A construction of commuting systems of integrable symplectic birational maps

Yuri B. Suris

(Technische Universität Berlin)
Joint work with Matteo Petrera
LMS - EPSRC Durham Symposium
"Geometric and Algebraic Aspects of Integrability", 03.08.2016

Discretization in
Geometry and Dynamics
SFB Transregio 109

Integrable systems - a playground of algebraic geometry. A nice example: QRT maps introduced in

- G.R.W. Quispel, J.A.G. Roberts, C.J. Thompson. Integrable mappings and soliton equations II, Physica D 34 (1989) 183-192,
prompted the treatise
- J.J. Duistermaat. Discrete Integrable Systems. QRT Maps and Elliptic Surfaces, Springer, 2010, xii+627 pp.

A goal and the hope of the present study - to produce a rich supply of examples attracting the attention of the algebraic geometers.

Kahan's discretization scheme

Invented in:

- W. Kahan. Unconventional numerical methods for trajectory calculations (Unpublished lecture notes, 1993).

He wrote:
"I have used these methods for 24 years without quite understanding why they work so well as they do, when they work."

Bilinear discretization of quadratic vector fields

Take an arbitrary system with a quadratic vector field:

$$
\dot{x}=f(x)=Q(x)+B x+c
$$

where $B \in \mathbb{R}^{n \times n}, c \in \mathbb{R}^{n}$, each component of $Q: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ a quadratic form. Discretization:

$$
\frac{\widetilde{x}-x}{\epsilon}=Q(x, \widetilde{x})+\frac{1}{2} B(x+\widetilde{x})+c
$$

with $Q(x, \widetilde{x})$ corresponding symmetric bilinear function:

$$
Q(x, \widetilde{x})=\frac{1}{2}(Q(x+\widetilde{x})-Q(x)-Q(\widetilde{x}))
$$

Equations for \widetilde{x} always linear, $\operatorname{map} \widetilde{x}=\Phi_{f}(x, \epsilon)$ rational and reversible:

$$
\Phi_{f}^{-1}(x, \epsilon)=\Phi_{f}(x,-\epsilon)
$$

thus birational.

Example: Lotka-Volterra system

$$
\left\{\begin{array} { l }
{ \dot { x } = x (1 - y) , } \\
{ \dot { y } = y (x - 1) }
\end{array} \rightsquigarrow \left\{\begin{array}{l}
\widetilde{x}-x=\epsilon(x+\widetilde{x}-\widetilde{x} y-x \widetilde{y}) \widetilde{(}) \\
\widetilde{y}-y=-\epsilon(y+\widetilde{y}-\widetilde{x} y-x \widetilde{y})
\end{array}\right.\right.
$$

Left: one orbit of explicit Euler with $\epsilon=0.01$; right: three orbits of Kahan's discretization with $\epsilon=0.01$.
Non-spiralling behavior explained by invariance of Poisson structure:

- J.M. Sanz-Serna. An unconventional symplectic integrator of W. Kahan, Appl. Numer. Math. 16 (1994), 245-250.

Hirota-Kimura's discretization scheme

- R.Hirota, K.Kimura. Discretization of the Euler top. J. Phys. Soc. Japan 69 (2000) 627-630,
- K.Kimura, R.Hirota. Discretization of the Lagrange top. J. Phys. Soc. Japan 69 (2000) 3193-3199.

Apparently unaware of Kahan's work, applied this method to two famous integrable systems.

Resulting maps integrable (possess 2, resp. 4, independent integrals of motion; solutions in terms of elliptic functions).

Example: Hirota-Kimura's discrete time Euler top

$$
\left\{\begin{array} { l }
{ \dot { x } _ { 1 } = \alpha _ { 1 } x _ { 2 } x _ { 3 } , } \\
{ \dot { x } _ { 2 } = \alpha _ { 2 } x _ { 3 } x _ { 1 } , } \\
{ \dot { x } _ { 3 } = \alpha _ { 3 } x _ { 1 } x _ { 2 } , }
\end{array} \rightsquigarrow \quad \left\{\begin{array}{l}
\widetilde{x}_{1}-x_{1}=\epsilon \alpha_{1}\left(\widetilde{x}_{2} x_{3}+x_{2} \widetilde{x}_{3}\right), \\
\widetilde{x}_{2}-x_{2}=\epsilon \alpha_{2}\left(\widetilde{x}_{3} x_{1}+x_{3} \widetilde{x}_{1}\right), \\
\widetilde{x}_{3}-x_{3}=\epsilon \alpha_{3}\left(\widetilde{x}_{1} x_{2}+x_{1} \widetilde{x}_{2}\right) .
\end{array}\right.\right.
$$

