Periods of meromorphic quadratic differentials and Goldman bracket

Dmitry Korotkin

Concordia University, Montreal

Geometric and Algebraic aspects of integrability, August 05, 2016

References

- D.Korotkin, Periods of meromorphic quadratic differentials and Goldman bracket, to appear
- M.Bertola, D.Korotkin, C.Norton, Symplectic geometry of the moduli space of projective structures in homological coordinates, arXiv:1506.07918
- D.Korotkin, P.Zograf, "Prym class and tau-functions", Contemporary Math. (2013)
- A.Kokotov, D.Korotkin, Tau-functions on spaces of Abelian differentials and higher genus generalization of Ray-Singer formula, J.Diff.Geom., 82, 35-100 (2009)

Main equation

- C_{g} - Riemann surface of genus g.
- "Schrödinger equation" on C_{g} :

$$
\varphi^{\prime \prime}-u \varphi=0
$$

where φ is a ($-1 / 2$)-differential (locally), and $-2 u$ - meromorphic projective connection on C_{g} with n simple poles.

- Parametrization of space of all "potentials":

$$
\varphi^{\prime \prime}+\left(\frac{1}{2} S_{0}+Q\right) \varphi=0
$$

S_{0} - "base" projective connection, Q - meromorphic quadratic differential with n simple poles.

Canonical symplectic structure on $T^{*} \mathcal{M}_{g}$

- Moduli space of pairs $\left(C_{g}, Q\right)$ is $\mathcal{Q}_{g, n}=T^{*} \mathcal{M}_{g, n}$; $\operatorname{dim} \mathcal{Q}_{g, n}=6 g-6+2 n$
- $\left\{q_{i}\right\}_{i=1}^{3 g-3+n}$ - any complex coordinates on $\mathcal{M}_{g, n}$ (say, $3 g-3$ entries of period matrix and $\left.\left(v_{1} / v_{2}\right)\left(y_{k}\right)\right) ;\left\{v_{i}\right\}$ - normalized abelian differentials. $\left\{d q_{i}\right\}_{i=1}^{3 g-3+n}$ - basis in cotangent space; $\left\{p_{i}\right\}_{i=1}^{3 g-3+n}$ - coordinates of cotangent vector in this basis.
- Symplectic structure and symplectic potential:

$$
\omega_{\text {can }}=\sum_{i=1}^{3 g-3+n} d p_{i} \wedge d q_{i} \quad \theta_{\text {can }}=\sum_{i=1}^{3 g-3+n} p_{i} d q_{i}
$$

Homological Darboux coordinates

- Let all zeros of Q be simple: $\left\{x_{i}\right\}_{i=1}^{4 g-4+n}$. Canonical cover (spectral, Hitchin, Seiberg-Witten...) \widehat{C} :

$$
v^{2}=Q
$$

in $T^{*} C_{g} ; 4 g-4+2 n$ branch points at $\left\{x_{i}, y_{i}\right\}$; genus $4 g-3+n$; involution $\mu: \widehat{C} \rightarrow \widehat{C}$

- Decomposition of $H_{1}(\widehat{C}, \mathbb{Z})$ into even and odd parts:

$$
H_{1}(\widehat{C}, \mathbb{Z})=H_{-} \oplus H_{+}
$$

where $\operatorname{dim} H_{+}=2 g$, $\operatorname{dim} H_{-}=6 g-6+2 n$. Generators of $H_{-}:\left\{a_{i}^{-}, b_{i}^{-}\right\}_{i=1}^{3 g-3+n}$; intersection $a_{i}^{-} \circ b_{j}^{-}=\delta_{i j}$.

- Homological coordinates $A_{i}=\int_{a_{i}^{-}} v, B_{i}=\int_{b_{i}^{-}} v$.

Canonical cover

Figure: Canonical basis of cycles on the canonical cover \widehat{C}

Homological and canonical symplectic structures

- Homological symplectic structure on $T^{*} \mathcal{M}_{g}$:

$$
\omega_{\text {hom }}=\sum_{i=1}^{3 g-3+n} d A_{i} \wedge d B_{i}
$$

- Theorem 1.

$$
\omega_{\text {hom }}=\omega_{\text {can }}
$$

Thus $\left(A_{i}, B_{i}\right)$ are Darboux coordinates for $\omega_{\text {can }}$ on the main stratum of $T^{*} \mathcal{M}_{g}$ (all zeros of Q are simple).

