Integrability obstructions of certain homogeneous Hamiltonian systems in 2D curved spaces

Maria Przybylska ${ }^{(a)}$, Andrzej J. Maciejewski ${ }^{(b)}$, Wojciech Szumiński ${ }^{(a)}$
(a) Institute of Physics, University of Zielona Góra
(b) Institute of Astronomy, University of Zielona Góra

LMS-EPSRC Durham Symposium "Geometric and Algebraic Aspects of Integrability", 25 July - 4 August 2016

Problem

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathrm{x}=\mathbf{v}(\mathbf{x}, \mathbf{a}), \quad \mathbf{x} \in \mathbb{R}^{n}, \quad t \in \mathbb{R} .
$$

a - parameters e.g. masses, quantities characterising forces

Questions

■ how to find general solution?
■ how to prove that system is integrable/non-integrable?

- how to find values of parameters for that system is solvable/integrable

Integrability of original and variational equations

In a system

$$
\begin{equation*}
\dot{\mathbf{x}}=\mathbf{v}(\mathbf{x}), \quad \mathbf{x}=\left(x_{1}, \ldots x_{n}\right)^{T} \tag{DS}
\end{equation*}
$$

with known non-stationary particular solution $\boldsymbol{\varphi}(t)$ the substitution $\mathbf{x}=\boldsymbol{\varphi}(t)+\mathbf{y}$ is made

$$
\begin{aligned}
& \text { Variational equations (VE) } \\
& \frac{\mathrm{d}}{\mathrm{~d} t} \mathbf{y}=A(t) \mathbf{y}, \quad A(t)=\frac{\partial \mathbf{v}}{\partial \mathbf{x}}(\boldsymbol{\varphi}(t))
\end{aligned}
$$

Implication

If the system (DS) possesses k functionally independent meromorphic (holomorphic) first integrals F_{1}, \ldots, F_{k}, then variational equations (VE) have k functionally independent rational (polynomial) first integrals.

Linear equations and Galois theory

- For a linear system of dimension n (or a scalar equation of degree n)

$$
y^{(n)}+f_{1} y^{(n-1)}+\cdots+f_{n-1} y^{\prime}+f_{n} y=0, \quad f_{i} \in \mathbb{F}
$$

the problem of existence of a general solution obtained by a combination of quadratures, exponential of quadratures and algebraic functions was considered by Liouville, Picard, Vessiot, Kolchin, Ritt ,...

- Result of solvability conditions formulated by means of differential Galois group.
■ In general solutions do not belong to the differential field of coefficients \mathbb{F}
- The smallest differential field containing all solutions is called the Picard-Vessiot extension \mathbb{L}

Linear equations and Galois theory

The differential Galois group \mathcal{G} of the differential equation is the group of all automorphisms of the Picard-Vessiot extension which leaves field of coefficients \mathbb{F} fixed and which commutes with the derivation.

For any solution y and any $\phi \in \mathcal{G}_{\partial}(\mathbb{L} / \mathbb{F})$ function ϕy is again the solution because

$$
\begin{aligned}
& \phi\left(y^{(n)}+f_{1} y^{(n-1)}+\cdots+f_{n-1} y^{\prime}+f_{n} y\right)=\phi(0), \quad f_{i} \in \mathbb{F}, \\
& \frac{\mathrm{~d}^{n}}{\mathrm{~d} z^{n}} \phi(y)+f_{1} \frac{\mathrm{~d}^{n-1}}{\mathrm{~d} z^{n-1}} \phi(y)+f_{n-1} \frac{\mathrm{~d}}{\mathrm{~d} z} \phi(y)+f_{n} \phi(y)=0 .
\end{aligned}
$$

If \mathbf{Y} is a fundamental matrix of $\dot{\mathbf{y}}=A(z) \mathbf{y}$, then $\phi(\mathbf{Y})=\mathbf{Y G}$, where
$\mathbf{G} \in \mathcal{G}_{\boldsymbol{\mathcal { O }}}(\mathbb{L} / \mathbb{F})$ is a constant matrix
Question: Is it possible to connect the solvability result for linear system with the integrability of our non-linear system?

Correspondence between first integrals of the system and invariants of DGG

Theorem

If system has k functionally independent first integrals which are meromorphic in a connected neighbourhood of a non-equilibrium solution $\boldsymbol{\varphi}(t)$, then the differential Galois group \mathcal{G} of the variational equations along $\boldsymbol{\varphi}(t)$ has k functionally independent rational invariants i.e. such function $f \in \mathbb{C}(\mathbf{y})$ that

$$
\phi(f)=f, \quad \text { for all } \quad \phi \in \mathcal{G}
$$

Fact

The differential Galois group \mathcal{G} of a system of linear equations is a linear algebraic group, so in particular it is also a Lie group.

Differential Galois integrability obstruction

- Hamiltonian system

$$
\dot{z}=\mathbb{J} H^{\prime}(z), \quad \mathbb{J}=\left(\begin{array}{cc}
0 & \mathbb{I}_{n} \\
-\mathbb{I}_{n} & 0
\end{array}\right), \quad z=[q, p]^{T}
$$

$H(z)$ - a holomorphic function

- Let $t \rightarrow \boldsymbol{\phi}(t) \in \mathbb{C}^{2 n}$ be a non-equilibrium solution of the system.
- Variational equations along $\boldsymbol{\phi}(t)$ have the form

$$
\dot{Y}=\mathbb{J} H^{\prime \prime}(\varphi(t)) Y
$$

■ We can attach to variational equations the differential Galois group \mathcal{G} that is a subgroup of $\operatorname{Sp}(2 n, \mathbb{C})$..

