
(2) Symmetry approach (Mikhailov, Shabat, Yamilov, Wang, ...)
(3) Algebraic entropy, singularity confinement,... (Vialet, Hulburd, Hone,...)

Programme of classification of $2+1$-dimensional integrable systems

(1) Dispersive deformations: Given a dispersionless integrable system

$$
A(u) u_{t}+B(u) u_{x}+C(u) u_{y}=0
$$

can we construct a dispersive integrable deformations?

Programme of classification of $2+1$-dimensional integrable systems

(1) Dispersive deformations: Given a dispersionless integrable system

$$
A(u) u_{t}+B(u) u_{x}+C(u) u_{y}=0
$$

can we construct a dispersive integrable deformations?
(2) Classification of dispersive integrable systems in 2 + 1-dimensions:

Programme of classification of $2+1$-dimensional integrable systems

(1) Dispersive deformations:

Given a dispersionless integrable system

$$
A(u) u_{t}+B(u) u_{x}+C(u) u_{y}=0
$$

can we construct a dispersive integrable deformations?
(2) Classification of dispersive integrable systems in $2+1$-dimensions:
(1) Classify $2+1$-dimensional dispersionless integrable systems in various classes.

Programme of classification of $2+1$-dimensional integrable systems

(1) Dispersive deformations:

Given a dispersionless integrable system

$$
A(u) u_{t}+B(u) u_{x}+C(u) u_{y}=0
$$

can we construct a dispersive integrable deformations?
(2) Classification of dispersive integrable systems in $2+1$-dimensions:
(1) Classify $2+1$-dimensional dispersionless integrable systems in various classes.
(2) Construct dispersive deformations.

Approach in $2+1 \mathrm{D}$

Approach in $2+1 \mathbf{D}$

STEP 1

Take an integrable $2+1 \mathrm{D}$ dispersionless system. It can be decoupled into a pair of $1+1 \mathrm{D}$ equations infinitely many ways (hydrodynamic reductions).

Approach in $2+1 \mathbf{D}$

STEP 1

Take an integrable $2+1 \mathrm{D}$ dispersionless system. It can be decoupled into a pair of $1+1 \mathrm{D}$ equations infinitely many ways (hydrodynamic reductions).

STEP 2

Deform the system by adding suitable dispersive anzats.

Approach in $2+1 \mathrm{D}$

STEP 1

Take an integrable $2+1 \mathrm{D}$ dispersionless system. It can be decoupled into a pair of $1+1 \mathrm{D}$ equations infinitely many ways (hydrodynamic reductions).

STEP 2
Deform the system by adding suitable dispersive anzats.
STEP 3
Require that all hydrodynamic reductions can be deformed into reductions of the perturbed system by adding a suitable formal series of dispersive terms

Outline

Outline

(1) Dispersionless 3D systems: method of hydrodynamic reductions.

Outline

Outline

(1) Dispersionless 3D systems: method of hydrodynamic reductions.
(2) Deformations technique.

Outline

Outline

(1) Dispersionless 3D systems: method of hydrodynamic reductions.
(2) Deformations technique.
(3) Integrability of 3D discrete systems from the deformations technique.

Outline

Outline

(1) Dispersionless 3D systems: method of hydrodynamic reductions.
(2) Deformations technique.
(3) Integrability of 3D discrete systems from the deformations technique.
(4) Classification results.

Outline

Outline

(1) Dispersionless 3D systems: method of hydrodynamic reductions.
(2) Deformations technique.
(3) Integrability of 3D discrete systems from the deformations technique.
(4) Classification results.
(5) Semi-discrete systems.

The method of hydrodynamic reductions

Consider a system of quasilinear equations

$$
A(\mathbf{u}) \mathbf{u}_{x}+B(\mathbf{u}) \mathbf{u}_{y}+C(\mathbf{u}) \mathbf{u}_{t}=0
$$

Let us seek a multiphase solution $\mathbf{u}\left(R^{1}, \ldots, R^{N}\right)$, where
$R^{i}=R^{i}(x, y, t)$ satisfy a pair of commuting $1+1$-dimensional equations

$$
R_{y}^{i}=\mu^{i}(R) R_{x}^{i}, \quad R_{t}^{i}=\lambda^{i}(R) R_{x}^{i}
$$

Definition

[Ferapontov-Khusnutdinova] A quasilinear system is said to be integrable if for any number of phases N it possesses infinitely many N-phase solutions parametrised by N arbitrary functions of one variable.

The method of hydrodynamic reductions

Example: dKP equation

$$
u_{t}=u u_{x}+w_{y}, \quad u_{y}=w_{x}
$$

N-phase solutions: $u=u\left(R^{1}, \ldots, R^{N}\right), w=w\left(R^{1}, \ldots, R^{N}\right)$ where

$$
R_{y}^{i}=\mu^{i}(R) R_{x}^{i}, \quad R_{t}^{i}=\lambda^{i}(R) R_{x}^{i}
$$

Then

$$
\partial_{i} w=\mu^{i} \partial_{i} u, \quad \lambda^{i}=u+\left(\mu^{i}\right)^{2}
$$

Functions $u(R)$ and $\mu^{i}(R)$ obey the Gibbons-Tsarev system

$$
\partial_{j} \mu^{i}=\frac{\partial_{j} u}{\mu^{j}-\mu^{i}}, \quad \partial_{i} \partial_{j} u=2 \frac{\partial_{i} u \partial_{j} u}{\left(\mu^{j}-\mu^{i}\right)^{2}}
$$

Remark

The Gibbons-Tsarev system is in involution!