Symplectic structure on the space of projective connections

- Space \mathbb{S}_{g} : pairs $\left(C_{g}, S\right), S$ holomorphic projective connection on C_{g}. Affine bundle over \mathcal{M}_{g}.
- Given the "base" projective connection S_{0} on C_{g} which holomorphically depends on moduli of C_{g}, write any S as $S=S_{0}+2 Q$, for some holomorphic quadratic diff. Q.
- The map $F^{S_{0}}: \mathcal{Q}_{g} \rightarrow \mathbb{S}_{g}$ is used to induce symplectic structure on \mathbb{S}_{g} from $\omega_{\text {can }}$.
- Equivalence: $S_{0} \equiv S_{1}$ if corresponding symplectic structures on \mathbb{S}_{g} coincide. Generating function G_{01} :

$$
\delta_{\mu} G=\int_{C_{g}} \mu\left(S_{1}-S_{0}\right)
$$

Equivalent projective connections

- Schottky projective connection $S_{S c h}(\cdot)=\{w, \cdot\}$, where w is the Schottky uniformization coordinate; $\{\cdot, \cdot\}$ - Schwarzian derivative.
- main example: Bergman projective connection S_{B}. Canonical bimeromorphic differential $B(x, y)$ on \mathbb{C}_{g} : $\oint_{a_{\alpha}} B(\cdot, y)=0$,
$B(x, y)=\left(\frac{1}{(\xi(x)-\xi(y))^{2}}+\frac{1}{6} S_{B}(\xi(x))+\ldots\right) d \xi(x) d \xi(y)$
B depends on Torelli marking (choice of canonical basis in homologies on \mathcal{C})
- Generating function from $S_{S c h}$ to S_{B} : Zograf's F-function $F=\mathcal{Z}_{B}^{\prime}(1) ; \mathcal{Z}_{B^{-}}$Bowen's zeta-function of Schottky group.
- Generating function corresponding to change of Torelli marking defining S_{B} is given by $\operatorname{det}(C \Omega+D)$ (cocycle of determinant of Hodge vector bundle).

Main tool: Variational formulas

For any $s_{i} \in H_{-}$define $s_{i}^{*} \in H_{-}\left(s_{i} \circ s_{j}^{*}=\delta_{i j}\right) ; \mathcal{P}_{i}=\int_{s_{i}} v$. Then

$$
\frac{\partial B(x, y)}{\partial \mathcal{P}_{i}}=\frac{1}{2} \int_{t \in s_{i}^{*}} \frac{B(x, t)(B(t, y)}{v(t)}
$$

where $z(x)$ and $z(y)$ are kept constant.

$$
\begin{gathered}
\frac{\partial v_{j}(x)}{\partial \mathcal{P}_{i}}=\frac{1}{2} \int_{t \in s_{i}^{*}} \frac{v_{j}(t)(B(t, x)}{v(t)} \\
\frac{\partial \Omega_{j k}}{\partial \mathcal{P}_{i}}=\frac{1}{2} \int_{t \in s_{i}^{*}} \frac{v_{j} v_{k}}{v}
\end{gathered}
$$

Poisson bracket for potential $u(z)$

- Let $S_{0}=S_{B} ; \psi=\phi \sqrt{v} ; z(x)=\int_{x_{0}}^{x} v$ - "flat" coordinate on C_{g} and \widehat{C}.
- Main equation: $\psi_{z z}-u(z) \psi=0$ where

$$
u(z)=-1-\frac{1}{2} \frac{S_{B}-S_{V}}{Q}
$$

and $S_{v}(\cdot)=\left\{\int^{x} v, \cdot\right\}$

- Invariant matrix form (on \widehat{C}): $\quad d \Psi=\left(\begin{array}{cc}0 & v \\ u v & 0\end{array}\right) \psi$
- Define $h(x, y)=\frac{B^{2}(x, y)}{Q(x) Q(y)}$

Poisson bracket for potential $u(z)$ (continued)

$$
\frac{4 \pi i}{3}\{u(z), u(\zeta)\}=\mathcal{L}_{z} h^{(\zeta)}(z)-\mathcal{L}_{\zeta} h^{(z)}(\zeta)
$$

where

$$
\mathcal{L}_{z}=\frac{1}{2} \partial_{z}^{3}-2 u(z) \partial_{z}-u_{z}(z)
$$

is known as "Lenard" operator in KdV theory;

$$
h^{(y)}(x)=\int_{x_{1}}^{x} h(y, \cdot) v(\cdot)
$$

The first example of holomorphic Poisson bracket on a Riemann surface (get as a Dirac bracket from Atiyah-Bott symplectic structure??).