Theorem (Morales-Ruiz and Ramis)

Assume that a Hamiltonian system is meromorphically integrable in the Liouville sense in a neigbourhood of a phase curve $\boldsymbol{\Gamma}$. Then the identity component of the differential Galois group of NVEs associated with Γ is Abelian

Application of differential Galois obstructions. Example

$$
V=\frac{1}{2}\left(p_{1}^{2}+p_{2}^{2}+p_{3}^{2}\right)+\frac{1}{2}\left(\omega^{2} x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)-\frac{\mu}{\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}}
$$

restriction of the systems to invariant manifold given by $x_{3}=p_{3}=0$

$$
V=\frac{1}{2}\left(p_{1}^{2}+p_{2}^{2}\right)+\frac{1}{2}\left(\omega^{2} x_{1}^{2}+x_{2}^{2}\right)-\frac{\mu}{\sqrt{x_{1}^{2}+x_{2}^{2}}}
$$

Hamilton equations

$$
\begin{aligned}
& \dot{x}_{1}=p_{1}, \quad \dot{p}_{1}=-\omega^{2} x_{1}-\frac{\mu x_{1}}{\left(x_{1}^{2}+x_{2}^{2}\right)^{3 / 2}}, \\
& \dot{x}_{2}=p_{2}, \quad \dot{p}_{2}=-x_{2}-\frac{\mu x_{2}}{\left(x_{1}^{2}+x_{2}^{2}\right)^{3 / 2}}
\end{aligned}
$$

invariant manifolds

$$
\mathcal{N}_{i}=\left\{\left(x_{1}, x_{2}, p_{1}, p_{2}\right) \in \mathbb{C}^{4} \mid x_{i}=p_{i}=0\right\}
$$

for $i=1,2$

Particular solutions and variational equations

particular solution I

$$
\dot{x}_{1}=p_{1}, \quad \dot{p}_{2}=-\omega^{2} x_{1}-\frac{\mu}{x_{1}^{2}}
$$

Variational equations

$$
\left[\begin{array}{c}
\dot{X}_{1} \\
\dot{X}_{2} \\
\dot{P}_{1} \\
\dot{P}_{2}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-\frac{2 \mu}{x_{1}^{3}}-\omega^{2} & 0 & 0 & 0 \\
0 & -1-\frac{\mu}{x_{1}^{3}} & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\dot{X}_{1} \\
\dot{X}_{2} \\
\dot{P}_{1} \\
\dot{P}_{2}
\end{array}\right]
$$

rationalization of NVE: $z=x_{1}(t)$

$$
\begin{aligned}
& X_{2}^{\prime \prime}+p_{2} X_{2}^{\prime}+q_{2} X_{2}=0 \\
& p_{2}=\frac{\mu+z^{3} \omega^{2}}{z\left(-2 e z-2 \mu+z^{3} \omega^{2}\right)} \\
& q_{2}=\frac{\mu+z^{3}}{z^{2}\left(2 e z+2 \mu-z^{3} \omega^{2}\right)}
\end{aligned}
$$

particular solution II

$$
\dot{x}_{2}=p_{2}, \quad \dot{p}_{2}=-x_{2}-\frac{\mu}{x_{2}^{2}}
$$

Variational equations
$\left[\begin{array}{l}\dot{X}_{1} \\ \dot{X}_{2} \\ \dot{P}_{1} \\ \dot{P}_{2}\end{array}\right]=\left[\begin{array}{cccc}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -\mu x_{2}^{3}-\omega^{2} & 0 & 0 & 0 \\ 0 & -1+\frac{2 \mu}{x_{2}^{3}} & 0 & 0\end{array}\right]\left[\begin{array}{c}\dot{X}_{1} \\ \dot{X}_{2} \\ \dot{P}_{1} \\ \dot{P}_{2}\end{array}\right]$
rationalization of NVE: $z=x_{2}(t)$

$$
\begin{aligned}
& X_{1}^{\prime \prime}+p_{1} X_{2}^{\prime}+q_{1} X_{1}=0 \\
& p_{1}=\frac{\mu+z^{3}}{z\left(-2 e z-2 \mu+z^{3}\right)} \\
& q_{1}=\frac{\mu+z^{3} \omega^{2}}{z^{2}\left(2 e z+2 \mu-z^{3}\right)}
\end{aligned}
$$

Variational equations

By a change of the variable

$$
X_{i}=w \exp \left[-\frac{1}{2} \int p_{i}(s) \mathrm{d} s\right]
$$

we obtain the standard reduced forms

$$
w^{\prime \prime}=r_{i}(z) w, \quad r_{i}(z)=\frac{1}{2} p_{i}^{\prime}(z)+\frac{1}{4} p_{i}(z)^{2}-q_{i}(z)
$$

Coefficients

$$
\begin{aligned}
& r_{1}=-\frac{3 \mu^{2}+z^{6} \omega^{2}\left(-4+\omega^{2}\right)+4 e z^{4}\left(2+\omega^{2}\right)+2 z^{3} \mu\left(4+5 \omega^{2}\right)}{4 z^{2}\left(2 e z+2 \mu-z^{3} \omega^{2}\right)^{2}} \\
& r_{2}=\frac{-3 \mu^{2}-4 e z^{4}\left(1+2 \omega^{2}\right)+z^{6}\left(-1+4 \omega^{2}\right)-2 z^{3} \mu\left(5+4 \omega^{2}\right)}{4 z^{2}\left(-2 e z+z^{3}-2 \mu\right)^{2}}
\end{aligned}
$$

Differences of exponents at $z_{1}=0, z_{2}=s_{1}, z_{3}=s_{2}, z_{4}=s_{3}$ and $z_{5}=\infty$: for particular solution I: $\left\{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{2}{\omega}\right\}$,
for particular solution II: $\left\{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 2 \omega\right\}$

Kovacic algorithm

Let \mathcal{G} be the differential Galois group of reduced equation. Then one of four cases can occur.