The method of hydrodynamic reductions

In particular in the case $N=1$ we have

$$
\begin{gathered}
u=R, \quad w=W(R), \quad \mu(R)=W^{\prime}(R), \\
R_{y}=W^{\prime}(R) R_{x}, \quad R_{t}=\left(R+\left(W^{\prime}(R)\right)^{2}\right) R_{x}
\end{gathered}
$$

Dispersive deformations

Consider the KP equation

$$
u_{t}=u u_{x}+w_{y}+\epsilon^{2} u_{x x x} \quad u_{y}=w_{x}
$$

Let us seek a formal 1-phase solution in the form

$$
\begin{aligned}
& u=U(R)+\epsilon \kappa_{1}(R) R_{x}+\epsilon^{2}\left(\kappa_{2}(R) R_{x x}+\kappa_{3}(R) R_{x}^{2}\right)+\epsilon^{3}(\ldots)+\ldots \\
& w=W(R)+\epsilon \rho_{1}(R) R_{x}+\epsilon^{2}\left(\rho_{2}(R) R_{x x}+\rho_{3}(R) R_{x}^{2}\right)+\epsilon^{3}(\ldots)+\ldots
\end{aligned}
$$

and let us require

$$
\begin{aligned}
& R_{y}=\mu(R) R_{x}+\epsilon\left(a_{1}(R) R_{x x}+a_{2}(R) R_{x}^{2}\right)+\epsilon^{2}(\ldots)+\ldots \\
& R_{t}=\left(U(R)+\mu(R)^{2}\right) R_{x}+\epsilon\left(A_{1}(R) R_{x x}+A_{2}(R) R_{x}^{2}\right)+\epsilon^{2}(\ldots)+\ldots
\end{aligned}
$$

Dispersive deformations

Generalised Miura transfromations

$$
R \rightarrow \phi(R)+\epsilon \phi_{1}(R) R_{x}+\cdots
$$

Up to the Miura transformation we can seek a 1-phase solution in the form

$$
\begin{aligned}
u & =R \\
w & =W(R)+\epsilon \rho_{1}(R) R_{x}+\epsilon^{2}\left(\rho_{2} R_{x x}+\rho_{3} R_{x}^{2}\right)+\epsilon^{2}(\ldots)+\ldots \\
R_{y} & =\mu(R) R_{x}+\epsilon\left(a_{1}(R) R_{x x}+a_{2}(R) R_{x}^{2}\right)+\epsilon^{2}(\ldots)+\ldots \\
R_{t} & =\left(R+\mu(R)^{2}\right) R_{x}+\epsilon\left(A_{1}(R) R_{x x}+A_{2}(R) R_{x}^{2}\right)+\epsilon^{2}(\ldots)+\ldots
\end{aligned}
$$

Dispersive deformations

Requiring that this is a formal solution of the KP equation we obtain

$$
\begin{gathered}
u=R, w=W(R)+\epsilon^{2}\left(W^{\prime \prime} R_{x x}+\frac{1}{2}\left(W^{\prime \prime \prime}-\left(W^{\prime \prime}\right)^{3}\right) R_{x}^{2}\right)+O\left(\epsilon^{4}\right) \\
R_{y}=W^{\prime} R_{x}+\epsilon^{2}\left(W^{\prime \prime} R_{x x}+\frac{1}{2}\left(W^{\prime \prime \prime}-W^{\prime \prime 3}\right) R_{x}^{2}\right)_{x}+O\left(\epsilon^{4}\right) \\
R_{t}=\left(R+W^{\prime 2}\right) R_{x}+\epsilon^{2}\left(\left(2 W^{\prime} W^{\prime \prime}+1\right) R_{x x}+\left(W^{\prime} W^{\prime \prime \prime}-W^{\prime} W^{\prime \prime 3}+\frac{W^{\prime \prime 2}}{2}\right) R_{x}^{2}\right.
\end{gathered}
$$

Dispersive deformations

Requiring that this is a formal solution of the KP equation we obtain

$$
\begin{gathered}
u=R, w=W(R)+\epsilon^{2}\left(W^{\prime \prime} R_{x x}+\frac{1}{2}\left(W^{\prime \prime \prime}-\left(W^{\prime \prime}\right)^{3}\right) R_{x}^{2}\right)+O\left(\epsilon^{4}\right) \\
R_{y}=W^{\prime} R_{x}+\epsilon^{2}\left(W^{\prime \prime} R_{x x}+\frac{1}{2}\left(W^{\prime \prime \prime}-W^{\prime \prime 3}\right) R_{x}^{2}\right)_{x}+O\left(\epsilon^{4}\right) \\
R_{t}=\left(R+W^{\prime 2}\right) R_{x}+\epsilon^{2}\left(\left(2 W^{\prime} W^{\prime \prime}+1\right) R_{x x}+\left(W^{\prime} W^{\prime \prime \prime}-W^{\prime} W^{\prime \prime 3}+\frac{W^{\prime \prime 2}}{2}\right) R_{x}^{2}\right.
\end{gathered}
$$

NOTE

- Procedure is entirely algebraic;
- Similar results can be (and are) obtained for two, three (and so on) phase solutions.

Reconstruction of dispersive corrections

Consider the dKP equation

$$
u_{t}=u u_{x}+w_{y}, \quad w_{x}=u_{y}
$$

Let us add all possible dispersive corrections which are differential polynomials in u, w with coefficients being functions in u, w :

$$
u_{t}=u u_{x}+w_{y}+\epsilon\left(\alpha_{1} u_{x x}+\alpha_{2} u_{x y}+\alpha_{3} u_{y y}+\alpha_{4} w_{y y}+\cdots\right)+\epsilon^{2}()+\cdots
$$

Reconstruction of dispersive corrections

Consider the dKP equation

$$
u_{t}=u u_{x}+w_{y}, \quad w_{x}=u_{y}
$$

Let us add all possible dispersive corrections which are differential polynomials in u, w with coefficients being functions in u, w :

$$
u_{t}=u u_{x}+w_{y}+\epsilon\left(\alpha_{1} u_{x x}+\alpha_{2} u_{x y}+\alpha_{3} u_{y y}+\alpha_{4} w_{y y}+\cdots\right)+\epsilon^{2}()+\cdots
$$