Monodromy representation and Goldman bracket

- Fundamental group: $\pi_{1}\left(C_{g} \backslash\left\{y_{i}\right\}_{i=1}^{n}, x_{0}\right)$ with generators $\left(\gamma_{i}, \alpha_{j}, \beta_{j}\right)$ and relation $\prod_{j=1}^{g} \alpha_{j} \beta_{j} \alpha_{j}^{-1} \beta_{j}^{-1} \prod_{i=1}^{n} \gamma_{i}=i d$
- Monodromy matrices: $M_{\alpha_{i}}, M_{\beta_{i}}, M_{y_{i}}$ with relation

$$
\prod_{i=1}^{n} M_{y_{i}} \prod_{j=1}^{g} M_{\beta_{j}}^{-1} M_{\alpha_{j}}^{-1} M_{\beta_{j}} M_{\alpha_{j}}=l
$$

- Goldman's bracket on character variety $V_{g, n}$:

$$
\left\{\operatorname{tr} M_{\gamma}, \operatorname{tr} M_{\tilde{\gamma}}\right\}=\frac{1}{2} \sum_{p \in \gamma \cap \tilde{\gamma}}\left(\operatorname{tr} M_{\gamma_{p} \tilde{\gamma}}-\operatorname{tr} M_{\gamma_{p} \tilde{\gamma}^{-1}}\right)
$$

Relation to results of S.Kawai, Math Ann (1996)

- Kawai: "canonical symplectic structure on $T^{*} \mathcal{M}_{g}$ implies Goldman bracket if $S_{0}=S_{\text {Bers }}$ ".
- Together with our results: S_{B} and $S_{B e r s}$ are in the same equivalence class; implies existence of generating function.
- Conjecture:

$$
G=-6 \pi i \log \frac{\mathcal{Z}^{\prime}\left[\Gamma_{C_{0}, \eta}\right](1)}{\operatorname{det}\left(\Omega-\bar{\Omega}_{0}\right)}
$$

where \mathcal{Z} is the Selberg zeta-function
$\mathcal{Z}(s)=\prod_{\gamma} \prod_{m=0}^{\infty}\left(1-q_{\gamma}^{s+m}\right)$ corresponding to quasi-fuchsian group $\Gamma_{C_{0}, \eta} ; \Omega$ and Ω_{0} are period matrices of C_{0} and C.

Tau-function of Scrödinger equation

- Motivation: Jimbo-Miwa tau-function for Schlesinger system: $\frac{d \Psi}{d x}=\sum_{i=1}^{N} \frac{A_{i}}{x-x_{i}} \Psi$:

$$
\frac{\partial \log \tau_{J M}}{\partial x_{i}}=\left.\frac{1}{2} \operatorname{res}\right|_{x_{i}} \frac{\operatorname{tr}\left(d \Psi \Psi^{-1}\right)^{2}}{d x}
$$

- A straightforward analog of this definition in the case of Schrödinger equation (no isomonodromy!)

$$
\frac{\partial \log \tau}{\partial \mathcal{P}_{s_{i}}}:=\frac{1}{4 \pi i} \int_{s_{i}^{*}}\left(\frac{\operatorname{tr}\left(d \Psi \Psi^{-1}\right)^{2}}{v}+2 v\right)
$$

where $\mathcal{P}_{s_{i}}=\int_{s_{i}} v$; this gives rise to Bergman tau-function

$$
\begin{gathered}
\frac{\partial \log \tau}{\partial \mathcal{P}_{s_{i}}}=-\frac{1}{4 \pi i} \int_{S_{i}^{*}} \frac{S_{B}-S_{V}}{v} \\
\tau^{\sigma}=\operatorname{det}^{6}(C \Omega+D) \tau \quad \tau(\epsilon Q)=\epsilon^{1 / 6(5 g-5+n)} \tau(Q)
\end{gathered}
$$

Open: "Yang-Yang" function

- $\left(\varphi_{i}, l_{i}\right)$ - complexified Fenchel-Nielsen Darboux coordinates on character variety $V_{g, n}$.

$$
\begin{gathered}
\omega_{\text {can }}=\sum_{i} d l_{i} \wedge d \varphi_{i}=\sum_{i} d p_{i} \wedge d q_{i} \\
d G_{Y Y}=\sum_{i} l_{i} d \varphi_{i}-\sum_{i} p_{i} d q_{i}
\end{gathered}
$$

(Nekrasov-Rosly-Shatashvili); $G_{Y Y}$ - "Yang-Yang" function (depends on pants decomposition on the Character variety side; transforms with dilogarithms; depends also on Torelli marking; transforms as a section of Hodge line bundle).

Simplest example: genus 0 with 4 simple poles

Poles: $0,1, t, \infty ; B(x, y)=\frac{d x d t}{(x-t)^{2}}, S_{B}=0$;

$$
Q=\frac{\mu}{x(x-1)(x-t)}(d x)^{2}
$$

Poisson structure:

$$
\{\mu, t\}=\frac{t(1-t)}{4 \pi i}
$$

Equation (Heun):

$$
\varphi^{\prime \prime}+\frac{\mu}{x(x-1)(x-t)} \varphi=0
$$

Homological coordinates:

$$
\sqrt{\mu} \int_{a, b} \frac{d x}{\sqrt{x(x-1)(x-t)}}
$$