Case I \mathcal{G} is conjugate to a subgroup of the triangular group

$$
\mathcal{T}=\left\{\left.\left[\begin{array}{cc}
a & b \\
0 & a^{-1}
\end{array}\right] \right\rvert\, a \in \mathbb{C}^{*}, b \in \mathbb{C}\right\} ;
$$

in this case equation has an exponential solution of the form $y=P \exp \int \omega$, where $P \in \mathbb{C}[z]$ and $\omega \in \mathbb{C}(z)$,
Case II \mathcal{G} is conjugate to a subgroup of

$$
\mathcal{D}^{+}=\left\{\left.\left[\begin{array}{cc}
c & 0 \\
0 & c^{-1}
\end{array}\right] \right\rvert\, c \in \mathbb{C}^{*}\right\} \cup\left\{\left.\left[\begin{array}{cc}
0 & c \\
-c^{-1} & 0
\end{array}\right] \right\rvert\, c \in \mathbb{C}^{*}\right\} ;
$$

in this case equation has a solution of the form $y=\exp \int \omega$, where ω is algebraic over $\mathbb{C}(z)$ of degree 2 ,
Case III \mathcal{G} is primitive and finite; in this case all solutions of equation are algebraic, thus $y=\exp \int \omega$, where ω belongs to an algebraic extension of $\mathbb{C}(z)$ of degree $n=4,6$ or 12 .
Case IV $\mathcal{G}=\mathrm{SL}(2, \mathbb{C})$ and equation has no Liouvillian solution.

Necessary conditions for cases I, II and III for our example

Solution I

$$
\begin{aligned}
& \text { C 1. } \omega=\frac{2}{m}, m \in \mathbb{N} \text { and } \omega \leq 2 \\
& \text { C 2. } \omega=\frac{4}{m}, m \geq 4 \text { and } \omega \leq 1 \\
& \text { C 3. } \omega=\frac{2 q}{m}, q=1, \ldots, 6, m \geq 6 \text { and } \omega \leq 2
\end{aligned}
$$

Solution II

$$
\begin{aligned}
& \text { C } 1 . \frac{1}{\omega}=\frac{2}{m}, m \in \mathbb{N} \\
& \text { C 2. } \frac{1}{\omega}=\frac{4}{m}, m \geq 4 \\
& \text { C 3. } \frac{1}{\omega}=\frac{2 q}{m}, q=1, \ldots, 6, m \geq 6
\end{aligned}
$$

Finite number of choices for ω
$\omega \in\left\{2, \frac{3}{2}, \frac{5}{4}, 1, \frac{1}{2}, \ldots\right\}$

Integrability of homogeneous Hamiltonian equations

Natural Hamiltonian in flat space

$$
H=\frac{1}{2} \sum_{i=1}^{n} p_{i}^{2}+V(\mathbf{q}), \quad(\mathbf{q}, \mathbf{p}) \in \mathbb{C}^{2 n}
$$

with V - homogeneous of degree $k \in \mathbb{Z}$

$$
V\left(\lambda q_{1}, \ldots, \lambda q_{n}\right)=\lambda^{k} V\left(q_{1}, \ldots, q_{n}\right)
$$

- how to check integrability of such class of potentials in a wide class of functions (without restrictions on degree of a first integral with respect to momenta)?
- what is a counterpart of this class in curved spaces?

Particular solutions and Variational equations

Definition

Darboux point $\mathbf{d} \in \mathbb{C}^{n}$ is a non-zero solution of

$$
V^{\prime}(\mathbf{d})=\mathbf{d}
$$

Particular solution

$$
\begin{gathered}
\mathbf{q}(t)=\varphi(t) \mathbf{d}, \mathbf{p}(t)=\dot{\varphi}(t) \mathbf{d} \quad \text { provided } \quad \ddot{\varphi}=-\varphi^{k-1} . \\
\ddot{\mathbf{x}}=-\varphi(t)^{k-2} V^{\prime \prime}(\mathbf{d}) \mathbf{x},
\end{gathered}
$$

where $V^{\prime \prime}(\mathbf{d})$ is the Hessian of V calculated at \mathbf{d}. If $V^{\prime \prime}(\mathbf{d})$ is diagonalisable

$$
\ddot{\eta}_{i}=\lambda_{i} \varphi(t)^{k-2} \eta_{i}, \quad i=1, \ldots, n
$$

where λ_{i} for $i=1, \ldots, n$ are eigenvalues of $V^{\prime \prime}$.
By homogeneity of $V, \lambda_{n}=k-1$.

Transformation into hypergeometric equation

The Yoshida transformation

$$
t \longrightarrow z:=\frac{1}{\varepsilon} \varphi(t)^{k} .
$$

Variational equations after transformations:

$$
z(1-z) \eta_{i}^{\prime \prime}+\left(\frac{k-1}{k}-\frac{3 k-2}{2 k} z\right) \eta_{i}^{\prime}+\frac{\lambda_{i}}{2 k} \eta_{i}=0
$$

where $i=1, \ldots, n$, have the form of a direct product of hypergeometric differential equation for which the differences of exponents at $z=0, z=1$ and $z=\infty$ are

$$
\rho=\frac{1}{k}, \quad \sigma=\frac{1}{2}, \quad \tau=\frac{1}{2 k} \sqrt{(k-1)^{2}+8 k \lambda_{i}} .
$$

Solvability of Riemann P equation. Kimura theorem

Theorem

The identity component of the differential Galois group of the Riemann P equation is solvable iff
A. at least one of the four numbers $\rho+\sigma+\tau,-\rho+\sigma+\tau$, $\rho-\sigma+\tau, \rho+\sigma-\tau$ is an odd integer, or
B. the numbers ρ or $-\rho$ and σ or σ and τ or $-\tau$ belong (in an arbitrary order) to some of appropriate fifteen families forming the so-called Schwarz's table fifteen families