Generalised Miura group

$$
\begin{gathered}
u \rightarrow \phi(u)+\epsilon\left(\phi_{1}(u) u_{x}+\phi_{2}(u) u_{y}\right)+\epsilon^{2}()+\cdots \\
w \rightarrow \psi(w)+\epsilon\left(\psi_{1}(u, w) u_{x}+\psi_{2}(u, w) u_{y}\right)+\epsilon^{2}()+\cdots
\end{gathered}
$$

Reconstruction of dispersive corrections

Now we seek the deformed hydrodynamic reductions for this equation and obtain:

$$
\begin{gathered}
u_{t}=u u_{x}+w_{y}+ \\
+\epsilon^{2}\left(h_{1} u_{x x x}+h_{2}\left(2 u u_{y} u_{y y}+u_{x} u_{y}^{2}+w_{y} u_{y y}\right)+h_{3}\left(\frac{3}{2} u_{y} u_{y y}-\frac{1}{2} u_{x} w_{y y}\right)\right)+ \\
+O\left(\epsilon^{4}\right)
\end{gathered}
$$

and h_{1}, h_{2}, h_{3} are arbitrary constants. Note that h_{1} corresponds to KP.

Reconstruction of dispersive corrections

(1) We have computed the dispersive corrections up to order ϵ^{4}. The moduli space of the corrections (up to Miura group) is finite dimensional, i.e. correction coefficients are constants but not functions in u, w (unlike the situation in 1+1-dimensions).

Reconstruction of dispersive corrections

(1) We have computed the dispersive corrections up to order ϵ^{4}. The moduli space of the corrections (up to Miura group) is finite dimensional, i.e. correction coefficients are constants but not functions in u, w (unlike the situation in 1+1-dimensions).
(2) We conjecture that any (non-linearly degenerate) integrable dispersionless $2+1$-dimensional equation can be deformed in this way and the moduli space of the corrections will be finite dimensional.

Integrability test for $2+1$-dimensional equations

Definition

A $2+1$-dimensional system is said to be integrable if all hydrodynamic reductions of its dispersionless limit (which is supposed to be linearly non-degenerate) can be deformed into reductions of the corresponding dispersive counterpart.

Integrability test for $2+1$-dimensional equations

Definition

A $2+1$-dimensional system is said to be integrable if all hydrodynamic reductions of its dispersionless limit (which is supposed to be linearly non-degenerate) can be deformed into reductions of the corresponding dispersive counterpart.

Classification strategy

- We first classify quasilinear systems which may potentially occur as dispersionless limits of integrable equations.
- We reconstruct dispersive terms requiring the inheritance of hydrodynamic reductions of the dispersionless limit by the full dispersive equation.

Discrete 3D systems: discrete wave equations

Let us illustrate our approach by classifying integrable discrete wave-type equations of the form

$$
\triangle_{t \bar{t}} u-\triangle_{x \bar{x}} f(u)-\triangle_{y \bar{y}} g(u)=0
$$

where f and g are functions to be determined and

$$
\begin{aligned}
\triangle_{x} & =\frac{T_{x}-1}{\epsilon}, \quad \triangle_{\bar{x}}=\frac{1-T_{x}^{-1}}{\epsilon}, \ldots \\
T_{x} & =e^{\epsilon \partial_{x}}, \quad T_{y}=e^{\epsilon \partial_{y}}, \quad T_{z}=e^{\epsilon \partial_{z}}
\end{aligned}
$$

Discrete 3D systems: discrete wave equations

Let us illustrate our approach by classifying integrable discrete wave-type equations of the form

$$
\triangle_{t \bar{t}} u-\triangle_{x \bar{x}} f(u)-\triangle_{y \bar{y}} g(u)=0
$$

where f and g are functions to be determined and

$$
\begin{aligned}
\triangle_{x} & =\frac{T_{x}-1}{\epsilon}, \quad \triangle_{\bar{x}}=\frac{1-T_{x}^{-1}}{\epsilon}, \ldots \\
T_{x} & =e^{\epsilon \partial_{x}}, \quad T_{y}=e^{\epsilon \partial_{y}}, \quad T_{z}=e^{\epsilon \partial_{z}}
\end{aligned}
$$

Using expansions of the form

$$
\triangle_{t \bar{t}}=\frac{\left(e^{\epsilon \partial_{t}}-1\right)\left(1-e^{-\epsilon \partial_{t}}\right)}{\epsilon^{2}}=\partial_{t}^{2}+\frac{\epsilon^{2}}{12} \partial_{t}^{4}+\ldots
$$

we can rewrite the above equation as an infinite series in ϵ,

$$
u_{t t}-f(u)_{x x}-g(u)_{y y}+\frac{\epsilon^{2}}{12}\left[u_{t t t t}-f(u)_{x x x x}-g(u)_{y y y y}\right]+\cdots=0
$$

Discrete 3D systems: discrete wave equations

Dispersionless limit

$$
u_{t t}-f(u)_{x x}-g(u)_{y y}=0
$$

Discrete 3D systems: discrete wave equations

Dispersionless limit

$$
u_{t t}-f(u)_{x x}-g(u)_{y y}=0
$$

Integrability if and only if

$$
f^{\prime} g^{\prime} f^{\prime \prime \prime}=f^{\prime \prime}\left(f^{\prime \prime} g^{\prime}+g^{\prime \prime} f^{\prime}\right), \quad f^{\prime} g^{\prime} g^{\prime \prime \prime}=g^{\prime \prime}\left(f^{\prime \prime} g^{\prime}+g^{\prime \prime} f^{\prime}\right)
$$

Discrete 3D systems: discrete wave equations

Dispersionless limit

$$
u_{t t}-f(u)_{x x}-g(u)_{y y}=0
$$

Integrability if and only if

$$
f^{\prime} g^{\prime} f^{\prime \prime \prime}=f^{\prime \prime}\left(f^{\prime \prime} g^{\prime}+g^{\prime \prime} f^{\prime}\right), \quad f^{\prime} g^{\prime} g^{\prime \prime \prime}=g^{\prime \prime}\left(f^{\prime \prime} g^{\prime}+g^{\prime \prime} f^{\prime}\right)
$$