Features:

- Equations are linear w.r.t. $\widetilde{x}=\left(\widetilde{x}_{1}, \widetilde{x}_{2}, \widetilde{x}_{3}\right)^{\mathrm{T}}$:

$$
A(x, \epsilon) \widetilde{x}=x, \quad A(x, \epsilon)=\left(\begin{array}{ccc}
1 & -\epsilon \alpha_{1} x_{3} & -\epsilon \alpha_{1} x_{2} \\
-\epsilon \alpha_{2} x_{3} & 1 & -\epsilon \alpha_{2} x_{1} \\
-\epsilon \alpha_{3} x_{2} & -\epsilon \alpha_{3} x_{1} & 1
\end{array}\right)
$$

result in explicit rational map:

$$
\widetilde{x}=\Phi_{f}(x, \epsilon)=A^{-1}(x, \epsilon) x
$$

- Explicit formulas rather messy:

$$
\left\{\begin{array}{l}
\widetilde{x}_{1}=\frac{x_{1}+2 \epsilon \alpha_{1} x_{2} x_{3}+\epsilon^{2} x_{1}\left(-\alpha_{2} \alpha_{3} x_{1}^{2}+\alpha_{3} \alpha_{1} x_{2}^{2}+\alpha_{1} \alpha_{2} x_{3}^{2}\right)}{\Delta(x, \epsilon)}, \\
\widetilde{x}_{2}=\frac{x_{2}+2 \epsilon \alpha_{2} x_{3} x_{1}+\epsilon^{2} x_{2}\left(\alpha_{2} \alpha_{3} x_{1}^{2}-\alpha_{3} \alpha_{1} x_{2}^{2}+\alpha_{1} \alpha_{2} x_{3}^{2}\right)}{\Delta(x, \epsilon)}, \\
\widetilde{x}_{3}=\frac{x_{3}+2 \epsilon \alpha_{3} x_{1} x_{2}+\epsilon^{2} x_{3}\left(\alpha_{2} \alpha_{3} x_{1}^{2}+\alpha_{3} \alpha_{1} x_{2}^{2}-\alpha_{1} \alpha_{2} x_{3}^{2}\right)}{\Delta(x, \epsilon)},
\end{array}\right.
$$

where

$$
\begin{aligned}
& \Delta(x, \epsilon)=\operatorname{det} A(x, \epsilon) \\
& \quad=1-\epsilon^{2}\left(\alpha_{2} \alpha_{3} x_{1}^{2}+\alpha_{3} \alpha_{1} x_{2}^{2}+\alpha_{1} \alpha_{2} x_{3}^{2}\right)-2 \epsilon^{3} \alpha_{1} \alpha_{2} \alpha_{3} x_{1} x_{2} x_{3}
\end{aligned}
$$

- Reversibility:

$$
\Phi_{f}^{-1}(x, \epsilon)=\Phi_{f}(x,-\epsilon) .
$$

(Try to see reversibility directly from explicit formulas!)

- Two independent integrals:

$$
I_{1}(x, \epsilon)=\frac{1-\epsilon^{2} \alpha_{2} \alpha_{3} x_{1}^{2}}{1-\epsilon^{2} \alpha_{3} \alpha_{1} x_{2}^{2}}, \quad I_{2}(x, \epsilon)=\frac{1-\epsilon^{2} \alpha_{3} \alpha_{1} x_{2}^{2}}{1-\epsilon^{2} \alpha_{1} \alpha_{2} x_{3}^{2}} .
$$

- Invariant volume form:

$$
\omega=\frac{d x_{1} \wedge d x_{2} \wedge d x_{3}}{\phi(x)}, \quad \phi(x)=\left(1-\epsilon^{2} \alpha_{i} \alpha_{j} x_{k}^{2}\right)^{2}
$$

and bi-Hamiltonian structure found in:

- M. Petrera, Yu. Suris. On the Hamiltonian structure of the Hirota-Kimura discretization of the Euler top. Math. Nachr. 283 (2010) 1654-1663.