1	$1 / 2+I$	$1 / 2+s$	arbitrary complex number	
2	$1 / 2+I$	$1 / 3+s$	$1 / 3+q$	
3	$2 / 3+I$	$1 / 3+s$	$1 / 3+q$	$I+s+q$ even
4	$1 / 2+I$	$1 / 3+s$	$1 / 4+q$	
5	$2 / 3+I$	$1 / 4+s$	$1 / 4+q$	$I+s+q$ even
6	$1 / 2+I$	$1 / 3+s$	$1 / 5+q$	
7	$2 / 5+I$	$1 / 3+s$	$1 / 3+q$	$I+s+q$ even
8	$2 / 3+I$	$1 / 5+s$	$1 / 5+q$	$I+s+q$ even
9	$1 / 2+I$	$2 / 5+s$	$1 / 5+q$	
10	$3 / 5+I$	$1 / 3+s$	$1 / 5+q$	$I+s+q$ even
11	$2 / 5+I$	$2 / 5+s$	$2 / 5+q$	$I+s+q$ even
12	$2 / 3+I$	$1 / 3+s$	$1 / 5+q$	$I+s+q$ even
13	$4 / 5+I$	$1 / 5+s$	$1 / 5+q$	$I+s+q$ even
14	$1 / 2+I$	$2 / 5+s$	$1 / 3+q$	
15	$3 / 5+I$	$2 / 5+s$	$1 / 3+q$	$I+s+q$ even

where $I, s, q \in \mathbb{Z}$.

Morales-Ramis Theorem

- find all non-zero solutions of

$$
V^{\prime}(\mathbf{d})=\mathbf{d}
$$

- calculate eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ of $V^{\prime \prime}(\mathbf{d})$

Theorem

If the Hamiltonian system with homogeneous potential is meromorphically integrable, then each $\left(k, \lambda_{i}\right)$ belong to the following list:

Morales-Ramis table

$$
\begin{array}{cccc}
\text { case } & k & \lambda \\
\hline 1 . & \pm 2 & \lambda \\
\text { 2. } & k & p+\frac{k}{2} p(p-1) \\
\text { 3. } & k & \frac{1}{2}\left(\frac{k-1}{k}+p(p+1) k\right) \\
\text { 4. } & 3 & -\frac{1}{24}+\frac{1}{6}(1+3 p)^{2}, & -\frac{1}{24}+\frac{3}{32}(1+4 p)^{2} \\
& & -\frac{1}{24}+\frac{3}{50}(1+5 p)^{2}, & -\frac{1}{24}+\frac{3}{50}(2+5 p)^{2} \\
\text { 5. } & 4 & -\frac{1}{8}+\frac{2}{9}(1+3 p)^{2} &
\end{array}
$$

Morales-Ramis table

case	k	λ	
6.	5	$-\frac{9}{40}+\frac{5}{18}(1+3 p)^{2}$,	$-\frac{9}{40}+\frac{2}{5}(1+5 p)^{2}$
7.	-3	$\frac{25}{24}-\frac{1}{6}(1+3 p)^{2}$,	$\frac{25}{24}-\frac{3}{32}(1+4 p)^{2}$
		$\frac{25}{24}-\frac{3}{50}(1+5 p)^{2}$,	$\frac{25}{24}-\frac{6}{25}(1+5 p)^{2}$
	-4	$\frac{9}{8}-\frac{2}{9}(1+3 p)^{2}$	
8.	-4		
9.	-5	$\frac{49}{40}-\frac{5}{18}(1+3 p)^{2}$,	$\frac{49}{40}-\frac{2}{5}(1+5 p)^{2}$

where p is an integer and λ an arbitrary complex number.
Morales Ruiz, J. J., Differential Galois theory and non-integrability of Hamiltonian systems, volume 179 of Progress in Mathematics, Birkhäuser Verlag, Basel, 1999.

Relations between eigenvalues $\lambda_{1}, \ldots, \lambda_{n-1}$

$\lambda_{i}(\mathbf{d}):=\Lambda_{i}(\mathbf{d})+1$, are the non-trivial eigenvalues of $V^{\prime \prime}(\mathbf{d})$.
τ_{i} is the elementary symmetric polynomial of degree i in $(n-1)$ variables

Theorem

For a generic homogeneous $V \in \mathbb{C}[\mathbf{q}]$ of degree $k>2$ we have

$$
\sum_{[\mathbf{d}] \in \mathcal{D}^{\star}(V)} \frac{\tau_{1}(\boldsymbol{\Lambda}(\mathbf{d}))^{r}}{\tau_{n-1}(\boldsymbol{\Lambda}(\mathbf{d}))}=(-1)^{n}(n+k-2)^{r}, \quad 0 \leq r \leq n-1,
$$

or, alternatively

$$
\sum_{[\mathbf{d}] \in \mathcal{D}^{\star}(V)} \frac{\tau_{r}(\boldsymbol{\Lambda}(\mathbf{d}))}{\tau_{n-1}(\Lambda(\mathbf{d}))}=(-1)^{n-r-1} \sum_{i=0}^{r}\binom{n-r-1}{r-i}(k-1)^{i}
$$

Classification program

- relations give only finite choices of $\left(\lambda_{1}, \ldots, \lambda_{n-1}, \lambda_{n}=k-1\right)$, from these $\lambda \mathrm{s}$ we reconstruct potentials
- no new apart already known integrable potentials for $n=2$ and $2<k \leq 6$
- for $n=k=3$ it was found 10 integrable potentials e.g.

$$
V_{10}=\frac{4 \sqrt{2} q_{1}^{3}}{3}+\frac{5 q_{1} q_{2}^{2}}{2 \sqrt{2}}+q_{2}^{2} q_{3}+\frac{1}{3} q_{3}^{3}
$$

with additional first integrals of degree 4 and 6 in momenta.
目 Maciejewski, A. J. and M. Przybylska, (2004): All meromorphically integrable 2D Hamiltonian systems with homogeneous potentials of degree 3, Phys. Lett. A 327(5-6):461-473.