The resulting integrable systems are:

$$
\begin{gathered}
u_{t t}-\left(u-\ln \left(1-e^{u}\right)\right)_{x x}-\left(\ln \left(1-e^{u}\right)\right)_{y y}=0 \\
u_{t t}-u_{x x}-\left(e^{u}\right)_{y y}=0
\end{gathered}
$$

Discrete 3D systems: discrete wave equations

One-component reductions:

$$
\begin{array}{cc}
u=R(x, y, t), & R_{t}=\lambda(R) R_{x}, \quad R_{y}=\mu(R) R_{x}, \\
& \lambda^{2}=f^{\prime}+g^{\prime} \mu^{2} .
\end{array}
$$

Discrete 3D systems: discrete wave equations

One-component reductions:

$$
\begin{array}{cc}
u=R(x, y, t), & R_{t}=\lambda(R) R_{x}, \quad R_{y}=\mu(R) R_{x} \\
& \lambda^{2}=f^{\prime}+g^{\prime} \mu^{2}
\end{array}
$$

Deformation:

$$
\begin{aligned}
& R_{y}=\mu(R) R_{x}+\epsilon\left(a_{1}(R) R_{x x}+a_{2}(R) R_{x}^{2}\right)+\epsilon^{2}\left(b_{1}(R) R_{x x x}+\ldots\right)+\ldots \\
& R_{t}=\lambda(R) R_{x}+\epsilon\left(A_{1}(R) R_{x x}+A_{2}(R) R_{x}^{2}\right)+\epsilon^{2}\left(B_{1}(R) R_{x x x}+\ldots\right)+\ldots
\end{aligned}
$$

Discrete 3D systems: discrete wave equations

Order ϵ^{1} : all terms vanish identically.

Discrete 3D systems: discrete wave equations

Order ϵ^{1} : all terms vanish identically. Order ϵ^{2} :

$$
f^{\prime \prime}+g^{\prime \prime}=0, \quad g^{\prime \prime}\left(1+f^{\prime}\right)-g^{\prime} f^{\prime \prime}=0, \quad f^{\prime \prime 2}\left(1+2 f^{\prime}\right)-f^{\prime}\left(f^{\prime}+1\right) f^{\prime \prime \prime}=0
$$

Notice that these are second order conditions in addition to third order dispersionless integrability conditions

$$
f^{\prime} g^{\prime} f^{\prime \prime \prime}=f^{\prime \prime}\left(f^{\prime \prime} g^{\prime}+g^{\prime \prime} f^{\prime}\right), \quad f^{\prime} g^{\prime} g^{\prime \prime \prime}=g^{\prime \prime}\left(f^{\prime \prime} g^{\prime}+g^{\prime \prime} f^{\prime}\right)
$$

Discrete 3D systems: discrete wave equations

The solution is $f(u)=u-\ln \left(e^{u}+1\right), g(u)=\ln \left(e^{u}+1\right)$, resulting in the difference equation

$$
\triangle_{t \bar{t}} u-\triangle_{x \bar{x}}\left[u-\ln \left(e^{u}+1\right)\right]-\triangle_{y \bar{y}}\left[\ln \left(e^{u}+1\right)\right]=0,
$$

which is an equivalent form of the Hirota equation, known as the 'gauge-invariant form', or the ' Y-system'.

Discrete 3D systems: discrete wave equations

The first nontrivial term for expansions of R_{y}, R_{t} is

$$
\begin{aligned}
& R_{y}=\mu(R) R_{x}+\epsilon^{2}\left(b_{1} R_{x x x}+b_{2} R_{x x} R_{x}+b_{3} R_{x}^{3}\right)+O\left(\epsilon^{4}\right) \\
& R_{t}=\lambda(R) R_{x}+\epsilon^{2}\left(B_{1} R_{x x x}+B_{2} R_{x x} R_{x}+B_{3} R_{x}^{3}\right)+O\left(\epsilon^{4}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& b_{1}=\frac{1}{12}\left(\mu^{2}-1\right) \mu^{\prime} \\
& B_{1}=\frac{\left(\mu^{2}-1\right) e^{R}\left(\mu^{2}+2 \mu \mu^{\prime} e^{R}+2 \mu \mu^{\prime}-1\right)}{24\left(e^{R}+1\right)^{2} \lambda}
\end{aligned}
$$

Discrete 3D systems: discrete conservation laws

Consider the following examples of integrable 3D dispersionless equations

$$
\begin{gathered}
\left(u_{1}-u_{2}\right) u_{12}+\left(u_{3}-u_{1}\right) u_{13}+\left(u_{2}-u_{3}\right) u_{23}=0, \\
\partial_{1}\left(\ln \frac{u_{3}}{u_{2}}\right)+\partial_{2}\left(\ln \frac{u_{1}}{u_{3}}\right)+\partial_{3}\left(\ln \frac{u_{2}}{u_{1}}\right)=0 .
\end{gathered}
$$

Discrete 3D systems: discrete conservation laws

Consider the following examples of integrable 3D dispersionless equations

$$
\begin{gathered}
\left(u_{1}-u_{2}\right) u_{12}+\left(u_{3}-u_{1}\right) u_{13}+\left(u_{2}-u_{3}\right) u_{23}=0 \\
\partial_{1}\left(\ln \frac{u_{3}}{u_{2}}\right)+\partial_{2}\left(\ln \frac{u_{1}}{u_{3}}\right)+\partial_{3}\left(\ln \frac{u_{2}}{u_{1}}\right)=0
\end{gathered}
$$