The unreasonable integrability of KHK

- M. Petrera, A. Pfadler, Yu.B. Suris. On integrability of Hirota-Kimura type discretizations. Experimental study of the discrete Clebsch system. Experimental Math. 18 (2009), 223-247,
- M. Petrera, A. Pfadler, Yu.B. Suris On integrability of Hirota-Kimura type discretizations. Regular Chaotic Dyn. 16 (2011), 245-289.
Integrability of KHK discretization for an amazingly long list of examples, including:
- Reduced Nahm equations $(n=2)$
- Periodic Volterra chain $(n=3,4)$
- Dressing chain $(n=3)$
- Three wave system $(n=6)$
- Kirchhoff and Clebsch cases of rigid body in an ideal fluid ($n=6$)
- $S O(4)$ Euler top $(n=6)$

KHK applied to canonical Hamiltonian systems

- E. Celledoni, R.I. McLachlan, B. Owren, G.R.W. Quispel. Geometric properties of Kahan's method, J. Phys. A, 46 (2013), 025201, 12 pp.

Let $f(x)=J \nabla H(x)$, where $J=\left(\begin{array}{cc}0 & I \\ -I & 0\end{array}\right), H: \mathbb{R}^{2 n} \rightarrow \mathbb{R}$ a cubic polynomial. Then:

- map $\Phi_{f}(x, \epsilon): x \mapsto \widetilde{x}$ admits a rational integral of motion

$$
\widetilde{H}(x, \epsilon)=\frac{1}{6 \epsilon} x^{\mathrm{T}} J^{-1} \widetilde{x}=H(x)+O\left(\epsilon^{2}\right)
$$

- $\operatorname{map} \Phi_{f}(x, \epsilon): x \mapsto \widetilde{x}$ admits an invariant volume form:

$$
\frac{d x_{1} \wedge \ldots \wedge d x_{n}}{\operatorname{det}\left(I-\epsilon f^{\prime}(x)\right)}
$$

These results are not related to integrability!

Missing before the present work

- Conceptual (structure-clarifying) proof of integrability in any of numerous examples;
- Invariant symplectic or Poisson structure in any example in $\operatorname{dim} \geq 4$.

Both achieved here:

- M. Petrera, Yu.B. Suris. A construction of a large family of commuting pairs of integrable symplectic birational 4-dimensional maps. arXiv:1606.08238 [nlin.SI]
- M. Petrera, Yu.B. Suris. A construction of commuting systems of integrable symplectic birational maps. arXiv:1607.07085 [nlin.SI]

Main features of the novel construction

A family of completely integrable systems $\dot{x}=J \nabla H_{0}(x)$ in $\mathbb{R}^{2 m}$ with m cubic integrals (H_{0}, \ldots, H_{m-1}) in involution, for which KHK discretization has following properties:

- The map $\Phi_{J \nabla H_{0}}$ is symplectic w.r.t. a perturbation of the canonical symplectic structure on $\mathbb{R}^{2 m}$;
- The map $\Phi_{J \nabla H_{0}}$ has m rational integrals $\widetilde{H}_{0}(x, \epsilon), \ldots$, $\widetilde{H}_{m-1}(x, \epsilon)$ in involution;
- The maps $\Phi_{J \nabla H_{i}}$ do not commute; however, there exist 2^{m-1} linear combinations $J \nabla K=\sum_{i=0}^{m-1} \alpha_{i} J \nabla H_{i}$ such that $\Phi_{J \nabla H_{0}}$ commutes with $\Phi_{J \nabla K}$.

Construction of functions in involution

Observation. Let A be a constant $2 m \times 2 m$ matrix, and suppose that functions $H_{0}(x), H_{1}(x)$ satisfy

$$
\nabla H_{1}=A \nabla H_{0}
$$

If the matrix A is skew-Hamiltonian,

$$
J A=A^{\mathrm{T}} J=-(J A)^{\mathrm{T}}
$$

then H_{0}, H_{1} are in involution.