- Maciejewski, A. J. and M. Przybylska, (2005): Darboux points and integrability of Hamiltonian systems with homogeneous polynomial potential, J. Math. Phys. 46(6):062901, 33 pages.
- Przybylska M., (2009): Darboux points and integrability of homogenous Hamiltonian systems with three and more degrees of freedom, Regul. Chaotic Dyn.14(2):263-311 and Regul. Chaotic Dyn.14(3):349-388.

What is analogue of homogeneous systems in curved spaces?

no obvious answer
Nakagawa and Yoshida

$$
H=T(\mathbf{p})+V(\mathbf{q}) .
$$

where T and V are homogeneous functions of integer degrees.
To find a straight line particular solution one must solve overdetermined system of nonlinear equations

$$
T^{\prime}(\mathbf{c})=\mathbf{c}, \quad V^{\prime}(\mathbf{c})=\mathbf{c}
$$

Our first proposition

$$
H=T+V, \quad T=\frac{1}{2} r^{m-k}\left(p_{r}^{2}+\frac{p_{\varphi}^{2}}{r^{2}}\right), \quad V=r^{m} U(\varphi)
$$

where m and k are integers, and $k \neq 0$.

Main integrability theorem. Auxiliary sets

$$
\begin{aligned}
& \mathcal{J}_{0}(k, m):=\left\{\left.\frac{1}{k}(m p+1)(2 m p+k) \right\rvert\, p \in \mathbb{Z}\right\}, \\
& \mathcal{J}_{1}(k, m):=\left\{\left.\frac{1}{2 k}(m p-2)(m p-k) \right\rvert\, p=2 r+1, r \in \mathbb{Z}\right\}, \\
& \mathcal{J}_{2}(k, m):=\left\{\left.\frac{1}{8 k}\left[4 m^{2}\left(p+\frac{1}{2}\right)^{2}-(k-2)^{2}\right] \right\rvert\, p \in \mathbb{Z}\right\}, \\
& \mathcal{J}_{3}(k, m):=\left\{\left.\frac{1}{8 k}\left[4 m^{2}\left(p+\frac{1}{3}\right)^{2}-(k-2)^{2}\right] \right\rvert\, p \in \mathbb{Z}\right\}, \\
& \mathcal{J}_{4}(k, m):=\left\{\left.\frac{1}{8 k}\left[4 m^{2}\left(p+\frac{1}{4}\right)^{2}-(k-2)^{2}\right] \right\rvert\, p \in \mathbb{Z}\right\}, \\
& \mathcal{J}_{5}(k, m):=\left\{\left.\frac{1}{8 k}\left[4 m^{2}\left(p+\frac{1}{5}\right)^{2}-(k-2)^{2}\right] \right\rvert\, p \in \mathbb{Z}\right\}, \\
& \mathcal{J}_{6}(k, m):=\left\{\left.\frac{1}{8 k}\left[4 m^{2}\left(p+\frac{2}{5}\right)^{2}-(k-2)^{2}\right] \right\rvert\, p \in \mathbb{Z}\right\}, \\
& \mathcal{J}_{\mathrm{a}}(k, m):=\mathcal{J}_{0}(k, m) \cup \mathcal{J}_{1}(k, m) \cup \mathcal{J}_{2}(k, m) .
\end{aligned}
$$

Main integrability theorem. Main theorem

Theorem

Assume that $U(\varphi)$ is a complex meromorphic function and there exists $\varphi_{0} \in \mathbb{C}$ such that $U^{\prime}\left(\varphi_{0}\right)=0$ and $U\left(\varphi_{0}\right) \neq 0$. If the Hamiltonian system defined by Hamiltonian

$$
H=T+V, \quad T=\frac{1}{2} r^{m-k}\left(p_{r}^{2}+\frac{p_{\varphi}^{2}}{r^{2}}\right), \quad V=r^{m} U(\varphi),
$$

is integrable in the Liouville sense, then number

$$
\lambda:=1+\frac{U^{\prime \prime}\left(\varphi_{0}\right)}{k U\left(\varphi_{0}\right)},
$$

belongs to set $\mathcal{J}(k, m)$ which is defined by the following table

Main integrability theorem. Integrability table

No.	k	m	$\mathcal{J}(k, m)$
1	$k=-2(m p+1)$	m	\mathbb{C}
2	$k \in \mathbb{Z} \backslash\{0\}$	m	$\mathcal{J}_{\mathrm{a}}(k, m)$
3	$k=2(m p-1) \pm \frac{1}{3} m$	$3 q$	$\bigcup_{i=0}^{6} \mathcal{J}_{i}(k, m)$
4	$k=2(m p-1) \pm \frac{1}{2} m$	$2 q$	$\mathcal{J}_{\mathrm{a}}(k, m) \cup \mathcal{J}_{4}(k, m)$
5	$k=2(m p-1) \pm \frac{3}{5} m$	$5 q$	$\mathcal{J}_{\mathrm{a}}(k, m) \cup \mathcal{J}_{3}(k, m) \cup \mathcal{J}_{6}(k, m)$
6	$k=2(m p-1) \pm \frac{1}{5} m$	$5 q$	$\mathcal{J}_{\mathrm{a}}(k, m) \cup \mathcal{J}_{3}(k, m) \cup \mathcal{J}_{5}(k, m)$

Table: Integrability table. Here $k, m, p, q \in \mathbb{Z}$ and $k \neq 0$.