These are dispersionless (continuum) limits of the lattice KP

$$
\left(\triangle_{1} u-\triangle_{2} u\right) \triangle_{12} u+\left(\triangle_{3} u-\triangle_{1} u\right) \triangle_{13} u+\left(\triangle_{2} u-\triangle_{3} u\right) \triangle_{23} u=0 .
$$

and lattice Schwarzian KP equations

$$
\triangle_{1}\left(\ln \frac{\triangle_{3} u}{\triangle_{2} u}\right)+\triangle_{2}\left(\ln \frac{\triangle_{1} u}{\triangle_{3} u}\right)+\triangle_{3}\left(\ln \frac{\triangle_{2} u}{\triangle_{1} u}\right)=0 .
$$

Discrete conservation laws

Our main result provides a classification of integrable conservative equations of the form

$$
\begin{aligned}
& \triangle_{1} f+\triangle_{2} g+\triangle_{3} h=0 \\
& f=f\left(\triangle_{1} u, \triangle_{2} u, \triangle_{3} u\right), g=g\left(\triangle_{1} u, \triangle_{2} u, \triangle_{3} u\right), h=h\left(\triangle_{1} u, \triangle_{2} u, \triangle_{3} u\right)
\end{aligned}
$$

The corresponding dispersionless limits are scalar conservation laws of the form

$$
\partial_{1} f\left(u_{1}, u_{2}, u_{3}\right)+\partial_{2} g\left(u_{1}, u_{2}, u_{3}\right)+\partial_{3} h\left(u_{1}, u_{2}, u_{3}\right)=0
$$

Discrete conservation laws

The classification is performed modulo elementary transformations of the form $u \rightarrow \alpha u+\alpha_{i} x^{i}$, as well as permutations of the independent variables x^{i}. We show that any integrable equation of such a form arises as a conservation law of a certain discrete integrable equation of octahedron type,

$$
F\left(T_{1} u, T_{2} u, T_{3} u, T_{12} u, T_{13} u, T_{23} u\right)=0
$$

Discrete conservation laws

The classification is performed modulo elementary transformations of the form $u \rightarrow \alpha u+\alpha_{i} x^{i}$, as well as permutations of the independent variables x^{i}. We show that any integrable equation of such a form arises as a conservation law of a certain discrete integrable equation of octahedron type,

$$
F\left(T_{1} u, T_{2} u, T_{3} u, T_{12} u, T_{13} u, T_{23} u\right)=0
$$

Theorem

Integrable discrete conservation laws are naturally grouped into 7 three-parameter families,

$$
\alpha I+\beta J+\gamma K=0
$$

where α, β, γ are free parameters and I, J, K denote left hand sides of three linearly independent discrete conservation laws of seven octahedron equations.

Classification Results: octahedron equations

Octahedron equations (Adler, Bobenko, Suris)

$$
\begin{align*}
& \frac{T_{2} \tau-T_{12} \tau}{T_{23} \tau}=T_{1} \tau\left(\frac{1}{T_{13} \tau}-\frac{1}{T_{3} \tau}\right) \\
& T_{12} u T_{13} u+T_{2} u T_{23} u+T_{1} u T_{3} u=T_{12} u T_{23} u+T_{1} u T_{13} u+T_{2} u T_{3} u \\
& \frac{T_{23} \tau}{T_{3} \tau}+\frac{T_{12} \tau}{T_{2} \tau}+\alpha \frac{T_{12} \tau+T_{23} \tau}{T_{2} \tau+T_{3} \tau}=\frac{T_{12} \tau}{T_{1} \tau}+\frac{T_{13} \tau}{T_{3} \tau}+\alpha \frac{T_{12} \tau+T_{13} \tau}{T_{1} \tau+T_{3} \tau} \\
& \left(T_{1} u-T_{2} u\right) T_{12} u+\left(T_{3} u-T_{1} u\right) T_{13} u+\left(T_{2} u-T_{3} u\right) T_{23} u=0 \\
& \frac{T_{13} \tau-T_{12} \tau}{T_{1} \tau}+\frac{T_{12} \tau-T_{23} \tau}{T_{2} \tau}+\frac{T_{23} \tau-T_{13} \tau}{T_{3} \tau}=0 \\
& \left(T_{2} \triangle_{1} u\right)\left(T_{3} \triangle_{2} u\right)\left(T_{1} \triangle_{3} u\right)=\left(T_{2} \triangle_{3} u\right)\left(T_{3} \triangle_{1} u\right)\left(T_{1} \triangle_{2} u\right) \\
& \left(\frac{T_{12} \tau}{T_{2} \tau}-1\right)\left(\frac{T_{13} \tau}{T_{1} \tau}-1\right)\left(\frac{T_{23} \tau}{T_{3} \tau}-1\right)=\left(\frac{T_{12} \tau}{T_{1} \tau}-1\right)\left(\frac{T_{13} \tau}{T_{3} \tau}-1\right)\left(\frac{T_{23} \tau}{T_{2} \tau}-1\right) \tag{7}
\end{align*}
$$

here $\tau=e^{\lambda u / \epsilon}, \lambda=$ const which is specific for each case.

Discrete conservation laws: Schwarzian KP

One of the seven cases mentioned above is the octahedron equation

$$
\left(T_{2} \triangle_{1} u\right)\left(T_{3} \triangle_{2} u\right)\left(T_{1} \triangle_{3} u\right)=\left(T_{2} \triangle_{3} u\right)\left(T_{3} \triangle_{1} u\right)\left(T_{1} \triangle_{2} u\right)
$$

known as the Schwarzian KP equation in its standard form. It possesses three conservation laws

$$
\begin{aligned}
& I=\triangle_{2} \ln \left(1-\frac{\triangle_{3} u}{\triangle_{1} u}\right)-\triangle_{3} \ln \left(\frac{\triangle_{2} u}{\triangle_{1} u}-1\right)=0 \\
& J=\triangle_{3} \ln \left(1-\frac{\triangle_{1} u}{\triangle_{2} u}\right)-\triangle_{1} \ln \left(\frac{\triangle_{3} u}{\triangle_{2} u}-1\right)=0 \\
& K=\triangle_{1} \ln \left(1-\frac{\triangle_{2} u}{\triangle_{3} u}\right)-\triangle_{2} \ln \left(\frac{\triangle_{1} u}{\triangle_{3} u}-1\right)=0
\end{aligned}
$$

The linear combination $I+J+K=0$ coincides with the Schwarzian KP.