Proof.

$$
\left\{H_{0}, H_{1}\right\}=\left(\nabla H_{0}\right)^{\mathrm{T}} J \nabla H_{1}=\left(\nabla H_{0}\right)^{\mathrm{T}} J A \nabla H_{0} .
$$

Applicability of construction

Differential equations $\nabla H_{1}=A \nabla H_{0}$ for H_{1} are solvable if and only if H_{0} satisfies

$$
A\left(\nabla^{2} H_{0}\right)=\left(\nabla^{2} H_{0}\right) A^{\mathrm{T}}
$$

(where $\nabla^{2} H_{0}$ is the Hesse matrix of H_{0}). Then $H_{1}(x)$ satisfies the same conditions:

$$
A\left(\nabla^{2} H_{1}\right)=\left(\nabla^{2} H_{1}\right) A^{\mathrm{T}}
$$

Proposition. The linear space of homogeneous polynomials $H_{0}\left(x_{1}, \ldots, x_{2 m}\right)$ of deg $=3$ satisfying this system of 2nd order PDEs, has dimension $4 m$.

Construction of completely integrable systems

Take a non-degenerate skew-Hamiltonian matrix A and a generic cubic polynomial $H_{0}(x)$ satisfying

$$
A\left(\nabla^{2} H_{0}\right)=\left(\nabla^{2} H_{0}\right) A^{\mathrm{T}}
$$

Define $H_{i}(i=1, \ldots, m-1)$ by

$$
\nabla H_{i}=A \nabla H_{i-1}
$$

Then $\left(H_{0}, \ldots, H_{m-1}\right)$ is a completely integrable Hamiltonian system.

Characteristic properties

Vector fields $f_{i}(x)=J \nabla H_{i}(x)$ satisfy:

$$
\begin{gathered}
\left(f_{i}^{\prime}(x)\right)^{\mathrm{T}} J+J f_{i}^{\prime}(x)=0 \quad \text { (Hamiltonian) } \\
f_{i}^{\prime}(x) f_{j}(x)=f_{j}^{\prime}(x) f_{i}(x) \quad \text { (commute) } \\
f_{i}^{\prime}(x) f_{j}^{\prime}(x)=f_{j}^{\prime}(x) f_{i}^{\prime}(x)
\end{gathered}
$$

and

$$
A^{\mathrm{T}} f_{i}^{\prime}(x)=f_{i}^{\prime}(x) A^{\mathrm{T}}
$$

Associated vector fields

Definition. Let the skew-Hamiltonian matrix

$$
B=\sum_{i=0}^{m-1} \alpha_{i} A^{i}
$$

satisfy

$$
B^{2}=I
$$

Then the vector field

$$
g(x)=J B \nabla H_{0}(x)=B^{\mathrm{T}} J \nabla H_{0}(x)=B^{\mathrm{T}} f_{0}(x)
$$

is called associated to $f_{0}(x)$. Vector field $g(x)$ is Hamiltonian:

$$
g(x)=J \nabla K(x)
$$

with the Hamilton function

$$
K(x)=\sum_{i=0}^{m-1} \alpha_{i} H_{i}(x)
$$

Associated vector fields

This defines an equivalence relation on the set of vector fields $J \nabla H(x)$ with Hamilton functions $H(x)$ satisfying

$$
A\left(\nabla^{2} H\right)=\left(\nabla^{2} H\right) A^{\mathrm{T}} .
$$

Lemma. If vector field $g(x)$ is associated to $f_{0}(x)$ via the matrix B, then the following identities hold true:

$$
\begin{aligned}
g^{\prime}(x) g(x) & =f_{0}^{\prime}(x) f_{0}(x), \\
\left(g^{\prime}(x)\right)^{2} & =\left(f_{0}^{\prime}(x)\right)^{2}
\end{aligned}
$$

As a corollary,

$$
\operatorname{det}\left(I-\epsilon g^{\prime}(x)\right)=\operatorname{det}\left(I-\epsilon f_{0}^{\prime}(x)\right)
$$

(this is the common denominator of $\Phi_{g}(x)$, resp. of $\Phi_{f_{0}}(x)$).