Example

$$
\begin{equation*}
H=\frac{1}{2} r^{m-k}\left(p_{r}^{2}+\frac{p_{\varphi}^{2}}{r^{2}}\right)-r^{m} \cos \varphi \tag{1}
\end{equation*}
$$

It corresponds to $U(\varphi)=-\cos \varphi$. As $U^{\prime}(\varphi)=\sin \varphi$, we take $\varphi_{0}=0$. Since $U^{\prime \prime}(0) / U(0)=-1$, we have $\lambda=(k-1) / k$.
Comparison of this value with forms of λ in sets $\mathcal{J}_{j}(k, m), j=0, \ldots, 6$ gives:

$$
\begin{array}{llll}
1 . & m=1, & k=-5, & l=6, \\
2 . & m=-1, & k=1, & I=-2, \\
3 . & m=1, & k=1, & I=0, \\
4 . & m=-1, & k=-5, & I=4, \\
5 . & m=2, & k=1, & I=1, \\
6 . & m=-2, & k=1, & I=-3, \\
7 . & m=2, & k=-5, & l=7, \tag{3}\\
8 . & m=-2, & k=-5, & l=3 .
\end{array}
$$

Example. Superintegrable cases

Case 1.

$$
\begin{aligned}
H & =\frac{1}{2} r^{6}\left(p_{r}^{2}+\frac{p_{\varphi}^{2}}{r^{2}}\right)-r \cos \varphi, \\
F_{1} & :=r^{2} p_{\varphi}^{2} \cos (2 \varphi)-r^{3} p_{r} p_{\varphi} \sin (2 \varphi)+r^{-1} \sin \varphi \sin (2 \varphi), \\
F_{2} & :=r^{2} p_{\varphi}^{2} \sin (2 \varphi)+r^{3} p_{r} p_{\varphi} \cos (2 \varphi)-r^{-1} \sin \varphi \cos (2 \varphi) .
\end{aligned}
$$

Case 2.

$$
\begin{aligned}
H & =\frac{1}{2} r^{-2}\left(p_{r}^{2}+\frac{p_{\varphi}^{2}}{r^{2}}\right)-r^{-1} \cos \varphi \\
F_{1} & :=r^{-2} p_{\varphi}^{2} \cos (2 \varphi)+r^{-1} p_{r} p_{\varphi} \sin (2 \varphi)+r \sin \varphi \sin (2 \varphi) \\
F_{2} & :=-r^{-2} p_{\varphi}^{2} \sin (2 \varphi)+r^{-1} p_{r} p_{\varphi} \cos (2 \varphi)+r \sin \varphi \cos (2 \varphi)
\end{aligned}
$$

Example. Superintegrable cases

Case 3.

$$
\begin{aligned}
H & =\frac{1}{2}\left(p_{r}^{2}+\frac{p_{\varphi}^{2}}{r^{2}}\right)-r \cos \varphi \\
F_{1} & :=r^{-1} p_{\varphi}^{2} \cos \varphi+p_{r} p_{\varphi} \sin \varphi+\frac{1}{2} r^{2} \sin ^{2} \varphi \\
F_{2} & :=\left(p_{r}^{2}-r^{-2} p_{\varphi}^{2}\right) \cos \varphi \sin \varphi+r^{-1} p_{r} p_{\varphi} \cos (2 \varphi)-r \sin \varphi .
\end{aligned}
$$

Case 4.

$$
\begin{aligned}
H & =\frac{1}{2} r^{4}\left(p_{r}^{2}+\frac{p_{\varphi}^{2}}{r^{2}}\right)-r^{-1} \cos \varphi, \\
F_{1} & :=r p_{\varphi}^{2} \cos \varphi-r^{2} p_{r} p_{\varphi} \sin \varphi+\frac{1}{2} r^{-2} \sin ^{2} \varphi, \\
F_{2} & :=r^{4}\left(p_{r}^{2}-r^{-2} p_{\varphi}^{2}\right) \cos \varphi \sin \varphi-r^{3} p_{r} p_{\varphi} \cos (2 \varphi)-r^{-1} \sin \varphi .
\end{aligned}
$$

Example. Integrable cases

- In cases with parameters given in (3) we have integrable as well as non-integrable systems.
- Namely cases 5 and 8 are integrable.

Case 5.

$$
\begin{aligned}
& H=\frac{1}{2} r\left(p_{r}^{2}+\frac{p_{\varphi}^{2}}{r^{2}}\right)-r^{2} \cos \varphi \\
& F:=r^{-1}\left(p_{\varphi}^{2}-r^{2} p_{r}^{2}\right) \cos \varphi+r^{2}\left(1+\cos ^{2} \varphi\right)+2 p_{r} p_{\varphi} \sin \varphi
\end{aligned}
$$

Case 8.

$$
\begin{aligned}
& H=\frac{1}{2} r^{3}\left(p_{r}^{2}+\frac{p_{\varphi}^{2}}{r^{2}}\right)-r^{-2} \cos \varphi \\
& F:=r\left(p_{\varphi}^{2}-r^{2} p_{r}^{2}\right) \cos \varphi+r^{-2}\left(1+\cos ^{2} \varphi\right)-2 r^{2} p_{r} p_{\varphi} \sin \varphi .
\end{aligned}
$$

■ Poincaré sections for Hamiltonian systems with parameters given in cases 6 and 7 in (3) show chaotic area.

Example. Non-integrable case 6

(a) section plane $r=1$ with coordinates (φ, p_{φ})

(b) magnification of region around unstable periodic solution

Figure : Poincaré cross sections on energy level $E=-0.5$ for Hamiltonian system given by (1) with $m=-2, k=1$ corresponding to case 6

Example. Non-integrable case 7

(a) section plane $r=1$ with coordinates (φ, p_{φ})

(b) magnification of region around unstable periodic solution

Figure : Poincaré cross sections on energy level $E=-0.3$ for Hamiltonian system given by (1) with $m=2, k=-5$ corresponding to case 7

Example 2. Non-integrable cases for family $k=-2(m p+1)$

(a) section plane $r=1$ with coordinates (b) section plane $\varphi=0$ with coordinates (φ, p_{φ}) (r, p_{r})

Figure : Poincaré cross sections on energy level $E=-0.5$ for Hamiltonian system given by (1) with $m=-2, k=2$

Example. Non-integrable cases for family $k=-2(m p+1)$

(a) section plane $r=1$ with coordinates
(b) section plane $\varphi=0$ with coordinates
$\left(\varphi, p_{\varphi}\right)$ (r, p_{r})