Discrete conservation laws: the idea of the proof

The dispersionless limit is of the form

$$
\partial_{1} f+\partial_{2} g+\partial_{3} h=0,
$$

we denote

$$
a=u_{1}, b=u_{2}, c=u_{3},
$$

so

$$
f=f(a, b, c), g=g(a, b, c), h=h(a, b, c)
$$

Discrete conservation laws: the idea of the proof

The dispersionless limit is of the form

$$
\partial_{1} f+\partial_{2} g+\partial_{3} h=0,
$$

we denote

$$
a=u_{1}, b=u_{2}, c=u_{3}
$$

so

$$
f=f(a, b, c), g=g(a, b, c), h=h(a, b, c)
$$

Necessary integrability conditions at order ϵ^{1} give:

$$
f_{a}=g_{b}=h_{c}=0, \quad f_{b}+g_{a}+f_{c}+h_{a}+g_{c}+h_{b}=0
$$

Discrete conservation laws: the idea of the proof

Thus the equation $\partial_{1} f+\partial_{2} g+\partial_{3} h=0$ becomes

$$
F u_{12}+G u_{13}+H u_{23}=0, \quad F=f_{b}+g_{a}, G=f_{c}+h_{a}, H=g_{c}+h_{b}
$$

Discrete conservation laws: the idea of the proof

Thus the equation $\partial_{1} f+\partial_{2} g+\partial_{3} h=0$ becomes

$$
F u_{12}+G u_{13}+H u_{23}=0, \quad F=f_{b}+g_{a}, G=f_{c}+h_{a}, H=g_{c}+h_{b}
$$

Any integrable equation of this type is equivalent to

$$
\left[p\left(u_{1}\right)-q\left(u_{2}\right)\right] u_{12}+\left[r\left(u_{3}\right)-p\left(u_{1}\right)\right] u_{13}+\left[q\left(u_{2}\right)-r\left(u_{3}\right)\right] u_{23}=0
$$

and functions p, q, r satisfy the integrability conditions

$$
\begin{aligned}
& p^{\prime \prime}=p^{\prime}\left(\frac{p^{\prime}-q^{\prime}}{p-q}+\frac{p^{\prime}-r^{\prime}}{p-r}-\frac{q^{\prime}-r^{\prime}}{q-r}\right) \\
& q^{\prime \prime}=q^{\prime}\left(\frac{q^{\prime}-p^{\prime}}{q-p}+\frac{q^{\prime}-r^{\prime}}{q-r}-\frac{p^{\prime}-r^{\prime}}{p-r}\right) \\
& r^{\prime \prime}=r^{\prime}\left(\frac{r^{\prime}-p^{\prime}}{r-p}+\frac{r^{\prime}-q^{\prime}}{r-q}-\frac{p^{\prime}-q^{\prime}}{p-q}\right)
\end{aligned}
$$

Discrete conservation laws: the idea of the proof

Classification strategy:

(1) First, we solve equations for p, q, r. Modulo unessential translations and re-scalings this leads to the seven integrable equations.

Discrete conservation laws: the idea of the proof

Classification strategy:
(1) First, we solve equations for p, q, r. Modulo unessential translations and re-scalings this leads to the seven integrable equations.
(2) Next, for all of the seven equations found at step 1, we calculate first order conservation laws. It is known that any integrable second order quasilinear PDE possesses exactly four conservation laws.

Discrete conservation laws: the idea of the proof

Classification strategy:
(1) First, we solve equations for p, q, r. Modulo unessential translations and re-scalings this leads to the seven integrable equations.
(2) Next, for all of the seven equations found at step 1, we calculate first order conservation laws. It is known that any integrable second order quasilinear PDE possesses exactly four conservation laws.
(3) Taking linear combinations of the four conservation laws in each of the above seven cases, and replacing partial derivatives u_{1}, u_{2}, u_{3} by discrete derivatives $\triangle_{1} u, \triangle_{2} u, \triangle_{3} u$, we obtain discrete equations of our form which, at this stage, are the candidates for integrability.

Discrete conservation laws: the idea of the proof

Classification strategy:
(1) First, we solve equations for p, q, r. Modulo unessential translations and re-scalings this leads to the seven integrable equations.
(2) Next, for all of the seven equations found at step 1, we calculate first order conservation laws. It is known that any integrable second order quasilinear PDE possesses exactly four conservation laws.
(3) Taking linear combinations of the four conservation laws in each of the above seven cases, and replacing partial derivatives u_{1}, u_{2}, u_{3} by discrete derivatives $\triangle_{1} u, \triangle_{2} u, \triangle_{3} u$, we obtain discrete equations of our form which, at this stage, are the candidates for integrability.
(4) Applying the ϵ^{2}-integrability test to the above linear combinations, we obtain constraints on the coefficients, and the final classification result.

Further illustration

One of the cases correspond to a situation when $q=$ const, $r=$ const. Setting $q=-r=1$ we obtain a single equation on p :

$$
p^{\prime \prime}=\frac{2 p\left(p^{\prime}\right)^{2}}{p^{2}-1}
$$

The solution is $p=\frac{1+e^{u_{1}}}{1-e^{u_{1}}}$, which leads to the equation

$$
e^{u_{1}} u_{12}-u_{13}+\left(1-e^{u_{1}}\right) u_{23}=0
$$

The four conservation laws are

$$
\begin{aligned}
\partial_{1} e^{u_{1}}+ & \partial_{3}\left(e^{u_{2}-u_{1}}-e^{u_{2}}\right)=0, \quad \partial_{1} e^{-u_{3}}+\partial_{2}\left(e^{u_{1}-u_{3}}-e^{-u_{3}}\right)=0 \\
& \partial_{2}\left(u_{3}-\ln \left(1-e^{u_{1}}\right)\right)+\partial_{3}\left(\ln \left(1-e^{u_{1}}\right)-u_{1}\right)=0 \\
& \partial_{1} \frac{u_{2} u_{3}}{2}-\partial_{2}\left(\frac{u_{1} u_{3}}{2}-u_{1} \ln \left(1-e^{u_{1}}\right)-\operatorname{Li}_{2}\left(e^{u_{1}}\right)\right) \\
+ & \partial_{3}\left(\frac{u_{1}^{2}}{2}-\frac{u_{1} u_{2}}{2}-u_{1} \ln \left(1-e^{u_{1}}\right)-L i_{2}\left(e^{u_{1}}\right)\right)=0
\end{aligned}
$$