Construction of associated vector fields

A generic $2 m \times 2 m$ skew-Hamiltonian matrix A has m distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{m}$ of algebraic multiplicity 2 :

$$
\operatorname{det}(A-\lambda I)=\left(\lambda-\lambda_{1}\right)^{2} \cdots\left(\lambda-\lambda_{m}\right)^{2},
$$

and of geometric multiplicity 2 (i.e., is diagonalizable). The latter follows from existence of a symplectic similarity transformation

$$
S A S^{-1}=\left(\begin{array}{cc}
W & 0 \\
0 & W^{\mathrm{T}}
\end{array}\right), \quad S^{\mathrm{T}} J S=J
$$

Construction of associated vector fields

For any $P \subset\{1, \ldots, m\}$, define polynomial $B_{P}(\lambda)$ by

$$
B_{P}\left(\lambda_{i}\right)= \begin{cases}1, & i \in P \\ -1, & i \notin P\end{cases}
$$

Then $B_{P}=B_{P}(A)$ is skew-Hamiltonian and satisfies $B_{P}^{2}=I$.
This defines 2^{m} (or, better, 2^{m-1}, if considered up to sign) associated vector fields for any $f_{0}(x)$ from our class.

Main results. I

Theorem 1. Let f_{0} and g be two associated vector fields, via the skew-Hamiltonian matrix B. Then the KHK maps $\Phi_{f_{0}}$ and Φ_{g} commute:

$$
\Phi_{f_{0}} \circ \Phi_{g}=\Phi_{g} \circ \Phi_{f_{0}}
$$

Theorem 2. Let f_{0} and g be two associated vector fields, via the skew-Hamiltonian matrix B. Then the maps $\Phi_{f_{0}}: x \mapsto \widetilde{x}$ and $\Phi_{g}: x \mapsto \widehat{x}$ share two functionally independent conserved quantities

$$
\widetilde{H}_{0}(x, \epsilon)=\frac{1}{6 \epsilon} x^{\mathrm{T}} J^{-1} \widetilde{x}=\frac{1}{6 \epsilon} x^{\mathrm{T}} J^{-1}\left(I-\epsilon f_{0}^{\prime}(x)\right)^{-1} x
$$

and

$$
\widetilde{K}(x, \epsilon)=\frac{1}{6 \epsilon} x^{\mathrm{T}} J^{-1} \widehat{x}=\frac{1}{6 \epsilon} x^{\mathrm{T}} J^{-1}\left(I-\epsilon g^{\prime}(x)\right)^{-1} x
$$

Main results. II

Theorem 3.

The rational functions $\widetilde{H}_{0}(x, \epsilon), \widetilde{K}(x, \epsilon)$ are related by the same differential equation as the cubic polynomials $H_{0}(x), K(x)$:

$$
\nabla \widetilde{K}(x, \epsilon)=B \nabla \widetilde{H}_{0}(x, \epsilon)
$$

As a consequence, they satisfy the same 2nd order differential equations

$$
A\left(\nabla^{2} H\right)=\left(\nabla^{2} H\right) A^{\mathrm{T}}
$$

as the polynomials $H_{0}(x), K(x)$.

Main results. III

Theorem 4. The map $\Phi_{f_{0}}$ is Poisson (symplectic) with respect to the brackets with the Poisson tensor $\Pi(x)$ given by

$$
\begin{aligned}
\Pi(x) & =J-\epsilon^{2}\left(f_{0}^{\prime}(x)\right)^{2} J \\
& =\left(1-\epsilon^{2} q_{0}(x)\right) J-\sum_{i=1}^{m-1} \epsilon^{2} q_{i}(x)\left(A^{T}\right)^{i} J .
\end{aligned}
$$

If vector field $g(x)$ is associated to $f_{0}(x)$ then Φ_{g} is Poisson with respect to the same bracket.

Open problems

- Are our systems, both continuous and discrete time, algebraically completely integrable? In other words, are their invariant manifolds (affine parts of) Abelian varieties? Recall: in the continuous time case, they are intersections of m cubic hypersurfaces in $\mathbb{R}^{2 m}$.
- Is anything similar possible for Hamiltonian systems with non-constant Poisson tensors?