Figure : Poincaré cross sections on energy level $E=-0.6$ for Hamiltonian system given by (1) with $m=-1, k=8$

Example. Non-integrable cases for family $k=-2(m p+1)$

(a) section plane $r=1$ with coordinates (b) section plane $\varphi=0$ with coordinates (φ, p_{φ}) (r, p_{r})

Figure : Poincaré cross sections on energy level $E=-0.5$ for Hamiltonian system given by (1) with $m=1, k=-6$

Another analogue in curved spaces

n dimensional constant curvature spaces $S_{[k]}^{n}$: the sphere \mathbb{S}^{n} for $\kappa>0$, Euclidean space \mathbb{E}^{n} for $\kappa=0$ and and hyperbolic space \mathbb{H}^{n} for $\kappa<0$

$$
\begin{gathered}
C_{\kappa}(x):= \begin{cases}\cos (\sqrt{\kappa} x) & \text { for } \quad \kappa>0, \\
1 & \text { for } \quad \kappa=0, \\
\cosh (\sqrt{-\kappa} x) & \text { for } \quad \kappa<0,\end{cases} \\
S_{\kappa}(x):= \begin{cases}\frac{1}{\sqrt{\kappa}} \sin (\sqrt{\kappa} x) & \text { for } \kappa>0, \\
x & \text { for } \kappa=0, \\
\frac{1}{\sqrt{-\kappa}} \sinh (\sqrt{-\kappa} x) & \text { for } \kappa<0 .\end{cases}
\end{gathered}
$$

These functions satisfy the following identities

$$
\mathrm{C}_{\kappa}^{2}(x)+\kappa \mathrm{S}_{\kappa}^{2}(x)=1, \quad \mathrm{~S}_{\kappa}^{\prime}(x)=\mathrm{C}_{\kappa}(x), \quad \mathrm{C}_{\kappa}^{\prime}(x)=-\kappa \mathrm{S}_{\kappa}(x) .
$$

Another analogue in curved spaces.

$$
\begin{equation*}
H=\frac{1}{2}\left(p_{r}^{2}+\frac{p_{\varphi}^{2}}{\mathrm{~S}_{\kappa}(r)^{2}}\right)+\mathrm{S}_{\kappa}^{k}(r) U(\varphi) \tag{4}
\end{equation*}
$$

with $k \in \mathbb{Z}$. Hamilton equations

$$
\begin{array}{ll}
\dot{r}=p_{r}, & \dot{p}_{r}=\frac{p_{\varphi}^{2}}{\mathrm{~S}_{\kappa}^{3}(r)} \mathrm{C}_{\kappa}(r)-k \mathrm{~S}_{\kappa}^{k-1}(r) \mathrm{C}_{\kappa}(r), \\
\dot{\varphi}=\frac{p_{\varphi}}{\mathrm{S}_{\kappa}^{2}(r)}, & \dot{p}_{\varphi}=-k \mathrm{~S}_{\kappa}^{k-1}(r) U^{\prime}(\varphi),
\end{array}
$$

have an invariant plane given by $\varphi(t)=\varphi_{0}=$ const with $U^{\prime}\left(\varphi_{0}\right)=0$ and $p_{\varphi}=0$.
We consider a particular solution on the energy level $H=e$

$$
H=\frac{1}{2} p_{r}^{2}+S_{\kappa}^{k}(r) U\left(\varphi_{0}\right)
$$

Case $n=2$. Integrability theorem

Theorem

If the Hamiltonian system governed by Hamilton function (4) is meromorphically integrable, then at each Darboux point the pair (k, λ) belongs to one of the following list
case k
λ
$-\frac{(k-2 p)(p-1)}{k}$
$-\frac{(k+4 p)[k-4(1+p)]}{8 k}$
$3-2+4 p \quad$ arbitrary
$4 \quad k=2 q-1 \quad-\frac{(-2+3 k+12 p)[3 k-2(5+6 p)]}{72 k}$

Here p is an arbitrary integer.

Variational equations

If $\left[R, \Phi, P_{R}, P_{\Phi}\right]^{T}$ denote the variations of variables $\left[r, \varphi, p_{r}, p_{\varphi}\right]^{T}$, then variational equations on the invariant plane take the form
$\left[\begin{array}{c}\dot{R} \\ \dot{\Phi} \\ \dot{P}_{R} \\ \dot{P}_{\Phi}\end{array}\right]=\left[\begin{array}{cccc}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & S_{\kappa}^{-2}(r) \\ k S_{\kappa}^{k-2}(r)\left[k \kappa \mathrm{~S}_{\kappa}^{2}(r)-(k-1)\right] U\left(\varphi_{0}\right) & 0 & 0 & 0 \\ 0 & -\mathrm{S}_{\kappa}^{k}(r) U^{\prime \prime}\left(\varphi_{0}\right) & 0 & 0\end{array}\right]\left[\begin{array}{c}R \\ \Phi \\ P_{R} \\ P_{\Phi}\end{array}\right]$

Normal part of variational equations is given by the following closed subsystem

$$
\dot{\Phi}=\mathrm{S}_{\kappa}^{-2}(r) P_{\Phi}, \quad \dot{P}_{\Phi}=-\mathrm{S}_{\kappa}^{k}(r) U^{\prime \prime}\left(\varphi_{0}\right) \Phi,
$$

or rewritten as a one second order equation

$$
\begin{aligned}
& \ddot{\Phi}+a\left(r, p_{r}\right) \dot{\Phi}+b\left(r, p_{r}\right) \Phi=0, \\
& a\left(r, p_{r}\right)=2 \frac{C_{\kappa}(r)}{S_{\kappa}(r)} p_{r}, \quad b\left(r, p_{r}\right)=S_{\kappa}^{k-2}(r) U^{\prime \prime}\left(\varphi_{0}\right) .
\end{aligned}
$$