Further illustration

One of the cases correspond to a situation when $q=$ const, $r=$ const. Setting $q=-r=1$ we obtain a single equation on p :

$$
p^{\prime \prime}=\frac{2 p\left(p^{\prime}\right)^{2}}{p^{2}-1}
$$

The solution is $p=\frac{1+e^{u_{1}}}{1-e^{u_{1}}}$, which leads to the equation

$$
e^{u_{1}} u_{12}-u_{13}+\left(1-e^{u_{1}}\right) u_{23}=0
$$

The four conservation laws are

$$
\begin{aligned}
\partial_{1} e^{u_{1}}+ & \partial_{3}\left(e^{u_{2}-u_{1}}-e^{u_{2}}\right)=0, \quad \partial_{1} e^{-u_{3}}+\partial_{2}\left(e^{u_{1}-u_{3}}-e^{-u_{3}}\right)=0 \\
& \partial_{2}\left(u_{3}-\ln \left(1-e^{u_{1}}\right)\right)+\partial_{3}\left(\ln \left(1-e^{u_{1}}\right)-u_{1}\right)=0 \\
& \partial_{1} \frac{u_{2} u_{3}}{2}-\partial_{2}\left(\frac{u_{1} u_{3}}{2}-u_{1} \ln \left(1-e^{u_{1}}\right)-\operatorname{Li}_{2}\left(e^{u_{1}}\right)\right) \\
+ & \partial_{3}\left(\frac{u_{1}^{2}}{2}-\frac{u_{1} u_{2}}{2}-u_{1} \ln \left(1-e^{u_{1}}\right)-L i_{2}\left(e^{u_{1}}\right)\right)=0
\end{aligned}
$$

Further illustration

Applying steps 3 and 4 we obtain the discrete equation:

$$
e^{\left(T_{1} u-T_{13} u\right) / \epsilon}+e^{\left(T_{12} u-T_{23} u\right) / \epsilon}=e^{\left(T_{1} u-T_{3} u\right) / \epsilon}+e^{\left(T_{2} u-T_{23} u\right) / \epsilon}
$$

Finally, setting $\tau=e^{u / \epsilon}$ we find

$$
\frac{T_{2} \tau-T_{12} \tau}{T_{23} \tau}=T_{1} \tau\left(\frac{1}{T_{13} \tau}-\frac{1}{T_{3} \tau}\right) .
$$

Discrete conservation laws: semi-discrete equations

Similar results can be proved in the case of semi-discrete equations. We have two possible cases:

- One continuous and two discrete variables;
- Two continuous and one discrete variable.

Discrete conservation laws: semi-discrete equations

Similar results can be proved in the case of semi-discrete equations. We have two possible cases:

- One continuous and two discrete variables;
- Two continuous and one discrete variable.

Theorem

Integrable semi-discrete conservation laws

$$
\Delta_{1} f+\Delta_{2} g+\partial_{3} h=0
$$

are naturally grouped into 7 three-parameter families,

$$
\alpha I+\beta J+\gamma K=0,
$$

where α, β, γ are free parameters and I, J, K denote left hand sides of three linearly independent discrete conservation laws of seven semi-discrete octahedron equations.

Discrete conservation laws: semi-discrete equations

Semi-discrete octahedron equations (Adler-Bobenko-Suris)

$$
\begin{aligned}
& \frac{T_{12} v}{T_{2} v}+\frac{T_{1} v_{3}}{T_{1} v}=\frac{T_{1} v}{v}+\frac{T_{2} v_{3}}{T_{2} v,} \\
& T_{12} v=\frac{T_{1} v T_{2} v}{v}+\frac{T_{2} v T_{1} v_{3}-T_{1} v T_{2} v_{3}}{T_{2} v-T_{1} v}, \\
& \frac{v T_{12} v}{T_{1} v}=\frac{T_{1} v T_{2} v_{3}}{T_{1} v_{3}}, \\
& \left(T_{12} u-T_{2} u\right) T_{1} u_{3}=\left(T_{1} u-u\right) T_{2} u_{3}, \\
& v\left(T_{12} v-T_{2} v\right) T_{1} v_{3}=T_{1} v\left(T_{1} v-v\right) T_{2} v_{3}, \\
& \left(T_{2} \triangle_{1} u\right)\left(\triangle_{2} u\right) T_{1} u_{3}=\left(T_{1} \triangle_{2} u\right)\left(\triangle_{1} u\right) T_{2} u_{3}, \\
& \left(T_{2} \sinh \triangle_{1} u\right)\left(\sinh \triangle_{2} u\right) T_{1} u_{3}=\left(T_{1} \sinh \triangle_{2} u\right)\left(\sinh \triangle_{1} u\right) T_{2} u_{3} .
\end{aligned}
$$

Discrete conservation laws: semi-discrete equations

Theorem

There are no integrable semi-discrete equations of the form

$$
\partial_{1} f+\partial_{2} g+\Delta_{3} h=0
$$

Numerics: Dispersionless vs Discrete equation

We compare numerical solutions for the discrete equation

$$
\triangle_{t \bar{t}} u-\triangle_{x \bar{x}}\left[u-\ln \left(e^{u}+1\right)\right]-\triangle_{y \bar{y}}\left[\ln \left(e^{u}+1\right)\right]=0
$$

and its dispersionless limit

$$
u_{t t}-\left[u-\ln \left(e^{u}+1\right)\right]_{x x}-\left[\ln \left(e^{u}+1\right)\right]_{y y}=0
$$

subject to the following Cauchy data:
Disrete equation: $u(x, y, 0)=3 e^{-\left(x^{2}+y^{2}\right)}, u(x, y,-\epsilon)=3 e^{-\left(x^{2}+y^{2}\right)}$.
Dispersionless equation: $u(x, y, 0)=3 e^{-\left(x^{2}+y^{2}\right)}, u_{t}(x, y, 0)=0$.