Rationalizaton of normal variational equations

- Using the change of independent variable $t \mapsto z=S_{\kappa}(r) / \sqrt{\kappa}$ we can transform it into a linear equation with rational coefficients

$$
\begin{aligned}
& \Phi^{\prime \prime}+p(z) \Phi^{\prime}+q(z) \Phi=0, p(z)=\frac{\ddot{z}+\dot{z} a}{\dot{z}^{2}}=\frac{z}{z^{2}-1}+2 \frac{(k+2) z^{k}-u^{k}}{z\left(z^{k}-u^{k}\right)} \\
& q(z)=\frac{b}{\dot{z}^{2}}=\frac{k(\lambda-1) z^{k-2}}{2\left(z^{2}-1\right)\left(z^{k}-u^{k}\right)}
\end{aligned}
$$

where u is defined by relation $e \kappa^{k / 2}=B u^{k}$.
■ We choose $u=0$ that is equivalent to take zero energy level. The the variational equation reduces to

$$
\Phi^{\prime \prime}+\frac{(k+6) z^{2}-4-k}{2 z\left(z^{2}-1\right)} \Phi^{\prime}+\frac{k(\lambda-1)}{2 z^{2}\left(z^{2}-1\right)} \Phi=0
$$

- Transformation $z \mapsto y=z^{2}$ convert it into the Riemann P equation

$$
\begin{aligned}
& \frac{\mathrm{d}^{2} \Phi}{\mathrm{~d} y^{2}}+\left[\frac{k+6}{4 y}+\frac{1}{2(y-1)}\right] \frac{\mathrm{d} \Phi}{\mathrm{~d} y}+\left[\frac{k(1-\lambda)}{8 y^{2}}+\frac{k(\lambda-1)}{8 y(y-1)}\right] \Phi=0, \\
& \rho=\frac{1}{4} \sqrt{(k-2)^{2}+8 k \lambda}, \quad \tau=\frac{1}{2}, \quad \sigma=\frac{k+4}{4} .
\end{aligned}
$$

Examples

- Case $k=1$

Lemma

If Hamiltonian system with $\kappa \neq 0$ and $k=1$ is integrable then either $\lambda=1$, or $\lambda=0$.

■ If $k=-2$ Hamiltonian system is integrable. The additional first integral has the following form

$$
\begin{equation*}
G=\frac{p_{\varphi}^{2}}{2}+U(\varphi) \tag{5}
\end{equation*}
$$

In fact, in this case system is separable in variables (r, φ). For such systems one can ask about its superintegrability and in our work it was shown that the necessary condition is that $\lambda=1-s^{2}$, where s is a non-zero rational number.

- for $k=2$ also does not give give obstructions for integrability
- for $|k|>2$ as well as for $k=-1$ there is no an effective way to perform analvsis till the end.

Examples

- Hamiltonian with potential

$$
V(r, \varphi)=S_{\kappa}^{k}(r) \cos ^{k} \varphi
$$

for which $\lambda=0$, so the necessary conditions for integrability are fulfilled and additional first integral is

$$
I_{\kappa}=p_{r} \sin \varphi+p_{\varphi} \cos \varphi \sqrt{\kappa} \cot \sqrt{\kappa} r, \quad \kappa \neq 0 .
$$

■ Limit

$$
I_{0}=\lim _{\kappa \rightarrow 0} I_{\kappa}=p_{r} \sin \varphi+r^{-1} p_{\varphi} \cos \varphi,
$$

gives the first integral for the case $\kappa=0$.

- If $\kappa=0$ and $k=1$, then there exists additional independent first integral quadratic in momenta

$$
I_{2}=\left(p_{r}^{2}-\frac{p_{\varphi}^{2}}{r^{2}}\right) \cos \varphi \sin \varphi+r^{-1} p_{r} p_{\varphi} \cos (2 \varphi)-r \sin \varphi
$$

Thus, in this case the system is maximally super-integrable.

Examples

For potential

$$
V(r, \varphi)=S_{\kappa}^{k}(r) \cosh \varphi,
$$

we have $\lambda=(k+1) / k$. Comparison with integrability table gives $k=-1$, and $k=-3$.

Figure : The Poincaré cross section on energy level $e=50$, for $k=-1$ and $\kappa=1$. The cross-section plane is $r=\pi / 2$ with $p_{r}>0$

Examples

For $k=-3$ chaotic region was not easily visible. To see it we made the change of variable $\varphi=\mathrm{i} \psi, p_{\varphi}=-\mathrm{i} p_{\psi}$ and then the Hamiltonian takes the form

$$
H=\frac{1}{2}\left(p_{r}^{2}-\frac{p_{\psi}^{2}}{\mathrm{~S}_{\kappa}(r)^{2}}\right)+\mathrm{S}_{\kappa}^{k}(r) \cos \psi
$$

Figure: The Poincaré cross section on energy level $e=50$, for $k=-3$ and $\kappa=1$. The cross-section plane is $r=\pi / 2$ with $p_{r}>0$

References

- Szumiński, W., Maciejewski, A. J. and M. Przybylska, (2015): Note on integrability of certain homogeneous Hamiltonian systems, Phys. Lett. A 379(45-46), 2970-2976.

Rañada M. F., Superintegrable systems with a position dependent mass : Kepler-related and Oscillator-related systems, arXiv:math-ph/1605.02336

Fordy A. P., A note on some superintegrable Hamiltonian systems arXiv:nlin.SI/1601.03079

Rimura, T. (1969/1970): On Riemann's equations which are solvable by quadratures, Funkcial. Ekvac. 12, 269-281.

Rallesteros, A., F. J. Herranz, M. Santander, and T. Sanz-Gil, (2003): Maximal superin- tegrability on N -dimensional curved spaces, J. Phys. A: Math. Gen. 36(7), L93.

囯 Maciejewski, A. J., Szumiński, W. and M. Przybylska, (2016): Note on integrability of certain homogeneous Hamiltonian systems in 2D constant curvature spaces, submitted to Phys. Lett. A