Numerical Simulations: Dispersionless equation

Figure: Numerical solution of the dispersionless equation for $t=0,4,8$.

According to the general theory this solution is expected to break down in finite time [Klainerman].

Numerical Simulations: Discrete equation

The discrete equation can be equivalently written as
$u(t+\epsilon)=-u(t-\epsilon)+\left(T_{x}+T_{\bar{x}}\right)\left(u-\ln \left(e^{u}+1\right)\right)+\left(T_{y}+T_{\bar{y}}\right) \ln \left(e^{u}+1\right)$
with

$$
u(x, y, 0)=3 e^{-\left(x^{2}+y^{2}\right)}, u(x, y,-\epsilon)=3 e^{-\left(x^{2}+y^{2}\right)}
$$

No breakdown in this case.

Figure: Numerical solution of the discrete equation for $\epsilon=2$ and $t=0,4,8$.

Numerical Simulations: Discrete equation

Figure: Numerical solution of the discrete equation for $\epsilon=1$ and $t=0,4,8$.

Figure: Numerical solution of the discrete equation for $\epsilon=1 / 8$ and $t=0,4,8$.

Numerical Simulations: Discrete equation

As $\epsilon \rightarrow 0$, solutions of the discrete equation tend to solutions of the dispersionless limit until the breakdown occurs.

At the breaking point

Figure: Formation of a dispersive shock wave in the numerical solution of the discrete equation for $\epsilon=1 / 8$ (left) and $\epsilon=1 / 16$ (right), at $t=8$.

Other classes of semi-discrete equations

Consider the following equation

$$
\begin{equation*}
u_{t}=u u_{y}+w_{y}, \quad(T-1) w=\frac{\epsilon}{2}(T+1) u_{y}, \tag{8}
\end{equation*}
$$

where T is a shift operator $T=e^{\epsilon D_{x}}$.
The continuous limit of this equation is

$$
u_{t}=u u_{y}+w_{y}, \quad w_{x}=u_{y} .
$$

Differential-difference equations

Theorem

The following equations constitute a complete list of integrable equations of the form

$$
u_{t}=\phi u_{x}+\psi u_{y}+\eta w_{x}+\tau w_{y}+\epsilon()+\epsilon^{2}(),(T-1) w=\frac{\epsilon}{2}(T+1) u_{y}:
$$

$$
\begin{aligned}
& u_{t}=u u_{y}+w_{y} \\
& u_{t}=\left(w+\alpha e^{u}\right) u_{y}+w_{y} \\
& u_{t}=u^{2} u_{y}+(u w)_{y}+\frac{\epsilon^{2}}{12} u_{y y y} \\
& u_{t}=u^{2} u_{y}+(u w)_{y}+\frac{\epsilon^{2}}{12}\left(u_{y y}-\frac{3}{4} \frac{u_{y}^{2}}{u}\right)_{y}
\end{aligned}
$$

Equations with the Toda-type non-locality: $w_{x}=\triangle_{y}^{+} u$

$$
\begin{equation*}
u_{t}=\phi u_{x}+f \triangle_{y}^{+} g+p \triangle_{y}^{-} q, \tag{9}
\end{equation*}
$$

where the non-locality w is defined as $w_{x}=\triangle_{y}^{+} u$, and ϕ, f, g, p, q are functions of u and w.

Theorem

The following examples constitute a complete list of integrable equations of the form (9) with the non-locality of Toda type:

$$
\begin{aligned}
& u_{t}=u \Delta_{y}^{-} w, \\
& u_{t}=(\alpha u+\beta) \triangle_{y}^{-} e^{w}, \\
& u_{t}=e^{w} \sqrt{u} \triangle_{y}^{+} \sqrt{u}+\sqrt{u} \Delta_{y}^{-}\left(e^{w} \sqrt{u}\right),
\end{aligned}
$$

here $\alpha, \beta=$ const.

Equations with the fully discrete non-locality: $\triangle_{x}^{+} w=\triangle_{y}^{+} u$

$$
u_{t}=f \triangle_{x}^{+} g+h \triangle_{x}^{-} k+p \triangle_{y}^{+} q+r \triangle_{y}^{-} s
$$

where the non-locality w is defined as $\triangle_{x}^{+} w=\triangle_{y}^{+} u$, and the functions f, g, h, k, p, q, r, s depend on u and w.

Theorem

The following examples constitute a complete list of integrable equations of the above form with the fully discrete non-locality:

$$
\begin{aligned}
& u_{t}=u \triangle_{y}^{-}(u-w) \\
& u_{t}=u\left(\triangle_{x}^{+}+\triangle_{y}\right) w \\
& u_{t}=\triangle_{y}^{-} e^{u-w} \\
& u_{t}=\left(\alpha e^{-u}+\beta\right) \triangle_{y}^{-} e^{u-w} \\
& u_{t}=\left(\alpha e^{u}+\beta\right)\left(\triangle_{x}^{+}+\triangle_{y}^{-}\right) e^{w} \\
& u_{t}=\sqrt{\alpha-\beta e^{2 u}}\left(e^{w-u} \triangle_{y}^{+} \sqrt{\alpha-\beta e^{2 u}}+\triangle_{y}^{-}\left(e^{w-u} \sqrt{\alpha-\beta e^{2 u}}\right)\right)
\end{aligned}
$$

